
Figure 5: Real and generated ECAL jet-view image overlays. The left panel shows the real ECAL overlay, while the right 

panel shows the generated ECAL overlay over 512 jets each, both in log-scale. Image resolution 8 × 8.

Quantum Generative Adversarial Networks for 

High Energy Physics Simulations

Introduction

Monte Carlo simulations are essential in computational physics and high-

energy physics (HEP) for modeling complex systems and particle

interactions, but face scalability challenges due to their computational

intensity. Generative Adversarial Networks (GANs) present a promising

alternative for generating realistic data [1] but face challenges such as

vanishing gradients, mode collapse, and significant computational

requirements. Recent studies highlight quantum algorithms, particularly

Quantum Generative Adversarial Networks (qGANs), as potential solutions.

Zoufal et al [2]. demonstrated that qGANs can efficiently learn and encode

probability distributions into quantum states, making them a compelling

approach for future HEP simulations. This work presents the

implementation of a qGAN to generate gluon-initiated jet images from ECAL

detector data, a task crucial for high-energy physics simulations at the

Large Hadron Collider (LHC). The results demonstrate high fidelity in

replicating energy deposit patterns and preserving the implicit training data

features

We train 2 PQCs (5 feature qubits, 2 auxiliary qubits, 5 layers) on 512 gluon

images for 30 epochs with a batch size of 1. The evaluation of the

generative model shows the evolution of Fréchet Inception Distance (FID)

and Root Mean Squared Error (RMSE) in Figure 2, demonstrating fast

convergence and increased accuracy in generating realistic gluon images.

Figure 3 compares the scaled total energy and rechit energy deposits from

real and generated gluon jets, showing high accuracy in reproducing the

implicit features of the training data.

Results

Methodology

We used Andrews et al.’s [3] dataset from QCD dijet simulations on the

CERN CMS Open Data Portal, containing 933,206 three-channel, 125×125

images of quarks and gluons. Only the ECAL channel was used. Gluon

images were cropped to 80×80 and downscaled via sum pooling to 8×8 to

represent scaled ECAL energy deposits. Our method uses Huang et al.’s [4]

hybrid architecture with quantum generators and a classical discriminator.

Quantum generators construct images from quantum basis state

probabilities along with a post-processing step to get rid of the normalization

constraints, representing pixel intensities. They employ PQCs initialized with

a uniform reference state |Ψin⟩, parameterized Pauli-Y rotations, CZ gates,

and an auxiliary register for a non-linear transformation (figure 1). The

classical discriminator is a dense neural network with input (64 nodes),

hidden (128 and 32 nodes, ReLU), and Sigmoid output layers.

Conclusions

This work successfully implemented a qGAN to generate ECAL gluon-

initiated jet images from CMS Open Data, demonstrating its ability to

replicate energy deposit distributions accurately. However, the study was

limited to 512 pictures and the ECAL channel, and training was performed

on quantum simulators, which may not reflect actual quantum hardware

performance. Future work should explore real quantum hardware, expand

the dataset, and integrate data from additional sub-detectors to improve

scalability and generalization. This study sets the first step for future work

on the qGAN model to simultaneously generate three-channel images and

incorporate quark jet image generation, improving the simulation

capabilities for LHC-related tasks.
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Figure 1: Schematic representation of the quantum generator. A single layer (left) consisting of Pauli-Y rotations followed 

by a control Z gate entangling block. The PQC (right) includes both a feature register and an ancillary register along with a

post-processing step after measurement.

Figure 2: Frenchet inception distance (left) and the root mean squared error (right) computed using the training data 

overlay and the generated data overlay at the end of each epoch.

Figure 3: Comparison of the generated and real ECAL energy deposits. The left plot shows the scaled total ECAL energy 

deposits. The right plot depicts the scaled rechit energy deposits. Both plotted in a log scale.

Figure 4 compares real and generated ECAL jet images, showing similar

energy deposition patterns in both, with generated jets closely matching the

real ones. Figure 5 compares real and generated ECAL energy deposit

overlays, with both showing similar distributions, particularly in the core

region, highlighting the qGAN’s ability to replicate energy deposit patterns

accurately.

Figure 4: Comparison of real (left) and generated (right) ECAL jet images. The generated jet images are generated by the 

trained model. Both sets are plotted in a log scale.


