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ABSTRACT

In this paper, a gradient decay hyperparameter is introduced in Softmax to con-
trol the probability-dependent gradient decay rate. By following the theoretical
analysis and empirical results, we find that the generalization and calibration de-
pend significantly on the gradient decay rate as the confidence probability rises,
i.e., the gradient decreases convexly or concavely as the sample probability in-
creases. Moreover, optimization with the small gradient decay shows a curricu-
lum learning sequence where hard samples are in the spotlight only after easy
samples are convinced sufficiently, and well-separated samples gain a higher gra-
dient to reduce intra-class distance. Unfortunately, the small gradient decay ex-
acerbates model overconfidence, shedding light on the causes of the poor cali-
bration observed in modern neural networks. Conversely, a large gradient de-
cay significantly mitigates these issues, outperforming even the model employing
post-calibration methods. Based on the analysis results, we can provide evidence
that the large margin Softmax will affect the local Lipschitz constraint by regu-
lating the probability-dependent gradient decay rate. This paper provides a new
perspective and understanding of the relationship among large margin Softmax,
curriculum learning and model calibration by analyzing the gradient decay rate.
Besides, we propose a warm-up strategy to dynamically adjust gradient decay.

1 INTRODUCTION

Softmax function combined with a cross-entropy loss (CE) as the logically reasonable loss function
in empirical risk minimization of classification, has been recognized as the state-of-the-art base
objective function in practical neural network optimization. Softmax function converts the whole
output space into an approximate probability distribution as a measure of the distance between the
predicted distribution and the label. However, the modern models often demonstrate inadequate
confidence calibration in probability distribution processed through Softmax mapping. Specifically,
these probability outputs display unwarranted over-confidence (Guo et al., 2017). Furthermore,
researchers have identified that achieving high accuracy in classifiers and calibrating the model
confidence are distinct objectives (Wenger et al., 2020). This scenario emphasizes the necessity to
study the calibration of model output uncertainties in optimization.

The Softmax function is usually defined by a single hyperparameter, the temperature τ , which scales
the smoothness between Softmax and max function. The temperature τ is often discussed in con-
tractive learning (Wang & Liu, 2021), knowledge distilling (Hinton et al., 2015), natural language
processing (Liu et al., 2021) and so on. In some specific tasks, a small preset temperature τ can
produce a hefty penalty on hard negative samples to force more significant inter-class discrepancy.
Moreover, the penalty distribution tends to be more uniform as the temperature increases (Guo et al.,
2017). It seems reasonable that static model calibration plays the pivotal role (Zhang et al., 2018).
Nevertheless, the literature (Agarwala et al., 2020) demonstrates that the dependence of the gener-
alization on temperature is due to a dynamical phenomenon rather than model calibration.

Similarly, the hard mining strategy explicitly emphasizes more challenging samples by adjusting
weights of easy samples or hard samples in Softmax variations (Wang et al., 2020; Ren et al., 2017).
Mining-based Softmax concentrates on the informative samples, so can learn more discriminative
features (Shrivastava et al., 2016; Huang et al., 2020). Selecting the value sample and removing
noisy data are the technical foundation of the hard mining strategy. On the other hand, a soft mining
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strategy, like focal loss, smooths the mining strategy by introducing a modifiable hyperparameter so
that the hard sample can be given more importance (Zheng et al., 2021). Due to its broad applica-
bility, it has become a prevailing loss (Lin et al., 2020).

Another branch of Softmax research is the large margin Softmax, which increases the feature mar-
gin from the perspective of the ground truth class. Liu et al. introduced Large-margin Softmax (L-
Softmax) (Liu et al., 2016) and Angular Softmax (A-Softmax) (Liu et al., 2017) to impose discrim-
inative constraints on a hypersphere manifold to encourage intra-class compactness and inter-class
separability between learned features. Wang et al. proposed a more interpretable way to import the
angular margin into Additive Margin Softmax (AM-Softmax) (Wang et al., 2018). In (Deng et al.,
2019), the Additive Angular Margin Loss (ArcFace) showed a clear geometric interpretation due to
its exact correspondence to geodesic distance on a hypersphere. Unlike the hard mining strategy,
large margin Softmax not only swells the inter-class distance by adjusting the temperature but also
remains focused on the intra-class distance. However, to the best of our knowledge, there is a lack of
corresponding explanatory work from dynamic training performance. Our findings will demonstrate
that the ”margin” could contribute to miscalibration in modern models.

(a) β = 5 (b) β = 1

(c) β = 0.1 (d) β = 0.01

Figure 1: The features distribution with different
gradient decay factors.

This paper introduces a hyperparameter β
in Softmax, which controls the probability-
dependent gradient decay as the sample con-
fidence probability rises. From the theoreti-
cal analysis, we can conclude that the smaller
the hyperparameter β is, the smoother the local
L-constraint of the Softmax is. It means that
the model with a smaller β can obtain a rapi-
der convergence rate in the initial phase. As
shown in Fig. 1, minor gradient decay produces
a higher gradient to the well-separated sample
to shrink the intra-class distance at the expense
of confidence of some hard negative samples
due to the limited network capacity. The train-
ing with a slight gradient decay shows a similar
curriculum learning idea (Bengio et al., 2009;
Jiang et al., 2018; Zhou & Bilmes, 2018) that
the hard samples will be optimized only after
the easy samples have been convinced suffi-
ciently. Unfortunately, small probabilistic gra-
dient decays worsen the miscalibration of the
modern model, while larger decay rates generally smooth the training sequence, alleviating this is-
sue. This paper analyzes the dynamic training phenomenon with different β and provides a new
understanding of large margin Softmax by considering the effect of the hyperparameters β on gra-
dient decay rate. Besides, we propose a warm-up training strategy to set an over-small initial hyper-
parameter β to speed up the convergence rate. Then, β is enlarged to an adequate value to prevent
over-confidence.

