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Hierarchical Time-Aware Mixture of Experts for
Multi-Modal Sequential Recommendation

Anonymous Author(s)

Abstract
Multi-modal sequential recommendation (SR) leveragesmulti-modal
data to learn more comprehensive item features and user prefer-
ences than traditional SRmethods, which has become a critical topic
in both academia and industry. Existing methods typically focus on
enhancing multi-modal information utility through adaptive modal-
ity fusion to capture the evolving of user preference from user-item
interaction sequences. However, most of them overlook the interfer-
ence caused by redundant interest-irrelevant information contained
in rich multi-modal data. Additionally, they primarily rely on im-
plicit temporal information based solely on chronological ordering,
neglecting explicit temporal signals that could more effectively
represent dynamic user interest over time. To address these limi-
tations, we propose a Hierarchical time-awareMixture of experts
for multi-modal Sequential Recommendation (HM4SR) with a two-
level Mixture of Experts (MoE) and a multi-task learning strategy.
Specifically, the first MoE, named Interactive MoE, extracts essen-
tial user interest-related information from the multi-modal data of
each item. Then, the second MoE, termed Temporal MoE, captures
user dynamic interests by introducing explicit temporal embeddings
from timestamps inmodality encoding. To further address data spar-
sity, we propose three auxiliary supervision tasks: sequence-level
category prediction (CP) for item feature understanding, contrastive
learning on ID (IDCL) to align sequence context with user interests,
and placeholder contrastive learning (PCL) to integrate temporal
information with modalities for dynamic interest modeling. Exten-
sive experiments on four public datasets verify the effectiveness of
HM4SR compared to several state-of-the-art approaches. Our code
is available at https://anonymous.4open.science/r/HM4SR-8DD7/.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Sequential Recommendation, Multi-modal Recommendation, Mix-
ture of Experts, Temporal Information
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1 Introduction
Sequential recommendation (SR) aims to predict the subsequent in-
teractions of users by analyzing their historical behaviors in chrono-
logical order [18, 31]. Traditional SRmethods rely on item-IDs solely
to develop sequence encoders [13, 19, 21, 25, 43], and the abundant
multi-modal item descriptions are ignored and unused, which may
encapsulate potential user interests. Recently, the multi-modal SR
task has been proposed to integrate various types of multi-modal
data like text and images as semantic supplements for user-item
interactions [1, 15, 16, 22, 32]. In this context, these approaches sig-
nificantly enhance recommendation quality by capturing more fine-
grained item features and better modeling user interests, thereby
attracting increasing attention from both academia and industry.

In the literature, conventional multi-modal SR approaches pri-
marily focus on modality fusion to improve recommendation accu-
racy. For instance, MV-RNN [4] conducts an initial modality fusion
through addition, concatenation, and reconstruction, while UniS-
Rec [15] applies Mixture of Experts to transfer semantics from text
representations to ID embeddings. Moving beyond direct fusion,
many studies try to explore adaptive fusion for more flexible multi-
modal modeling. For example, MISSRec [30] employs a lightweight
fusion module to learn user dynamic attention on different modal-
ities. Next, MMSR [16] reveals that fusing modalities at different
stages impacts model sensitivity to interest patterns and proposes
adaptive modality fusion based on heterogeneous graph neural
networks. TedRec [35] applies Fast Fourier Transform to process
embedding sequences of ID and text for sequence-level semantic
fusion from the frequency domain. Despite these advancements,
most of them overlook the hindrance of multi-modal redundant
information on the learning of true user interests. They also model
multi-modal sequences by solely leveraging implicit temporal in-
formation contained in the chronological order of behaviors, ne-
glecting explicit temporal data that indicates user dynamic interest
changes, such as timestamps and time intervals.

Although considerable progress has been made, there are still
some critical challenges for multi-modal SR: (1) While the richness
of multi-modal information enhances item and user representation
learning, its redundant interest-irrelevant parts may complicate the
extraction of key information that reflects user true preferences
from multi-modal data. For example in Figure 1, the text for the
fourth item includes usage directions, and the image contains details
about the person on the package, both are irrelevant to user interest.
(2) Explicit temporal information is dynamic and diverse, making it
challenging and potentially unstable to leverage for modeling evolv-
ing user interests in multi-modal sequence encoding. In Figure 1,
the user has been interested in the “Crusader” brand for a long time
but recently preferred summer-related products like sunscreens,
indicating the complexity of using explicit temporal data to capture
dynamic interests. (3) Sequence data sparsity causes information
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Figure 1: A toy example of user-item interaction sequence.

loss for user interest modeling, necessitating multi-faceted auxil-
iary supervised signals to replenish interest-related information.
However, due to the complexity of multi-modal data, how to get
informative signals presents a challenge. In Figure 1, the model has
to learn user interest from a short interaction sequence, and items
like “Crusader Skin Tone Cream” also have limited interactions,
highlighting the sparsity in both user and item data.

To address aforementioned challenges, we propose a novel
method named Hierarchical Time-Aware Mixture of Experts for
Multi-Modal Sequential Recommendation (HM4SR). Specifically,
first for initial item representations, we use BERT [6] and ViT [7]
to extract textual and visual information, and maintain an embed-
ding matrix for item-IDs. Next, we develop a two-level hierarchical
Mixture of Experts (MoE). The first level, namely Interactive MoE,
applies specialized experts to process all modalities of an item con-
currently for the extraction of key information relevant to user
interests. The second level, termed Temporal MoE, encodes times-
tamps into embeddings of intervals and absolute time to model
explicit temporal information. It then utilizes these embeddings to
select experts to process item features, thereby integrating explicit
temporal information into multi-modal learning. To capture user
dynamic interests, HM4SR employs Transformers [29] to compute
embedding sequences of each modality. Furthermore, we design
three auxiliary supervision tasks to provide multi-faceted and infor-
mative training signals. We first devise a sequence-level category
prediction (CP) task to fuse category information. Next, contrastive
learning on ID (IDCL) improves alignments between sequence rep-
resentations and ground truth embeddings on ID, enhancing user
preference learning. To strengthen modality and dynamic temporal
information integration, placeholder contrastive learning (PCL) pro-
motes consistency between original sequences and their augmented
sequences with time-based placeholders. Overall, we summarize
our contributions as follows:

• In this paper, we propose a novel HM4SR method for multi-
modal SR. To the best of our knowledge, we are the first to
leverage explicit temporal information to enhance multi-
modal user interest learning.

• We design a hierarchical MoE structure. At the first level,
the Interactive MoE extracts key information related to user
interests from rich multi-modal data. At the second level,
the Temporal MoE incorporates dynamic explicit temporal
information into the modality modeling process.

• To provide multi-faceted and effective training signals, we
develop a multi-task learning strategy including three aux-
iliary supervision tasks, i.e., CP, IDCL, and PCL.

