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Abstract

Natural language explanations play a funda-001
mental role in Natural Language Inference002
(NLI) by revealing how premises logically003
entail hypotheses. Recent work has shown004
that the interaction of Large Language Mod-005
els (LLMs) with theorem provers (TPs) can006
help verify and improve the validity of NLI ex-007
planations. However, TPs require translating008
natural language into machine-verifiable for-009
mal representations, a process that introduces010
the risk of semantic information loss and un-011
faithful interpretation, an issue compounded by012
LLMs’ challenges in capturing critical logical013
structures with sufficient precision. Moreover,014
LLMs are still limited in their capacity for rigor-015
ous and robust proof construction within formal016
verification frameworks. To mitigate issues re-017
lated to faithfulness and robustness, this paper018
investigates strategies to (1) alleviate seman-019
tic loss during autoformalisation, (2) efficiently020
identify and correct syntactic errors in logical021
representations, (3) explicitly use logical ex-022
pressions to guide LLMs in generating struc-023
tured proof sketches, and (4) increase LLMs’024
capacity of interpreting TP’s feedback for it-025
erative refinement. Our empirical results on a026
range of LLMs demonstrate that the proposed027
strategies yield significant improvements in aut-028
oformalisation (+18.46%, +34.2%, +39.77%)029
and explanation refinement (+29.5%, +51.5%,030
+41.25%) over the state-of-the-art models over031
the e-SNLI, QASC and WorldTree benchmarks.032
Moreover, we show that specific interventions033
on the hybrid LLM-TP architecture can sub-034
stantially improve efficiency, drastically reduc-035
ing the number of iterations required for suc-036
cessful verification.1037

1 Introduction038

Recent studies in Natural Language Inference039

(NLI) have developed models to leverage natu-040

ral language explanations as a mechanism for rea-041

1Code and data are available at: Anonymous GitHub Link

soning in support of a hypothesis (Wiegreffe and 042

Marasović, 2021; Chen et al., 2021; Thayaparan 043

et al., 2020; Valentino et al., 2022). Providing 044

sound and logically valid natural language expla- 045

nations lies at the core of NLI, as such transparent 046

justifications enhance both interpretability and reli- 047

ability for downstream tasks (Camburu et al., 2018; 048

Valentino et al., 2022; He et al., 2024). Recent 049

methods, in particular, have leveraged the inferen- 050

tial and linguistic capabilities of Large Language 051

Models (LLMs) by integrating them with external 052

theorem provers (TPs) to automatically verify the 053

logical validity of explanations for NLI (Pan et al., 054

2023; Olausson et al., 2023; Quan et al., 2024b; 055

Dalal et al., 2024). 056

However, these integrated neuro-symbolic ap- 057

proaches still face notable challenges. First, Auto- 058

mated Theorem Provers (ATP) require a machine- 059

verifiable formal language, yet LLMs often fail to 060

produce precise autoformalisations, underscoring 061

their limited capacity to faithfully convert complex 062

natural language inputs into rigorous formal rep- 063

resentations (Wu et al., 2022; Jiang et al., 2024; 064

Quan et al., 2024b). Second, syntactic errors are 065

frequently introduced during the autoformalisation 066

process, leading to reduced theorem-proving suc- 067

cess rates when dealing with more complex mate- 068

rial inferences (Pan et al., 2023; Olausson et al., 069

2023; Zhang et al., 2024). Third, when provided 070

with external feedback on complex explanations, 071

LLMs often struggle to combine axioms (expla- 072

nations) into cohesive proofs and effectively self- 073

correct, limiting their effectiveness in more com- 074

plex NLI settings (Quan et al., 2024a,b). 075

In this paper, we build upon the state-of-the- 076

art LLM-based theorem proving framework for 077

NLI, Explanation-Refiner (Quan et al., 2024b). In 078

particular, we explore methodologies to improve 079

the faithfulness of autoformalisation and deliver 080

a more robust way to effectively and efficiently 081

provide logically valid explanations. We further 082
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Premise: 
There is one person lying in a
large, green field.