2 PRELIMINARIES

Parametric Softmax Considering a dataset
{
(xi, yi)

}N

i=1
⊂ Rn ×Rm and classifier f maps x to

the outputs zj , j = 1, . . . ,m on m classes. The associated confidence score of the predicted label
in baseline is p̂ = max sj(z), j = 1, . . . ,m, where s (·) represents Softmax mapping Rm → Rm.
Softmax cross-entropy (CE) is expressed as

J = − log
ezc∑m
j=1 e

zj
(1)

where zj , j = 1, . . . ,m represent the outputs of m labels. c represents the truth class in m classes.

We introduce two hyperparameters in the Softmax mapping, which is expressed as follows:

J = − log
ezc/τ∑

j ̸=c e
zj/τ + βezc/τ

(2)
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The parametric Softmax cross-entropy can be approximated as the following max function, as shown
in (3). Minimizing this max function is expected that output zc can be larger than other class outputs
zj , j = 1, . . . ,m, j ̸= c, which is in line with the logic of the one-versus-all classification decision-
making cls (z (x)) = max {zj (x)} , j = 1, . . . ,m.

lim
τ→0

− log
ezc/τ∑

j ̸=c e
zj/τ + βezc/τ

= lim
τ→0

max {log β, zj − zc/τ , j = 1, . . . ,m, j ̸= c} (3)

Temeperature and Model Calibration Perfect calibration of neural network can be realized when
the confidence score reflects the real probability that the classification is classified correctly. For-
mally, the perfectly calibrated network satisfied P (ŷ = y|p̂ = p) = p for all p ∈ [0, 1]. In practical
applications, the sample is divided into M bins {Db}Mb=1. According to their confidence scores and
the calibration error, an approximation is calculated for each bins {Db}Mb=1. Db contains all sample
with p̂ ∈

[
b
M , b+1

M

)
. Average confidence is computed as conf (Db) = 1

|Db|
∑

i∈Db
p̂i and the bin

accuracy is computed as acc (Db) = 1
|Db|

∑
i∈Db

I
(
yic = ŷic

)
. Expected Calibration Error (ECE)

(Naeini et al., 2015) is calculated as follows.

ECE =

M∑
b=1

|Db|
N

|acc (Db)− conf (Db)| (4)

Modern models present overconfidence in the estimation of output uncertainty (Guo et al., 2017).
Temperature scaling is the most popular post-processing calibration method (Krishnan & Tickoo,
2020; Karandikar et al., 2021) by adjusting temperature τ . In model training, some papers also at-
tribute the improvement of the temperature scaling solely to the calibration of the model confidence
(Wang & Liu, 2021). However, a challenge was raised in (Agarwala et al., 2020) that the depen-
dence of the generalization on temperature is due to a dynamical phenomenon rather than model
confidence.

Soft Margin In (3), the hyperparameter β represents the soft margin in decision space. So the cross-
entropy itself can be interpreted as a margin-based loss (Zheng et al., 2021). However, owing to
the distance distortion between input and representation spaces, the large margin in the input space
of models is not maximized simultaneously by large margin Softmax. That is reflected that a more
considerable margin does not mean better generalization. Besides, the margins defined based on
different criteria realize different performances, i.e., angular margin (Deng et al., 2019) or cosine
margin (Liu et al., 2016). So the interpretation of its effect is slightly ambiguous.

On the other hand, the model training is associated with Ji, i = 1, . . . , N , which N represents sam-
ple number, and N optimization problems are combined as a multi-objective optimization

∑N
i=1 Ji.

The coupling effect among the samples should be considered in the optimization.

3 GRADIENT DECAY

3.1 GRADIENT DECAY HYPERPARAMETER

We consider the Softmax with the sole hyperparameter β. The temperature τ is set to 1.

J = − log
ezc∑

j ̸=c e
zj + βezc

(5)

Let us first consider the gradient of the Softmax.
∂J

∂zc
= −

∑
ezj − ezc∑

ezj + (β − 1) ezc
(6)

∂J

∂zj
=

ezj∑
ezj + (β − 1) ezc

(7)

We introduce probabilistic output pj = ezj

ez1+···+ezm as an intermediate variable. Then we obtain:

∂J

∂zj
=


− 1− pc
1 + (β − 1)pc

, j = c

pj
1 + (β − 1)pc

, j ̸= c
(8)
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Figure 2: The gradient magnitude.

Since
∣∣∣ ∂J
∂zc

∣∣∣+∑
j ̸=c

∣∣∣ ∂J
∂zj

∣∣∣ = 2
∣∣∣ ∂J
∂zc

∣∣∣, ∣∣∣ ∂J
∂zc

∣∣∣ can represent
the gradient magnitude of this sample. Moreover, pc can
represent the confidence of the model for this sample. In
(8), we can conclude that β determines the gradient mag-
nitude related to sample probability confidence. We de-
fine the gradient magnitude G = − ∂J

∂zc
. Then, we can get

first-order and second-order derivatives of G with respect
to pc.