• Comprehensive experiments on four real-world datasets
verify the effectiveness of our proposed HM4SR.

2 Related Work
In this section, we provide previous research relevant to our work,
including traditional and multi-modal sequential recommendation.

2.1 Traditional Sequential Recommendation
Sequential recommendation targets to predict the next item users
may be interested in based on their behavior sequences. Early works
focus on different sequential encodingmodels to process user behav-
ior sequences. For instance, GRU4Rec [13], Caser [27], SASRec [19]
and BERT4Rec [26] utilize RNN, CNN, self-attention and BERT
structures as their basic encoders, respectively. Since time infor-
mation apparently represents the changes and transitions of user
interest, many studies try to enhance SR methods with time-aware
designs. For example, TiSASRec [20] exploits time intervals for
self-attention-based models to capture evolving information in be-
havior sequences. MEANTIME [3] exploits multiple types of time
embeddings to improve sequential interest modeling. TGCL4SR [39]
devises temporal graph contrastive learning with timestamp per-
turbation augmentation to enhance item temporal transition pat-
tern encoding. Furthermore, FEARec [9] designs a frequency rump
structure, and hybrids the time domain self-attention encoder with
the frequency domain self-attention module to grasp both low-
frequency and high-frequency patterns. TiCoSeRec [5] utilizes five
time-aware sequence-level augmentation operations to unify the
time distribution of user behaviors and conduct contrastive learning.
However, the above methods model evolving behavior sequences
without exploring multi-modal data, and thus cannot fully exploit
multi-modal features which reflect user interests.

2.2 Mutli-Modal Sequential Recommendation
Multi-modal SR has emerged to leverage multi-modal information
of items to capture user interests, which significantly enhances
recommendation quality [17, 22, 37]. Existing studies mainly con-
centrate on integrating modalities to augment recommendation
accuracy. For example, MV-RNN [4] fuses modal data through addi-
tion, concatenation, and reconstruction. UniSRec [15] applies MoE
to facilitate semantic transfer on text representations and add them
to the ID embeddings. Successively, many works further design
adaptive fusion modules to improve multi-modal fusion effective-
ness. For instance, MISSRec [30] implements a lightweight fusion
mechanism to discern user dynamic attention across modalities
for adaptable fusion. MMSR [16] devises adaptive fusion with het-
erogeneous graph neural networks to flexibly utilize the interplay
between modalities. M3SRec[1] uses modality-specific MoE and
cross-modal MoE for multi-sided modality integration. In addition,
TedRec [35] leverages Fast Fourier Transform to process the em-
bedding sequences of IDs and textual contents for sequence-level
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semantic fusion in the frequency domain. While most methods rely
solely on implicit temporal information, they often neglect dynamic
explicit temporal data, redundant modal filtering, and the extraction
of interest-relevant information. In contrast, our proposed HM4SR
addresses these challenges by explicitly incorporating dynamic
temporal information and introducing auxiliary supervision tasks
to enhance dynamic user interest modeling.

3 Problem Definition
Multi-modal sequential recommendation aims to exploit multi-
modal item information and historical user behavior to make per-
sonalized recommendations for the next user interaction. Let us
assume a set of usersU and a set of itemsV . Each item 𝑣 ∈ V is
represented as 𝑣 = ⟨𝑖𝑖𝑑 , 𝑖𝑡𝑥𝑡 , 𝑖𝑖𝑚𝑔⟩, where 𝑖𝑖𝑑 denotes the item ID,
while 𝑖𝑡𝑥𝑡 and 𝑖𝑖𝑚𝑔 refer to the associated text and image content
of 𝑣 , respectively. We denote the historical behavior sequence 𝑆 of
user 𝑢 ∈ U as 𝑆 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑆 | }, where 𝑣𝑖 ∈ V represents the
interacted item at the 𝑖-th time step. The corresponding timestamp
sequence is denoted as 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡 |𝑆 | }.

Given a user 𝑢 and 𝑢’s historical behavior sequence 𝑆 with multi-
modal item information, the objective of multi-modal sequential
recommendation is to predict an item 𝑣 ∈ V that the user 𝑢 might
be interested in at the ( |𝑆 | + 1)-th time step. This can be formulated
as finding the item 𝑣 that maximizes the conditional probability
given the sequence of interactions:

𝑣 = argmax𝑣∈V 𝑃 (𝑣 |𝑆 |+1 = 𝑣 |𝑆). (1)

4 Methodology
In this section, we introduce the technical details of our proposed
HM4SR. As illustrated in Figure 2, HM4SR consists of four main
components: 1) Initial Item Representation module extracts the ID,
text, and image features for items as the initial representations. 2)
Hierarchical Mixture of Experts module designs two levels of MoE,
named Interactive MoE and Temporal MoE, to mine key interest
features from the multi-modal information interaction and harness
explicit temporal information for multi-modal sequence modeling
by inputting time embeddings to gating routers. 3) User Interest
Learning module encodes user behavior sequences with different
modalities to learn user preferences. The prediction is based on the
sum of logits from three modalities. 4) Multi-task Learning strategy
is designed to enhance main recommendation task training, includ-
ing sequence-level category prediction and contrastive learning on
ID. Placeholder contrastive learning is further proposed to deepen
relationship learning between item features and time information.

4.1 Initial Item Representation
We obtain item initial representations from three modalities in real-
world recommendation scenarios: ID, text, and images. For ID, we
initialize an ID embedding matrix𝑀𝑖𝑑 ∈ R |V |×𝑑 , where 𝑑 denotes
the size of the hidden dimension. We let 𝑥𝑖𝑑 represent the initial ID
representation of the item 𝑣 ∈ V . As for text and image data, we
encoder them with pre-trained models for better representation.

First, for text, we apply a widely used pre-trained BERT [6] to
extract text features to capture user preference from textual seman-
tics. Given the words {𝑤1,𝑤2, . . . ,𝑤𝐿} of 𝑣 in textual information
of items, we first concatenate them with a special symbol [CLS]𝑡𝑥𝑡

to form the input sentence. Since [CLS]𝑡𝑥𝑡 can convey the seman-
tics of the whole sentence, we use the embedding of [CLS]𝑡𝑥𝑡 to
represent the text features. Here, we input the combined sentence
into pre-trained BERT to obtain the text feature as follows:

𝒇 𝑡𝑥𝑡 = BERT( [[CLS]𝑡𝑥𝑡 ;𝑤1;𝑤2; . . . ;𝑤𝐿]), (2)

where 𝒇 𝑡𝑥𝑡 ∈ R𝑑𝑡𝑥𝑡 is the final hidden vector for [CLS]𝑡𝑥𝑡 , and [; ]
denotes the concatenation operation.

