
PieClam: A Universal Graph Autoencoder
Based on Overlapping Inclusive and Exclusive Communities

Daniel Zilberg 1 Ron Levie 1

Abstract
We propose PieClam (Prior Inclusive Exclusive
Cluster Affiliation Model): a graph autoencoder,
where nodes are embedded into a code space by
an algorithm that maximizes the log-likelihood of
the decoded graph. PieClam is a community af-
filiation model that extends well-known methods
like BigClam in two main manners. First, instead
of the decoder being defined via pairwise interac-
tions between the nodes in the code space, we also
incorporate a learned prior on the distribution of
nodes in the code space, turning our method into a
graph generative model. Secondly, we generalize
the notion of communities by allowing not only
sets of nodes with strong connectivity, which we
call inclusive communities, but also sets of nodes
with strong disconnection, which we call exclu-
sive communities. By introducing a new graph
similarity measure, called the log cut distance,
we show that PieClam is a universal autoencoder,
able to uniformly approximately reconstruct any
graph. Our method is shown to obtain competitive
performance in graph anomaly detection and link
prediction benchmarks.

1. Introduction
In recent years, considerable research has concentrated on
graph representation learning, aiming to develop vector rep-
resentations for graph entities, including nodes, edges, and
subgraphs (Hamilton et al., 2017; Chen et al., 2020a). In
graph autoencoders, e.g., (Kipf & Welling, 2016; Grover
et al., 2019; Samanta et al., 2020; Mehta et al., 2019), the
vertices of a graph are embedded in a code space, where
edges are inferred from the locations of the vertices in this
space. Encoding graphs into a standard space has a number

1Faculty of Mathematics, Technion - Israel Institute of Technol-
ogy, Haifa, Israel. Correspondence to: Daniel Zilberg <dannyzil-
berg@gmail.com>, Ron Levie <levieron@technion.ac.il>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

of advantages. While different graphs can have different
sizes and topologies, the code space is fixed with a fixed
dimension. This helps when learning downstream tasks,
where the representation of the graph in the code space can
be processed. For example, in link prediction, one infers
unknown edges by defining (Kipf & Welling, 2016) or learn-
ing (Kumar et al., 2020) a function that takes pairs of nodes
in the code space and predicts if there is an edge between
them. In anomaly detection, one defines (Ding et al., 2019a;
Fan et al., 2020) or learns (Chen et al., 2020b; Ding et al.,
2021) a function that takes the representation of a node
and its neighborhood and predicts if this node is normal or
an anomaly. In graph and node classification, the graph is
represented in the code space, and one learns a model that
predicts from this representation the classes of the nodes or
of the graph (Kipf & Welling, 2017; Gilmer et al., 2017a).

Our Contribution. In this paper, we derive a new graph
autoencoder from a statistical model of graphs. In our model,
similarly to Stochastic Block Models (SBM) (Nowicki &
Snijders, 2001b; Lee & Wilkinson, 2019) and community-
based statistical models (Airoldi et al., 2008; Yang &
Leskovec, 2013), graphs are generated from a combination
of intersecting communities/cliques. Namely, each node
belongs to a different subset of a predefined set of com-
munities, and the affiliations of the nodes to the different
communities determine the probabilities of the edges of the
graph. Here, the estimation of the community affiliations
is seen as an encoder of graphs to a community affiliation
space, and the computation of the corresponding edge prob-
abilities is seen as a decoder. As opposed to past works,
we consider two types of generalized communities. First,
standard inclusive communities, where any two nodes in
the same community are likely to be connected. Second,
we propose exclusive communities, where belonging to the
same community reduces the probability of nodes being
connected.

For illustration, consider a social network of employ-
ers/recruiters and employees/job-seekers. Such a network
has roughly bipartite components, where job-seekers do
not tend to connect to other seekers, and employers do not
connect to other employers, but employers and seekers of
the same subsector tend to connect. Hence, inclusive com-

1

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

munities for such a graph can correspond to job titles or
subsectors, and exclusive communities can correspond to
sets of job-seekers and sets of employees from the same sec-
tor. For example, while the inclusive community of product
management will tend to connect all employers and special-
ists of product management to a “clique-like” community,
the two exclusive communities of employers and of special-
ists of product management will each tend to delete the links
between pairs of employers and between pairs of employees,
creating a bipartite structure.

To formalize the above ideas, we propose the Prior Inclusive
Exclusive Cluster Affiliation Model (PieClam). This model
represents graphs as overlapping inclusive and exclusive
communities. In addition to embedding the nodes of a
given graph in the community code space, our model also
learns a prior on the code space, so new graphs can be
generated from the learned model. This makes PieClam a
graph generative model, like, e.g., (Kipf & Welling, 2016;
Grover et al., 2019; Samanta et al., 2020; Mehta et al., 2019;
Sun et al., 2019).

To model both types of communities, we propose a new type
of decoder based on the Lorentz inner product, in which case
the code space is typically called a pseudo Euclidean space
(Greub, 1963). The addition of exclusive communities in
our model is not merely aimed at improving it heuristically
for special graphs like social networks. Rather, we prove
in Theorems 3.7 and 3.8 that using exclusive communities
(via the Lorentz inner product) makes our model universal,
namely, able to approximate with a fixed budget of param-
eters any graph. This is in contrast to standard decoders
based on merely inclusive communities, which we show are
unable to represent many graphs.

To formalize this universality property, we propose a new
similarity measure between graphs with edge probabilities,
that we call the log cut distance. We formalize the universal-
ity of our model as follows: one can choose the dimension
of the code space (the number of communities) a priori,
and guarantee that any graph of any size and topology can
be approximated up to small log cut distance by decoding
points from this fixed space. We show that other related
decoders do not satisfy this universality property.

In Section 4 we support our construction with experiments,
where our models achieve competitive performance with
respect to state of the art. First, we use PieClam to perform
graph anomaly detection. Here, PieClam learns a proba-
bilistic model given graph, and this model can be used for
inspecting the probabilities of different nodes in this graph:
nodes with low probabilities are deemed to be anomalies.
Then, we use PieClam to predict edges in link prediction
benchmarks.

Appendix B has an extended discussion on related work.

2. Community Affiliation Models With Prior
2.1. Notations

We denote by R+ the non-negative real numbers. We denote
“and” by ∧. We denote matrices as boldface capital letter
B = {bn,m}n,m, vectors as boldface lowercase letters b =
{bn}n, and scalars as lowercase letters b. Vectors b ∈ RN

are always column vectors. The rows of a matrix B ∈
RN×C are denoted by the same letter in lowercase b⊤

n ,
where bn ∈ RC , where we write in short b⊤

n ∈ RC . A
diagonal matrix D ∈ RN×N with diagonal entries d is
denoted by diag(d) = diag(d1, . . . , dN). The ℓ2 norm of a
vector b ∈ RN is defined to be ∥b∥ = (

∑N
n=1 b

2
n)

1/2.

A graph is denoted by G = ([N], E,A), where [N] =
{1, . . . , N} is the set of N nodes, E ⊆ [N] × [N] is the
set of edges, and A ∈ {0, 1}N×N is the adjacency ma-
trix. For weighted graphs, A ∈ [0, 1]N×N , where an,m is
the edge weight of (n,m). In this work we focus on undi-
rected graphs, for which (m,n) ∈ E ⇔ (n,m) ∈ E, and
A = A⊤. Any pair (n,m) ∈ [N] × [N] is called a dyad.
The neighborhood of a node n ∈ [N] is N (n) = {m ∈
[N] | (m,n) ∈ E}. A graph-signal is a graph with node fea-
tures G = ([N], E,A,X) where X = {x⊤

n }Nn=1 ∈ RN×D,
xn ∈ RD, and D is called the feature dimension. A random
graph is a graph-valued random variable. Given a random
graph with nodes [N], we denote the event (n,m) ∈ E by
n ∼ m, and the event (n,m) /∈ E by ¬(n ∼ m). A graph
is bipartite if its vertex set [N] can be partitioned into two
disjoint sets U and V , with U ∪ V = [N], such that every
edge has one endpoint in U and the other in V .

2.2. BigClam

Our model PieClam is best understood as an extension of the
BigClam model (Yang & Leskovec, 2012). The code space
in BigClam is RC

+, where each axis is interpreted as a com-
munity. Each entry f c of a point f = (f1, . . . , fC) ∈ RC

+

is interpreted as how much the point belongs to community
c, where 0 means “not included in c” and 1 “included.” In
this paper we call RC

+ the affiliation space (AS), and call any
point in the affiliation space an affiliation feature (AF).

BigClam is a model where a simple random graph
is decoded from a sequence of AFs F = {fn =
(f1

n, . . . , f
C
n)}Nn=1 in the AS. For each pair of nodes n ̸=

m ∈ [N], the probability of the event ¬(n ∼ m) (no edge
between n and m), given their amount of membership in
the same community c, is defined to be

P (¬(n ∼ m)|f c
n, f

c
m) = e−fc

nf
c
m .

BigClam makes two assumptions of independence. First,
the membership in one community does not affect the mem-

2

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

bership in another community. Hence,

P (¬(n ∼ m))|F) = P (¬(n ∼ m))|fn, fm) = e−f⊤n fm ,
(1)

P (n ∼ m)|F) = P (n ∼ m|fn, fm) = 1− e−f⊤n fm .

Due to this formula, BigClam is a so called Bernoulli-
Poisson model (see Appendix B.4 for more details). The
second assumption is that the events of having an edge be-
tween different pairs of nodes are independent. As a result,
the probability of the entire graph ([N], E) conditioned on
the AFs F is
P (E|F) =∏
n∈[N]

(√ ∏
m∈N (n)

P (n ∼ m|F)
∏

m/∈N (n)

P (¬(n ∼ m)|F)

)
(2)

Here, the square root is taken because the product considers
each edge twice, and all sums are over m ̸= n.

BigClam consists of a decoder, decoding from the AFs F
the random graph G(F) with node set [N] and independent
Bernoulli distributed edges with probabilities P = {P (n ∼
m|fn, fm)}Nn,m=1.

From the encoding side, given a simple graph ([N], E),
BigClam encodes the graph into the affiliation space by
maximizing the log likelihood with respect to the AFs F

l(F) =
1

2

∑
n∈[N]

(∑
m∈N (n)

log(1− e−f⊤n fm)−
∑

m/∈N (n)

f⊤n fm
)
,

(3)

where all sums are over m ̸= n. BigClam is optimized by
gradient descent, with update at iteration i

F(i+1) = F(i) + δ∇Fl(F
(i)), (4)

for some learning rate δ > 0. In order to implement the
above iteration with O(|E|) operations at each step, instead
of O(N2), the loss can be rearranged as

2l(F) =∑
n∈[N]

(∑
m∈N (n)

log(ef
⊤
n fn − 1)− f⊤n

∑
n∈[N]

fm + ∥fn∥2
)
. (5)

The gradient of the loss is now

∇fn l =
∑

m∈N (n)

fm
(
1− e−f⊤n fm

)−1 −
∑

n∈[N]

fm + fn. (6)

Since the global term needs to be calculated only once, the
number of operations is O(|E|) instead of O(N2).

We observe that the optimization process is a message pass-
ing scheme. Looking at the dynamics of the optimization
process, we see that every node is pushed in the direction of
a weighted average of all of its neighbors, and pushed in the
opposite direction to the average of all of the nodes. The
sum of both forces tends to drive communities towards the
axes in the optimization dynamics.

2.3. Inclusive-Exclusive Cluster Affiliation Model

The BigClam decoder has a limitation due to a “triangle
inequality type” behavior. Namely, suppose that we would
like to construct two features f1 and f2 with strong con-
nectivity to a third feature f3, and we are limited by a fixed
affiliation feature dimension C. A naive approach to achieve
this would be to put f1 and f2 close to f3 so they have large
inner products f⊤1 f3 and f⊤2 f3 . This would mean that f⊤1 f2
would also be large, so f1 would be strongly connected to
f2 under the BigClam model. However, some graphs, like
bipartite graphs, do not exhibit this triangle inequality type
behavior. For a rigorous treatment, see Section 3.4 and Ap-
pendix A.1. Next, we build the IeClam decoder, that allows
decoding any graph, that can model bipartite components
without being limited by a triangle inequality-type behavior.