∂G

∂pc
=

−β

(1 + (β − 1)pc)
2 (9)

∂2G

∂pc2
=

2β(β − 1)

(1 + (β − 1)pc)
3 (10)

When β > 1, ∂2G
∂pc

2 > 0, gradient magnitude decreases concave monotonically as the sample prob-

ability rises; When 1 > β > 0, ∂2G
∂pc

2 < 0, gradient magnitude shows convex monotonically de-
creasing as the sample probability rises. As shown in Fig. 2, β controls the gradient decay rate as
the sample probability rises. The smaller hyperparameter β shows a lower gradient decay rate in
the initial phase. Furthermore, the gradient magnitude decays rapidly after the probability exceeds
a certain value, which can be interpreted as a soft probability margin.

However, derivatives of G to pc seem to be abstract. So, we need to obtain the second-order and the
third-order derivatives of J to the truth class output zc. We introduce the intermediate variable pc.

∂2J

∂zc2
=

∂2J

∂zc∂pc

∂pc
∂zc

(11)

Because ∂pc

∂zc
= pc (1− pc). So we get ∂2J

∂zc2
= βpc(1−pc)

(1+(β−1)pc)
2 and

∂3J

∂zc3
=

βpc (1− pc)

(1 + (β − 1)pc)
3 (1− (1 + β) pc) (12)

βpc(1−pc)

(1+(β−1)pc)
3 > 0 is constant since β > 0 and 1 > pc > 0. So ∂3J

∂zc3
< 0 when pc > 1

1+β ;
∂3J
∂zc3

> 0 when pc < 1
1+β . We concentrate on the change of the gradient magnitude G. Thus, the

magnitude shows convex monotonically decreasing as zc increases when pc < 1
1+β , and concave

monotonically decreasing when pc > 1
1+β . pc = 1

1+β is the inflection point of gradient as the zc
increases. β determines the inflection point.

The magnitude of the gradient always decays from 1 to 0. As shown in Fig. 2, smaller β produces a
smoother decay in the initial phase, which results in a larger magnitude in the whole training. The
inflection gradually moves away from the initial point zc = 0 so that a smooth gradient and large
magnitude can dominate training, as shown in Fig. 7. So, a small hyperparameter β induces a low
gradient decay rate and large gradient magnitude.

Let us consider two extreme cases: β → 0+ and β → +∞.

lim
β→0+

G = lim
β→0+

1− pc
1 + (β − 1)pc

= 1 (13)

lim
β→+∞

G = lim
β→+∞

1− pc
1 + (β − 1)pc

= 0 (14)

Obviously, β → 0+ will keep the sum of the gradient amplitudes
∣∣∣ ∂J
∂zc

∣∣∣+∑
j ̸=c

∣∣∣ ∂J
∂zj

∣∣∣ unchanged. In
Fig. 2, the curve will be approximated as a step function where G = 1, pc < 1 and G = 0, pc = 1.
On the other hand, β → +∞ forces the gradient down rapidly to 0. It is reflected in the changes of
the convexity of the curves and the panning of the inflection point.
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(a) β = 2 (b) β = 1 (c) β = 0.1 (d) β = 0.01

(e) β = 2 (f) β = 1 (g) β = 0.1 (h) β = 0.01

Figure 3: Dynamic confidence during training of three-layer FCNN on MNIST. Top row a-d: Con-
fidence of some representative samples. The small gradient decay rate improves the probability
output p̂ of some samples while some samples receive even less probability p̂, such as gray curve.
Bottom row e-h: Mean confidence of five groups of samples. All the samples are divided into
five groups ”1-5” from low to high according to posterior probability p̂. When β decreases to 0.1,
the average probability of all groups is raised. However, when β continues to decrease to 0.01, the
average probability of the group with the smallest probability becomes progressively smaller.

3.2 HOW DOES THE GRADIENT DECAY RATE AFFECT THE MODEL PERFORMANCE?

Fast gradient decay produces a slight gradient in the early phase of optimization. So the training may
be prone to trap into local minima before sufficient learning in the early training phase. From the
perspective of dynamic multi-objective optimization

∑N
i=1 Ji, hard objectives with smaller posterior

probability p̂, can always stay consistent with the easy objectives with larger posterior probability
p̂ in optimization due to the large probability-dependent gradient decay, as shown in Fig. 3. The
gradient of well-separated sample is forced to decrease rapidly. A more significant constraint exists
on the synchronization of the optimization process for different samples. Consequently, there is a
lack of distinction between samples, potentially leading to model under-confidence.

A gradual decrease in gradient magnitude consistently prioritizes well-separated samples during
training. The influence of easy samples persists until reaching the predefined margin. Consequently,
well-separated samples receive ample attention and output feature of those samples can be gath-
ered more compactly, as shown in Fig. 1. Then the intra-class variance can be shrunk and some
discriminative features can be learned by the higher gradient (Ranjan et al., 2017).