Second, for images, we process the visual information by the pre-
trained visual model ViT [7]. The image𝑤𝑖𝑚𝑔 of item 𝑣 is divided
into several patches {𝑝1, 𝑝2, . . . , 𝑝𝑁 }, and then these patches are
transformed into a sequence. Next, we input the patch sequence
into ViT [7] as follows:

𝒇 𝑖𝑚𝑔 = ViT( [[CLS]𝑖𝑚𝑔 ;𝑝1;𝑝2; . . . ; 𝑝𝑁 ]), (3)

where 𝒇 𝑖𝑚𝑔 ∈ R𝑑𝑖𝑚𝑔 is the final hidden vector for [CLS]𝑖𝑚𝑔 .
Moreover, to convert the dimensionality of text embeddings and

image embeddings into the same dimension size as ID embeddings,
we employ two respective linear layers to change their dimensions:

𝒙𝑡𝑥𝑡 =𝑾𝑡𝑥𝑡𝒇 𝑡𝑥𝑡 + 𝒃𝑡𝑥𝑡 , (4)

𝒙𝑖𝑚𝑔 =𝑾𝑖𝑚𝑔𝒇 𝑖𝑚𝑔 + 𝒃𝑖𝑚𝑔, (5)
where 𝒙𝑡𝑥𝑡 is the initial text representation of 𝑣 , 𝒙𝑖𝑚𝑔 is the initial
image representation of 𝑣 , 𝑾𝑡𝑥𝑡 ∈ R𝑑𝑡𝑥𝑡×𝑑 , 𝑾𝑖𝑚𝑔 ∈ R𝑑𝑖𝑚𝑔×𝑑 ,
𝒃𝑡𝑥𝑡 ∈ R𝑑 and 𝒃𝑖𝑚𝑔 ∈ R𝑑 are trainable parameters, while𝒇 𝑡𝑥𝑡 ,𝒇 𝑖𝑚𝑔

are frozen in the training process.
Meanwhile, order information is vital for sequence modeling

in SR [1, 19], thus we add the corresponding position embedding
𝒑 ∈ R𝑑 on three embeddings:

𝒆𝑚 = 𝒙𝑚 + 𝒑, (6)

where𝑚 ∈ {𝑖𝑑, 𝑡𝑥𝑡, 𝑖𝑚𝑔} denotes the modality.

4.2 Hierarchical Mixture of Experts
Tomodel users’ interests for recommendations frommulti-model in-
formation, we design the two-level hierarchical Mixture of Experts
including Interactive MoE and Temporal MoE. Interactive MoE ex-
tracts user interest-related item features to facilitate modality data
learning, while Temporal MoE introduces explicit temporal informa-
tion for dynamic interest modeling with the merit of specialization.
In previous studies, the effect of MoE has been demonstrated in
many recommendation scenarios, because it can augment the learn-
ing ability and flexibility of recommendation models by obtaining
specialized item representations and user preferences frommultiple
aspects [2, 24, 34, 40]. MoE in multi-modal SR typically employs
multiple expert networks to process modality semantic information
and achieves adaptive combination by a gating network [15]. The
following are details of our Interactive MoE and Temporal MoE.

4.2.1 Interactive MoE. The target of Interactive MoE is to enhance
item key feature extraction and avoid redundant information of
each modality. The MoE for multi-modal SR usually processes in-
formation from one modality [1, 15, 35], which lacks interactions
between different modalities and thus hinges on more informative
item feature learning. Different from them, we let each expert in
Interactive MoE process all modality information of items and route
experts based on a target modality to achieve effective modality

3
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Figure 2: The overall architecture of the proposed HM4SR.

interaction learning. In specific, given the ID, text, and image rep-
resentations of an item 𝒆𝑖𝑑 , 𝒆𝑡𝑥𝑡 and 𝒆𝑖𝑚𝑔 respectively, experts on
the target modality𝑚 ∈ {𝑖𝑑, 𝑡𝑥𝑡, 𝑖𝑚𝑔} process them as follows:

𝒆𝑖𝑛𝑡𝑒𝑟 =
[
𝒆𝑖𝑑 ; 𝒆𝑡𝑥𝑡 ; 𝒆𝑖𝑚𝑔

]
, (7)

𝒙𝑖𝑛𝑡𝑒𝑟𝑚 = 𝛼𝑚

𝑘1∑︁
𝑖=1

𝑔𝑚𝑖 ·
(
𝑾𝑖𝑛𝑡𝑒𝑟

𝑖,𝑚 𝒆𝑖𝑛𝑡𝑒𝑟 + 𝒃𝑖𝑛𝑡𝑒𝑟𝑖,𝑚

)
, (8)

where 𝒙𝑖𝑛𝑡𝑒𝑟𝑚 is the fused expert output, 𝛼𝑚 is a trainable parameter
to control modality interaction intensity on the modality 𝑚, 𝑘1
denotes the number of experts in Interactive MoE,𝑾𝑖𝑛𝑡𝑒𝑟

𝑖,𝑚
∈ R3𝑑×𝑑

and 𝒃𝑖𝑛𝑡𝑒𝑟𝑖,𝑚 ∈ R𝑑 are the learnable weight and bias of the 𝑖-th expert.
𝑔𝑚
𝑖

represents the routing weight of the 𝑖-th expert on the modality
𝑚 from the routing vector 𝒈𝑚 by the following gating router:

𝒈𝑚 = Softmax
(
𝑾1,𝑚𝒆𝑚 + 𝒃1,𝑚

)
, (9)

where 𝑾1,𝑚 ∈ R𝑑×𝑘1 and 𝒃1,𝑚 ∈ R𝑘1 are the learnable weight
and bias of the gating routers. After obtaining 𝒙𝑖𝑛𝑡𝑒𝑟𝑚 , we take the
residual connection to get the outputs of Interactive MoE:

𝒆′𝑚 = 𝒆𝑚 + 𝒙𝑖𝑛𝑡𝑒𝑟𝑚 . (10)

With the procedure above, item interest-related key information is
semantically enhanced by modality interaction learning.