Our Inclusive Exclusive Cluster Affiliation Model (IeClam)
can be extended from BigClam by replacing the inner prod-
uct in the non-edge probability (1) by the more expressive
Lorentz inner product, which does not enforce a triangle
inequality-type behavior. For that, we extend the affiliation
space (AS) to be R2C , with two types of communities. The
first C axes are called the inclusive communities, and their
corresponding features are called inclusive affiliation fea-
tures (IAF), denoted by t ∈ RC . The last C axes are called
the exclusive communities, with exclusive affiliation features
(EAF), denoted by s ∈ RC .1 We define the concatenated
affiliation feature by f = (t, s) ∈ R2C . Given a sequence of
affiliation features F = {fn}Nn=1 ∈ RN×2C , IeClam defines
the probability of a single edge by

P (n ∼ m|fn, fm) = 1− exp
(
−t⊤n tm + s⊤n sm

)
= 1− exp

(
−f⊤n Lfm

)
,

(7)

where L = diag(1, ...1,−1, ... − 1). The bilinear form
(u,v) 7→ u⊤Lv is called the Lorentz inner product, and
has its roots in special relativity. See Appendix B.9 for more
details on the Lorentz inner product.

Note that L is not positive-definite, so it does not actually
define an inner product. Moreover, f⊤n Lfm can be negative
even if fn, fm ∈ RC

+. To guarantee that (7) defines a proper
probability between 0 and 1, we limit the affiliation space
as follows.

Definition 2.1. A cone of non-negativity is a subset C of
R2C such that every f ,g ∈ C satisfy f⊤Lg ≥ 0.

If we limit the affiliation space to be a cone of non-negativity,
then IeClam gives well defined edge probabilities in [0, 1].
In our experiments, we restrict ourselves to the following
simple construction of a cone of non-negativity, noting that
it is not the only possible construction.

1More generally, one can define a different number of inclusive
and exclusive communities.

3

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Definition 2.2. The pairwise cone T C is defined to be the
set of affiliation features f = (t, s) ∈ R2C such that for
every c ∈ [C] we have −tc ≤ sc ≤ tc.

It is easy to see that T C is a cone of non-negativity. Indeed,
for any f1 = (t1, s1), f2 = (t2, s2) ∈ T C , we have

∀c ∈ [C] : tc1t
c
2 − sc1s

c
2 ≥ 0,

so

f⊤1 Lf2 =

C∑
c=1

tc1t
c
2 − sc1s

c
2 ≥ 0.

As opposed to the BigClam decoder, the IeClam model can
approximate a bipartite graph with a small number of com-
munities. Namely, a bipartite graph with two (disjoint) sides
U ,V ⊂ [N] and constant probability for edges between
U and V can be represented using C = 1. Here, all of
the nodes in U are encoded to (a, a), and all of the nodes
of V are encoded to (a,−a), for some a ≥ 0. This gives
zero probability for edges within each part, and probability
1− e−2a2

for edges between the parts.
Remark 2.3. The above construction gives an interpretation
for each pair of axes (tc, sc) in T C as a generalized com-
munity which can model anything between a clique and a
bipartite component.

Given AFs F in a cone, IeClam is seen as a decoder, by de-
coding F into the random graph G(F) with node set [N] and
independent Bernoulli distributed edges with probabilities
P = {P (n ∼ m|fn, fm)}Nn,m=1.

For affiliation features F ∈ T C×N , the probability of the
graph ([N], E) given F of IeClam is

P (E|F)

=
∏

n∈[N]

(√ ∏
m∈N (n)

(1− e−f⊤n Lfm)
∏

m/∈N (n)

e−f⊤n Lfm

)
.

(8)

Like BigClam, IeClam is optimized by maximizing the log
likelihood with gradient descent

2l(F) =∑
n∈[N]

(∑
m∈N (n)

log(1− e−fn
⊤Lfm)−

∑
m/∈N (n)

f⊤n Lfm

)
(9)

This loss can be efficiently implemented on sparse graphs,
with O(|E|) complexity, by the formulation

2l(F) =∑
n∈[N]

(∑
m∈N (n)

log(ef
⊤
n Lfm − 1)− f⊤n L

∑
m∈[N]

fm + f⊤n Lfn
)
.

(10)
The gradient of the loss for node n is

∇fn l = L

(∑
m∈N (n)

fm
(
1− e−f⊤n Lfm

)−1 −
∑

m∈[N]

fm + fn

)
.

(11)

Notice that all of the calculations are the same as BigClam,
up to replacing the dot product by the Lorenz inner product.
Hence, the optimization process of IeClam is a message
passing scheme, and equivariant to node re-indexing.

2.4. Community Affiliation Models With Prior

BigClam and IeClam are not generative graph models. In-
deed, these methods only fit a conditional probability of the
graph, conditioned on the AF values, but the methods do not
learn the probability of the AFs over the affiliation space.
Hence, the total probability of E ∧ F is not defined.

To extend IeClam (and similarly BigClam) into probabilistic
generative models, we define a prior probability distribution
over the affiliation cone space C ⊂ R2C , with probability
density function p : R2C → [0,∞) supported on C. Using
Bayes law, we now obtain the joint probability P (E ∧ F)
of the edges and community affiliation features via the prob-
ability density function

p(E,F) = P (E|F)p(F).

We assume that the prior probabilities of all nodes are inde-
pendent, namely,

p(F) =
∏

n∈[N]

p(fn).

Hence, the probability densities that a dyad (n,m) is an
edge or non-edge are

p(n ∼ m, fn, fm) = p(fn)p(fm)(1− e−fn
⊤Lfm),

p(¬(n ∼ m), fn, fm) = p(fn)p(fm)e−fn
⊤Lfm .

As before, we assume that the probabilities of different
edges are independent, which gives

p(E,F) =∏
n∈[N]

p(fn)

√ ∏
m∈N(n)

P (n ∼ m|Fm)
∏

m/∈N(n)

P (¬(n ∼ m)|fn, fm).

(12)

Now, the log likelihood loss is

l(F) =
∑

n∈[N]

(
log(p(fn))+

1

2

(∑
m∈N (n)

log(ef
⊤
n Lfm − 1)− f⊤n L

∑
m∈[N]

fm + f⊤n Lfn
))

.

(13)
We call this extension of IeClam PieClam (Prior Inclusive
Exclusive Cluster Affiliation Model). We similarly extend
BigClam to PClam (Prior Cluster Affiliation Model) by
replacing L in (13) with the identity matrix.

Observe that the PieClam loss is similar to the IeClam loss,
only with the addition of the prior acting as a per node

4

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

regularization term. The prior attracts all nodes to areas of
higher probability during the optimization dynamics. As
before, the optimization process of PieClam is a message
passing scheme with O(|E|) complexity, and is equivariant
to node re-indexing. Also, note that adding the prior to the
Clam model only takes O(|N |) complexity, which is lower
than the complexity of the IeClam terms.

In order to sample from the above generative models, we
first sample features {fn}n∈[N] according to p, and then con-
nect them using either the BigClam or IeClam conditional
probability. To model the prior in practice, we use realNVP,
which is a normalizing flow neural network model (Dinh
et al., 2016). For more details on normalizing flows, see
Appendix B.8.

PieClam for graphs with node features. So far, we have
used only the topology of the graph, not considering node
features. We extend PieClam (and PClam) to graph-signals
([N], E,X) as follows. Concatenate the feature space of
X to the affiliation space, and learn the prior on this com-
bined space. This only affects the prior p. The conditional
edge probabilities are defined only in terms of the affiliation
features, as before.

3. Universality of PieClam and IeClam
In this section, we define the universality of graph autoen-
coders, and prove that IeClam and PieClam are universal,
while BigClam and PClam are not. The motivation behind
the universality definition is that we would like to uniformly
choose the dimension of the code space, such that every
graph can be approximated by decoding some points in this
fixed code space. Namely, we would like one universal
decoder that works for all graphs, as opposed to choosing
the dimension of the code space depending on the graph.

3.1. General Graph Autoencoders

Next, we define a general decoder that defines edge proba-
bilities by operating on pairs of points in a code space.

Definition 3.1. A pairwaise decoder over the code spaces
RM is a mapping DM : R2M → [0, 1]. Given N points
in the code space z = {zn ∈ RM}Nn=1, the decoded graph
GN (z) is the weighted graph with adjacency matrix

DM (z) =
(
DM (zn, zk)

)N
n,k=1

.

Clam models are special cases of pairwise decoders.

3.2. Log Cut Distance

Our definition of universality has the following form: for
every error tolerance ϵ > 0, there is a choice of the dimen-
sion M(ϵ) of the code space such that every graph can be

approximated up to error ϵ by decoding some points in this
space. To formalize the “up to error ϵ” statement, we present
in this section a new graph similarity measure which we
call the log cut distance. Our construction is based on a
well-known graph similarity measure called the cut norm.

Definition 3.2. The cut norm of a matrix X ∈ RN×N is
defined to be

∥X∥□ :=
1

N2
sup

U,V⊂[N]

∣∣∣∑
i∈U

∑
j∈V

xi,j

∣∣∣. (14)

The cut metric ∥A−B∥□ between two adjacency matrices
A and B is interpreted as the difference between the edge
densities of A and B on the block U × V on which their
edge densities are the most different.

The following graph similarity measure modifies the cut
norm, making it appropriate for graphs with random edges
over a fixed node set.

Definition 3.3. Given two random graphs over the nodes
set [N], with independently Bernoulli distributed edges
with probabilities P = {pn,m}n,m∈[N] and Q =
{qn,m}n,m∈[N] respectively, their log cut distance is de-
fined to be

D□(P||Q) := inf
0<e,d≤1

(
e+ d+

1

N2
sup

U,V⊂[N]

∣∣∣ log (∏
n∈U

∏
m∈V

1− (1− e)pn,m

1− (1− d)qn,m

)∣∣∣). (15)

The second term in (15) is the cut distance ∥P̃ − Q̃∥□
between the matrix P̃ with entries

p̃n,m = − log(1− (1− e)pn,m)

and the matrix Q̃ with entries

q̃n,m = − log(1− (1− d)qn,m).

Namely, the cut distance between the log likelihoods of
non-edges. The parameters e and d make the [0, 1]-valued
probabilities valid inputs to the log. The goal of e, d is
to regularize the probability of the edges, where higher
regularization is penalized via the additive term e+ d.

For each choice of a cut U ,V ⊂ [N], the term

1

N2
log
(∏

n∈U

∏
m∈V

1− (1− e)pn,m
1− (1− d)qn,m

)
(16)

is somewhat similar in structure to an un-normalized KL
divergence, or distance of log likelihoods, between the non-
edge probabilies of the graphs P and Q over the dyads
between U and V . Here, “un-normalized” means that the

5

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

dyads are drawn uniformly with probabilities 1/N2, but
the sum of probabilities is |U| · |V|/N2 and not 1. The un-
normalized uniform distribution discourages the supremum
inside the definition of D□ from choosing small blocks
for maximizing (16). Note that normalized uniform dis-
tributions would lead D□ to choose small blocks, which
do not reflect meaningful empirical estimates of the edge
statistics (the edge densities of small blocks would not be
interpretable as expected number of edges). To conclude,
D□(P||Q) is interpreted as the maximal divergence be-
tween P and Q over all blocks, up to the best regularizers.

In our analysis we compute the log cut distance between
the random decoded graph P and the deterministic target
graph A. While A has edge probabilities in {0, 1}, P has
edge probabilities in [0, 1) for Clam models. Therefore, we
only require regularization for A. We hence consider the
following modified version of Definition 3.3.

Definition 3.4. Given an unweighted graph with adjacency
matrix A ∈ {0, 1}N×N and a random graph over the nodes
set [N], with independently Bernoulli distributed edges with
probabilities P = {0 ≤ pn,m < 1}n,m∈[N], the log cut
distance between P and A is defined to be

D□(P||A) :=

inf
0<d≤1

(
d+

1

N2
sup

U,V⊂[N]

∣∣∣ log (∏
n∈U

∏
m∈V

1− pn,m

1− (1− d)an,m

)∣∣∣).
Lastly, in case both P and Q are [0, 1)-valued, a simple
version of the log cut distance is (15) with the choice e =
d = 0, namely,

D0
□(P||Q) :=

1

N2
sup

U,V⊂[N]

∣∣∣ log (∏
n∈U

∏
m∈V

1− pn,m
1− qn,m

)∣∣∣. (17)

3.3. Universal Graph Autoencoders

We are now ready to define the universality of general pair-
wise autoencoders. Motivated by the fact that a Clam autoen-
coder is actually a family of autoencoders, parameterized by
the number of communities, we also define general pairwise
decoders as families.