Furthermore, the low gradient decay training strategy is similar to curriculum learning. That is,
the samples should be learned strictly sequentially from easy to hard. In curriculum learning, the
samples usually are labeled as “easy” or “hard” by complicated offline or online strategies (Tang &
Huang, 2019). A smooth gradient implicitly ensures the strict training sequence and softly divides
the sample optimization by posterior probability p̂. As shown in Fig. 3, the optimization of Softmax
with β = 1 keeps relatively consistent, while the smaller β shows distinguishability over different
samples. In Figs. 3e-h, the groups ”1-5” represent the five sample groups from “hard” to “easy”
according to p̂. The Softmax with smaller gradient decay is more inclined to mine more information
in easy samples under a soft curriculum idea. It can be inferred that the smaller gradient decay can
realize the stricter curriculum sequence. Moreover, small gradient decay usually performs better
convergence rate, but too low gradient decay does not imply better results. As shown in section 4.2,
small gradient decay may result in worse miscalibration, while larger decay rates alleviate this issue.

Gradually reducing the gradient decay facilitates effective learning of discriminative features from
easy samples. From the comparison between Fig. 3f and Fig. 3g, the probability can be enlarged for
all groups. The slight boost is very important to improve generalization and robustness, although the
error is very small (Soudry et al., 2018). However, the network capacity is limited and there is no
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Table 1: Confidence distribution of the samples with different gradient decay of three-layer FCNN
on MNIST on MNIST. # indicates the number of samples that belong to the confidence interval.

Gradient decay factor β 1 0.5 0.1 0.01 0.001

#pc ≤ 0.2 903 828 1105 1325 2375
#0.2 < pc ≤ 0.4 454 206 119 91 142
#0.4 < pc ≤ 0.6 528 245 132 92 116
#0.6 < pc ≤ 0.8 1291 484 191 100 193
#0.8 < pc ≤ 1 56824 58237 58453 58392 57174

free lunch (Ho & Pepyne, 2002). If we make excessive demands on the margin, some challenging
samples always remain low confidence p̂ according to the stringent curriculum learning sequence,
as shown in grey curve of Fig. 3c and Fig. 3d. The result in Tab. 1 shows that the number of the
samples with low confidence #pc ≤ 0.2 increases as β is set to an over-small value. The over-large
margin in (Wang et al., 2018) will make some challenging negative samples under-confident under
limited model capacity, since the model gives more priority to easy samples. The intra-class distance
of the partial positive easy samples will be reduced at the expense of the inter-class distance of some
hard negative samples near the decision boundary. So there is a clear difference between the large
margin Softmax and hard mining strategies (Wang et al., 2020): the former focuses on the overall
confidence or even more on the mining of easy samples while the latter focuses more on challenging
samples.

Confidence calibration between τ and β : The Softmax with small τ disperses the inter-class
distance by adjusting the probability output to focus more on hard negative samples. Nevertheless,
large τ can only smooth the output of all categories and cannot mine more information from simple
positive samples. On the contrary, small β makes the gradient decay slowly so that easy positive
samples can be sufficiently learned up to high confidence as shown in Fig. 3. An appropriate β can
mining more discriminative features on the whole. Similarly, large β only keeps the consistency of
the overall sample training and cannot extract more meaningful features from challenging samples.

In terms of the training process, τ changes the probability distribution of the class outputs and β
determines the gradient magnitude assigned by the probability of belonging to the truth class. They
improved the mining capability of Softmax in two different dimensions. So it is convinced that
Softmax cross-entropy should be characterized with these two hyperparameters τ and β.

3.3 LOCAL LIPSCHITZ CONSTRAINT

Assume that the gradient of the function J (z) satisfies Lipschitz constraint (L-constraint) that is

∥∇zJ (z +∆z)−∇zJ (z)∥2 ≤ L∥∆z∥2 (15)

For a second-order differentiable objective function, the above condition is equivalent to∥∥∇2
zJ (z)

∥∥
2
≤ L, where L represents the degree of fluctuation of the gradient. Then we have

the following inequality (Zhang et al., 2019).

J (z +∆z) ≤ J (z) + ⟨∇zJ (z) ,∆z⟩+ 1

2
L ∥∆z∥22 (16)

The gradient descent is applied to optimization. ∆z = −η∇zJ (z), where η > 0 is the learning
rate. Substituting it into (16), we obtain

J (z +∆z) ≤ J (z) +

(
1

2
Lη2 − η

)
∥∇zJ (z)∥22 (17)

So, 1
2Lη

2 − η < 0 is the sufficient condition for loss decline at each iteration. And 1
2Lη

2 − η is the
minimum value when η∗ = 1

L . The larger the magnitude of the gradient ∥∇zJ (z)∥22 is, the smaller
the L-constraint is. Furthermore, the smaller L-constraint results in the rapider convergence (Zhang
et al., 2019). The learning rate η can be adaptively designed to maximize the convergence speed
(Carmon et al., 2018). Unfortunately, L-constraint is an intrinsic property of the loss function.
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Since
∣∣∣ ∂J
∂zc

∣∣∣ = ∑
j ̸=c

∣∣∣ ∂J
∂zj

∣∣∣ , we consider the only variable zc in Softmax. For function J (zc) as

shown in (9-12), we obtain that the max
∥∥∇2

zcJ (zc)
∥∥
2

is 1
4 when pc =

1
1+β . So β cannot change the

global L-constrain since it is a constant. However, the local L-constrain can be adjusted by overall
panning. Thus, we can narrow β and change the inflection point of the gradient pc = 1