4.2.2 Temporal MoE. User interest usually changes dynamically
and complicatedly, which can be more expressly indicated by ex-
plicit temporal information. Therefore, we further propose Tem-
poral MoE as the second level to incorporate explicit temporal
information into multi-modal learning, including intervals between
user behaviors and absolute timestamps. To begin with, given the

timestamp sequence 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑆 | } of the sequence 𝑆 , the
corresponding time interval sequence is formulated as follows:{

𝑎1, 𝑎2, . . . , 𝑎 |𝑆 |
}
=
{
0, 𝑡2 − 𝑡1, . . . , 𝑡 |𝑆 | − 𝑡 |𝑆 |−1

}
, (11)

where 𝑎𝑖 denotes the corresponding interval of the item 𝑣𝑖 ∈ 𝑆 .
Considering that different time intervals indicate different user
interest transition [36], we apply the following function to calculate
the corresponding position of 𝑎𝑖 :

pos𝑖 = ⌊𝜇 log (𝑎𝑖 + 1)⌋, (12)

where 𝜇 is a scaling parameter to control the total number of interval
positions. We maintain an embedding matrix𝑀𝑡 for intervals, and
then we can get the interval embedding 𝒓1,𝑖 ∈ R𝑑 corresponding to
pos𝑖 . For absolute timestamps, inspired by the positional embedding
in Transformer [29], we use the following function to obtain the
time embedding of the timestamp 𝑡 for direct time information:

𝑟 𝑖2,𝑖 = cos

(
𝑙𝑖𝑡

𝑓 𝑟𝑒𝑞
𝑖
𝑑

+ 𝑧𝑖

)
, (13)

where 𝑟 𝑖2,𝑖 is the 𝑖-th value of 𝒓2,𝑖 ∈ R𝑑 , 𝑓 𝑟𝑒𝑞 is an adjustable
hyper-parameter, 𝑙𝑖 and 𝑧𝑖 are trainable parameters. After that, the
temporal embeddings are inputted to the gating router of Temporal
MoE to obtain the routing weight:

𝒈′ = Softmax
(
𝑾2 [𝒓1,𝑖 ; 𝒓2,𝑖 ] + 𝒃2

)
, (14)

where 𝑾2 ∈ R2𝑑×𝑘2 and 𝒃2 ∈ R𝑘2 are the learnable weight and
bias of the gating router respectively, 𝑘2 is the number of experts.
Then given the outputs from Interactive MoE 𝒆′

𝑖𝑑
, 𝒆′𝑡𝑥𝑡 and 𝒆′

𝑖𝑚𝑔
of
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𝑣𝑖 , the output calculation of Temporal MoE is defined as below:

𝒆temp =

[
𝒆′
𝑖𝑑
; 𝒆′𝑡𝑥𝑡 ; 𝒆

′
𝑖𝑚𝑔

]
, (15)[

𝒙
temp
𝑖𝑑

; 𝒙temp
𝑡𝑥𝑡 ; 𝒙temp

𝑖𝑚𝑔

]
= 𝒙temp =

𝑘2∑︁
𝑖=1

𝑔′𝑖 ·
(
𝑾

temp
𝑖
⊙ 𝒆temp

)
, (16)

where𝑾 temp
𝑖

∈ R1×3𝑑 is the learnable weight of the 𝑖-th expert, ⊙
is element-wise multiply, and 𝑔′

𝑖
represents the routing weight of

the 𝑖-th expert. By this means, we can model user dynamic interest
changes via two forms of time, interval and absolute time, to embed
explicit temporal data into multi-modal learning.

Through the two-level hierarchical MoE, we can improve item
key feature extraction by modality interactions and also introduce
explicit temporal information to multi-modal learning for user
dynamic interest modeling.

4.3 User Interest Learning and Prediction
To learn user evolving interest, we choose Transformer [29] to en-
code the information within behavior sequences effectively, which
is widely applied in SR methods. Specifically, for the behavior
sequence 𝑆 of the user 𝑢, we organize the outputs of all items
from Temporal MoE as three types of sequence representations
𝑺𝑚 = {𝒙temp

𝑚,1 , 𝒙
temp
𝑚,2 . . . , 𝒙

temp
𝑚, |𝑆 | }, where 𝑚 ∈ {𝑖𝑑, 𝑡𝑥𝑡, 𝑖𝑚𝑔} repre-

sents the specific modality. Then, these sequences are fed into their
corresponding Transformer models as follows:

𝑺′𝑚 = Dropout(LayerNorm(𝑺𝑚)), (17)

𝑯𝑚 = Transformer𝑚 (𝑺′𝑚), (18)
where 𝑯𝑚 is the final hidden vector corresponding to the last
position as user interest under modality 𝑚. Next, to predict the
interaction probability between the user 𝑢 and the item 𝑣 , we cal-
culate the score on each modality and then sum up these scores as
the final prediction result 𝑦𝑣 , which can be formulated as below:

𝑦𝑣 = 𝑯 𝑖𝑑 · 𝒙𝑖𝑑 + 𝑯 𝑡𝑥𝑡 · 𝒙𝑡𝑥𝑡 + 𝑯 𝑖𝑚𝑔 · 𝒙𝑖𝑚𝑔 . (19)

4.4 Multi-Task Learning
To alleviate information loss owing to data sparsity in multi-modal
SR, we design the multi-task training strategy besides the main SR
task to provide multi-faceted and informative supervision signals
as complements. First, given a user behavior sequence 𝑆 , the main
target of SR is to predict which item would this user be interested
in at the (𝑛 + 1)-th time step. Through the proposed network above,
we get the prediction score𝑦𝑣 , which is the possibility that this user
would interact with 𝑣 at the next time step. Then the cross-entropy
loss function is utilized as the main training objective to measure
the differences between our prediction and the ground truth 𝑦𝑣 :

𝐿main = −
∑︁
𝑣∈V

𝑦𝑣 log (𝑦𝑣) . (20)

Next, considering that item category information is helpful for
item feature understanding [42], we design the sequence-level cat-
egory prediction task (CP) to provide category signals on multi-
modal learning. To be specific, we take the categories of items as
classification labels to supervise the model to distinguish which
classes these items belong to based on all modality information. To
generate signals more related to user sequence, we compute this

task at the sequence level. For the item 𝑣 ∈ 𝑆 , we employ the output
𝒙temp of Temporal MoE of 𝑣 to calculate its probability to belong
to each class, which is formulated as:

𝑦𝐶𝑃 =𝑾𝐶𝑃𝒙temp + 𝒃𝐶𝑃 , (21)

where𝑊𝐶𝑃 ∈ R3𝑑×|C | and𝑏𝐶𝑃 ∈ R | C | are the learnable weight and
bias for CP respectively, C is the set of the categories. Let𝑦𝐶𝑃𝑐 denote
the likelihood that 𝑣 belongs to 𝑐 ∈ C, then the binary cross-entropy
loss is utilized to facilitate multi-label category information [8, 33]:

𝐿𝐶𝑃 (𝑣) = −
∑︁
𝑐∈C

𝑦𝐶𝑃𝑐 log
(
𝑦𝐶𝑃𝑐

)
+

(
1 − 𝑦𝐶𝑃𝑐

)
log

(
1 − 𝑦𝐶𝑃𝑐

)
, (22)

where 𝑦𝐶𝑃𝑐 is the ground truth. Then the loss of the CP task on
𝑆 is 𝐿𝐶𝑃 =

∑
𝑣∈𝑆 𝐿𝐶𝑃 (𝑣), which provides sequence-level category

signals to enhance multi-modal learning.
To obtain supervision signals from user sequence context and

user interests, we also design the objective of contrastive learning
on ID (IDCL) to improve alignments between user sequence rep-
resentations and the ground truth. Since the embeddings of text
and images are frozen in the training process, we only utilize this
task on ID. Specifically, within a training batch 𝐵, we organize
the representations of users and their ground truth items on ID
as {⟨𝑯 𝑖𝑑