Definition 3.5. A family of code spaces RM and cor-
responding pairwaise decoders DM : R2M → [0, 1],
parametrized by M ∈ N, is called universal if for every
ϵ > 0 there is M ∈ N (which depends only on ϵ) such
that for every N ∈ N and every graph with adjacency ma-
trix A and N nodes there are N points in the code space
{zn ∈ RM}Nn=1 such that D□(DM (z)||A) < ϵ.

3.4. BigClam and PClam are Not Universal

We now show that BigClam (and hence also PClam) is
not a universal autoencoder since it cannot approximate

bipartite graphs. Consider the bipartite graph B with N

nodes at each part, and probability 1 − e−a2

for an edge
between the two parts, and 0 within each part. Since in this
case all probabilities are less than 1, we can use (17) as the
definition of the log cut distance. The analysis for Definition
3.4 extends naturally.

Let P be a decoded BigClam graph. We show that there is
no way to make D0

□(P||Q) small by choosing the dimen-
sion C uniformly with respect to N . In fact, we will show
BigClam cannot approximate a bipartite graph at all.2

Claim 3.6. Under the above construction,

D0
□(P||B) ≥ a2

16
.

As a result, BigClam is not a universal autoencoder.

The proof is given in Appendix A.1. We note that one
can similarly show that BigClam is not universal also with
respect to the log cut distance of Definition 3.4.

3.5. Universality of IeClam and PieClam

We are now ready to show that IeClam (and hence also
PieClam) is a universal autoencoder. The proofs of the
following two theorems are in Appendix A.3 and A.4.

We give two versions for the universality result. The first
is without a cone restriction, and requires a relatively small
number of communities for the given error tolerance. The
corresponding decoder produces edge weights that can be
negative. The second theorem is restricted to the pairwise
cone of non-negativity, and has pessimistic asymptotics for
the required number of communities given an error tolerance.
The second decoder is guaranteed to produce proper edge
probabilities in [0, 1).

Theorem 3.7. For every epsilon ϵ > 0, every N ∈ N, and
every adjacency matrix A ∈ [0, 1]N×N , there are N affilia-
tion features F ∈ R2K of dimension K = −9 log(ϵ/2)2/ϵ2

such that the corresponding IeClam model P = {P (n ∼
m|fn, fm)}Nn,m=1 satisfies D□(P||A) < ϵ. Here, the log
cut distance is from Definition 3.4. As a result, IeClam and
PieClam are universal autoencoders with code space R2K .

Theorem 3.8. For every epsilon ϵ > 0, every N ∈ N, and
every adjacency matrix A ∈ [0, 1]N×N , there are N affilia-
tion features F in the cone of pairwise non-negativity T C ⊂
R2C of dimension C = 24⌈− log(ϵ/2)2/ϵ2⌉ such that the cor-
responding IeClam model P = {P (n ∼ m|fn, fm)}Nn,m=1

satisfies D□(P||A) < ϵ. Here, the log cut distance is from
Definition 3.4. As a result, IeClam and PieClam are univer-
sal autoencoders with code space T C .

2In Appendix A.2 we show that one can approximate a bipartite
graph of 2N nodes using C = N2 classes in BigClam if the model
ignores self-loops.

6

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

3.6. Log cut distance and maximum likelihood

It is well known that it is NP hard to compute cut distance
(Alon & Naor, 2006; Rohn, 2000), and hence also log cut
distance. Instead, we observe that maximizing log likeli-
hood, which is efficiently implemented with gradient ascent,
leads to a small log cut distance in practice. See Figure 1.

Figure 1: The value of log cut vs. the abosolute value of
log likelihood along the optimization of IeClam on Squir-
rel. When log likelihood is optimized, log cut distance
decreases.

4. Experiments
All of the experiments were run on Nvidia GeForce RTX
4090 and Nvidia L40 GPUs.3

4.1. Reconstructing Synthetic Priors

We consider a ground-truth synthetic prior p. We sample
N = 500 points from p, decode the corresponding PieClam
graph, and sample a simple graph from the random Bernoulli
edges. Then, using the sampled graph as the target for the
PieClam optimization, we fit PieClam on T 1. The results
are shown in Figure 2. We observe that the algorithm re-
constructs both the positions of the nodes in the affiliation
space and the original prior qualitatively well. Additional
Experiments and results are given in Appendix D.4.

Figure 2: Left to right: Ground truth synthetic prior in
T 1; Graph sampled from the prior; Reconstructed prior via
PieClam; Reconstructed nodes via PieClam.

4.2. Reconstructing Synthetic SBMs

In Figure 3 we consider a synthetic SBM with intercom-
munity connection probability of 0 and intracommunity

3Our code can be found in: https://github.com/
danizil/PieClam

connection probability of 0.5. We sample a simple graph
with N = 210 nodes from the SBM, and fit PClam and
PieClam to is. The SBM is off diagonal, so it cannot be
well approximated by the PClam model, while the PieClam
model approximates it well qualitatively. Additional details
are given in Appendix D.

Figure 3: Left to right: Original SBM with 3 classes and 9
blocks; Adjacency matrix of the fitted PieClam graph, with
two inclusive and two exclusive communities; Adjacency
matrix of the fitted PClam graph, with four communities.

4.3. Anomaly Detection

In unsupervised node anomaly detection, one is given a
graph with node features, where some of the nodes are
unknown anomalies. The goal is to detect these anomalous
nodes, without supervising on any example of normal or
anomalous nodes, using only the structure of the graph and
the node features.

We fit a Clam model to the graph and flag nodes as anoma-
lous if they satisfy the following different criteria.

• (S) Star probability: Given any Clam model, a node
n is called anomalous if

∏
m∈N (n) P (n ∼ m|F) < δ.

• (P) Prior probability: Given any Clam model with
prior, a node n is called anomalous if p(fn) < δ.

• (PS) Prior star probability: Given any Clam
model with prior, a node n is called anomalous if
p(fn)

∏
m∈N (n) P (n ∼ m|F) < δ.

We reduce the dimension of the node features of the input
graphs to 100 using truncated SVD, unless the dimension
of the features is smaller than 100 in which case we only
normalize them to have zero mean and standard deviation
one. We use an affiliation space embedding dimension of 30
for F for PieClam and IeClam, and 24 for BigClam. Every
Clam method starts with a random embedding F. Clam
models with prior are trained with the following steps. (F-
t): given a fixed prior p, optimize only F for t steps. (p-t):
given a fixed embedding F, optimize only p for t steps. For
regularization, when training, in each iteration of p we add
Gaussian noise with STD 0.05 to the affiliation features
before plugging them into the prior. We train PieClam with
the scheme F-500 → p-1300 → F-500 → p-1300 → F-500
→ p-1300 with learning rate of 2e−6 on F and 1e−6 on p. In

7

https://github.com/danizil/PieClam
https://github.com/danizil/PieClam

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Method Reddit Elliptic Photo
(S)- IeClam 64.1 43.6 57.7

(S) - PieClam *64.0 43.5 59.0
(P) - PieClam 46.8 63.2 45.7

(PS) - PieClam 64.0 53.8 59.0
(S) - BigClam 63.7 43.4 *58.1
DOMINANT 51.1 29.6 51.4
AnomalyDAE 50.9 *49.6 50.7

OCGNN 52.5 25.8 53.1
AEGIS 53.5 45.5 55.2
GAAN 52.2 25.9 43.0
TAM 60.6 40.4 56.8

Table 1: Comparison of Clam anomaly detectors with
competing methods. First place in boldface, second with
underline, third with *star. The accuracy metric is areas
under curve (AUC).

every alternation between two (p− t) and (F− t) schemes,
both learning rates are decreased by a factor of 2. For the
models which only optimize F (IeClam and BigClam) we
use the following configurations. We train IeClam with
2500 iterations with learning rate 1e-6. We train BigClam
with 2200 iterations with learning rate 1e-6. More details
on hyper-parameters are given in Appendix D.2, and in our
GitHub repository.

In Table 1 we compare the performance of Clam methods
to DOMINANT (Ding et al., 2019a), AnomalyDAE (Fan
et al., 2020), OCGNN (Wang et al., 2021), AEGIS (Ding
et al., 2021), GAAN (Chen et al., 2020b) and TAM (Qiao
& Pang, 2024) on the datasets Reddit, Elliptic (Elliptic)
(Weber et al., 2019), and Photo (Shchur et al., 2018a). The
hyper-parameters of the competing methods are taken as
the recommended values from the respective papers. The
results are taken from Table 1 in (Qiao et al., 2024). We
observe that our methods are the first and second place on
all datasets. Moreover, (PS)- PieClam beats the competing
methods in all three datasets.

4.4. Link Prediction

In supervised link prediction, one is given a graph where
for some of the dyads it is unknown if they are edges or not.
The goal is to predict the connectivity of the omitted dyads.
Given a Clam model fitted to the known data, we predict
the probability of an edge using the conditional probability
given in (7). In our experiments, the prior and features are
not directly used for prediction, but they are used to train
the Clam model if it has a prior. In Appendix D.3 we show
that the log likelihood, restricted to the known dyads, can

be efficiently computed by

2l̂(F, E, Ě) =2
∑

n∈[N]

log(p(fn)) +
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)

−
∑

n∈[N]

f⊤n
∑

m∈[N]

Lfm +
∑

(n,m)∈E∪̇Ě∪̇D

f⊤n Lfm

where E is the set of edges, Ě is the set of omitted edges, Ě
is the set of omitted non-edges, Ě = Ě∪̇Ě is the set of omit-
ted dyads, and D = {(n, n)|n ∈ [N]}. This computation is
as efficient as message passing when the number of omitted
non-edges is of the same order as E. After assigning prob-
abilities to all of the omitted dyads, we calculate the AUC
score of the classification. We use the experimental setting
presented in (Zhou et al., 2022).

For each dataset, we generate 10 random splits into a test
set containing 10% of the edges, along with 5 randomly
sampled non-edges for every omitted edge, and the rest is
the training set. For each split and each configuration of the
hyperparameters, we generate three random validation sets
consisting of 5% of the edges from the training set and 5 non-
edges per omitted edge also from the training set, leaving
the rest of the original training set for training. We perform
hyperparameter optimization as follows: Each hyperparam-
eter configuration is trained against each of its respective 30
training sets, and its accuracy is evaluated over the corre-
sponding 30 validation sets and averaged to obtain one mean
validation accuracy per configuration. We then choose the
configuration with maximal mean validation accuracy. The
model with these optimal hyperparameters is then trained
on each of the original 10 training sets and tested on each
of the corresponding test sets, 10 times for each split. We
report the mean accuracy across the 100 trained models on
the 10 test sets, along with the standard deviation of the
mean. We run our experiments on the datasets Squirrel and
Texas (Pei et al., 2020), Photo (Shchur et al., 2018b) and
Facebook100’s Johns Hopkins (Lim et al., 2021b), and com-
pare PieClam to the baselines AA (Adamic & Adar, 2003),
VGAE (Kipf & Welling, 2016), GAT (Velickovic et al.,
2017), LINKX (Lim et al., 2021a) and Disenlink (Zhou
et al., 2022). The results are presented in Table 2 (and with
error bars in Table 6), and the baseline results are taken from
Table 2 in (Zhou et al., 2022). An in depth explanation on
the experimental setup and a table with confidence intervals
is given in Appendix D.3.

We conducted additional link prediction experiments on the
OGB-DDI dataset. In this dataset, nodes represent differ-
ent drugs, and an edge between two nodes indicates that a
different effect occurs when the drugs are taken together
versus separately. Our model achieves state-of-the-art per-
formance on this benchmark in terms of the Hits@20 metric
(using OGB’s official evaluator). A comparison between
our model (IeClam) and selected baselines on the dataset’s

8

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Method Squirrel Photo Texas JH55
PieClam 98.7 98.4 85.0 95.5*
BigClam 98.5 97.4 * 78.2 * 94.9
VGAE 98.2 94.9 68.6 92.8
GAT 98.0 97.3 68.5 94.3

LINKX 98.1 97.0 75.8 93.4
AA 97.1 97.4 53.1 96.1

DisenLink 98.3* 97.9 81.0 97.5

Table 2: Comparison of Clam link predictors with compet-
ing models. First place in boldface, second with underline,
third with *star

Model Hits@20 (Test) AUC (Test)
IeClam 88.10 ± 1.70 99.84 ± 0.01
NCN 76.52 ± 10.47 99.97 ± 0.00
GraphSAGE 49.84 ± 15.56 99.96 ± 0.00
GCN 49.90 ± 7.23 99.86 ± 0.03
BUDDY 29.60 ± 4.75 99.81 ± 0.02
Node2Vec 34.69 ± 2.90 99.78 ± 0.04

Table 3: Performance on the OGB-DDI dataset. First place
is in boldface.

test set is presented in Table 3. Benchmark results are taken
from (Zhang et al., 2022; Li et al., 2023; Tan et al., 2022).