Hypothesis: 
There is a person alone in a field
outdoors.

Initial Explanation: 
One person is a person alone.

(i) Autoformalisation

Subject: One person
Verb Phrase: is a person alone
Main Verb: is
Subject Complement: a person
Adverbial Modifier (Manner): alone

∃x. OnePerson(x) ⟷ (Person(x) ∧ Alone(x))

Equivalent(A, B)
Equivalent(one person, a
person alone)

proof -
  (* From the premise, we have known information about one person,
lying, agent, field, large, green, and in. *)
  from asm have "OnePerson x ∧ Field y ∧ In x y" by simp
  (* There is a logical equivalence between one person and a person
alone from explanation sentence 1. *)
  (* Using the equivalence, we can infer that if OnePerson x, then Person
x and Alone x. *)
  then have "Person x ∧ Alone x" using explanation_1 by blast
  (* We already have Field y from the premise. *)
  (* Since the field is large and green, it can be considered outdoors. *)
  (* Therefore, we can infer Outdoors y. *)
  then have "Field y ∧ Outdoors y" sledgehammer
  (* Combining all the inferred information, we have Person x, Alone x,
Field y, Outdoors y, and In x y. *)
  then show ?thesis <ATP>
 qed
end

∀x. OnePerson(x) ⟷ (Person(x) ∧ Alone(x))

(ii) Autoformalisation
Check and Refinement

Proof Found

No Proof Found

(iii) Theorem Proving

A: one person (from
Explanatory Sentence 1)
B: a person alone (from
Explanatory Sentence 1)

Implies(B, A)
Implies(a person alone, one
person)
Implies(A, B)
Implies(one person, a
person alone)

(4) Propositions Extraction

(5) Relations Extraction

(6) Derive Implications

Verified
Explanation

(* We already have Field y from the premise. *)
  (* Since the field is large and green, it can be
considered outdoors. *)
  (* Therefore, we can infer Outdoors y. *)
  then have "Field y ∧ Outdoors y" sledgehammer

New Explanation: 
One person is a person alone.
A field can be outdoors, and if a person is in
a field, they can be considered outdoors

(1) Syntactic
Parsing

(6) Extract Failed Proof Step

(2) Quantifier Check 
  and Refinement

(iv) Explanation Refinement

(3) Consistency Check 
   and Refinement

shows "∃x y. Person x ∧ Alone x ∧ Field y ∧
Outdoors y ∧ In x y"

shows False

Figure 1: An illustration of our proposed interventions for improving LLM-driven theorem proving for NLI. The
interventions employ different techniques including syntactic parsing, quantifier refinement, logical consistency
refinement, and logical expression extraction to guide LLMs in generating more faithful and robust proof sketches
for NLI and effectively refine natural language explanations. This approach provides more structured and explicit
feedback by pinpointing the exact logical errors identified in the explanations.

