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ABSTRACT

Important reasoning tasks such as planning are fundamentally algorithmic, mean-
ing that solving these tasks robustly requires inducing the underlying algorithms,
rather than shortcuts. Large Language Models lack true algorithmic ability pri-
marily because of the limitations of neural network optimization algorithms, their
optimization data, and optimization objective, but also due to the inexpressivity of
the transformer architecture. To address this lack of algorithmic ability, our paper
proposes augmenting LL.Ms with an internal reasoning module. This module con-
tains a library of fundamental operations and sophisticated differentiable programs
so that common algorithms do not need to be learned from scratch. To accomplish
this, we add memory, registers, basic operations, and adaptive recurrence to a
billion-parameter scale transformer architecture built on LLaMA3.2. Then, we
define a method for directly compiling algorithms into a differentiable starting li-
brary, which is used natively and propagates gradients for optimization. In this
paper, we study the feasibility of this augmentation by fine-tuning an augmented
LLaMA 3.2 on simple algorithmic tasks with variable computational depth, such
as a recursive Fibonacci algorithm or insertion sort.

1 INTRODUCTION

Machine learning is relaxed program induction, where, implicitly or explicitly, the goal is to find
programs that accomplish a given task [1, 2, 3, 4]. For example, a large language model trained
on math problems must implicitly learn a calculator program internally. Furthermore, models may
aim to induce more complex internal programs, such as sorting algorithms, planning algorithms, or
combinatorial solvers. However, gradient descent has no guarantee of recovering such programs,
and often approximates them via statistical features and other shortcuts [5, 6]. To avoid the issue of
inducing already-known programs from data, we use neural compilation, which compiles code into
neural network parameters [7, 8, 9, 10]. Specifically, we augment a large language model with a
compiled library of differentiable programs, which can be used as a foundation for further learning.
Ideally, the model will learn compositions of subprograms in the library [11].

Language models are optimized to model natural language through objectives like masked-token
or next-token prediction. In theory and practice, these objectives are insufficient for the emergence
of authentic reasoning ability, even when it may appear superficially [12, 5, 6, 13, 14]. In general,
this lack of reasoning ability is a fundamental flaw that is not easily mitigated via prompting or
fine-tuning [15, 12]. First, algorithmic reasoning, by definition, requires an architecture to be univer-
sally expressive. Second, optimization must be able to find target programs. However, transformer
expressivity is upper-bounded by TC? [16], meaning that a single transformer pass can only at best
approximate algorithms using a highly-parallel circuit [5]. Furthermore, there is ample empirical
evidence that optimization does not recover even programs within TCY [12, 6].

Augmentation aims to address the limitations of large language models. For instance, a language
modeling objective is often insufficient to induce a robust calculator sub-program, so it is common
to augment a language model with a calculator. Even when appropriate tools are available, a model
must use them correctly, by providing the right inputs to the right tool in the right context, which
we call the parsing/selection problem. Tool use is often approached via prompting, fine-tuning, or
bootstrapping [17]. Differentiability is advantageous for fine-tuning, as it allows supervising on
answers rather than tool inputs, and allows for tighter integration than external tool augmentation.
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Figure 1: The proposed architecture, which adds a library of differentiable programs to LLaMA3.
In principle, these programs can be composed to flexibly complete new tasks without re-learning
individual subprograms. For example, the model may first parse text, sort a list, and then count the
characters in the first title by composing sort () and count () with the LLM’s parsing ability.

We augment LLaMA 3.2 with a differentiable computer that runs after the primary model, as de-
picted in Figure 1. This computer contains a library of multiple compiled programs, as well as
primitive operations such as arithmetic. In principle, this augmentation makes the overall model
universal in a single pass. Because the computer is differentiable, it’s potentially possible to adapt
the overall model to use the compiled library functions for new tasks, or to parse their inputs from
natural language. Accordingly, we perform experiments that test the impact of computation depth
on training, as well as experiments which require the model to select and compose library func-
tions in-context. Overall, we find that this augmentation works best for highly parallel and shallow
algorithms, but is promising in terms of enabling foundation models to do algorithmic reasoning.

1.1 NEURAL COMPILATION

Neural compilation is a technique for deterministically transforming code into neural network param-
eters that express the exact same program in a given architecture. Precursors to neural compilation
were first discussed in Siegelmann and Sontag, and then implemented in Gruau et al. [18, 7]. How-
ever, the first adaptive (trainable) neural compilation technique was first defined in Bunel et al. [8].
Similarly, there are modern approaches to neural compilation, based on the transformer architecture,
but these either focus on interpretability, are not universal, or are not adaptive [19, 9, 20, 16, 10].