5. Conclusion
We introduced PieClam, a new probabilistic graph gener-
ative model. PieClam models graphs via embedding the
nodes into an inclusive and exclusive communities space,
learning a prior distribution in this space, and decoding
pairs of points in this space to edge probabilities, such that
points are more likely to be connected the more inclusive
communities and the less exclusive communities they share.
We showed that PieClam is a universal autoencoder, able
to approximate any graph, where the budget of parameters
per node (the number of communities) can be predefined,
irrespective of any property of a specific graph, not even
the number of nodes. Our experiments show that PieClam
achieves competitive results when used in graph anomaly
detection.

One limitation of PieClam is that, for attributed graphs,
it only models the node features through the prior in the
community affiliation space, but not via the conditional
probabilities of the edges (given the community affiliations).
Future work will deal with extending PieClam to also in-
clude the node (or edge) features in the edge conditional
probabilities. Another limitation is in the analysis. While
our methods performs well for sparse graphs, our analy-
sis involving the log cut distance is mainly appropriate
for dense graphs. Indeed, the term 1/N2 in (16) leads
all sparse graphs with |E| ≪ N2 to be trivially close to
each other. Future work will extend our log cut similarity

measure to sparse graphs. This can be done, e.g., similarly
to the sparse theory in (Finkelshtein et al., 2024), or us-
ing stretched graphons (Borgs et al., 2018), Lp graphons
(Borgs et al., 2014), graphings (Lovász, 2012) or graphops
(Backhausz & Szegedy, 2018).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
This research was supported by a grant from the
United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel, and the United States National Science
Foundation (NSF), (NSF-BSF, grant No. 2024660), and by
the Israel Science Foundation (ISF grant No. 1937/23).

References
Adamic, L. A. and Adar, E. Friends and neighbors on

the web. In Social Networks, volume 25, pp. 211–230.
Elsevier, 2003.

Aicher, C., Jacobs, A. Z., and Clauset, A. Learning latent
block structure in weighted networks. Journal of Complex
Networks, 3(2):221–248, 2015.

Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. Mixed
membership stochastic blockmodels. Advances in neural
information processing systems, 21, 2008.

Alon, N. and Naor, A. Approximating the cut-norm via
grothendieck’s inequality. SIAM, 2006.

Backhausz, Á. and Szegedy, B. Action convergence of
operators and graphs. Canadian Journal of Mathematics,
74:72 – 121, 2018.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,
S. Netgan: Generating graphs via random walks. In
Proceedings of the 35th International Conference on Ma-
chine Learning (ICML), pp. 610–619. PMLR, 2018.

Borgs, C., Chayes, J. T., Lovász, L. M., Sós, V. T., and
Vesztergombi, K. Convergent sequences of dense graphs
i: Subgraph frequencies, metric properties and testing.
Advances in Mathematics, 219:1801–1851, 2007.

Borgs, C., Chayes, J. T., Cohn, H., and Zhao, Y. An lp theory
of sparse graph convergence i: Limits, sparse random
graph models, and power law distributions. Transactions
of the American Mathematical Society, 2014.

9

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Borgs, C., Chayes, J. T., Cohn, H., and Holden, N. Sparse
exchangeable graphs and their limits via graphon pro-
cesses. Journal of Machine Learning Research, 18(210):
1–71, 2018.

Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C.-C., and
Cambria, E. Learning community embedding with com-
munity detection and node embedding on graphs. In
Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, pp. 377–386, 2017.

Chen, F., Wang, Y.-C., Wang, B., and Kuo, C.-C. Graph
representation learning: a survey. APSIPA Transactions
on Signal and Information Processing, 9, 05 2020a.

Chen, Z., Liu, B., Wang, M., Dai, P., Lv, J., and Bo, L.
Generative adversarial attributed network anomaly de-
tection. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pp. 1989–1992, 2020b.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Ding, K., Li, J., Bhanushali, R., and Liu, H. Deep anomaly
detection on attributed networks. In Proceedings of the
2019 SIAM international conference on data mining, pp.
594–602. SIAM, 2019a.

Ding, K., Li, J., Agarwal, N., and Liu, H. Inductive anomaly
detection on attributed networks. In Proceedings of the
twenty-ninth international conference on international
joint conferences on artificial intelligence, pp. 1288–
1294, 2021.

Ding, M., Yao, Q., Zhang, Q., Cui, P., Zhu, W., and Shen,
J. Data augmentation for deep graph learning: A survey.
arXiv preprint arXiv:1909.07251, 2019b.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing
systems, 28, 2015.

Elliptic. Elliptic. https://www.elliptic.co. Ac-
cessed: 2025-05-19.

Fan, H., Zhang, F., and Li, Z. Anomalydae: Dual autoen-
coder for anomaly detection on attributed networks. In
ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
5685–5689. IEEE, 2020.

Finkelshtein, B., İsmail İlkan Ceylan, Bronstein, M., and
Levie, R. Learning on large graphs using intersecting
communities, 2024.

Fortunato, S. and Hric, D. Community detection in net-
works: A user guide. Physics reports, 659:1–44, 2016.

Frieze, A. M. and Kannan, R. Quick approximation to
matrices and applications. Combinatorica, 1999.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pp.
1263–1272. JMLR.org, 2017a.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017b.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Greub, W. Linear Algebra. Springer-Verlag, New York, 2nd
edition, 1963. Pseudo-Euclidean Spaces.

Grover, A., Zweig, A., and Ermon, S. Graphite: Iterative
generative modeling of graphs. In International confer-
ence on machine learning, pp. 2434–2444. PMLR, 2019.

Guo, X. and Zhao, L. A systematic survey on deep genera-
tive models for graph generation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(5):5370–
5390, 2022.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017.

Harshvardhan, G., Gourisaria, M. K., Pandey, M., and
Rautaray, S. S. A comprehensive survey and analysis
of generative models in machine learning. Computer
Science Review, 38:100285, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Ingraham, J., Garg, V., Barzilay, R., and Jaakkola, T. Gener-
ative models for graph-based protein design. Advances
in neural information processing systems, 32, 2019.

Jiang, J. Q. Stochastic block model and exploratory analysis
in signed networks. Physical Review E, 91(6):062805,
2015.

10

https://www.elliptic.co

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Kingma, D. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017,Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

Kumar, A., Singh, S. S., Singh, K., and Biswas, B. Link
prediction techniques, applications, and performance: A
survey. Physica A: Statistical Mechanics and its Applica-
tions, 553:124289, 2020.

Latouche, P., Birmelé, E., and Ambroise, C. Variational
bayesian inference and complexity control for stochastic
block models. Statistical Modelling, 12(1):93–115, 2012.

Lee, C. and Wilkinson, D. J. A review of stochastic block
models and extensions for graph clustering. Applied
Network Science, 4(1):1–50, 2019.

Levie, R. A graphon-signal analysis of graph neural net-
works. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Li, J., Shomer, H., Mao, H., Zeng, S., Ma, Y., Shah, N.,
Tang, J., and Yin, D. Evaluating graph neural networks for
link prediction: Current pitfalls and new benchmarking.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Lim, D., Hohne, F., Zitnik, M., Leskovec, J., and De Sa, C.
Large scale learning on non-homophilous graphs: New
benchmarks and strong simple methods. In Advances in
Neural Information Processing Systems, 2021a.

Lim, D., Li, X., Hohne, F., and Lim, S.-N. New benchmarks
for learning on non-homophilous graphs. arXiv preprint
arXiv:2104.01404, 2021b.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Lovász, L. M. Large networks and graph limits. In volume
60 of Colloquium Publications, 2012. doi: doi:10.1090/
coll/060.

Lovász, L. M. and Szegedy, B. Szemerédi’s lemma for
the analyst. GAFA Geometric And Functional Analysis,
2007.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z.,
Xiong, H., and Akoglu, L. A comprehensive survey
on graph anomaly detection with deep learning. IEEE

Transactions on Knowledge and Data Engineering, 35
(12):12012–12038, 2021.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Mehta, N., Duke, L. C., and Rai, P. Stochastic blockmodels
meet graph neural networks. In International Conference
on Machine Learning, pp. 4466–4474. PMLR, 2019.

Miller, K., Jordan, M., and Griffiths, T. Nonparametric
latent feature models for link prediction. In Bengio, Y.,
Schuurmans, D., Lafferty, J., Williams, C., and Culotta,
A. (eds.), Advances in Neural Information Processing
Systems, volume 22. Curran Associates, Inc., 2009.

Mohamed, S. and Lakshminarayanan, B. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

Mørup, M., Schmidt, M. N., and Hansen, L. K. Infinite
multiple membership relational modeling for complex
networks. In 2011 IEEE International Workshop on Ma-
chine Learning for Signal Processing, pp. 1–6. IEEE,
2011.

Newman, M. E. The structure and function of complex
networks. SIAM Review, 45(2):167–256, 2003.

Nowicki, K. and Snijders, T. A. Estimation and prediction
for stochastic blockstructures. Journal of the American
Statistical Association, 96(455):1077–1087, 2001a.

Nowicki, K. and Snijders, T. A. B. Estimation and prediction
for stochastic blockstructures. Journal of the American
statistical association, 96(455):1077–1087, 2001b.

Palla, K., Knowles, D. A., and Ghahramani, Z. An infinite
latent attribute model for network data. In Proceedings of
the 29th International Coference on International Confer-
ence on Machine Learning, ICML’12, pp. 395–402, Madi-
son, WI, USA, 2012. Omnipress. ISBN 9781450312851.

Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. Deep
learning for anomaly detection: A review. ACM comput-
ing surveys (CSUR), 54(2):1–38, 2021.

Pearl, J. Reverend bayes on inference engines: A distributed
hierarchical approach. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pp. 133–136.
AAAI Press, 1982.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

11

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Peterson, W. W., Birdsall, T. G., and Fox, W. C. The the-
ory of signal detectability. Transactions of the IRE Pro-
fessional Group on Information Theory, 4(4):171–212,
1954.

Qiao, H. and Pang, G. Truncated affinity maximization:
One-class homophily modeling for graph anomaly detec-
tion. Advances in Neural Information Processing Systems,
36, 2024.

Qiao, H., Wen, Q., Li, X., Lim, E.-P., and Pang, G. Gen-
erative semi-supervised graph anomaly detection. arXiv
preprint arXiv:2402.11887, 2024.

Radford, A. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

Rohn, J. Computing the norm ∥a∥∞,1 is np-hard. Linear
and Multilinear Algebra, 2000.

Samanta, B., De, A., Jana, G., GÃ³mez, V., Chattaraj, P.,
Ganguly, N., and Gomez-Rodriguez, M. Nevae: A deep
generative model for molecular graphs. Journal of Ma-
chine Learning Research, 21(114):1–33, 2020.

Shchur, O. and Günnemann, S. Overlapping community
detection with graph neural networks. arXiv preprint
arXiv:1909.12201, 2019.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018a.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018b.

Snijders, T. A. and Nowicki, K. Estimation and prediction
for stochastic blockmodels for graphs with latent block
structure. Journal of Classification, 14(1):75–100, 1997.

Sun, F.-Y., Qu, M., Hoffmann, J., Huang, C.-W., and Tang,
J. vgraph: A generative model for joint community de-
tection and node representation learning. Advances in
Neural Information Processing Systems, 32, 2019.

Tan, Q., Liu, N., Huang, X., Chen, R., Choi, S., and Hu, X.
Mgae: Masked autoencoders for self-supervised learning
on graphs. In Proceedings of the 28th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 2096–2106. ACM, 2022.

Tschannen, M., Bachem, O., and Lucic, M. Recent advances
in autoencoder-based representation learning. arXiv
preprint arXiv:1812.05069, 2018.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Xie, X., and Guo, M. Graphgan: Graph representation
learning with generative adversarial nets. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., and Yang, Y. One-
class graph neural networks for anomaly detection in
attributed networks. Neural computing and applications,
33:12073–12085, 2021.

Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I.,
Bellei, C., Robinson, T., and Leiserson, C. E. Anti-money
laundering in bitcoin: Experimenting with graph convolu-
tional networks for financial forensics. In KDD Workshop
on Anomaly Detection in Finance, Anchorage, AK, USA,
August 2019.

Yang, J. and Leskovec, J. Structure and overlaps of commu-
nities in networks. In SNAKDD, 2012.