examine how varying degrees of dataset complex-083

ity in multi-hop reasoning affect the reliability of084

proof step generation in LLM-Driven theorem prov-085

ing. In general, we implement a neuro-symbolic086

framework to address the following research ques-087

tions: RQ1: "To what extent can we deliver faithful088

autoformalisation that preserves semantic infor-089

mation?" RQ2: "What types of syntactic errors090

commonly appear in formal representations, and091

how effectively can state-of-the-art LLMs refine092

these errors?" RQ3: "Can state-of-the-art LLMs093

generate structured proof steps that can effectively094

provide feedback to refine explanations with com-095

plex sentences and logical relations?"096

To answer these questions, we investigate how097

to systematically leverage syntactic parsing during098

autoformalisation to guide LLMs generate logical099

representation of explanations. In addition, we de-100

fine the general autoformalisation error types and101

use LLMs to refine these errors explicitly from the102

output message of a TP. Furthermore, we propose103

a method to extract the logical propositions, rela-104

tions and implications to guide LLMs to generate105

proof sketches for automated theorem proving and106

explanation refinement.107

Our empirical evaluation on e-SNLI (Camburu108

et al., 2018), QASC (Khot et al., 2019), and109

WorldTree (Jansen et al., 2018) shows that the pro- 110

posed framework improves the faithfulness of aut- 111

oformalisation by 18.46%, 34.2%, 39.77%, respec- 112

tively, compared to Explanation-Refiner. Addition- 113

ally, the number of refined explanations produced 114

by our framework exceeds that of Explanation- 115

Refiner across all LLMs: raising refinement rates 116

from 41% to 95%, 17% to 90%, and 7% to 73% 117

across all three datasets. To summarise, the main 118

contributions of this paper are: 119

1. We introduce a novel neuro-symbolic frame- 120

work that delivers more robust and faith- 121

ful verification and refinement of explana- 122

tions in NLI, surpassing existing LLM-driven 123

theorem-proving approaches. 124

2. We conduct a quantitative evaluation of ex- 125

planation refinement and autoformalisation 126

across different LLMs, achieving an average 127

improvement of 29.5%, 51.5%, and 41.25% 128

more refined explanations, as well as 5.06%, 129

6.86%, and 32.16% on syntactic errors reduc- 130

tion compared to the state-of-the-art. 131

3. We adopt a range of automatic metrics to mea- 132

sure the quality of explanations and autofor- 133

malisation, showing that the proposed frame- 134
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work significantly improve the faithfulness of135