1+β so that
the constant maximum is far from the initial point, allowing a larger range of the smooth gradient
decay to occupy the optimization process. For example, we consider the local range pc ∈ [0, 0.5]
and can obtain a local L-constrain of

∥∥∇2
zcJ (zc)

∥∥
2

as follows:


∥∥∇2

zcJ (zc)
∥∥
2
≤ β

(β + 1)
2 , β < 1

∥∥∇2
zcJ (zc)

∥∥
2
≤ 1

4
, β ≥ 1

(18)

So it can be demonstrated that the β smaller is, L-constrain in the early phase of optimization smaller
is. When β is set to a small value, the learning rate η of gradient descent in (18) can be amplified to
accelerate the optimization. On the other hand, the gradient magnitude ∥∇zcJ (zc)∥22 of smaller β
is always greater than that of larger β. Besides, it is meaningful that we can change β to control the
local L-constraint of the Softmax loss in optimization. Some literature (Elsayed et al., 2018) have
shown that the Lipschitz constraint of the gradient has been strongly related to model generalization
and robustness. The regularization of the gradient L-constraint has been applied to obtain the large
margin decision boundary or guarantee the stable optimization in Generative Adversarial Networks
(GAN) (Jolicoeur-Martineau & Mitliagkas, 2019).

3.4 WARM-UP STRATEGY

Based on the above analysis, we can conclude that the smaller β produces a larger gradient mag-
nitude with less gradient decay in the initial phase and can realize faster convergence. However,
some challenging samples may remain low confidence by over-small β. The risk of model overcon-
fidence is exacerbated. Thus, we propose a warm-up training strategy, where over-small β in the
initial phase provides fast convergence with the smooth local L-constraint and increases gradually
until an adequate set. Then, easy sample can be learned sufficiently in early training and over-
miscalibration of final model can be avoid. In this paper, we use a simple linear warm-up strategy as
β = βend−βinitial

twarm
t+βinitial, where βinitial and βend are preset initial and final values. twarm and t

represent the end iteration of warm-up strategy and current iteration, respectively. βinitial gradually
increases to preset βend in the training.

4 EMPIRICAL VERIFICATION

4.1 CONVERGENCE RATE AND ACCURACY

Figure 4: The performance on MNIST.

It is shown in Fig. 4 that the performance of
different gradient decays on three-layer FCNN
shows different phenomena. The Softmax with
less gradient decay displays faster convergence
and better generalization with discriminate fea-
ture learning. β = 0.01 realizes the better ac-
curacy than traditional CE with β = 1 and the
large gradient decay has worse performance .

The warm-up strategy sets a small initial gra-
dient decay hyperparameter β to speed up the
convergence rate and guarantees final stable performance by increasing β to prevent over-confidence
for easy sample. As a result, warm-up strategy achieves higher accuracy compared to a fixed gradi-
ent decay coefficient. Furthermore, decline curves of cross-entropy loss with different β are shown
in Fig. 5 to empirically show the high convergence rate of small gradient decay. It can be inferred
that minor gradient decay shows the rapider convergence rate, although the gap decreases due to the
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Table 2: Top-1 accuracy with different methods and gradient decay factors. The best results are in
bold. Results are averaged over five runs with different seeds.

Dataset Model Gradient decay factor β Warm-up A-Softmax Center loss
5 2 1 0.1 0.01

SVHN ResNet18 94.4±0.42 94.9±0.45 95.0±0.44 95.9±0.46 95.8±0.51 96.2±0.41 95.9±0.42 95.8±0.45

SVHN ResNet35 95.1±0.40 95.3±0.43 95.5±0.46 96.2±0.46 96.1±0.45 96.3±0.37 96.0±0.50 95.9±0.40

SVHN VGG16 95.0±0.51 95.1±0.56 95.3±0.59 96.2±0.57 95.7±0.59 96.1±0.51 96.0±0.60 95.9±0.59

SVHN MobileNetV1 94.3±0.47 94.7±0.55 95.1±0.51 95.3±0.56 95.7±0.56 96.2±0.50 96.3±0.52 95.8±0.49

CIFAR-10 ResNet18 94.3±0.31 94.8±0.35 94.9±0.39 94.9±0.39 95.2±0.41 95.5±0.37 95.1±0.42 94.8±0.41

CIFAR-10 ResNet35 94.6±0.34 94.8±0.35 94.9±0.39 95.2±0.40 95.3±0.42 95.6±0.36 95.2±0.45 94.9±0.41

CIFAR-10 VGG16 93.0±0.40 93.2±0.39 93.2±0.43 93.4±0.45 93.6±0.52 93.8±0.40 94.1±0.45 93.7±0.45

CIFAR-10 MobileNetV1 92.9±0.43 93.0±0.47 93.6±0.49 93.8±0.51 93.9±0.51 94.1±0.46 93.8±0.53 93.9±0.46

CIFAR-100 ResNet18 74.3±0.21 73.8±0.20 73.6±0.29 73.4±0.32 73.1±0.33 74.6±0.27 73.4±0.28 73.7±0.31

CIFAR-100 ResNet35 74.6±0.19 74.0±0.23 73.8±0.30 73.7±0.33 73.4±0.31 74.7±0.27 73.9±0.29 74.1±0.30