Yang, J. and Leskovec, J. Overlapping community detection
at scale: a nonnegative matrix factorization approach. In
Proceedings of the sixth ACM international conference
on Web search and data mining, pp. 587–596, 2013.

Yang, J. and Leskovec, J. Structure and overlaps of ground-
truth communities in networks. ACM Transactions on
Intelligent Systems and Technology (TIST), 5(2):1–35,
2014.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018.

Zhang, R., Zhang, Y., Lu, C., and Li, X. Unsupervised graph
embedding via adaptive graph learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2022.
doi: 10.1109/TPAMI.2022.3202158.

Zhou, M. Infinite edge partition models for overlapping
community detection and link prediction. Proceedings
of the 18th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 1135–1143, 2015.

Zhou, S., Guo, Z., Aggarwal, C., Zhang, X., and Wang, S.
Link prediction on heterophilic graphs via disentangled
representation learning. arXiv preprint arXiv:2208.01820,
2022.

12

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Supplementary Material
A. Proofs
A.1. Proof That BigClam Is Not Universal

In this subsection we Prove Claim 3.6. Consider the bipartite graph B with N nodes at each part, and probability 1− e−a2

for an edge between the two parts, and 0 within each part. Consider (17) as the definition of the log cut distance. Let P be a
decoded BigClam graph from the affiliation features F.

Denote by P̃ the matrix with entries
p̃n,m = − log(1− pn,m) = f⊤n fm,

and by B̃ the matrix with entries b̃n,m = − log(1− bn,m). We show that there is no way to make ∥P̃− Q̃∥□ small.
Claim A.1. Under the above construction,

D0
□(P||B) ≥ a2

16
.

As a result, BigClam is not a universal autoencoder.

Proof. Note that b̃n,m = a2 if n,m are in opposite parts, and b̃n,m = 0 if n,m are on the same side. We index the nodes
such that [N] is the first side of the graph, and [N] +N is the second side. For n ∈ [N] we denote qn = fn and yn = fn+N .
Next, we use the identity

D0
□(P||Q) = ∥P̃ − B̃∥□,

and bound the right-hand-side from below.

First, by the definition of cut norm, for every U ,V ⊂ [2N],

∥P̃ − B̃∥□ ≥
∣∣∣ 1

4N2

∑
n∈U

∑
m∈V

(p̃n,m − b̃n,m)
∣∣∣.

Hence, for U1 = V1 = [N], U2 = V2 = [N] + 1, U3 = [N],V3 = [N] +N , and U4 = [N] +N,V4 = [N], we have

∥P̃ − B̃∥□ ≥

1

16N2

4∑
j=1

∣∣∣ ∑
n∈Uj

∑
n∈Vj

(p̃n,m − b̃n,m)
∣∣∣

=
1

16N2

N∑
n=1

N∑
m=1

q⊤
nqm +

1

16N2

N∑
n=1

N∑
m=1

y⊤
n ym

+
1

8N2

N∑
n=1

N∑
m=1

(a2 − q⊤
nym). (18)

Denote

q =
1

N

N∑
n=1

qn, y =
1

N

N∑
n=1

yn.

With these notations, (18) can be written as
∥P̃ − B̃∥□ ≥

1

16
q⊤q+

1

16
y⊤y +

1

8
(a2 − q⊤y)

=
1

16

(
a2 + (q⊤ − y⊤)(q− y)

)
≥ a2

16
.

We note that one can similarly show that BigClam is not universal also with respect to the log cut distance of Definition 3.4.

13

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

A.2. BigClam With No Self Loops Approximating Bipartite Graphs

Consider the above bipartite graph B with N nodes at each part, and probability 1 − e−a2

for an edge between the
two parts, and 0 within each part. If we redefine the BigClam decoder to have no self-loops, namely, P has entries
pn,m = P (n ∼ m|fn, fm) for n ̸= m, and pn,m = 0 for n = m, then one can obtain a bipartite P with C = N2

communities as follows.

In the following analysis, an addition or multiplication of a set by a scalar is defined to be the addition or multiplication of
every element in the set by this scalar. Encode each node n ∈ [N] in part 1 to fn with f c

n = a for c ∈ [N] + n(N − 1) and
f c
n = 0 otherwise. Encode every node n ∈ [N] +N from side 2 to fn with f c

n = a for c ∈ N([N]− 1) + n and f c
n = 0

otherwise. It is easy to see that the corresponding P is bipartite with edge probability between the parts being 1− e−a2

.

A.3. Proof of the Universality of PieClam

The proof is based on a version of the weak regularity lemma for intersecting communities. While the standard weak
regularity lemma (Frieze & Kannan, 1999; Lovász & Szegedy, 2007) partitions the graph into disjoint communities, it is
well known that allowing the communities to overlap allows using much less communities, which improves the asymptotics
of the approximation. The regularity lemma was used in the context of graph machine learning in (Levie, 2023; Finkelshtein
et al., 2024). To formalize the relevant version of the weak regularity theorem for our analysis, we first need to cite a
definition from (Finkelshtein et al., 2024).

Definition A.2. A (hard) intersecting community graph (ICG) with N nodes and K communities is a matrix C ∈ RN×N

of the following form. There exist K column vectors Q =
(
qk ∈ {0, 1}N

)
)Kk=1 ∈ {0, 1}N×K and k coefficients

r = (rk ∈ R)Kk=1 ∈ RK such that
C = Qdiag(r)Q⊤.

The following is a special case of the weak regularity lemma from (Finkelshtein et al., 2024), up to the small modification to
the adjacency matrix, allowing it to have values in [0, R] instead of [0, 1].

Theorem A.3. Let A ∈ [0, R]N×N be an adjacency matrix of a graph with N nodes. Let ϵ > 0. Denote K = 9R2

4ϵ2 . Then,
there exists a hard ICG C with K communities such that

∥A−C∥□ ≤ ϵ. (19)

Proof of Theorem 3.7. Let ϵ > 0. Let A ∈ [0, 1]N×N be an adjacency matrix. Let 0 < d ≤ 1.

Consider the matrix Ã with entries
ãn,m = − log(1− (1− d)an,m).

In the following construction, we build IeClam affiliation features F and we want

1− exp(−f⊤n Lfm) ≈ (1− d)an,m.

Note that − log(1− (1− d)an,m) is increasing in (1− d)an,m. For (1− d)an,m = 0 the value of this function is 0, and
for (1− d)an,m = 1− d it is R = − log(d). Choose d = ϵ/2. For this specific choice of d, if we replace d by ϵ/2 in the
definition of D□ and omit the infimum, we get an upper bound of D□(P,A).

Using the overlaping weak regularity lemma, we approximate Ã by an ICG with

K =
−9 log(ϵ/2)2

ϵ2

communities,
C = Qdiag(r)Q⊤,

such that
∥Ã−C∥□ ≤ ϵ/2.

Let r+ = ReLU(r) and r− = ReLU(−r). Denote

C+ = Qdiag(
√
r+)

14

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

and
C− = Qdiag(

√
r−).

Denote the rows of C+ by tn and the rows of C− by sn, for n = 1, . . . , N . For each n ∈ [N] we concatenate (tn, sn) to
define the affiliation feature fn, with the first K coordinates being the inclusive communities, and the last K coordinates
being the exclusive communities. Denote the corresponding IeClam matrix by P.

It is easy to see that f⊤n Lfm is the (n,m) entry of Qdiag(r)Q⊤. This also proves that

∥ − log(1− (1− ϵ)A) + log(1−P)∥□

= ∥Ã−C∥□ ≤ ϵ/2.

We can now summarize
D□(P||A) ≤

ϵ/2 +
1

N2
sup

U,V⊂[N]

∣∣∣ log (∏
n∈U

∏
m∈V

1− pn,m
1− (1− ϵ/2)an,m

)∣∣∣
= ϵ/2 +

1

N2
sup

U,V⊂[N]

∣∣∣∑
n∈U

∑
m∈V

(
− log

(
1− (1− ϵ)an,m

)
+ log

(
1− pn,m)

))∣∣∣
= ϵ/2 + ∥P̃−C∥□ = ϵ.

A.4. Proof of the Universality of IeClam in the Pairwise Cone of Non-negativity

For this result, we use the standard weak regularity lemma for non-intersecting classes. It is based on the weak regularity
lemma from (Frieze & Kannan, 1999; Lovász & Szegedy, 2007), see also Lemma 9.3 and Corollary 9.13 from (Lovász,
2012).

Definition A.4. A block matrix B with K classes is a symmetric matrix B ∈ [0,∞)N×N for which there exists a partition
of [N] into K disjoint sets, called classes, C1, . . . , CK (with ∪Cj = [N]), such that for every pair of classes i, j ∈ [K], there
is a constant ci,j ≥ 0 such that bn,m = ci,j for any two nodes n ∈ Ci and m ∈ Cj .

Theorem A.5. Let A ∈ [0, R]N×N be an adjacency matrix of a graph with N nodes. Let ϵ > 0. Denote K = 22⌈R
2/ϵ2⌉.

Then, there exists a block matrix B with K (disjoint) classes such that

∥A−B∥□ ≤ ϵ. (20)

We stress that Theorem A.5 guarantees non-negative block values of B, while in Theorem A.3, in general, the matrix C may
have negative entries.

Proof of Theorem 3.8. We start similarly to the proof of Theorem 3.7. Let ϵ > 0. Let A ∈ [0, 1]N×N be an adjacency
matrix. Consider the matrix Ã ∈ [0,− log(ϵ/2)] with entries

ãn,m = − log(1− (1− ϵ/2)an,m).

In the following, we build IeClam affiliation features F such that

1− exp(−f⊤n Lfm) ≈ (1− ϵ/2)an,m.

By the weak regularity lemma (Theorem A.5), we approximate there is a non-negative block matrix B with K =

22⌈− log(ϵ/2)2/ϵ2⌉ classes C1, . . . , CK , such that
∥Ã−B∥□ ≤ ϵ.

15

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

We now take the affiliation space to have C = K2 inclusive communities and C = K2 exclusive communities.

For each n ∈ [N], let kn be the class such that c ∈ Cnk
. For each pair of classes i, j ∈ [K], let ci,j ≥ 0 denote the edge

weight between Ci and Cj .

The feature of each n ∈ [N] at the inclusive channel c = (K−1)kn+kn is tcn =
√
ckn,kn . It is tcn =

√
ckn,j/4 at inclusive

channels c = (K − 1)kn + j and c = (K − 1)j + kn, and scn = −
√

ckn,j/4 at exclusive channels c = (K − 1)kn + j and
c = (K − 1)j + kn. In all other channels tcn and scn are zero. Note that fn belongs to the cone of pairwise non-negativity
T K2 ⊂ R2K2

.

It is now direct to see that f⊤n Lfm = ckn,km . As a result, as in the proof of Theorem 3.7, we get

D□(P||A) ≤

ϵ/2 +
1

N2
sup

U,V⊂[N]

∣∣∣ log (∏
n∈U

∏
m∈V

1− pn,m
1− (1− ϵ/2)an,m

)∣∣∣
= ϵ/2 +

1

N2
sup

U,V⊂[N]

∣∣∣∑
n∈U

∑
m∈V

(
− log

(
1− (1− ϵ)an,m

)
+ log

(
1− pn,m)

))∣∣∣
= ϵ/2 + ∥P̃−B∥□ = ϵ.

B. Extended Related Work
B.1. Message Passing Algorithms and Networks

The message passing algorithm is a general architecture for processing graph-signals. An MPNN operates on the graph data
by aggregating the features in the neighborhood of each node, allowing for information to travel along the edges. The first
example of this scheme (Message Passing) was originally suggested by Pearl et al (Pearl, 1982), and was combined with
a neural network in (Duvenaud et al., 2015), and later generalized in (Gilmer et al., 2017b). Most graph neural networks
applied in practice are specific instances of MPNNs (Gilmer et al., 2017a; Kipf & Welling, 2017; Velickovic et al., 2017).

In MPNNs, information is exchanged between nodes along the graph’s edges. Each node combines the incoming messages
from its neighbors using an aggregation scheme, with common methods being summing, averaging, or taking the coordinate-
wise maximum of the messages. Let T ∈ N represent the number of layers, and define two sequences of positive integers
(ct)

T
t=0 and (dt)

T
t=0 representing the feature dimensions in the hidden layers {Gt}Tt=0 = {Rct}Tt=0 and {St}Tt=0 = {Rdt}Tt=0.