the autoformalisation process.136

4. We also perform a manual evaluation to assess137

the perceived quality of the formalised logical138

forms and conduct an extensive ablation study,139

elucidating the role of each proposed compo-140

nent and identifying key factors influencing141

automated theorem proving for NLI.142

2 Automated Theorem Proving for143

Explanation-Based NLI144

In this paper, we define an explanation Ei as a145

set of facts {f1, f2, . . . , fn} that establish a logi-146

cally valid entailment between premises pi and a147

hypothesis hi, such that pi ∪ Ei |= hi holds.148

In this work, we leverage an external theorem149

prover TP to systematically verify these entail-150

ments in an automated manner. Specifically, given151

the set of input sentences S = pi ∪ {hi} ∪ Ei, we152

aim to build a set of logical forms ϕ = {Φ(s) |153

s ∈ S}, where Φ is the autoformalisation process154

that converts natural language sentences into sym-155

bolic representations. From these logical forms,156

we construct a theory Θ = (A, τ), where A =157

{a1, a2, . . . , an} is the set of axioms derived from158

formalising Ei, and τ is the theorem to be proven,159

composed of pi and hi. If an automated theorem160

prover (ATP ) can derive a valid proof for Θ, we161

conclude that Ei is sound and logically valid. Oth-162

erwise, we refine Ei by using the failed proof steps163

as feedback, iteratively generating a refined expla-164

nation E′
i that ultimately leads to a valid justifica-165

tion.166

3 Methodology167

To effectively enhance the joint inference capabil-168

ities and robustness between LLMs and theorem169

provers for explanation-based NLI, we propose a170

novel framework on enhancing three key compo-171

nents: autoformalisation, logical and syntactic error172

checking and refinement, and LLM-guided proof173

construction. As illustrated in Figure 1, the pipeline174

begins with the automated formalisation of natural175

language into logical representations.176

Unlike the previous state-of-the-art approach177

(i.e., Explanation-Refiner), we begin with a syn-178

tactic parsing step that guides LLMs in translating179

natural language elements into a formal specifica-180

tion compatible with theorem provers. The LLM is181

prompted to automatically formalise the explana-182

tory sentences into axioms and construct a theorem183

composed of assumption clauses (drawn from the 184

premise) and a proof goal (derived from the hypoth- 185

esis). After formalising the input sentences, we 186

apply a quantifier and a logical consistency check 187

along with a refinement process. 188

Similar to Jiang et al. (2022b) and Quan et al. 189

(2024b), we adopt Isabelle/HOL (Nipkow et al., 190

2002) to formally verify the constructed the- 191

ory. Specifically, we invoke the Sledgehammer 192

tool (Paulson and Blanchette, 2012) within Is- 193

abelle/HOL to call upon multiple automated the- 194

orem provers (e.g., CVC42, Vampire3), which 195

attempt to prove the theorem derived from the 196

translated NLI tasks. If any prover succeeds, we 197

conclude that the explanation is logically sound, 198

thereby confirming that the premise entails the hy- 199

pothesis. If no proof is found, we use an LLM 200

to extract logical propositions and relations from 201

the natural language explanations. We then em- 202

ploy an intermediate propositional representation 203

to derive further implications among these propo- 204

sitions, prompting the LLM to generate a step-by- 205

step proof sketch—rather than having the LLM 206

serve directly as a proof planner as in Explanation- 207

Refiner. 208

We then iteratively attempt to prove each sub- 209

proof step, gathering information about failed steps, 210

using it as feedback to prompt the LLM to generate 211

an updated explanation to refine the logical errors 212

identified in the previous proof sketch to start a new 213

iteration. 214

3.1 Isabelle/HOL Theory Generation 215

Autoformalisation plays a critical role in integrat- 216

ing theorem provers with LLMs, especially for 217

complex sentence structures. Similar to Quan et al. 218

(2024b), we apply Neo-Davidsonian event-based 219

semantics (Parsons, 1990) to formalising the nat- 220

ural language sentences within each aspect of an 221

event with distinct predicates. This approach pro- 222

vides a robust foundation for formalising explana- 223

tory sentences while maximising content preserva- 224

tion (Maienborn et al., 2011). 225

However, simply using few-shot prompting for 226

autoformalisation does not guarantee a faithful pro- 227

cess, which may lead to inconsistencies between 228

the natural and formal languages expressions. To 229

alleviate this, we begin by performing syntactic 230

parsing via the LLMs on all provided sentences to 231

2https://cvc4.github.io/
3https://vprover.github.io/projects.html
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extract their grammatical structure, identifying the232

main predicate-argument structure. These elements233

are subsequently mapped onto the agent, event ac-234

tion, and patient roles within a Neo-Davidsonian235

event semantics framework. For example, consider236

the sentence "The father and son kicked the ball".237

We can parse it as:238

S

NP-SBJ

The father and son

VP

V

kicked

NP-OBJ

the ball

239

indicating that "The father and son" is the subject240

while "the ball" is the object. Thus we could build241

the Neo-Davidsonian event semantics to formalise242

it as:243
244

∃xyze. (Father(x) ∧ Son(y) ∧ Ball(z) ∧ Kicked(e) ∧245
Agent(e, x) ∧ Agent(e, y) ∧ Patient(e, z))246247