1 , 𝒙𝑖𝑑1 ⟩, ⟨𝑯
𝑖𝑑
2 , 𝒙𝑖𝑑2 ⟩, . . . , ⟨𝑯

𝑖𝑑
|𝐵 | , 𝒙

𝑖𝑑
|𝐵 | ⟩}. We aim to make the

vectors of user sequences and their ground truth be more similar,
while forcing this user to be dissimilar with other items. Therefore,
the loss of IDCL is formulated as:

𝐿𝐼𝐷𝐶𝐿 = − log
exp

(
sim

(
𝑯 𝑖𝑑
𝑖
, 𝒙𝑖𝑑

𝑖

)
/𝜏

)
∑ |𝐵 |

𝑗=1 exp
(
sim

(
𝑯 𝑖𝑑
𝑖
, 𝒙𝑖𝑑

𝑗

)
/𝜏

) , (23)

where 𝑠𝑖𝑚(·, ·) is the cosine similarity function, and 𝜏 denotes the
temperature parameter.

Last, to deepen correlation learning between explicit temporal
information and multi-modal data, we further propose a sequence-
level augmentation contrastive learning method, called Placeholder
Contrastive Learning (PCL). In particular, for the sequence 𝑆 =

{𝑣1, 𝑣2, . . . , 𝑣 |𝑆 | }, we randomly replace items with the Time Place-
holder “[TP]” with the proportion 𝛽 to get the augmented sequence.
Next, to integrate explicit temporal information tomulti-modal data,
for the representation sequence 𝑺𝑚 = {𝒙temp

𝑚,1 , 𝒙
temp
𝑚,2 , . . . , 𝒙

temp
𝑚, |𝑆 | } on

the modality𝑚 after Temporal MoE, if the 𝑖-th item is replaced by
“[TP]” in 𝑆 ′, then 𝒙

temp
𝑚,𝑖

will be replaced with the operation below:

𝒙
temp
𝑚,𝑖

←𝑾𝑃,𝑚 [𝒓1,𝑖 ; 𝒓2,𝑖 ] + 𝒃𝑃,𝑚, (24)

where 𝒓1,𝑖 and 𝒓2,𝑖 are the 𝑖-th time embeddings fromTemporalMoE,
and𝑾𝑃,𝑚 ∈ R2𝑑×𝑑 and 𝒃𝑃,𝑚 ∈ R𝑑 are trainable parameters. After
that, the augmented sequence 𝑺′𝑚 is inputted into Transformer𝑚 ,
and we can get the augmented representation 𝑯𝑚,1 corresponding
to 𝑯𝑚 . Subsequently, within a training batch 𝐵, we can obtain
{𝑯𝑚,1

1 ,𝑯𝑚,1
2 , . . . ,𝑯𝑚,1

|𝐵 | } from {𝑯
𝑡𝑥𝑡
1 ,𝑯𝑚

2 , . . . ,𝑯
𝑚
|𝐵 | }, and we treat

⟨𝑯𝑚
𝑖
,𝑯𝑚,1

𝑖
⟩ as the positive pair, while {⟨𝑯𝑚

𝑖
,𝑯𝑚,1

𝑗
⟩|𝑖 ≠ 𝑗} are

regarded as negative pairs. We aim to enhance consistency between
positive sequence pairs while make negative pairs less similar, thus
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PCL is formulated as follows:

𝐿𝑚𝑃𝐶𝐿 = − log
exp

(
sim

(
𝑯𝑚
𝑖
,𝑯𝑚,1

𝑖

))
∑ |𝐵 |

𝑗=1 exp
(
sim

(
𝑯𝑚
𝑖
,𝑯𝑚,1

𝑗

)) . (25)

Then the total loss of PCL is added up as:

𝐿𝑃𝐶𝐿 = (𝐿𝑡𝑥𝑡𝑃𝐶𝐿 + 𝐿
𝑖𝑚𝑔

𝑃𝐶𝐿
)/2. (26)

Finally, we sum up these auxiliary training tasks with the main
recommendation task to enhance the learning quality of our model:

𝐿 = 𝐿𝑚𝑎𝑖𝑛 + 𝜆1𝐿𝐶𝑃 + 𝜆2𝐿𝐼𝐷𝐶𝐿 + 𝜆3𝐿𝑃𝐶𝐿, (27)

where 𝜆1, 𝜆2 and 𝜆3 are weight hyper-parameters for CP, IDCL and
PCL respectively. By above three tasks, we generate multi-faceted
supervision signals to mitigate information loss from data sparsity.

5 Experiment
In this section, we introduce details of the experimental setup and
compare HM4SR with state-of-the-art SR baselines. Then the abla-
tion study and the hyper-parameter study are conducted to display
the impact of designed modules and hyper-parameters on model
performance. We further discuss the effect of time encoding meth-
ods for Temporal MoE. Last, we present a case study to show how
explicit temporal information influences recommendation results.

5.1 Experimental Setup
5.1.1 Datasets. Four public datasets are chosen from Amazon Re-
view Datasets [12] to evaluate SR models, including “Toys and
Games” (Toys), “Video Games” (Games), “Beauty” and “Home and
Kitchen” (Home). For each dataset, duplicated interactions are re-
moved, and interactions of each user are sorted by timestamps
chronologically to build behavior sequences. Following previous
studies [15, 19, 33], we filter out users and items that have fewer
than five interactions to get the 5-core subset of each dataset. For
text, we concatenate phrases from title, category and brand fields
consistent with previous studies [1, 15, 30]. For images, we directly
download the first image of each item based on provided prod-
uct URLs. The statistics of the processed datasets are shown in
Appendix A.1.

5.1.2 ComparedMethods. To verify the effectiveness of ourmethod,
we select the following representative and competitive baselines
for sequential recommendation from three categories:
• Traditional Non-Time-Aware Methods. GRU4Rec [13] and

SASRec [19] adopt gated recurrent units and self-attention mech-
anisms respectively to learn user sequential interest. CORE [14]
unifies the representation space of encoding and decoding steps
to make prediction consistent. LRURec [38] designs linear recur-
rent units to improve encoding quality of long user sequences.

• Traditional Time-Aware Methods. TiSASRec [20] designs a
time interval-aware self-attention mechanism. FEARec [9] con-
ducts frequency-level sequence analysis with a ramp structure for
information from the frequency domain. TiCoSeRec [5] devises
five time interval-related sequence-level augmentation methods
to obtain uniform sequences and applies contrastive learning.