Define the message functions as M t : St×St → Gt and unpdate functions as U t : Gt×St → St+1. The features f t+1
n ∈ St+1

at layer t+ 1 of the nodes n ∈ [N] are computed from the features f tm ∈ St by

mt
n =

∑
k∈N (n)

M t(f tn, f
t
k)

f t+1
n = U t(mt

n, f
t
n).

Here, M t, U t and mt are called the message function, update function and mail at time t respectively. The summation over
the messages can also be replaced for any node by any function Aggtn :

∏
|N (n)| Gt → Gt which is permutation invariant.

At step T a readout space can be defined RT = RbT , with a permutation invariant readout function RT , e.g., summing,
averaging, or taking the max of all of the nodes of the graph. This produces a vector representation of the whole graph.

B.2. Deep Generative Models

Generative models in machine learning assume that training data is generated by some underlying probability distribution.
One goal in this context is to approximate this distribution, or build a model that approximates a random sampler of data
points from this distribution. Hence, generative models can be used to generate synthetic data, mimicking training data by

16

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

sampling from the distribution (Harshvardhan et al., 2020; Dinh et al., 2016; Mohamed & Lakshminarayanan, 2016), or to
infer the probability of unseen data by substituting it into the probability function. The latter can be useful in tasks like
anomaly detection (Pang et al., 2021) in which the model can asses whether a sample is probable under the learned model.
Two examples of generative models are Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Radford, 2015)
and Variational Autoencoders (VAEs) (Kingma, 2013), which are used both for inference and generation.

VAE models consist of an encoder and a decoder. The encoder maps data from a high-dimensional data space to a
lower-dimensional, simpler, code space. The decoder reverses this process, transforming data from the code space back into
the data space. The code space serves as a bottleneck, capturing the essential features of the training data, which is often
high-dimensional (e.g., images, social network graphs) and thus more complex than the code space. If the model trains by
encoding followed by decoding, then minimizing the difference between the input and its decoded version, it is called an
autoencoder.

In a VAE, training involves encoding each data point to a known distribution (typically Gaussian), sampling from this
distribution, decoding it, and then minimizing the difference between the distribution of the original data and the decoded
data. For a survey on VAEs, see (Tschannen et al., 2018).

B.3. Graph Generative Models

Graph generative models learn a probability distributions of graphs. Such models allow for various tasks where the goal is
not only to analyze existing graphs but also to predict or simulate new graph data.

Some classical generative models are pre-defined probabilistic models, e.g., the Erdős–Rényi model, Preferential attachment,
Watts–Strogatz model, and more. See (Newman, 2003) for a review. Other graph generative models are learned from data,
e.g., (Lee & Wilkinson, 2019; Kipf & Welling, 2016; You et al., 2018; Bojchevski et al., 2018).

Applications of generative graph models include social network analysis (Wang et al., 2018; Grover et al., 2019; Harshvardhan
et al., 2020). anomaly detection B.6, graph synthesis (You et al., 2018; Guo & Zhao, 2022), data augmentation (Ding et al.,
2019b), and protein interaction modeling (e.g. for drug manufacturing) (De Cao & Kipf, 2018; Ingraham et al., 2019), to
name a few. For a review see (Ma et al., 2021).

Deep Graph Autoencoders. In graph deep learning-based autoencoders, one estimates the data distribution by learning to
embed the nodes to a code space, in which the data distribution is defined to be some standard distribution, e.g., Gaussian, in
such a way that the encoded nodes can be recunstructed back to the graph with small error. Graph VAEs (Kipf & Welling,
2016; Grover et al., 2019; Samanta et al., 2020; Mehta et al., 2019) embed the data into the code space by minimizing the
evidence lower bound loss comprised of the decoding loss and the KL divergence between the encoded distribution and a
Gaussian prior.

GAN-based Graph generative models. In (Wang et al., 2018), a GAN method for graphs generates a neighborhood for
each of the nodes and the discriminator gives a probability score for each edge. This method also formulate a graph version
of softmax, and offer a random walk based generating strategy. Another GAN model that is used for anomaly detection is
GAAN (Chen et al., 2020b). In GAAN, the ground truth and generated node attributes are encoded into a latent space from
which the adjacency between any two nodes is decoded using a sigmoid of the inner product between their latent features.

Normalizing Flows-based Graph Models. Normalizing flows models (Dinh et al., 2016) also have adaptations for graph
data. For example, the work of (Liu et al., 2019; Madhawa et al., 2019) offers a version of coupling blocks that use message
passing neural networks. See more details on normalizing flows in Section B.8.

B.4. Stochastic block models

A stochastic block model (SBM) is a generative model for random graphs. A basic stochastic block model is defined by
specifying a number of classes K, the probability pk of a random node being in block k, for k ∈ [K], where

∑
k pk = 1,

and an array of values C = {ck,l}Jk,l=1 ∈ [0, 1]J×K indicating edge probabilities between classes. Each node of a randomly
generated graph of N nodes is independently chosen to belong to one of the classes at random, with probabilities {pk}k∈[K].
Then, the edges of the graph are chosen independently at random according to the following rule. For each n ∈ [N], denote
by kn ∈ [K] the class of n. Each dyad (n,m) ∈ [N]2 is chosen to be an edge in probability ckn,km . Namely, the entries
an,m of the adjacency matrix of the random graph are independent random Bernoulli variables. See (Lee & Wilkinson,

17

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

2019) for a review on SBMs.

For each node n, denote by fn ∈ {0, 1}K the vector such that f c
n = 1 if and only if kn = c. Hence, in a basic SBM,

the presence of an edge between nodes n and m follows a Bernoulli distribution with parameter P (n ∼ m|fm, fm,C) =
fn

⊤Cfm, where the adjacency matrix is P = FCF⊤, where F ∈ RN×K is the matrix where each row n has the feature fn
(Nowicki & Snijders, 2001b). This model can be extended to intersecting classes, where now fn can have more than one
nonzero entry (Mørup et al., 2011; Miller et al., 2009; Palla et al., 2012).

In a Bernouli-Poisson SBM (Yang & Leskovec, 2013; Zhou, 2015; Shchur & Günnemann, 2019), the probability for a
non-edge is modeled by a Poisson distribution. The idea is that the more classes n and m share, the higher the probability
that there is an edge between them. Hence,

P (n ∼ m|fm, fm,C) = 1− e−fn
⊤Cfm , (21)

with the expected number of edges being fn
⊤Cfm.

In both the Bernouli and Bernouli-Poisson models, the probabilisic model of the entire graph is given by a product of the
probabilities of all of the events

P (E|F,C) =√ ∏
n∈[N]

(∏
m∈N (n)

P (n ∼ m)
∏

m/∈N (n)

P (¬(n ∼ m))
)
.

Here, the square root is taken since we assume that the graph is undirected so the product goes over all of the edges twice
(Aicher et al., 2015; Mørup et al., 2011).

When fitting an SBM to a graph, both the class affiliations of nodes and the block structure C are learned (Snijders &
Nowicki, 1997; Nowicki & Snijders, 2001a; Latouche et al., 2012).

B.5. Community Affiliation Models

Community detection is a fundamental task in network analysis, aiming to identify groups of nodes that are more densely
connected internally than with the rest of the network. This process is useful for understanding the structure and function of
complex networks, such as social, biological, and information networks (Fortunato & Hric, 2016).

Although there exist models in which each node belongs to only one community as in traditional SBM models (Holland
et al., 1983), and some relatively new deep learning models such as (Cavallari et al., 2017), it was shown that real-world
networks often exhibit overlapping communities (Yang & Leskovec, 2014; 2013), where nodes belong to multiple groups
and the probability of connectivity increases the more communities two nodes share. This indeed makes intuitive sense
when looking at, e.g., social networks, where the more common interests and social circles people share the more they are
likely to connect.

An example of a community affiliation model that can generate new graphs is AGM (Yang & Leskovec, 2012), which
classifies all of the nodes in a graph into several communities, where each community k has a probability pk for two member
nodes to connect. If we denote by Cn,m the set of communities two nodes n,m ∈ [N] share, then the probability of an edge
between n and m is

p(n ∼ m) = 1−
∏

k∈Cnm

(1− pk).

To sample a new graph from a trained model, nodes are sampled and assigned communities based on the relative sizes of
communities in the training graph, and edges are connected based on their mutual community memberships.

Community affiliations can also be continuous, where nodes have varying degrees of membership in multiple communities.
Community Affiliation models with continuous communities include Mixed Membership SBM (MMSBM) (Airoldi et al.,
2008) which is an SBM which allows nodes to have mixed memberships in multiple communities, and BigClam (Yang &
Leskovec, 2013), which is a Bernouli Poisson model model that scales efficiently for sparse graphs.

It is also worth mentioning the NOCD model presented in (Shchur & Günnemann, 2019) which uses the Bernouli Poisson
loss, but embeds the nodes of the graph into the code space using a learned GNN. Another related paper is (Sun et al., 2019),

18

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

which models the features and communities separately, learning latent features from which it estimates the community
affiliation.

While community affiliations are typically non-negative, there are models where affiliations can be negative. An example is
the Signed Stochastic Block Model (SSBM) (Jiang, 2015).

B.6. Anomaly Detection

Anomaly detection in graphs aims to identify nodes or subgraphs that deviate significantly from the typical patterns within
the graph. This is useful in various applications such as network security, fraud detection, and social network analysis. In
the unsupervised formulation of the problem, there is no labeled data in the training process, We highlight five works in
this direction. GAAN (Chen et al., 2020b) and AEGIS (Ding et al., 2021) use a generative adversarial approach, training a
discriminator to distinguish real and fake nodes. Dominant (Ding et al., 2019a) and AnomalyDAE (Fan et al., 2020) identify
anomalies via reconstruction errors of a graph autoencoder.

Another work is (Qiao et al., 2024), which considers a semi-supervised setting. Here, there is a relatively small number of
available labeled normal nodes during training (nodes that are known to not be anomalies), and the goal is to predict the
anomalies in the unknown nodes.

B.7. Link Prediction

Link prediction in graphs aims to predict missing or future connections between nodes based on the existing structure and
node features. This task is critical in various domains such as social networks, biological networks, and recommendation
systems. In the supervised setting, a subset of dyads is withheld as a test set, with their labeles (edges or non-edges) omitted.
The goal is to predict the connectivity of these omitted dyads using the remaining data, which may also include node
features.

We highlight five notable works in this area. The Adamic-Adar index (Adamic & Adar, 2003) henceforth referred to as
AA, is a second-order heuristic that assumes shared neighbors with lower degrees contribute more to the likelihood of a
link, while high-degree neighbors are less significant. VGAE (Kipf & Welling, 2016) is a variational graph autoencoder,
discussed in Section B.3. LINKX (Lim et al., 2021a) decouples the feature and structure representations in a graph and uses
a simple framework to process this information separately. GAT (Velickovic et al., 2017) applies an attention mechanism in
the message passing process, allowing the model to weight neighboring nodes based on their importance. Another recent
work, DisenLink (Zhou et al., 2022), learns disentangled representations of nodes by capturing multiple latent factors,
allowing it to model various aspects of node connectivity for link prediction. All models mentioned utilize node features
accept for AA.

B.8. Normalizing Flows

Normalizing flows are deep learning algorithms that estimate probability distributions, and allow an efficient sampling from
this distribution. They do so by constructing an invertible coordinate transformation between the unknown target probability
space and a standard probability space with a well known distribution (e.g. Gaussian). This transformation is modeled as a
deep neural network, composed of a series of basic transformations called flows.

Notations. Let F represent the space of the target data, with an unknown probability density function pF : F → [0,∞).
We denote the elements of F by f .

Let Z represent a latent space with a known probability density funcion pZ : Z → [0,∞). We denote the elements of Z
by z. The density function pZ is often chosen to be a standard isotropic Gaussian with zero mean and identity covariance,
denoted by N (0, I).

Goal. The goal in normalizing flows is to learn an invertible transformation Tθ : F → Z (parameterized by θ) which
maps the target space F to the latent space Z , and preserves probabilities. Namely, Tθ should satisfy: for every measurable
subset F ⊂ F we have ∫

F

Tθ(f)pF (f)df =

∫
Tθ(F)

pZ(z)dz.

Here Tθ(F) = {z ∈ Z | ∃f ∈ F such that Tθ(f) = z}. Such a transformation can be seen as a change of variable.