2 RELATED WORK

2.1 PREVIOUS NEURAL COMPILATION TECHNIQUES

Adaptive Neural Compilation augments a recurrent neural network with memory, registers, and
a differentiable interpreter for a minimal assembly language [8]. Then, [8] compiles algorithms
by solving for weights analytically. This model relied on a lookup-table based ALU, unit vector
numeric encodings, dot-product memory/register lookups, and probability mixtures for control flow.
This work focused on learning contextual programs (e.g. sorting biased lists), but in contrast we
focus on compilation as a means to specify algorithms to Large Language Models.

RASP/Tracr/CoNN describe a neural compilation technique for unaugmented transformers, aimed
at interpretability. Specifically, RASP defines a minimal language [19], Tracr defines a working com-
piler [9], and CoNN exploits the Tracr compiler to augment a transformer. While CoNN compiled
addition and subtraction, their mixture-of-experts approach has a basic calculator directly output the
answer as a series of tokens, which is limited only to very simple problems and does not support
compositionality or training for new tasks [21]. In comparison, our work is the first to experiment
with end-to-end trained large language models augmented with universal programs.

Looped Transformer constructs a universal machine within a recurrent transformer architecture.
However, it is not intended to be adaptive, nor is it explicitly constructed for library learning or
integration with pretrained LLMs [10].
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2.2 DIFFERENTIABLE COMPUTING AND PROGRAM SYNTHESIS

Differentiable computing is the idea that programs can be approximated by neural networks by
defining differentiable primitives that support universal computation, for instance by using softmax
attention to simulate array access. Recurrent neural networks and LSTMs are early instances of
differentiable computers, and generally performed well for several decades, but in the limit cannot
learn and generalize arbitrary programs from data [22]. One potential reason for these failures is a
lack of inductive bias via expressive primitives, but the critical reason is optimization difficulty [23].

Neural Turing Machines [24, 25] construct a sophisticated differentiable computer, and demon-
strate its application to complex tasks, such as inducing sorting, planning, or graph algorithms.
NTMs are foundational to differentiable computing, however, they are exceptionally hard to train,
even in comparison to RNNs and LSTMs [26]. This raises possibility of architectures which achieve
both the expressiveness of NTMS and the trainability, parallelism, and capacity of transformers [27].

Graph Neural Networks are a successor to Neural Turing Machines specialized in expressing graph
algorithms [28, 29, 30, 31, 32, 33]. In practice, graph neural networks can be more trainable than
NTMs. However, like any method which relies on gradient descent for induction, there are no hard
guarantees and generalization is not perfect, even if overall performance is improved [34]

Program Synthesis is closely related to differentiable computing, and studies the practice of induc-
ing code from specifications [35, 3, 4, 1]. Generally this entails symbolic search, with an emphasis
on addressing combinatorial explosion via heuristics or pruning. However, program synthesis also
overlaps with differentiable computing significantly, and neural networks are often used as genera-
tors or heuristics of programs [36, 11, 37, 38, 39, 40, 41].

Sketching improves program synthesis by providing a human-specified template of the desired out-
put, and having an algorithm fill in this template [35, 42, 43]. Contextual programs in [8] and our
initial library share heritage and draw inspiration from sketching.

Library learning focuses on organizing acquired skills for compositional reuse [11, 44]. By creat-
ing abstractions, learning more complex algorithms ideally becomes a matter of recomposing library
skills, rather than learning from scratch. Beyond abstractions found by a learning algorithm, this pa-
per aims to provide a foundation of abstractions, which are compiled into the starting library. This
foundation can range from simple arithmetic operations to fully defined planning algorithms. In
either case, the goal is to provide an inductive bias for reliably learning algorithmic tasks.

2.3 LARGE LANGUAGE MODEL TooL USE

LLM Tool Augmentation has been explored as an alternative method to improve reasoning ability
in neural networks. For instance, models like GPT have been augmented with calculators or Python
interpreters [45] via a text interface. The primary difference between neural compilation and typical
LLM tool use is that because they are differentiable, neurally compiled components require fewer
intermediate labels and support fine-tuning with an integrated tool. Still, differentiability alone is
not a guarantee that correct tool use behavior will be learned from answer supervision, so we do not
propose replacing conventional approaches to tool use entirely.