• Multi-Modal Methods. NOVA [23] designs a non-invasive self-
attention mechanism to exploit side information. DIF-SR [33]

devises the decoupled side information fusion module to mitigate
rank bottleneck and improve the expressiveness of non-invasive
attention matrices. UniSRec [15] transfers textual semantic infor-
mation by MoE. MISSRec [30] designs Interest Discovery Module
to grasp deep relations among items, modalities and preferences.
M3SRec [1] uses modal-specific and cross-modal MoE to en-
hance modality learning in Transformers. IISAN [11] exploits de-
coupled parameter-efficient fine-tuning on modality foundation
models to achieve both intra-modal and inter-modal adaption.
TedRec [35] achieves sequence-level semantic fusion on text and
ID by Fast Fourier Transform from the frequency domain.

5.1.3 Evaluating Metrics. The performances of the models are eval-
uated with Normalized Discounted Cumulative Gain (NDCG@K)
and Mean Reciprocal Rank (MRR@K), where K ∈ {5, 10}. We adopt
the leave-one-out evaluation strategy to conduct the experiments,
which uses the last item and the penultimate item of each sequence
as the test and validation item respectively, and the rest items for
training. To calculate the metrics, the ranking scores are computed
on the whole item set without sampling.

5.1.4 Implementation Details. We implement our method in Py-
torch based on a widely used open-source library RecBole1 [41].
We set the training batch size as 1024, and the hidden size of all
methods is 64. The maximum length of each behavior sequence
is limited to 50. For the encoder structure, the number of multi-
head and the number of self-attention layers for the Transformer
are both empirically set as 2. For the hyper-parameters, the expert
number for Interactive MoE 𝑘1 and Temporal MoE 𝑘2 is selected
from {2, 4, 6, 8, 12}, and 𝜇 is set as 100. 𝑓 𝑟𝑒𝑞 is empirically set as
10000. 𝜏 is searched within {0.1, 0.2, 0.3, 0.5, 0.7, 1.0}. The loss weight
𝜆1 is empirically set as 1.0, while 𝜆2 and 𝜆3 are tuned within [0.25,
1.5] stepping by 0.25 and {0.1, 0.3, 0.5, 0.7, 1.0, 1.5} respectively. 𝛽 is
chosen from [0.1, 0.5] stepping by 0.1. In addition, we use Adam
optimization and the learning rate is 1e-3. We apply grid search to
find the best settings for HM4SR and baselines. The details for base-
lines are shown in Appendix A.4. All experiments are conducted
on a server with Intel(R) Xeon(R) Gold 6226R 16-Core CPUs and
NVIDIA GeForce RTX 3090 GPUs.

5.2 Overall Comparison
Table 1 shows the evaluation results of HM4SR and other compared
methods. We have the following findings. (1) Overall, HM4SR out-
performs both traditional and multi-modal approaches. It achieves
improvements ranging from 2.13%∼22.9% compared to the best
multi-modal method. Compared to the best time-aware traditional
models, HM4SR gains the relative performance improvements rang-
ing from 13.6%∼64.1%. (2) Multi-modal methods outperform tradi-
tional models in most cases, indicating that modal information is
important for richer user interest learning as the supplementation
of ID modality. Yet HM4SR performs the best among them, showing
the advancement of incorporating explicit temporal information
to multi-modal modeling for capturing user preference changes.
(3) Time-aware approaches (including TedRec) generally perform
better than non-time-aware traditional models. This implies that
contextual information held in temporal information is useful for

1https://github.com/RUCAIBox/RecBole
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Table 1: Overall performance comparison. Bold scores represent the highest results among all the methods, while the second
highest scores are underlined. † denotes that the corresponding method is reproduced by ourselves.

Method
Toys Games Beauty Home

NDCG MRR NDCG MRR NDCG MRR NDCG MRR
@5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10

GRU4Rec 0.0236 0.0289 0.0201 0.0222 0.0385 0.0514 0.0311 0.0365 0.0271 0.0337 0.0223 0.0260 0.0067 0.0087 0.0056 0.0064
SASRec 0.0348 0.0411 0.0257 0.0295 0.0391 0.0546 0.0286 0.0349 0.0325 0.0415 0.0246 0.0283 0.0118 0.0148 0.0089 0.0100
CORE 0.0155 0.0273 0.0100 0.0148 0.0212 0.0360 0.0149 0.0210 0.0154 0.0266 0.0103 0.0150 0.0051 0.0080 0.0034 0.0046
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Figure 3: Performance comparison of removing each designed component or each modality.

user dynamic interest learning. However, HM4SR displays further
improvement with the utilization of both explicit temporal informa-
tion and multi-modal data. (4) HM4SR improves relatively less on
Games Dataset compared to other three datasets. A possible reason
is that the time distribution of user behaviors in Games is more
unified, reducing the difficulty of user dynamic interest modeling.
We present the time distributions of four datasets in Appendix A.5.

5.3 Ablation Study
To verify the effectiveness of each design for HM4SR, we com-
pare our model with the following variants: (1) -IMoE removes the
structure of Interactive MoE. (2) -TMoE removes Temporal MoE.
Notably, 𝐿𝑃𝐶𝐿 is also removed simultaneously. (3) -CP removes
the category prediction task. (4) -IDCL removes the objective of
contrastive learning on ID. (5) -PCL removes the placeholder con-
trastive learning task. (6) -Text removes text modality. (7) -Image
removes image modality. The evaluation results are demonstrated
in Figure 3. All the components and modalities contribute to the
performance of HM4SR. We can also observe that Temporal MoE
generally achieves the highest improvement among all components,
indicating the crucial importance of the incorporation of explicit
temporal information for multi-modal modeling. PCL further ampli-
fies this enhancement by deepening correlation learning between
modality and time embeddings. Interactive MoE is useful for pref-
erence learning by improving item key information extraction. CP

and IDCL tasks also play a vital role in supervised signal generation.
Notably, text information is usually more powerful than images
since text portrays item features more directly.