19

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Density Transformation. Given an invertible transformation Tθ, the target density pF (f) can be expressed in terms of the
latent density pZ(z). By upholding the constraint that either probability density function has integral 1 over their respective
spaces, one can deduce the change of variable formula

pF (f) = pZ(Tθ(f))

∣∣∣∣det(∂Tθ(f)

∂f

)∣∣∣∣.
Here, ∂Tθ(f)

∂f denotes the Jacobian matrix of the transformation Tθ with respect to F and det(·) denotes its determinant.

Sequential Composition of Flows. In practice, the transformation Tθ is modeled as a composition of L ∈ N simpler
invertible transformations {Tθi}Li=1 between the consecutive spaces {Zi} where ZL = F and Z1 = Z in the previous
notations. The invertible mappings Tθi : Zi → Zi−1 are called flows, and we have

Tθ = TθL ◦ TθL−1 ◦ · · · ◦ Tθ1

where ◦ denotes function composition. The overall density function for f then becomes

pF (f) = pZ(Tθ(f))

L∏
i=1

∣∣∣∣det(∂T i
θ(fi)

∂fi

)∣∣∣∣.
Here, fi is the intermediate representation after applying the first i− 1 flows. The algorithm is optimized by maximum log
likelihood, namely, by maximizing

log
(
pF (f)

)
= log

(
pZ(Tθ(f))

)
+

L∑
i=1

log

(∣∣∣∣det(∂T i
θ(fi)

∂fi

)∣∣∣∣
)
,

using gradient descent.

Since Tθ and every T i
θ are invertible, information can also flow in the opposite direction in order to sample data. First, a

point z is sampled z ∼ pZ and the inverse transformation T−1
θ is applied to map the sample z into the data space F . Since

T is composed of a series of flows, the generated point in the data space is

f = T−1
θ (z) = T−1

θ1 ◦ T−1
θ2 ◦ · · · ◦ T−1

θL (z).

RealNVP. One popular method of implementing normalizing flow is the Real Valued Non-Volume Preserving (RealNVP).
In this model, the flows Tθi are modeled as mappings called coupling blocks. In a coupling block, the input vector f i (or zi,
in the generative direction) is split into two vectors: f iA and f iB , each the same dimension. Namely, f i = (f iA, f

i
B). The flow

Tθi is then defined to be

f i−1
A = f iA (22)

f i−1
B = f iB ⊙ sθi(f iA) + tθi(f iA) (23)

Where (sθi(·), tθi(·)) are Multi Layer Perceptrons (MLPs) parameterized by θi, and ⊙ is elementwise product. In addition,
the elements of f i are permuted at every i before applying the coupling block, using predefined permutations, that are parts

of the hyperparameters of the model. It is easy to see that the Jacobian
(

∂T i
θ(fi)
∂fi

)
is a diagonal matrix with 1 for the first

dim(f iA) elements, and sθi(f iA) for the last dim(f iB) elements. This makes the log of the determinant of the Jacobian

log

(∣∣∣∣det(∂T i
θ(fi)

∂fi

)∣∣∣∣
)

=

dim(f iB)∑
j=0

log
(
sθi(f iA)j

)
. (24)

Hence, this determinant is easily computed in practice.

20

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

For generation, the inverse transformation can be calculated easily as

zi+1
A = ziA

zi+1
B =

ziB − t(ziA)

s(ziA)

where the division is elementwise. Here, the log determinant of the Jacobian can be calculated similarly to (24), applied to
1/s(ziA).

B.9. The Lorentz Inner Product

The Lorentz inner product is a bilinear form used in the context of special relativity to describe the spacetime structure. In a
four-dimensional spacetime, the Lorentz inner product between two vectors v and w is given by:

⟨v,w⟩ = v0w0 − v1w1 − v2w2 − v3w3

Here, v0 and w0 represent the ”time” components, while v1, v2, v3 and w1, w2, w3 represent the ”spatial” components. The
negative sign in front of the time component is what distinguishes the Lorentz inner product from the standard Euclidean
inner product, making it suitable for modeling the geometry of spacetime where time and space are treated differently. Note
that due to the subtraction, the Lorenz inner product is in fact not an inner product as it is not positive definite. In the context
of special relativity, the points for which the Lorenz product remain positive define the so called ”light cone” structure of
spacetime, separating events into those that are causally connected and those that are not.

The Lorentz inner product is a specific example of a broader class of inner products known as pseudo-Euclidean inner
products. In a pseudo-Euclidean space, the inner product can have a mixture of positive and negative signs, leading to
different geometric properties. These spaces generalize the concept of Euclidean space by allowing for non-positive definite
metrics.

C. PClam and PieClam as Graphons
A graphon is a model which can be seen as a graph generative model that extends SBMs. A graphon (Borgs et al., 2007;
Lovász, 2012) can be seen as a weighted graph with a “continuous” node set [0, 1].
Definition C.1. The space of graphons W is defined to be the set of all measurable function W : [0, 1]2 → [0, 1] which are
symmetric, namely W (x, y) = W (y, x).

The edge weight W (x, y) of a graphon W ∈ W can be seen as the probability of having an edge between node x and node
y. Given a graphon W , a random graph is generated by sampling independent uniform nodes {Xn} from the graphon
domain [0, 1], and connecting each pair Xn, Xm in probability W (Xn, Xm) to obtain the edges of the graph.

We next show that Clam models with prior are special cases of graphon models. Note that the prior p defines a standard
atomless probability spaces over the community affiliation space RK . Since all standard atomeless probability spaces are
equivalent, there is a probability preserving a.e. bijection ξp : [0, 1] → RK that maps the prior probability to the uniform
probability over [0, 1]. Now, the PieClam model for generating a graph of N nodes can be written as follows.

• Sample N points {Xn}Nn=1 ⊂ [0, 1] uniformly. Observe that {ξp(Xn)}Nn=1 ⊂ RK are indepndent samples via the
probability density p.

• Connect the points according to the BigClam of IeClam models P (n ∼ m|ξp(Xn), ξp(Xm)) (1) or (7).

This shows that PClam and PieClam coincide with the generative graphon model W (x, y) = P (n ∼ m|ξp(X), ξp(Y))
where P is defined either by (1) or by (7).

D. Extended Details on Experiments
D.1. Additional Architecture Details in PieClam and PClam

Added Affiliation Noise. When training the prior, overfitting may cause the probability to spike around certain areas
in the affiliation space, e.g., around the affiliation features of the nodes. To avoid this issue, we add gaussian noise to the

21

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Method Reddit Elliptic Photo
(S)- IeClam 64.12 ± 0.25 43.58 ± 0.15 *57.67 ± 1.79

(S) - PieClam *63.97 ± 0.50 43.47 ± 00.12 58.98 ± 2.51
(P) - PieClam 46.76 ± 2.50 63.18 ± 3.02 45.73 ± 7.03

(PS) - PieClam 63.99 ± 0.50 53.81 ± 1.63 58.99 ± 2.52
DOMINANT 51.1 29.6 51.4
AnomalyDAE 50.9 *49.6 50.7

OCGNN 52.5 25.8 53.1
AEGIS 53.5 45.5 55.2
GAAN 52.2 25.9 43.0
TAM 60.6 40.4 56.8

Table 4: Comparison of Clam anomaly detectors with competing methods. First place in boldface, second with underline,
third with *star. We observe that our methods are first place on all datasets. Moreover, S- IeClam, PS-PieClam and S
BigClam each beats the competing methods in two out of the three datasets . The accuracy metric is areas under curve
(AUC).

Method Reddit Elliptic Photo
(S)- IeClam 64.12 ± 0.25 43.58 ± 0.15 *57.67 ± 1.79

(S) - PieClam *63.97 ± 0.50 43.47 ± 0.12 58.98 ± 2.51
(P) - PieClam 46.76 ± 2.50 63.18 ± 3.02 45.73 ± 7.03

(PS) - PieClam 63.99 ± 0.50 53.81 ± 1.63 58.99 ± 2.52
(S) - PieClam (No Attr) 63.46 ± 0.15 43.50 ± 0.13 58.11 ± 2.73
(P) - PieClam (No Attr) 45.30 ± 1.42 *50.25 ± 0.8 48.67 ± 10.47

(PS) - PieClam (No Attr) 63.51 ± 0.15 43.50 ± 0.13 58.12 ± 2.75

Table 5: Comparison of attributed and unattributed PieClam anomaly detection.

affiliation vector as a regularization at each step of training the normalizing flow prior model. The normalizing flow model
then transforms the same point to a slightly different location in the code space. The noise optimization therefore provides
a resolution to the prior, smoothing the distribution in the affiliation space. Noise addition is the primary regularization
method we have used when training the prior in all of our experiments.

Densification. For very sparse datasets, Clam models may not behave well. In such cases, the community structure
is sometimes unstable, where the same node can find itself in different communities based on slightly different initial
conditions. In order to strengthen the connections within communities, we apply a two-hop densification scheme on very
sparse graphs. Namely, we connect two disjoint nodes n,m with an edge if there is a third node k for which n ∼ k and
m ∼ k. We find that this scheme improves anomaly detection on Elliptic, Photo and Reddit datasets. Densification may
strengthen the community structure in some datasets, but can also destroy it in others. In the experiments on synthetic
datasets we did not use densification, as these graphs are relatively dense.

D.2. Anomaly detection

Metric. In order to measure the accuracy of the anomaly detection classification we use the area under the Receiver
Operating Characteristic (ROC) curve (Peterson et al., 1954). The curve is a plot of the true positive rate (TPR) against the
false positive rate (FPR) for the range of the threshold values between the value that classifies all samples as true and the
value that classifies all as false. The area under the curve signifies the general tendency of the curve toward the point (0,1)
for which FPR= 0 and TPR= 1.

Experimental Details. For the anomaly detection results, each model is assigned a single configuration that is used across
all datasets. Every configuration is evaluated by training the model 10 times per dataset, and the results are reported as mean
and standard deviation. The detailed results with error bars are shown in Table 5. To select the global hyperparameters, we
first conducted a wide scan over parameter ranges, followed by a finer search around the most promising regions.

22

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Method Squirrel Photo Texas John’s Hopkins 55
PieClam 98.7 ±0.0 98.4 ±0.0 85.0 ± 2.0 95.5 ±0.0*
BigClam 98.5 ± 0.0 97.4 ± 0.1* 78.2 ± 3.0* 94.9 ± 0.0
VGAE 98.2 ±0.1 94.9 ±0.8 68.6 ±4.2 92.8 ±0.2
GAT 98.0 ±0.0 97.3 ±0.3 68.5 ±5.4 94.3 ±0.5

LINKX 98.1 ±0.3 97.0 ±0.2 75.8 ±4.7 93.4 ±0.3
AA 97.1 ±0.4 97.4 ±0.4 53.1 ±6.2 96.1 ±0.5

DisenLink 98.3 ±0.1* 97.9 ±0.1 81.0 ± 4.0 97.5 ±0.1

Table 6: Comparison of Clam link predictors with competing models. First place in boldface, second with underline, third
with *star

Furthermore, in this section we also run our anomaly detection methods without using the node features, namely, only using
the graph structure. We find that we comparable results on Photo and Reddit with or without node features, but that the
detection on Elliptic decreases significantly. Still, anomaly detection on Elliptic without node features is competitive with
state of the art models that do use node features. The results are in Table 5.

We proceed to compare the optimization that includes the node features to the optimization that didn’t. The comparison is
presented in

T-Test Comparison Summary. We conducted t-tests to determine if node features/attributes (”With Features”) significantly
improve performance compared to not using attributes (”Without Features”), across the Reddit, Elliptic, and Photo datasets
for each method (S, P, PS). Even though S method is not affected directly by the affiliation vectors, the latter can affect the
convergence of the prior in the affiliation space and have an indirect effect.

• Reddit Dataset: Attributes did not significantly improve performance for the ”Star” (S) and ”Prior Star” (PS) methods.
However, ”Prior” (P) did show a significant improvement with attributes (p-value=0.0002).

• Elliptic Dataset: ”Prior” (P) and ”Prior Star” (PS) both showed significant improvements with attributes (p-
value<0.0001). However, the ”Star” (S) method did not significantly benefit from attributes.

• Photo Dataset: The ”Star” (S) method did not show significant difference (p-value=0.6864). The ”Prior Star” (PS)
method, however, did show a significant benefit from attributes (p-value<0.0001), and ”Prior” (P) had a borderline
significant result (p-value=0.0529).

In conclusion, attributes did not make a difference for the ”Star” (S) method across all datasets (as would be expected),
and for the ”Prior Star” (PS) method in the Reddit dataset. However, the ”Prior” (P) and ”Prior Star” (PS) methods mostly
showed improvement in the Elliptic dataset.