Augmenting LLMs with Neural Algorithmic Reasoners Graph neural networks (GNNs) are
promising for completing algorithmic reasoning tasks, such as those defined in the CLRS Algo-
rithmic Reasoning Benchmark [34]. Similar to the proposition of this paper, graph neural networks
are promising as a potential augmentation to Large Langauge Models. In particular, [46] explores
using a neural algorithmic reasoner (NAR) to augment the Chinchilla large language model, creating
what they call a TransNAR.

This approach relies on generating synthetic data using a known algorithm, and training an NAR
to approximate the source algorithm. Then, the overall augmented model (the TransNAR) receives
both text and a structured graph input, and produces a text output. The NAR correctly handles the
algorithmic aspect of the task, and shares an embedding with the overall transformer, enabling the
overall model to reliably answer reasoning questions.

While effective in many ways, this approach has two downsides compared to our proposal: The
source algorithms must be approximated via optimization, which can be reliable (e.g. learning an
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algorithm with 99% accuracy in distribution), but doesn’t carry guarantees like direct neural com-
pilation does. Also, this optimization process is computationally expensive compared to analytical
compilation, and both require having access to the source algorithm. Furthermore, generating the
synthetic training data requires making a specialized version of the source algorithm that provides
intermediate hints. Also, the TransNAR is provided with a pre-parsed graph, which skips the impor-
tant problem of parsing natural language into an appropriate structure. As we will see later in the
paper, a significant source of difficulty in using LLMs for reasoning tasks is that their intermediate
representations are not structured.

2.4 GRADIENT ESTIMATION

An alternative to making specialized differentiable machines is to instead treat tools as “black boxes”,
and use gradient estimation techniques to learn how to use them. For example [47, 48] allows a black-
box combinatorial solver to be used as a differentiable layer in a neural network. These approaches
are valuable, but can potentially be sample-inefficient or produce noisy gradients.

3 AUGMENTING LLAMA 3.2 WITH A DIFFERENTIABLE LIBRARY

Our model augments the LLaMA 3.2 transformer architecture with a differentiable computer, A,
and associated program library A. Fundamentally, an intermediate layer of the transformer provides
inputs to the differentiable computer (as one-hot classifications) and selects programs to run. The
differentiable computer A is based on the register machine introduced in Bunel et al. [8], except that
it has been expanded to allow for the program library A to be accessed via a special call instruction.
A interprets a set of assembly instructions A. A program p is a sequence of these instructions, and
the library A is a collection of programs. The computer has state S in the form of memory M and
registers R, and tracks execution with an instruction counter ¢ and halting probability .

S =(M,R,c,h) ey

3.1 LIBRARY STRUCTURE

The fundamental contribution of this paper is augmenting an LLM with a differentiable standard
library of programs. The overall model uses the program library by selecting programs and inputs
to run. Accordingly, composing library functions for new tasks becomes a matter of selecting the
appropriate combination of functions to run and providing their parsed inputs.

Parsing/Selection Problem The overall model must parse a given natural language input, and
provide appropriate inputs for A in the form of an initial state. Then, the model must select a pro-
gram p. In our experiments (Section 4), we first study parsing/selection in an isolated form, where a
minimal model learns the correct permutation for a task, and then we study the full parsing/selection
problem in the context of transformer models with natural language inputs.

Call Instruction Creating a differentiable library fundamentally relies on introducing a method
for calling functions arbitrarily. To achieve this, we add a call primitive, supported by a store
instruction, which stores the current program counter in a given register. Doing this allows returning
from functions by designating a special return address register. The call primitive simply runs
store and moves the instruction counter into the new function, and the called function returns to
the stored location when finished.

3.2 MODEL BACKGROUND

Differentiable Memory Bunel et al. defines differentiable memory as a matrix M;;, where the
dimension 7 is an address and the dimension j is an encoding. An address a is a unit vector, produced
via softmax output. Reading from memory at an address is done with the dot product:

’I"j = Mijai (2)
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Figure 2: Differentiable Register Machine, Introduced in Bunel 2016 [8]

Writing a vector to memory requires updating all of memory using probability mixtures. First, for
an address a, vector ¢ being written to a, and overall probability of writing, p, a memory update is:

M=(1-a)0OM+a®c (3)
write old

M=(1-poM+po M 4)
new old write

(1 —a) ® M represents kept (unaltered) memory content, and a ® c¢ represents new, written content.