CIFAR-100 VGG16 72.4±0.33 72.3±0.36 71.9±0.34 71.8±0.39 71.3±0.40 72.6±0.31 71.8±0.39 72.0±0.37

CIFAR-100 MobileNetV1 73.9±0.42 74.1±0.46 73.7±0.50 73.3±0.49 72.7±0.42 73.8±0.43 73.1±0.44 73.9±0.46

Tiny-ImageNet ResNet34 54.2±0.18 53.9±0.20 53.5±0.21 53.6±0.21 53.6±0.25 54.5±0.32 54.3±0.29 52.9±0.42

Table 3: Model calibration of different gradient decay and post-processing calibration. The best
results are in bold. Results are averaged over five runs with different seeds. (bins = 10)

Dataset Model Metric Gradient decay factor β Vector Scaling Temp. Scaling
20 10 1 0.1

CIFAR-100 ResNet18 ECE 0.019±0.003 0.048±0.008 0.111±0.011 0.161±0.021 0.039±0.006 0.026±0.005

MCE 0.063±0.011 0.139±0.025 0.306±0.051 0.423±0.076 0.135±0.036 0.064±0.021

CIFAR-100 ResNet34 ECE 0.026±0.004 0.055±0.008 0.131±0.019 0.182±0.022 0.042±0.006 0.038±0.005

MCE 0.087±0.011 0.162±0.031 0.233±0.068 0.332±0.091 0.131±0.032 0.059±0.011

CIFAR-100 VGG16 ECE 0.122±0.009 0.163±0.011 0.207±0.031 0.226±0.033 0.030±0.008 0.022±0.005

MCE 0.317±0.021 0.378±0.051 0.499±0.088 0.556±0.093 0.523±0.109 0.041±0.011

CIFAR-10 ResNet18 ECE 0.021±0.004 0.025±0.006 0.036±0.010 0.042±0.011 0.011±0.003 0.015±0.003

MCE 0.591±0.153 0.268±0.095 0.295±0.068 0.355±0.111 0.051±0.012 0.089±0.009

Tiny-ImageNet ResNet34 ECE 0.014±0.002 0.036±0.005 0.089±0.011 0.226±0.056 0.017±0.006 0.019±0.004

MCE 0.035±0.005 0.069±0.009 0.166±0.021 0.382±0.079 0.036±0.010 0.063±0.013

Tiny-ImageNet ResNet50 ECE 0.041±0.007 0.013±0.002 0.104±0.021 0.188±0.032 0.023±0.004 0.027±0.003

MCE 0.082±0.011 0.044±0.009 0.149±0.020 0.377±0.045 0.039±0.011 0.067±0.016

deviation between the original cross-entropy loss and objective functions with different β. Signif-
icantly, the result of this experiment is enough to empirically show that minor gradient decay with
small L-constraint can achieve a faster convergence rate.

The top-1 accuracy of several deep models are given in Tab. 2. It can be concluded that top-1
accuracy of these models benefit from the minor gradient decay in SVHN and CIFAR-10. However,
with over-small gradient decay, some challenging samples may remain low confidence p̂. So as
shown in Tab. 2, over-small β cannot indicate a better performance.

Figure 5: CE with different gradient
decay.

On the other hand, a large β induces a large gradient de-
cay and a large L-constraint of Softmax, which means
that the probability output of easy samples and chal-
lenging samples keep relatively consistent, as discussed
in Fig. 3. Besides, a small gradient magnitude could
lead to insufficient training, as demonstrated in Tab. 2.
This could elucidate the subpar outcomes associated with
large gradient decay coefficients in CIFAR-10 and SVHN
datasets.

However, confidence is not always a good thing. The de-
sign of the curriculum, specifically in evaluating the diffi-
culty of individual samples, plays a pivotal role in cur-
riculum learning idea. Apart from the manual design,
most methods can only be done by the posterior proba-

bility. Based the previous analysis in section 3.2, over-small gradient decay rate may impair the
performance since some challenging samples containing important information remain low confi-
dence p̂. As shown in Tab. 2, these models on CIFAR-100 all prefer the large β. From another
perspective, the mentioned model has no high probability confidence and the training material is not
good enough. Learning every sample more equally is a better choice since the model cannot con-
fidently determine which the simple sample is or which a more informative sample is by posterior
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(a) β = 20 (b) β = 10 (c) β = 5

(d) β = 1 (e) β = 0.1 (f) β = 0.01

Figure 6: Confidence and reliability diagrams with ResNet18 on CIFAR-100. (bins = 10) In
each subplot, the left plot illustrates the sample distribution in individual bins, while the right plot
displays the average confidence and accuracy in each bin. Ideally, calibration aims for consistency
between accuracy and average confidence in each bin. It indicates that a smaller gradient decay rate
Beta is associated with more pronounced miscalibration of the model, while a larger gradient decay
rate mitigates this issue.

probability. The large gradient decay (Liu et al., 2016; 2017; Wang et al., 2018) is a relative concept
in different tasks.

4.2 MODEL CALIBRATION

To substantiate this conclusion on the model calibration, Fig. 6 displays the confidence histograms
and reliability diagrams for different gradient descent factors on CIFAR-100 while Tab. 3 provides
the ECE and MCE in different datasets, which are crucial metrics for assessing model calibration
(Guo et al., 2017). The results reveal that small decay coefficients, corresponding to larger mar-
gin penalties in Softmax, result in overconfidence, rendering the probabilistic output less reliable.
Conversely, a significant probability-dependent gradient decay mitigates model overconfidence.