D.3. Link Prediction

Probabilistic Model with Omitted Dyads. When doing link prediction (as explained in Section B.7) we remove a
portion of all dyads from computation during training, treating the omitted dyads neither as edges nor non-edges. Having
non-affiliated dyads modifies the PieClam log likelihood as explained next.

Recall that E denotes the set of all edges in the graph. Denote D = {(n, n)|n ∈ [N]}. Denote by Ē = [N]2 \ (E ∪D) the
set of non-edges. Denote the sets of omitted edges and non-edges by Ě and ˇ̄E respectively. We assume that the number of
omitted dyads Ě∪̇ ˇ̄E is of the same order as the number of edges E. Hence, for sparse graphs |Ě∪̇ ˇ̄E| ≪ N2. The PieClam
loss which ignores the omitted dyads now is defined to be

2l̂(F, E, Ě, ˇ̄E) = 2
∑

n∈[N]

log(p(fn)) +
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)−
∑

(n,m)∈Ē\ ˇ̄E

f⊤n Lfm (25)

Next we formulate the PieClam loss as an efficient “message passing,” requiring only O(|E|) operations. First, note that

[N]2 \ (Ē \ ˇ̄E) = E∪̇ ˇ̄E∪̇D.

23

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Therefore, ∑
(n,m)∈E\Ě

log(1− e−f⊤n Lfm)−
∑

(n,m)∈Ē\ ˇ̄E

f⊤n Lfm

=
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)−
∑

(n,m)∈[N]2

f⊤n Lfm +
∑

(n,m)∈[N]2\(Ē\ ˇ̄E)

f⊤n Lfm

=
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)−
∑

(n,m)∈[N]2

f⊤n Lfm +
∑

(n,m)∈E∪̇ ˇ̄E∪̇D

f⊤n Lfm

=
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)−
∑

n∈[N]

f⊤n
∑

m∈[N]

Lfm +
∑

(n,m)∈E∪̇ ˇ̄E∪̇D

f⊤n Lfm.

Hence,

2l̂(F, E, Ě, ˇ̄E) =2
∑

n∈[N]

log(p(fn)) +
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)

−
∑

n∈[N]

f⊤n
∑

m∈[N]

Lfm +
∑

(n,m)∈E∪̇Ě∪̇D

f⊤n Lfm,
(26)

and gradient ascent with respect to this formulation is an efficient message passing algorithm.

Developing the expression further, we achieve an equivalent form that resembles the original clam loss.

First we decompose the last term into ∑
(n,m)∈E∪̇Ě∪̇D

f⊤n Lfm =
∑

(n,m)∈E\Ě

f⊤n Lfm +
∑

(n,m)∈Ě∪̇Ě∪̇D

f⊤n Lfm.

We substitute this sum into Equation 26 to get

2l̂(F, E,Ě, ˇ̄E) = 2
∑

n∈[N]

log(p(fn)) +
∑

(n,m)∈E\Ě

log(1− e−f⊤n Lfm)

−
∑

n∈[N]

f⊤n
∑

m∈[N]

Lfm +
∑

(n,m)∈E\Ě

log(ef
⊤
n Lfm) +

∑
(n,m)∈Ě∪̇Ě∪̇D

f⊤n Lfm.

We unify the second and fourth sums and use logarithm identities to get

2l̂(F, E, Ě, ˇ̄E) =

(
2
∑

n∈[N]

log(p(fn)) +
∑

(n,m)∈E\Ě

log(ef
⊤
n Lfm − 1)−

∑
n∈[N]

f⊤n
∑

m∈[N]

Lfm +
∑

(n)∈[N]

f⊤n Lfn

)
+

∑
(n,m)∈Ě∪̇Ě

f⊤n Lfm.

(27)

The first three terms (in brackets) of 27 make the original clam loss (Equation 10) on the retained set of edges E \ Ě. The forth term
represents an MPNN on the graph ([N], Ě∪̇ ˇ̄E). Since Ě∪̇ ˇ̄E is strictly contained in E∪̇Ě we use Equation 27 for the link prediction
implementation.

Experimental Setup In the experiments, we evaluate the model’s ability to classify edges and non-edges by constructing a ROC
curve as described in Section B.6.

Note that, since the prior is not used in classification, there is no added benefit from utilizing node features when training the prior,
as proposed in 2.4. Therefore, the link prediction algorithm relies solely on the graph’s topological structure and the prior functions
only as regularization. We use the scheme from (Zhou et al., 2022), where for each dataset, we generate 10 randomly sampled test
sets, each containing 10% of the edges, along with 5 randomly sampled non-edges for every omitted edge. For each split, we perform
hyperparameter selection using a separate 5% validation set, also paired with 5 non-edges per edge. We report the mean accuracy across
the 10 test sets, along with the standard error of the mean. To select the hyperparameters for each split, we first conducted a wide scan over
parameter ranges, followed by a finer search around the most promising regions. To ease reproducibility, we use a single configuration per
model and dataset across all sampled test sets. The test sets are available in our GitHub repository.

24

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Model Dim. Feat. Iter. Prior Iter. Prior Step S Reg. First Optimization
Squirrel PieClam 90 700 2000 5e-6 0.1 Feature
Photo PClam 150 700 1300 3e-6 - Feature
Texas PieClam 22 2000 1500 5e-6 0.0 Prior
JH55 PClam 200 750 1800 3e-6 - Feature

Table 7: Link prediction hyperparameters for each of the datasets. Full configuration details are available in the project’s
GitHub repository.

Datasets and Baselines. We conduct these experiments on four datasets: Facebook100’s Johns Hopkins 55 (Lim et al., 2021b),
Amazon Photo (Shchur et al., 2018b), WebKB’s Texas and Wikipedia’s Squirrel (Pei et al., 2020). We compare ourselves to the baseline
methods AA (Adamic & Adar, 2003), VGAE (Kipf & Welling, 2016), GAT (Velickovic et al., 2017), LINKX (Lim et al., 2021a),
DisenLink (Zhou et al., 2022) and BigClam.

Hyperparameter Configuration. As was mentioned in D.3, hyperparameters are selected separately for each dataset and model by
randomly selecting a validation set outside of the test set. Since all four Clam models are a special case of PieClam, we present only
the best performing model and treat it as a hyperparameter. We describe the hyperparameter configuration for each of the models in
Table 7. The columns of the table signify the Clam model, AS dimension, number of feature iterations, feature step size, number of prior
weight iterations, the prior weight step size, the added noise amplitude, s community regularization and the first function in the alternation.
The following hyperparameters are constant across all datasets: feature step size (5e-6), l1 regularization (1), Noise amplitude (0.1) the
number of alternations (7), scheduler step size (3) and the scheduler step size (0.5).

Results The results on the datasets and the comparison to the other baseline models is presented in Table 6. Baseline results are taken
from Table 2 in (Zhou et al., 2022).

D.4. Reconstructing Synthetic Priors

We consider two ground-truth synthetic priors pbig : R2
+ → [0,∞) in PClam, and pie : T 1 → [0,∞) in PieClam. We sample N = 500

points from each of the priors, decode the corresponding PClam and PieClam graphs, and sample simple graphs from the random Bernoulli
edges as shown in figure 4. Then, given these sampled graphs, we reset their affiliation features to random vectors and fit a BigClam and a
PClam to the graph sampled from pbig , and an IeClam and a PieClam to the graph that was sampled from pie.

The optimization results are shown in Figures 5 and 6. Both the priored and unpriored models effectively learned the feature reconstructions
in the feature spaces T and R2

+. Notably, the features in the priored models are more localized, supporting the claim that the prior acts as
a regularizer.

The priors themselves are well-approximated, as illustrated in Figure 6, with the quality of approximation improving as more nodes are
sampled from the priors.

D.5. SBM Reconstruction And Distance Convergence

We extend the experiment in Section 4.2 by considering another synthetic SBM, which is off-diagonal dominant. As in Section 4.2, we
sample a simple graph with N = 210 nodes from the SBM. The non zero probability blocks have a probability of 0.5. We estimate the
log cut distance between the Clam models (BigClam and IeClam) and the SBM during training. We consider for both methods affiliation
spaces of dimensions 2, 4 and 6. In addition, we calculate the cut distance and l2 errors between the Clam models and the SBM. The
results are shown in Figures 8–13.

D.6. Ablation Study

l1 and s Regularization. The l1 regularization is adapted from the BigClam original architecture and shows improvement when
optimizing the models. This regularization type adds a constant update in all of the directions, which means that for every node n and it’s
affiliation feature fn, components that are not updated are moved towards 0 regardless of their magnitude. This constant push towards 0
forces sparsity in the affiliation matrix and also acts as a regularization. The s regularization is an l1 regularization of the s features and
has shown effective for the Squirrel dataset.

Noise Addition. Due to the high expressivity of the normalizing flow model, the neural network tends to learn a narrow distribution
around the affiliation features. This overfitting tendency cannot be alleviated by simply reducing the network parameters without
significantly compromising the expressivity of the prior. Noise addition offers a way to control the prior’s resolution while preserving its
ability to learn complex distributions. An example comparing optimization results with and without noise addition is shown in Figure 7.

Densification. The densification method described in Section D.1 can yield varying results depending on the internal structure of the
graph. To illustrate the impact of densification, we conducted 10 anomaly detection experiments, following the setup from Section 4.3,

25

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 4: Right to left: ground truth synthetic prior and sampled graph. Top: graph sampled in T using PieClam. Bottom:
graph sampled in R2

+ using Pclam.

but without applying densification. The results are shown in Table 8.

Method Reddit Elliptic Photo
(S) - PieClam 0.6320 ± 0.0054 0.4354 ± 0.0005 0.5727 ± 0.0151

(S) - PieClam (No Dens.) 0.5480 ± 0.0022 0.4009 ± 0.0021 0.5293 ± 0.0046
(P) - PieClam 0.5089 ± 0.0219 0.6201 ± 0.0176 0.4252 ± 0.0074

(P) - PieClam (No Dens.) 0.5088 ± 0.0383 0.6378 ± 0.0245 0.4325 ± 0.0089
(PS) - PieClam 0.6329 ± 0.0052 0.5294 ± 0.0089 0.5289 ± 0.0127

(PS) - PieClam (No Dens,) 0.5466 ± 0.0047 0.6181 ± 0.0233 0.4538 ± 0.0030

Table 8: Comparison of PieClam on densified and non densified datasets. Boldface denotes a significantly better result
(difference of over 2 standard deviations), underline denotes an insignificant difference.

As seen in Table 8, densification generally improved results across the datasets, except for the Elliptic dataset using the P and PS methods,
where the undensified datasets performed significantly better. For the Reddit and Photo datasets with the P method, the difference was not
significant.

26

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 5: Left to Right: IeClam and BigClam Reconstructions of features sampled from synthetic priors

Figure 6: Left to right: reconstructed nodes, reconstructed prior. Top to botton: PieClam in T , PClam in R⊭
+

Figure 7: Left to right: reconstructed nodes, reconstructed prior. Top to botton: With and without noise addition.

27

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 8: Left to right: Target SBM. Fitted BigClam graph with two communities. Error as a function of optimization
iteration where error is, left to right, log cut distance, cut distance, l2 distance. After convergence, the log cut distance
between the SBM and BigClam is 0.0776.

28

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 9: Left to right: Target SBM. Fitted BigClam graph with four communities. Error as a function of optimization
iteration where error is, left to right, log cut distance, cut distance, l2 distance. After convergence, the log cut distance
between the SBM and BigClam is 0.0775.

29

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 10: Left to right: Target SBM. Fitted BigClam graph with six communities. Error as a function of optimization
iteration where error is, left to right, log cut distance, cut distance, l2 distance. After convergence, the log cut distance
between the SBM and BigClam is 0.0776.

30

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 11: Left to right: Target SBM. Fitted IeClam graph with two communities. Error as a function of optimization
iteration where error is, left to right, log cut distance, cut distance, l2 distance. After convergence, the log cut distance
between the SBM and IeClam is 0.0662.

31

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 12: Left to right: Target SBM. Fitted IeClam graph with four communities (two inclusive and two exclusive). Error as
a function of optimization iteration where error is, left to right, log cut distance, cut distance, l2 distance. After convergence,
the log cut distance between the SBM and IeClam is 0.0312.

32

PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities

Figure 13: Left to right: Target SBM. Fitted IeClam graph with six communities (three inclusive and three exclusive).
Error as a function of optimization iteration where error is, left to right, log cut distance, cut distance, l2 distance. After
convergence, the log cut distance between the SBM and IeClam is 0.0309.

33