Differentiable Registers Registers are defined as a matrix R;;. To write an output ¢ to address a:
Rij=(1-a)ORj+a®c 35)

Reading from an address a to a value v is done with a dot product: v; = R;j;a;. The distinction
between memory and registers is that instruction inputs/outputs use registers, not memory. Also,
registers are always written at every timestep by any instruction, while memory is only written from
read or write instructions when they have non-zero probability.

Differentiable Register Machine The computer executes a set of assembly instructions, A, repre-
senting the computer’s language. A differentiable program p is structured as a list of these instruc-
tions and their arguments, where each instruction can be accessed at its address. These addresses
are tracked via a special instruction counter, c. Then, a differentiable interpreter I runs instructions
A in order to execute the program.

There are two special instructions necessary: jump and halt, which control program flow. The
jump instruction takes two inputs: a register holding a conditional flag, and a register holding a
program address. If the conditional flag is true (equal to 1), then the program jumps to the new
program address. Finally, the halt instruction simply finishes the control flow, without executing
the remainder of the program. Since this instruction is probabilistic, it is thresholded when execut-
ing programs in practice. A particular probabilistic instruction ¢ is a multinomial distribution over
all possible instructions in A. Accordingly, each instruction has an individual probability, and in
particular we denote the special scalar portions of ¢ as h, j, and w for the components representing
halting, jumping, and writing probabilities.

Probabilistic Execution Instructions, the program counter, and addresses are represented as multi-
nomial probability distributions output by softmax. Accordingly, the program and interpreter is
always in superposition. Instead of running a single instruction at a time, the interpreter runs ev-
erything, everywhere, all at once, but with execution and results weighted by the distributions for
instructions, program counters, and addresses. In the case that every distribution is dirac-delta (100%
probability of one possibility), then execution is fully deterministic. See Figure 1.
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Program execution is tracked as a probability mixture between incrementing the instruction counter
and jumping to a new location [ in the program, based on the condition probability p:

cty1=(1—j)-inc(e) +7-((1 —p) - inc(e) +p-1) (6)
——
next line jump destination

Differentiable Interpreter An interpreter / : Sy, ¢ — S;y1 runs each instruction by querying a
4D lookup table. This model is based on one-hot encodings of size n, so this lookup table 7" has
dimensions |A| X n x n x n. This table is filled according to each instruction, with special cases

for reading or writing to registers/memory. For instance Ty, :, :,: is the addition table. To run a
instruction, first the register values are resolved to u;, v; = R;;7;Vr. The final lookup is:
o = Tijp fiwjvg )

Intuitively, this corresponds to first looking up a particular operation (e.g. add), then the first argu-
ment (e.g. 2), and then the second argument (2) to get the answer 4. Each instruction specifies a
register to store the output in, so finally o; is written to R using equation 5. Since each operation f
and argument 7 are independent multinomial distributions, this entire operation is probabilistic, so
the output o is potentially a mixture of running different instructions with different registers.

3.3 MODEL COMPONENTS: ARITHMETIC

Differentiable Lookup Tables Tables trade memory for
computation by pre-calculating the answers to input combi-

nations. Intuitively, these take similar form to grade-school x]0 1 2 3 4
arithmetic tables (right). To access a lookup table differen- 070 0 0 0 O
tiably, one-hot encoded unit vectors are used as indices for 110 1 2 3 4
lookup via sequential dot products. For instance the number 210 2 4 6 8
2 encodes to [00100] for encoding n = 5. A dot product in i 8 Z S ?2 }é

one axis is equivalent to selecting the row or column contain- i
ing 2, e.g. [02468]. If the other operand is 4 ([00001]), thena /A grade-school multiplication table,
second dot product selects the final element, 8, which is the encoded differentiably for modulo 5:
answer to 2 x 4, the two infiex vectors. In pl'ractice‘, answers 00001 00001 00001 00001
ina l.ookup table such as this are encoded using unit vectors, 00001 00010 00100 01000
making a 3D tensor M Where the axes i ar}d J cqrrespond 00001 00100 10000 00010
to the first 0perands, and k 1S the CHC.OdIIlg d1m§n319n of‘the 00001 01000 00010 10000
answer. Then, a lookup is an einstein summation identical

to equation 7.