5.4 Hyper-Parameter Study
In this part, we study the impact of important hyper-parameters,
including the number of experts for Interactive MoE and Temporal
MoE 𝑘1 and 𝑘2 respectively, the loss weights for IDCL and PCL
𝜆2 and 𝜆3, and the placeholder proportion 𝛽 . When changing one
hyper-parameter, we keep other hyper-parameters fixed to control
variables. The results are illustrated in Figure 4. First, for the expert
number of InteractiveMoE and Temporal MoE𝑘1 and𝑘2, we can see
that sufficient experts can significantly improve the performance.
Whereas as the expert number further increases, the performance
may drop slightly, probably due to overfitting. Second, two loss
weight hyperparameters 𝜆2 and 𝜆3 control the strength of 𝐿𝐼𝐷𝐶𝐿
and 𝐿𝑃𝐶𝐿 . The results demonstrate that reasonably setting them
can effectively enhance the preference learning ability of HM4SR.
Making them either too high or too low will decrease the effect of
two corresponding auxiliary training tasks. Last, 𝛽 is the propor-
tion that items get replaced by temporal placeholders in PCL. It’s
observed that a too small 𝛽 may lead to insufficient relationship
learning between explicit time information and modality, while a
too large 𝛽 can result in generated positive sample fluctuating, both
reducing the advancement of PCL.
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Figure 4: Performance comparison of HM4SR w.r.t different hyper-parameters.
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Figure 5: Performance comparison on different time embed-
dings inputted to the gating router of Temporal MoE.

5.5 Impact of Temporal Embeddings
For a deeper analysis of the impact of explicit temporal information
on multi-modal SR, we change the types of time embeddings in-
putted to Temporal MoE as five variants: Besides (1) Interval Only
only inputs 𝒓1,𝑖 and (2) Absolute Only only inputs 𝒓2,𝑖 , we also try
three widely-used types of time embeddings [3, 10, 28], including
(3) Day embeds time based on the number of the day within the
whole dataset, (4) Day of Year embeds time based on the number of
the day within a year, and (5) Cos encodes the time interval 𝑡 into
[𝑐𝑜𝑠 (𝑤1𝑡 + 𝑏1), 𝑐𝑜𝑠 (𝑤2𝑡 + 𝑏2), · · · , 𝑐𝑜𝑠 (𝑤𝑑𝑡 + 𝑏𝑑 )]. Figure 5 shows
the result of all variants. Though all types of time embeddings can
facilitate user preference learning, our time encoding method gets
more advances, which is attributed to the combination of interval
information and absolute timestamps. Meanwhile, we can also per-
ceive our time interval embeddings are more flexible and useful
than the interval embeddings calculated by Cos.

5.6 Case Study
We select a typical case from the test set of Toys to expound the
effect of designed components, which is shown in Figure 6. We
compare HM4SR with M3SRec which has the highest results of
NDCG@5 and MRR@5 on Toys Dataset among the baselines. We
can find that HM4SR successfully predicts the ground truth item,
which is a sound-related toy. This can be attributed to three aspects:
First, Interactive MoE fosters the extraction of item sound-related
information from abundant multi-modal data. Second, Temporal
MoE enhances user dynamic interest modeling and find that the
user was more interested in toys with music and sound recently.
Third, although this user sequence is short, supervision signals from
the multi-task learning is helpful to deal with data sparsity and
improve recommendation quality. By comparison, M3SRec analyses
multi-modal data more generally and supposes that the user was
keen on toys with animal figures. As a result, it puts toys with
the same brand “Fisher Price” as the last item at a higher priority,
and also recommends toys related to animal figures, both are less
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Figure 6: A purchase sequence and the top-5 prediction re-
sults of HM4SR and M3SRec from Toys Dataset. For conve-
nience, we only display item names and categories as text.

precise results. These findings demonstrate the effectiveness of our
design towards multi-modal SR.

6 Conclusion
In this paper, we proposed a multi-modal sequential recommenda-
tion method called HM4SR, which improved the prediction accu-
racy by extracting item key information and introducing explicit
temporal information to multi-modal learning. Along this line, we
designed a two-level hierarchical MoE. The first MoE, namely In-
teractive MoE, processed all modality information of items with
experts. We also devised Temporal MoE as the second MoE, which
encoded explicit temporal information to model user dynamic in-
terests. To tackle information loss from data sparsity, a multi-task
learning strategy was also invented. Besides the main SR task, the
tasks of sequence-level category prediction (CP) and contrastive
learning on ID (IDCL) are designed to provide fine-grained super-
vision signals. For deeper correlation learning between modalities
and time, we further devised the Placeholder Contrastive Learning
objective (PCL). Extensive experiments on public datasets demon-
strated the effectiveness of the proposed method.
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A Appendix
A.1 Statistics of Datasets
We present the statistics of processed Toys, Games, Beauty and
Home datasets in Table 2.

A.2 Time Complexity Analysis
Given the batch size 𝐵, the maximum sequence length 𝑛 and the
hidden size 𝑑 , we compare the time complexity of HM4SR and
M3SRec for inference. For HM4SR, time cost consists of following
part: (1) To obtain initial item representations, HM4SR converts the
embeddings ofmodalities into the same hidden size and add position
embeddings, which cost𝑂 (𝐵𝑛𝑑 (𝑑𝑡𝑥𝑡 +𝑑𝑖𝑚𝑔+1)). (2) InteractiveMoE
takes 𝑂 (𝐵𝑛𝑘1 (𝑑2 + 𝑑)) and 𝑂 (𝐵𝑛𝑘1 (𝑑 + 1)) for expert processing
and the gating router respectively. (3) Experts of Temporal MoE
spends 𝑂 (𝐵𝑛𝑘2𝑑), and the gating router takes 𝑂 (𝐵𝑛𝑘2 (𝑑 + 1)). (4)
For user interest learning, the Transformer blocks cost𝑂 (𝐵𝐿(𝑛2𝑑 +
𝑛𝑑2)), where 𝐿 is the number of transformer layers. Overall, since
the amounts of experts 𝑘1 and 𝑘2 are similar to 𝐿, the total time
complexity of HM4SR can be summed up as𝑂 (𝐵𝑛(𝐿(𝑑2 +𝑛𝑑) +1) +
𝐵𝑛𝑑 (𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔)).

Similarly, the time complexity of M3SRec to inference includes
the following parts: (1) The process for initial item representations
is the same as HM4SR, which takes 𝑂 (𝐵𝑛𝑑 (𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔 + 1)). (2)
For the transformer blocks with modality-specific MoE, it spends
𝑂 (𝐵𝐿1𝑛2𝑑) for the self-attention mechanism, and the MoE costs
𝑂 (𝐵𝑛𝑘3 (𝑑2 + 𝑑 + 1)). Here, 𝐿1 denotes the number of transformer
blocks with modality-specific MoE, and 𝑘3 is the expert amount
of the modality-specific MoE. (3) For the transformer blocks with
cross-modal MoEs, it takes𝑂 (𝐵𝐿2𝑛2𝑑) and𝑂 (𝐵𝑛𝑘4 (𝑑2 +𝑑 + 1)) for
the self-attention mechanism and cross-modal MoEs respectively,
where 𝐿2 represents the number of transformer blocks with cross-
modal MoE, and 𝑘4 is the expert amount of the cross-modal MoEs.
Herewe let𝐿 = 𝐿1+𝐿2. (4) For the user representation fusion, it costs
𝑂 (𝐵𝑑2) for the attention mechanism. Overall, as the amounts of
experts 𝑘3 and 𝑘4 are also similar to 𝐿, the general time complexity
is rewritten as 𝑂 (𝐵𝑛(𝐿(𝑑2 + 𝑛𝑑) + 1) + 𝐵𝑛𝑑 (𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔)). We can
see that HM4SR and M3SRec have the same time complexity, yet
our method outperforms the latter one significantly.