By leveraging such a process, we construct a clear248

representation indicating that the father and the son249

are the agents performing the event (kick), while250

the ball is the patient receiving the action, thus251

capturing all relevant semantic information in the252

transition from natural language to formal language.253

We then construct the Isabelle/HOL theory with254

axioms (explanatory sentences) and the theorem255

(premise and hypothesis sentences).256

3.2 Autoformalisation Critiques257

Recent studies have identified errors and inconsis-258

tencies in LLM-generated outputs as a challenge in259

autoformalisation and have proposed several meth-260

ods (Pan et al., 2023; Zhang et al., 2024; Gandarela261

et al., 2025) to address them. In our work, we262

categorise the errors in this phase into three main263

dimensions: quantifier scoping error, syntax errors,264

and logical inconsistencies.265

Quantifier Scoping Error The quantifiers indi-266

cate the scope of logical deductions. In syntheti-267

cally generated datasets quantifiers are constrained268

to predefined settings. In contrast, in naturally oc-269

curring NL settings settings, incorrect quantifiers in270

axioms may still prove a theorem within a formal271

system, but when those logical forms are restated272

in natural language, their soundness may fail to273

hold in the real world. For example, one cannot274

declare “all animals are mammals." Thus, we intro-275

duce a quantifier check and refinement soft-critique276

stage to prompt the LLM to compare the quantifiers 277

in the logical forms against real-world knowledge, 278

thereby avoiding any over-scoped quantifiers. 279

Syntax Errors Internal syntax errors, primarily 280

those caused by missing brackets or type unifica- 281

tion conflicts of logical variables, can often be iden- 282

tified through the theorem prover’s output. Once 283

identified through a hard critique via the TP, these 284

errors can be systematically refined or corrected 285

by adjusting the syntax or revising type declara- 286

tions. We then employ an LLM for refinement to 287

support the systematic correction of these output 288

errors (constrained within up to five iterations). 289

Logical Inconsistencies In a formal system, if 290

contradictory or meaningless axioms are intro- 291

duced, the system becomes inconsistent. By the 292

principle of explosion (ex falso [sequitur] quodli- 293

bet), any proposition can then be derived from such 294

an inconsistency. To test such errors within the 295

autoformalised axioms, we construct a modified 296

theorem τFalse by replacing the conclusion of τ 297

with "False". We then attempt to prove this modi- 298

fied theorem, if the TP finds a proof, it indicates a 299

contradiction within the axioms. In this case, we 300

use an LLM to refine the axioms and attempt to 301

solve the contradictions. 302

3.3 Proof, Verification and Refinement 303

After autoformalisation checking and refinement, 304

we employ the theorem prover TP to verify the log- 305

ical validity of the axioms and determine whether 306

A |= τ holds. We first use the Sledgehammer tool 307

in Isabelle/HOL for ATPs to automatically find a 308

proof of the theorem. If a proof is found, we extract 309

all possible proofs from Sledgehammer’s results 310

and state that the explanation is logically valid. If 311

Sledgehammer fails to find a proof, we construct a 312

proof sketch to attempt a step-by-step proving us- 313

ing ATPs based on a set of logical interpretations. 314

Logical Propositions, Relations and Implica- 315

tions Liu et al. (2025) employ logical expressions 316

to guide LLMs and mitigate information loss in 317

intermediate reasoning processes. Similarly, we 318

begin with a logical proposition extraction step. In 319

this step, we use an LLM to extract logical propo- 320

sitions and relations from the explanation Ei. Con- 321

sider the following extracted logical relations as an 322

example: A: it is raining; B: the grass is wet; C: 323

kids can play outside; D: kids are happy as well 324

as the following logical relations: A→ B (if it is 325
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter

Explanation-Refiner

Llama3.1-70b 23% 51% 4.08 4% 18% 4.07 2% 15% 5.23
GPT-4o-mini 13% 30% 3.65 3% 20% 5.12 0% 4% 5.00
GPT-4o 31% 71% 3.62 4% 26% 4.35 2% 13% 4.18
Deepseek-V3 25% 69% 2.82 4% 38% 3.71 3% 31% 4.52

Our Approach

Llama3.1-70b 36% 78% 2.38 11% 68% 2.90 6% 52% 4.62
GPT-4o-mini 32% 77% 2.27 12% 71% 3.35 5% 47% 4.75
GPT-4o 39% 89% 1.54 10% 79% 3.22 9% 56% 3.86
Deepseek-V3 41% 95% 1.50 17% 90% 2.53 7% 73% 3.55

Table 1: Comparison of our approach with Explanation-Refiner on different LLMs across three datasets. Init.
represents the number of explanations that are initially verified as logically valid. Final indicates the number of
explanations that are refined within a maximum of 10 iterations, while #Iter indicates the average iteration required
to refine an explanation.