Differentiable Circuits An alternative to lookup tables is to encode basic operations via circuits.
This is done by defining differentiable relaxations of common logic gates, and then building conven-
tional circuits, such as the ripple-carry addition circuit, from them. This has been explored several
times in previous literature, and there are multiple options for defining differentiable logic gates with
different trade-offs [49]. We opt for probabilistic interpretations of and, or, not and xor:

and(a, b) =a-b or(a, b) =a-b+(1—a)-b+a-(1-0) (8)
xor(a, b)) =(1—-a)-b+a-(1-0) not(a) =1—a )

Making larger differentiable circuits is a simply a matter of re-defining classical circuits with these
differentiable gates. Accordingly, we define differentiable circuits for addition, multiplication, sub-
traction, and long division. Compared to lookup tables, circuits require minimal storage space and
generalize indefinitely. However, they require binary representations and have long gradient paths.

3.4 MODEL AUGMENTATION AND TRAINING

Augmentation Our model augments LLaMA 3.2 in the final layer, as represented in Figure 1.
Specifically, we focus on a regime where the LLM receives tokenized natural language, and runs all
but the last layer to produce an intermediate vector, z. For instance, in the case of LLaMA 3.2 1B,
z is a length 2048 vector. z is then used to produce inputs to the differentiable computer, namely
classifying which library function to call and what inputs to provide to it. These classifications take
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the form of the initial state of the differentiable computer, namely a tuple (M, R, ¢, h) which is
represented as an X n X 2 tensor, c is initialized to the encoding of 0, and & is initialized to 0.

Furthermore, the augmentation layer selects a target algorithm as a categorical classification, mean-
ing that all library functions are run, but are weighted by this softmax output. Because of this, all
of the library functions are used during training, meaning that it is potentially possible to learn se-
lection from answer supervision. The final layer of the augmented model takes the differentiable
computer’s output, and produces a final answer, for instance in the form of an integer (for arithmetic
and Fibonacci) or a sorted list. This answer is supervised by cross-entropy loss. In future work, we
will consider alternate augmentations, such as one that occurs in the middle layers of a model or
especially one where an intermediate main() function is synthesized, which would better support
compositionality and integration.

4 EXPERIMENTS

4.1 PRELIMINARY STUDIES WITH A MINIMAL NEURAL NETWORK

Before scaling to billion-parameter models, we explore behaviors of components of our differen-
tiable computer, namely lookup tables, circuits, and small programs. These experiments use a min-
imal neural network with one layer before the computer and one layer after, with inputs as one-hot
encodings rather than tokenized text. These networks simply need to route inputs/outputs correctly
to/from the computer, which is replaced by parsing in case of LLMs. We find that lookup tables are
more learnable than circuits, and that we can learn recursive algorithm routing to a certain depth.

Bootstrapping From Learnability to Generalization
In this experiment, we augment a minimal network with either a
differentiable lookup table or a differentiable arithmetic circuit.

Differentiable circuits using binary representations are ideal for 100 model
scaling arithmetic to arbitrary numbers. However, lookup tables &' 80 — circuit
based on one-hot encodings are far more trainable. Our experi- 3 60 — lookup
ments (Figure 3) confirm these hypotheses: Lookup tables con- & 0

verge to perfect accuracy in the first epoch, and while lookup ta- E

bles have better length-generalization, they are not as trainable
as lookup tables. This experiment led to a central insight: learn-

. . . 0 100 200
ing tool use can be bootstrapped by swapping easily learned Epochs
tools for more general tools. For instance, a model can be
trained with a lookup table, which, because they have the same
inputs, could be swapped for a circuit (or even a conventional
calculator) for perfect generalization once parsing/selection are
established.

7

Figure 3: Circuits vs Tables

Impact of Recursion Depth on Trainability via Fibonacci

In this experiment, we augment a minimal neural network with a program library containing only
the recursive fibonacci function. We use the Fibonacci numbers as a method for exploring the effect
of computation depth on trainability. Specifically, we create a synthetic dataset which recursively
adds numbers, given two inputs. For our study we treat this as an inherently sequential algorithm, so
a recursion depth of 1 entails 8 interpreter steps, and a depth of 2 entails 16 interpreter steps and so
on. Each step must be backpropagated through, potentially making gradients noiser and less stable.

Depth 1 2 3 4 5 6
Interpreter Steps ‘ 8 16 24 32 40 48
Test Accuracy (b128) | 85.78% 96.20% 93.10% 46.40% 99.83% 100%
Test Accuracy (b256) ‘ 95.64% 99.83% 99.88% 89.39% 100% 100%

Table 1: Impact of Computation Depth on Trainability (Minimal Network, Base 128/256 Fibonacci)

Our hypothesis was that deeper recursions would be less trainable, however for the depths studied
this effect may not have been present. Instead, it seems there were potentially statistical traps at
depths 1 and 4, and these appear to have been partially mitigated by providing more training data.