Experimental results consistently demonstrate that as the gradient decay rate decreases with rising
probabilities, the average confidence also rises. This phenomenon can be attributed to the small
gradient decay rate enforcing a strict curriculum learning sequence. The adjustment of probability-
dependent gradient decay would significantly improve the confidence distribution in model train-
ing, surpassing some post-calibration methods even with rough tuning on CIFAR-100 and Tiny-
ImageNet. We attribute the poor calibration to the small gradient decay rate, and this conclusion is
compelling. More experimental results supporting this conclusion can be found in Appendix A.

5 CONCLUSION

This paper introduces the gradient decay hyperparameter β to analyze the effect of the large margin
defined in decision space from a dynamical training process. The large margin of Softmax induces
the small gradient decay as the sample probability rises. The easy positive samples can be learned
sufficiently up to high probability and the model tends to be more confident toward these samples.
Training displays distinguishability over different samples in training, i.e., the samples are optimized
under the stricter curriculum sequence. Under the limited network capacity and over-large margin,
reducing the intra-class distance of the partial easy positive samples will sacrifice the inter-class
distance of hard negative samples. Empirical evidence demonstrates that small probabilistic gradi-
ent decays exacerbate the miscalibration of over-parameterized models. Conversely, increasing the
gradient decay coefficient emerges as an effective strategy for alleviating issues related to overcon-
fidence. Besides, the Softmax with smaller gradient decay has a smoother local L-constraint, so the
large margin Softmax can obtain a faster convergence rate. Thus, we propose a warm-up training
strategy to smoother L-constraint in early training and avoid over-confidence in final model.
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Figure 7: The gradient magnitude as the sample output increases with different hyperparameter
values under the assumption: 1) Initialization zj = 0, j = 1, . . . ,m and m = 10 2) Other class
outputs are equal, i.e., ∂J

∂zj
= − 1

m−1
∂J
∂zc

, j = 1, . . . ,m, j ̸= c.

A APPENDIX

A.1 IMPLEMENTATION DETAILS IN EXPERIMENTS

In this experiment, we give some other experimental results of a variety of model architectures,
such as FCNN, ResNet18, ResNet35, ResNet50 He et al. (2016), VGG16 Simonyan & Zisserman
(2014) and MobileNetV1 Howard et al. (2017), trained on MNIST, CIFAR-10/100, SVHN and
Tiny-ImageNet. Based on empirical analysis, we briefly show how different β dynamical affect the
performance of the models on different datasets.

The shallow three-layer architecture of FCNN with 50, 20 and 10 nodes is implemented on MNSIT.
The learning rate is 10−3 and weight decay is 10−4. The momentum is set to 0.9. The batch is set to
100 within a total of 100 epochs. βinitial and βend in the warm-up strategy are set to 0.01 and 0.1,
respectively, where over-small β = 0.001 provides faster convergence in early phase.

The deep models are used for training and predicting in CIFAR-10/100, SVHN and Tiny-ImageNet.
SGD is set as the optimizer. The learning rate is 10−2 and weight decay is 10−4. The momentum
is set to 0.9. The batch is set to 100. CIFAR-10/100 is traversed over 200 epochs, while SVHN is
traversed over 100 epochs. At 50% and 75% epochs, the learning rate decreases to 10 percent. At
the same time, we set gradient clip with norm = 3. For the Tiny-ImageNet, the learning rate was set
to 0.05, the batch size to 256, the momentum to 0.9, and the weight clipping to Norm=3. 200 epochs
were performed, with the learning rate decreasing to 10% at 40% and 80% epochs, respectively.
βinitial and βend in the warm-up strategy are set to 0.1 and 1, respectively. In real-world training,
we find that over-small β may cause the overflow of the Softmax function. So ez is replaced by ez−u

in (19) and u is set to 70 to prevent exp function from being too large in experiments. All results are
averaged over five runs with different seeds using ’torch.manual seed(5)’ to ’torch.manual seed(9)’.

J = − log
ezc−u∑

j ̸=c e
zj−u + βezc−u

(19)

A.2 ADDITIONAL RESULTS

We can observe that there is a noticeable accuracy oscillation in Fig. 8. In experiments, we find that
it is a common phenomenon in different datasets when β is large but this kind of large consolidation
does not happen when momentum is small. We attribute this phenomenon to instability resulting
from rapid gradient decay in certain samples. To provide a clearer description of this issue, further
systematic exposition and experimentation are needed.

In the experiments detailed in Table 4, we investigated the impact of larger gradient decay co-
efficients on model calibration and generalization in the CIFAR-100. Our findings indicate that
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Figure 8: Top-1 accuracy curve on CIFAR-100 with different gradient decay hyperparameters {5, 2,
1, 0.1, 0.01} and warm-up strategy.