raining, the grass is wet) and B → ¬C (if the grass326

is wet, kids cannot play outside). Next, we leverage327

the extracted logical relations using a SymPy-based328

propositional-level representation (Meurer et al.,329

2017) 4 to derive additional implications based on330

formal logical laws. For instance, from the example331

above, SymPy can deduce A→ ¬C (if it is raining,332

kids cannot play outside). Algorithm 1 shows the333

implementation of SymPy to find derived logical334

implications.335

Proof Sketch By combining the logical propo-336

sitions, relations, and these derived implications,337

the LLM can construct a step-by-step guided proof338

sketch that establishes a logical reasoning chain339

to prove the goal. As shown in Figure 6, the com-340

ments partially indicates how the logical expression341

guides LLMs to build the step-wise proof steps,342

while we replace the proof tactics with <ATP>,343

which uses Sledgehammer to search for proofs.344

Explanation Refinement If the automated the-345

orem prover fails or finds no proofs in a previous346

proof step, we extract that proof step along with the347

proof strategy from the comments part as feedback348

to prompt the LLM to refine the logical error (i.e.,349

missing premises) of the related explanatory sen-350

tences and process into next iteration to iteratively351

verify and refine the explanation. We followed the352

same prompts used in Explanation-Refiner (Quan353

et al., 2024b) for autoformalisation. Prompts used354

for syntactic parsing, quantifier refinement, logical355

4https://www.sympy.org/en/index.html

consistency and proof steps generation are reported 356

in Appendix D. 357

4 Empirical Evaluation 358

4.1 Datasets and Models 359

We conducted experiments with four state-of-the- 360

art LLMs within the proposed framework: GPT- 361

4o (OpenAI, 2023), GPT-4o-mini (OpenAI, 2023), 362

Llama3.1-70b (Grattafiori et al., 2024), Deepseek- 363

V3 (DeepSeek-AI et al., 2024). Follow Quan et al. 364

(2024b), we applied three sampled NLI datasets 365

of e-SNLI (Camburu et al., 2018), QASC (Khot 366

et al., 2019), and WorldTree (Jansen et al., 2018) 367

each comprising 100 instances. We compare our 368

approach with Explanation-Refiner (Quan et al., 369

2024b), a state-of-the-art LLM-driven theorem 370

prover for NLI that adopts a similar pipeline but 371

without incorporating the specific strategies for 372

guiding autoformalisation via syntactic parsing, 373

performing consistency and quantification checks, 374

and guide refinement via proof sketches and ex- 375

plicit implication derivation. 376

4.2 Results 377

The proposed architectural interventions effec- 378

tively improve the verification and refinement 379

of natural language explanations. Table 1 and 380

Figure 2 compares our proposed framework with 381

Explanation-Refiner on the tasks of verifying and 382

refining natural language explanations across mul- 383

tiple LLMs. The results show that our approach 384

more effectively and efficiently refines explana- 385
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Figure 2: Top – Number of logically valid explanations at each refinement iteration. Bottom – Number of theories
that contain internal syntactic errors at each syntax error refinement stage.