Under review as a conference paper at ICLR 2024

In general, this preliminary study supported the idea that we could use a recurrent differentiable
computer as an augmentation, despite the potential for gradient noise and numerical instability.

4.2 MINIMAL LLAMA wWITH TOKENIZED INPUTS

Next we study the behavior of small transformers with tokenized natural language inputs. Our
minimum viable transformer uses the LLaMA architecture with tiny scale parameters, and is trained
from scratch. Specifically, we use the LLaMA3 tokenizer with a vocabulary of 128256 tokens, and a
scaled LLaMA with a dimension of 128, 4 transformer heads, 2 key-value heads, and 4 transformer
layers. This model is trained from scratch using the AdamW optimizer [50], a batch size of 32 and
a learning rate of 1 x 1072,

Parsing Modular Arithmetic from Natural Language We provide minimal LLaMA with a
lookup table for mod-128 arithmetic operations and train it on natural language versions of one-step
arithmetic, e.g. “Add 3 and 4”. Solving this problem is a matter of parsing the sentence to extract
the operation and operands, and then providing these to the differentiable calculator. The dataset
consists of 45,151 examples. Supervision is given only on answers, via cross-entropy. By 62
epochs, the model can use the calculator with 99.2% accuracy on the test set, and by 132 epochs the
accuracy is 100%. This establishes the possibility of parsing text inputs into a structure form from
answer supervision alone. For example, a tokenized number is assigned a learned embedding vector,
and the final layer initial register and memory values and a selected operation, in the form of one-hot
encoded classifications. Accordingly, we move on to experiments with pre-trained transformers.

4.3 AUGMENTING LLAMA 3.2 WiTH DIFFERENTIABLE MODULES

Finally, we experiment with the latest LLaMA 3.2 model, an open source transformer released by
Meta. In particular, we focus on the smallest model versions with 1 billion or 3 billion parameters.
Primarily, this is done in the interest of running more experiments on limited hardware, but also
because we hypothesize smaller and shallower models will train more reliably than larger ones.
Originally, we performed experiments with LLaMA 3.0 8B.

The augmented model is fine-tuned on a synthetic dataset, with 70% of the data reserved for training.
The compiled algorithms are frozen, and all the weights of the model are updated (we found fine-
tuning only final layers to be less effective). We use a learning rate of 1 x 10~° and batch size of
2, per Meta’s recommendations for fine-tuning. In practice, we have found other hyperparameters
(particularly larger batch size or learning rate) fail to converge. The primary purpose of this fine
tuning is not to induce new algorithms, but to have the transformer learn which algorithms to select
in which context, and what parsed inputs to provide based on a natural language sentence.

Arithmetic LLMs like LLaMA have some arithmetic ability, especially with smaller numbers, but
often fail on larger numbers. Important factors include tokenization and positional embeddings [51].
Like with the minimal networks before, we augmented LLaMA with a differentiable calculator and
fine-tune on a large dataset. For a base-128 calculator, we find that LLaMA 3.2 1B can be fine-tuned
to use a differentiable calculator perfectly, within 9 epochs. For base-256 (which has more training
data), the model converges to perfect accuracy by 4 epochs. These lookup-table based calculators
are not perfectly scalable, but could be replaced with more sophisticated modules. However, even
performing perfect base-256 arithmetic is sufficient for datasets like GSM-8k.

Sorting Algorithms like sorting often underly other reasoning tasks, but robust sorting is difficult
to learn by induction alone. We create a character-level sorting dataset, for instance “cadb” is sorted
to “abcd”. Language models like GPT tend to struggle on this task, as for instance they will hallu-
cinate or forget characters, and they cannot generalize to sorting longer lists. Furthermore, tokens
may contain multiple characters, making it difficult to parse such a task in the first place.

We test sorting strings of 8, 10, and 12 characters. We compile in an insertion sort algorithm to a
base-128 computer. However, this algorithm is highly sequential and amplifies numerical instabili-
ties inherent in the differentiable computer. Specifically, the algorithm is 42 instructions long, and
because of looping often requires hundreds of instructions to complete. Because the computational
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model is inherently sequential, each instruction run is essentially an additional layer that must be
backpropagated through.