Table 4: Top-1 Acc (%), ECE and MCE (bins = 10) on CIFAR-100 with ResNet17 and ResNet34

Dataset Model Metric Gradient decay factor β

50 20 10 5 1 0.1

CIFAR-100 ResNet18
Top-1 Acc 75.0 74.5 74.2 74.1 73.5 73.2

ECE 0.027 0.021 0.059 0.082 0.130 0.181
MCE 0.141 0.071 0.135 0.182 0.298 0.464

CIFAR-100 ResNet34
Top-1 Acc 75.6 75.2 74.8 74.5 74.0 73.8

ECE 0.024 0.030 0.065 0.085 0.125 0.170
MCE 0.056 0.091 0.157 0.172 0.273 0.388

Table 5: The performance of ResNet34 on Tiny-ImageNet with different gradient decay.

Metric Gradient decay factor β

20 10 5 1 0.1 0.01

Top-1 Acc (%) 52.8 53.2 53.8 53.4 53.7 53.6
Top-5 Acc (%) 75.8 75.5 75.1 75.0 74.4 73.2

Training Acc (%) 88.6 88.5 89.7 90.3 90.9 90.5
ECE (bins = 10) 0.015 0.034 0.076 0.087 0.224 0.274
MCE (bins = 10) 0.036 0.065 0.151 0.176 0.406 0.518

Table 6: The performance of ResNet50 on Tiny-ImageNet with different gradient decay.

Metric Gradient decay factor β

20 10 5 1 0.1 0.01

Top-1 Acc (%) 55.9 56.0 56.4 56.3 56.4 56.2
Top-5 Acc (%) 77.7 78.0 77.3 76.6 76.0 74.9

Training Acc (%) 86.4 88.8 90.3 91.9 92.3 91.8
ECE (bins = 10) 0.045 0.014 0.046 0.114 0.203 0.249
MCE (bins = 10) 0.084 0.044 0.082 0.151 0.388 0.476
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(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 9: Confidence histograms and reliability diagrams for gradient decay with ResNet18 on
CIFAR-10. (bins = 10)

(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 10: Confidence histograms and reliability diagrams for gradient decay with ResNet34 on
CIFAR-100. (bins = 10)

as the gradient decay coefficients increase, the overall confidence level decreases, resulting in the
model exhibiting underconfidence. Remarkably, despite the model under-confidence, as indicated
by the ECE calibration metric, its accuracy continues to improve significantly. This suggests that
for CIFAR-100 with ResNet18 and ResNet34 architectures, training consistency between samples
is favored.

The results in Fig. 12 and Table 5 demonstrate that smaller gradient decay weights lead to faster
convergence speeds, resulting in higher training accuracy. This can be attributed to the imposition
of smaller local L constraints by the low gradient decay rate, which in turn increases gradient mag-
nitude. On the other hand, higher gradient decay rates promote optimization consistency and yield
better values for metrics such as ECE, MCE, and Top-5 Accuracy. However, these higher gradient
decay rates, characterized by smaller gradient magnitudes, do not necessarily lead to improved Top-
1 accuracy. Figs. 9-12 consistently demonstrate that larger gradient decay rates lead to improved
model confidence.

A.3 DISCUSSION

The penalization of larger margin Softmax leads to a deceleration in the gradient decay rate, which
exerts influence on amples throughout the dynamics training process. Smaller gradient decay en-
force a stricter curriculum learning sequence, thereby augmenting the confidence of easier samples.
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(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 11: Confidence histograms and reliability diagrams for gradient decay with VGG16 on
CIFAR-100. (bins = 10)

(a) β = 20 (b) β = 10 (c) β = 5

(d) β = 1 (e) β = 0.1 (f) β = 0.01

Figure 12: Confidence histograms and reliability diagrams for gradient decay with ResNet34 on
Tiny-ImageNet. (bins = 10)

Conversely, challenging samples are more susceptible to being overlooked due to the learning se-
quence, ultimately culminating in poor model calibration.

In all experiments, despite the consistent application of an identical learning rate to control the
scalar method and draw scientifically grounded conclusions, we inadvertently neglected to consider
the impact of varying gradient magnitudes in the learning process. As illustrated in Table 2, a
high gradient decay rate may yield insufficient learning outcomes for certain samples, resulting in
undesirable performance. In essence, the gradient decay rate not only impacts the learning sequence
among individual samples but also influences the gradient magnitude concerning the overall sample
learning process. To attain more scientifically robust conclusions, it becomes imperative to employ
more meticulously designed experiments and generate corroborating results.

As such, one potential direction for future research is to employ more rigorously designed experi-
ments to probe into the dynamic properties of gradient decay coefficients during the optimization
process. Expanding on the previous discussion, there is a promising avenue for technical improve-
ment related to designing decay coefficients or incorporating adaptive mechanisms during training.
Besides, a high gradient decay rate can result in an overall gradient that becomes excessively small,
thereby hindering the training process. Developing methods specifically designed to adjust learning
rates based on gradient decay coefficients holds the potential to significantly enhance the efficiency
of model training procedures. It ultimately enables the modification of the learning rate scheduler to
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(a) β = 20 (b) β = 10 (c) β = 5

(d) β = 1 (e) β = 0.1 (f) β = 0.01

Figure 13: Confidence histograms and reliability diagrams for gradient decay with ResNet50 on
Tiny-ImageNet. (bins = 10)

achieve effective model calibration with the large gradient decay and to prevent under-training due
to small gradients.

Furthermore, we posit that the distinct patterns exhibited by varying gradient decay coefficients
across different experiments are closely linked to the model’s capacity and the dataset’s level of
complexity. These conclusions warrant a more systematic and rigorous discussion.
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