tory sentences for explanation-based NLI. In con-386

trast, Explanation-Refiner achieves substantially387

lower refinement rates, for example, 51% versus388

78% in e-SNLI for Llama3.1, 69% versus 95% for389

Deepseek-V3, 30% versus 77% for GPT-4o-mini,390

and 71% versus 89% for GPT-4o. Furthermore,391

Explanation-Refiner generally requires more iter-392

ations to refine each explanation, indicating that393

although it may identify specific logical errors, it394

is less efficient. For instance, Explanation-Refiner395

requires an average of 4.31 iterations in the QASC396

dataset, compared to 3.0 for our approach. Its per-397

formance is particularly limited on the WorldTree398

dataset, which contains complex, real-world sci-399

entific explanations requiring multi-hop reasoning.400

By contrast, our framework refines a significantly401

larger number of explanations in WorldTree, un-402

derscoring its capacity to handle more challenging403

inference scenarios.404

The refinement process effectively corrects aut-405

oformalisation errors. Figure 2d, 2e and 2f406

presents the number of theories in the last itera-407

tion containing syntactic and inconsistency errors408

over five syntax error refinement iterations, com-409

paring our proposed framework with Explanation-410

Refiner. Overall, our framework yields fewer syn-411

tactic errors. By incorporating syntactic parsing412

into autoformalisation, it guides LLMs to capture413

fine-grained logical properties of natural language414

sentences, thereby reducing type unification errors415

in constructed theories. Empirically, most syntactic 416

errors diminish considerably within the first three 417

iterations, after which the rate of improvement sta- 418

bilises. The evaluation results of the number of 419

theories that contain logical consistency errors are 420

shown in Figure 4. 421

Syntactic parsing provides more faithfulness to- 422

wards autoformalisation We convert the auto- 423

formalised logical forms back into natural language 424

sentences using a rule-based algorithm that recon- 425

structs each sentence from its action/verb predi- 426

cates and corresponding argument information. We 427

then calculate the cosine similarity between these 428

reconstructed (informalised) sentences between the 429

original sentences as the faithfulness of autofor- 430

malisation as shown in Figure 3. Our approach 431

shows a generally higher faithfulness compared to 432

Explanation-Refiner, with an average of 0.7938, 433

0.7804, and 0.5975, compared to 0.6706, 0.5714, 434

and 0.4220 across all three datasets. Our findings 435

indicate that certain models exhibit comparatively 436

lower similarity scores than others. Further inves- 437

tigation reveals that models such as Llama3.1-70b 438

tend to generate non-existent predicates during for- 439

malisation in Explanation-Refiner, resulting in over- 440

generation that undermines faithfulness and intro- 441

duces extraneous information into the theory. More 442

details about the rule-based algorithm are included 443

in the Appendix B. 444
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter

Ablations on our approach

GPT-4o (- logical relations) 34% 74%(−15%) 2.24 12% 58%(−21%) 3.46 6% 38%(−18%) 4.36
GPT-4o (- detailed feedback) 35% 83%(−6%) 2.86 13% 56%(−23%) 4.45 5% 17%(−39%) 6.46
GPT-4o (- refine quantifiers) 34% 87%(−2%) 1.63 14% 83%(+4%) 2.89 7% 49%(−7%) 3.65
GPT-4o (- refine syntax errors) 21% 74%(−15%) 2.34 5% 58%(−21%) 4.11 2% 24%(−32%) 6.48
Deepseek-V3 (- logical relations) 39% 89%(−6%) 1.68 16% 77%(−13%) 2.64 10% 58%(−15%) 4.01
Deepseek-V3 (- detailed feedback) 31% 86%(−9%) 3.22 22% 69%(−21%) 4.12 6% 41%(−32%) 6.13
Deepseek-V3 (- refine quantifiers) 34% 96%(+1%) 1.64 14% 93%(+3%) 1.89 6% 70%(−3%) 3.23
Deepseek-V3 (- refine syntax errors) 28% 77%(−18%) 2.69 12% 68%(−22%) 2.84 4% 46%(−27%) 5.32

e-SNLI QASC WorldTree

V. I. Q. V. I. Q. V. I. Q.

Explanation-Refiner

GPT-4o 9% 3% 6% 18% 9% 18% 33% 8% 16%
Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%

Ablations

GPT-4o (- refine quantifiers) 9% 2% 10%(+4%) 13% 2% 23%(+5%) 38% 6% 19%(+6%)
GPT-4o (- refine syntax errors) 16%(+7%) 1% 3% 38%(+20%) 3% 7% 56%(+23%) 3% 16%
Deepseek-V3 (- refine quantifiers) 25% 5% 16%(+6%) 31% 14% 35%(+10%) 32% 11% 38%(+7%)
Deepseek-V3 (- refine syntax errors) 38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 2: Top – Ablation study on the impacts of removing components from the overall architecture. Bottom –
Comparison of manually evaluated variable, implication, and quantifier errors in the autoformalisation process from
a randomly sampled set of 100 Isabelle/HOL theories across all iterations for each LLM.