The model is given a tokenized natural language sentence, e.g. “Sort the string "dlifdbabejld"” (An-
swer: “abbdddefijll”’). Then, the final layer of the model outputs parsed inputs to the differentiable
computer, and selects an algorithm to run. When the insertion sorting algorithm is selected, the
inputs to the differentiable computer will be sorted and returned.

Despite the potential difficulties in training, a fine-tuned LLaMA 3.2 can achieve decent performance
on character-level sorting when supervised only on answers.

Size | 8 10 12
Test Accuracy | 36.54% 35.03% 33.36%

Table 2: LLaMA 3.2 1B A — Character Sorting

We attribute this relative lack of performance to the difficulty of parsing the problem given indirect
supervision, especially with non-character-level tokenization, and plan to follow up by either pre-
parsing the problem or giving problems which are unaffected by tokenization.
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5 FINDINGS AND INSIGHTS

Despite the preliminary nature of this work, it has resulted in general insights and key challenges to
solve to effectively build LLMs which are capable of reasoning.

Parsing, Selection, Representation, and Collapse Fundamentally the internal algorithms and
representations that an LLM or other inscrutable model learns are potentially entirely different than
the ones that humans possess. The original premise of this paper was that LLM-internal represen-
tations represent the input sufficiently to the extent that they could produce parsed inputs, such as
classifications of numbers or classifications of operations to perform. Then, given these represen-
tations it would be possible to select human-like algorithms from a library and provide structured
inputs to them. However, it may be that the internal representations of the model are extremely dif-
ferent than those used by the differentiable computer, and this is likely given the theory and results
in “Transformers Learn Shortcuts to Automata” [5]. Furthermore, our results highlight the overall
shortcomings of gradient-descent based learning, given that even when the ideal algorithm is already
present, there are still scenarios where the model may not learn a perfectly generalizable solution.
This mirrors the findings in “On The Paradox of Learning to Reason from Data” [6], which compiles
logical reasoning into BeRT and finds that gradient descent deviates from it immediately.

Differentiable Computers The Bunel register machine is a specialized model intended to demon-
strate neural compilation when it was originally published in 2016, and not necessarily optimized
for scale [8]. In particular, it follows a sequential model of computation similar to its predecessors
[24]. Accordingly, it may be promising to consider augmentations that use other computational mod-
els, such as a parallelized version of the Bunel model or variants of graph neural networks [32, 30,
34]. However, even augmentations like graph neural networks may have shortcomings, as they also
require some sequential computation and still require inputs to be parsed into a specialized form.

Tokenization, Embeddings, Autoregression, and Reasoning Large language models include de-
sign choices which seem to negatively impact reasoning ability. First, tokenization, such as that used
by LLaMA 3.2, is often optimized for compressing large corpra, rather than performing certain rea-
soning tasks that require different tokens, such as arithmetic or letter counting. Second, positional
embeddings play a large role in arithmetic and similar tasks [S1]. Finally, autoregression with a
shallow model does not natively allow for adaptive computation — for instance if an LLM is asked to
sort a list, it may need to sort the entire list before it can output the first element [52]. Furthermore,
autoregression means that a model will have to commit to mistakes if they occur early on, making
generation potentially unstable.

6 CONCLUSION

In this study, we investigated the feasibility of augmenting large language models with libraries of
differentiable programs. To some extent, differentiability is effective in assisting fine-tuning. How-
ever, there are empirical limits to the effectiveness of differentiability, especially as computational
depth increases. Our experimental results establish an initial threshold for computational depths that
remain trainable. Even within this limit, interesting augmentations are still possible. For example,
we establish that a large language model can be fine-tuned to use a differentiable calculator effec-
tively, and that an easily-trained calculator can be replaced by a more general one. Furthermore,
we found that a large language model can be augmented with more sophisticated differentiable
programs, such as an insertion sorting algorithm. However, there are barriers beyond augmentation,
namely tokenization, embeddings, and autoregression, which also impact potential reasoning ability.

In future work, we plan to implement a massively parallel differentiable computer and specify a
neural compiler for it. Ideally, this will be more trainable than a highly sequential model. Also,
we plan to do more experiments with compositionality, which is the main motivation for neural
compilation. Finally, it is unclear if the transformer architecture is truly final, given its lack of
algorithmic ability. An augmented LLM may be the most feasible for short-term results, but it
seems unlikely that a transformer would be sufficient for a truly general Al model.
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A APPENDIX

B NUMERICAL REPRESENTATION

One-Hot Number Encodings Algorithmic ability is closely tied to numeracy. However, neural
networks are not natively good at representing numbers. Often, numbers are represented using unit
encodings, e.g. [00100]. This can be desirable for doing dot-product based lookup, or when viewing
numbers as features, but it is undesirable for scaling properties. The sparsity of these representations
can be advantageous in some ways (number representations are not entangled), but disadvantageous
in others (a single number provides only a single bit of supervision, and geometric distance does not
correspond to number distance). Probabilistic unit encodings are calculated using a softmax layer
to normalize a dense vector into a multinomial probability distribution. This can represent a wide
range of other distributions.