A.3 Space Complexity Analysis
LetU andV denote the user set and the item set respectively, we
compare the space complexity of HM4SR and M3SRec. For HM4SR,

Table 2: Statistics of processed datasets.

Datasets Toys Games Beauty Home
# Users 19,412 24,303 22,363 66,520
# Items 11,924 10,672 12,101 28,238
# Actions 167,597 231,780 198,502 551,682
Avg. Actions/User 14.58 9.53 8.88 8.29
Avg. Actions/Item 17.03 21.72 16.40 19.54
# Sparsity 99.93% 99.91% 99.93% 99.97%

space cost includes following parts: (1) For initial item representa-
tions, the embedding matrices for three modalities take 𝑂 ( |V|(𝑑 +
𝑑𝑡𝑥𝑡 +𝑑𝑖𝑚𝑔)). The two linear layers consumes𝑂 ((𝑑𝑡𝑥𝑡 +𝑑𝑖𝑚𝑔 +1)𝑑),
while the position embeddings takes 𝑂 (𝑛𝑑). (2) Interactive MoE
costs𝑂 (𝑘1 (𝑑2 +𝑑)) and𝑂 (𝑘1 (𝑑 + 1))) for experts and gating router
respectively. (3) The parameters for interval embeddings and abso-
lute embeddings have𝑂 ((𝑇𝑃 +1)𝑑) space complexity, where𝑇𝑃 rep-
resents the total number of different values for the interval position
pos𝑖 . Experts of Temporal MoE spend𝑂 (𝑘2𝑑) and the gating router
costs𝑂 ((𝑘2+𝑑+1)𝑑). (4) For user interest learning, the Transformer
blocks cost𝑂 (𝐿(𝑑2 +𝑑)). Overall, the amounts of experts 𝑘1 and 𝑘2
are similar to 𝐿. And since the intervals are processed by logarith-
mic function to get pos𝑖 ,𝑇𝑃 is a relatively fixed value, thus we treat
it as a constant. Therefore, the total space complexity of HM4SR is
rewritten as 𝑂 ( |V|(𝑑 + 𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔) + 𝐿(𝑑2 + 𝑑) + (𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔)𝑑).

Next, as for M3SRec, its space complexity contains the following
parts: (1) The process for initial item representations is the same
as HM4SR, which takes 𝑂 ( |V|(𝑑 + 𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔) + (𝑑𝑡𝑥𝑡 + 𝑑𝑖𝑚𝑔 +
1)𝑑). (2) For the transformer blocks with modality-specific MoE,
it spends 𝑂 (𝐿1𝑑2) for the self-attention mechanism, and the MoE
costs 𝑂 (𝑘3 (𝑑2 + 𝑑 + 1)). (3) For the transformer blocks with cross-
modal MoE, it takes 𝑂 (𝐿2𝑑2) and 𝑂 (𝑘4 (𝑑2 + 𝑑 + 1)) for the self-
attention mechanism and cross-modal MoEs respectively. Here we
let 𝐿 = 𝐿1 +𝐿2. (4) For the user representation fusion, it costs𝑂 (𝑑2)
for the attention mechanism. Overall, as the amounts of experts 𝑘3
and 𝑘4 are also similar to 𝐿, the general space complexity of M3SRec
is rewritten as𝑂 ( |V|(𝑑+𝑑𝑡𝑥𝑡 +𝑑𝑖𝑚𝑔)+𝐿(𝑑2+𝑑)+(𝑑𝑡𝑥𝑡 +𝑑𝑖𝑚𝑔)𝑑). We
can find that the space complexity of HM4SR is similar to M3SRec.

A.4 Baseline Settings
We conduct our experiments based on Recbole2. The hidden size of
baselines is fixed to 64. We apply grid search to find the best settings
of the baselines with adjustable hyper-parameters. The codes of
GRU4Rec, SASRec, CORE, TiSASRec and FEARec are directly taken
from Recbole. We present further implementation details of other
baselines as below:
• LRURec: We utilize the codes provided by the authors3 and

apply the settings in the original paper.
• TiCoSeRec: We take the official codes provided by the authors4.
We follow the hyper-parameter searching scopes suggested by
the authors.

• NOVA: We reproduce it based on the details from the original pa-
per and the codes of DIF-SR. The sequence encoders are changed
from BERT to Transformers for a fair comparison.

2https://github.com/RUCAIBox/RecBole
3https://github.com/yueqirex/LRURec
4https://github.com/kinggugu/ticoserec
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Figure 7: The time distributions of four datasets.
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Figure 8: Performance comparison of HM4SR w.r.t different hyper-parameters on MRR@5.

• DIF-SR: The official codes5 are utilized. The model settings are
provided by the authors.

• UniSRec: We exploit the official codes6. The pre-training stage
on cross-domain datasets is skipped for a fair comparison. We
run it on the transductive setting, which utilizes both ID and text
modalities.

• MISSRec: Its implementation is from the official codes7. The
pre-training stage on cross-domain datasets is skipped for a fair
comparison. We run it on the transductive setting, which utilizes
ID and text and image modalities.

• M3SRec:We reproduce it and carefully choose its hyper-parameters
according to descriptions from the original paper.

• IISAN: The implementation is provided by the authors8. The
default settings of IISAN are applied.

• TedRec: We apply the original codes from the authors9, and the
settings are provided by the authors.

A.5 Time Distributions of Datasets
To present the time distributions of a dataset, we obtain the maxi-
mum andminimum timestamps of interactions in the dataset, divide
their time lag into 30 groups with equal intervals, and then count
the number of interactions in each group whose timestamps be-
long to that group. The results of four datasets are illustrated in
Figure 7. We can find that the time distribution of Games Dataset
is significantly more unified than other datasets, which decreases
the difficulty of user dynamic interest modeling.

A.6 Addition Results of Hyper-Parameter Study
We show the results of parameter sensitivity on MRR@5 on Toys
and Games datasets as the following Figure 8. They show a similar
tendency with the results of NDCG@5 in Figure 4, which indicates

5https://github.com/AIM-SE/DIF-SR
6https://github.com/rucaibox/unisrec
7https://github.com/gimpong/MM23-MISSRec
8https://github.com/GAIR-Lab/IISAN
9https://github.com/Sherry-XLL/TedRec

that inappropriate values of these hyper-parameters can hinder the
improvement of HM4SR.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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