Binary Number Encodings Binary representations are highly advantageous in classical computer
science, as they allow encoding an exponential amount of numbers in a linear space, e.g. for a bit
vector of length n, we can represent numbers up to 2" — 1. However, binary representations may
be too entangled to be used as features in neural networks, e.g. the binary encodings for 2 and 3
([10] and [11]) overlap in the most significant bit. A unit vector has a native interpretation as a direct
probability distribution over numbers, while a binary vector has a probabilistic interpretation for
each bit. However, a probabilistic unit vector encodes more possible distributions than a binary one.

Binary to Unit Conversions Ideally, numbers are always represented in binary, except for when
they are needed as features or for differentiable indexing for lookup tables or memory. Accordingly,
we wish to define bidirectional conversions between binary and unit vectors. In particular, we want
to preserve the probabilistic representations of both encodings. To lookup binary vectors from unit
encodings, we simply do a dot-product lookup with a n x b table of binary encodings. The reverse
direction is less obvious, as we are going from R!°8(") hack to R™. However, it admits a closed form
similar to the binomial distribution, but for independent trials. This represents, intuitively, flipping a
coin at each bit to produce different numbers. For instance, for a 2-bit vector b, with bits by and b,
the one-hot conversion is [(1 — b1)(1 — by) (1 —b1)bg b1(1 —bg) b1bg], which generalizes to
higher dimensions.

C TECHNICAL BACKGROUND

Lookup tables and memory are primarily derived from the math presented in [8] and [24, 25, 2].

Differentiable Lookup Tables trade memory for computation by pre-calculating the answers to
input combinations. For binary operations like addition, a lookup table is a 3D tensor M, where the
axes ¢ and j correspond to the first operands, and k is the encoding dimension of the answer. Then,
a lookup is the summation ¢, = M;;ia;b;. Now we define a lookup table for multiple operations,
e.g. the four basic arithmetic operators, or common fundamental programming operations such as
max/min/inc/dec. To do so, a new leading dimension is added for the operator, so a lookup table
becomes a 4D tensor T}, which is indexed via three dot products, corresponding to looking up an
operator, and then operands, sequentially. This is written with the Einstein summation:

¢k = Thijr frnaib; (10)
When memory is abundant, lookup tables are extremely favorable, as they have shallow and stable

gradient paths (since they are only tensor contractions). An issue with lookup tables, and more
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I main

2 8 rl

3 0 r9

4 sort

5 copy r9 r2

6 call scan_init r8 r7
7 call swap r8 rl0

H ine r9

9 comp rl r9 r3

10 jump r3 finish

11 1 r5

12 jump r5 seort # Sort t
13 swap:

14 read r9 r3 #

15 read 6 r4 & 1

16 write rd r9 # W

17 write r3 r6 # te t t
18 1 rb

19 jumpr r5 rl0

20  scan_init:

21 read r2 rb

22 copy r2 r6

23 scan: # Assumes 71 holds
24 comp rl r2 r3

25 jumpr r3 r7

26 read r2 rd

27 comp r4 r5 r3

28 ine r3

29 jump r3 scan_replace
3 scan_end:

31 inc r2

32 1 r3

33 jump r3 scan

34 scan_replace:

35 copy r4 rb

36 copy r2 r6

37 1 x3

38 jump r3 scan_end

39 finish:

40 halt

41 1 rb

42 jump r5 finish

Figure 4: Insertion Sort

broadly with unit vector encodings, is that they scale poorly with respect to the maximum repre-
sentable number. If the maximum number is n — 1, then a unit vector is length n (assuming zero
is included). A binary-arity lookup table will be n X n x n, and a composite lookup table will
be 0 X n X n x n for o operations. Fundamentally, this is not scalable enough to enable arbitrary
multiplication beyond very small scales, e.g. even representing a n = 1024 lookup table requires
32Gb of memory. This limitation is a byproduct of unit encodings. Alternatives include using binary

number encodings or circuit-like representations for basic operations.
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