Logically guided proof sketches provide effec-445

tive feedback for explanation refinement By446

constructing proof steps from logical propositions,447

relations, and derived implications, our method448

more precisely pinpoints logical errors, enabling449

the LLM to iteratively refine explanatory sentences450

in subsequent attempts to prove the theorem. As451

shown in Figure 3, the average utility defined as the452

proportion of newly introduced explanations that453

are applied in the next iteration’s proof remains454

consistently higher for our approach compared to455

Explanation-Refiner, even as the number of itera-456

tions increases. In contrast, Explanation-Refiner’s457

utility markedly decreases over successive itera-458

tions.459

4.3 Ablation Study460

We conducted several ablations studies to evaluate461

the impact of the proposed components. Table 2462

shows the results on GPT-4o and Deepseek-V3,463

while Table 3 in Appendix A shows the full abla-464

tions.465

Detailed feedback and syntax error refinement466

impacts most on the number of explanation re-467

fined The most significant drop in performance468

are observed from removing detailed feedback and469

syntax error refinement steps. Providing detailed,470

step-level feedback to the LLM proves significantly471

more effective than using only a binary signal (i.e.,472

provable or unprovable). When replacing detailed 473

with binary feedback, the number of refined expla- 474

nations dropped substantially; for instance, GPT-4o 475

showed a 39% decrease in refined explanations in 476

the WorldTree dataset. Excluding the syntactic er- 477

ror refinement stage frequently yielded theories that 478

failed under theorem prover scrutiny, thereby pro- 479

ducing little to no useful feedback for subsequent 480

refinement. 481

Logical expression aids LLMs in constructing 482

proofs and reduces hallucinations that could 483

lead to incorrect or failed proofs for explanation 484

refinement. Eliminating the logical expression- 485

guided proof step generation component led to an 486

increase in required iterations for explanation re- 487

finement and a reduction in the total number of 488

successfully refined explanations. These findings 489

highlight the importance of logical expressions in 490

constructing coherent proofs and mitigating hallu- 491

cinations that otherwise result in incorrect or failed 492

proofs. 493

Variable and quantifier errors in the autoformal- 494

isation process significantly impact faithfulness. 495

We further conducted a human evaluation on three 496

types of errors: variable errors (identifiable by the 497

theorem prover), implication errors, and quantifier 498

errors (not identifiable by the theorem prover) as 499

shown in Table 2. Our findings suggest that us- 500

ing LLMs for autoformalisation still leaves notable 501
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Figure 3: Top – The average faithfulness of the autoformalisation process across different LLMs. Bottom – The
utility of explanation at different refinement iterations. A higher utility indicating the newly refined explanation are
more likely be used in the proof of next iteration.

gaps, particularly in accurately handling variables502

and quantifiers. As shown in Table 2, removing the503

quantifier refinement did not substantially alter the504

number of refined explanations. However, human505

evaluation indicates that the number of quantifier-506

related errors increased when this refinement was507

omitted. Explanation-Refiner does not apply a syn-508

tactic parsing and quantifier refinement resulting509

in more errors being introduced for variable, im-510

plication and quantifier errors as shown in Table 2.511

Thus, we introduced both syntax error refinement512

and quantifier error refinement processes. Our re-513

sults show a significant reduction in the overall514

error rate following the corresponding soft-critique515

model refinements.516

5 Related Work517

Autoformalisation Autoformalisation aims to518

convert informal language into formal represen-519

tations. Recent work explores this task in both520

mathematical (Wu et al., 2022; Jiang et al., 2022b;521

Agrawal et al., 2022; Zhang et al., 2024) and logi-522

cal (Olausson et al., 2023; Quan et al., 2024a; Kir-523

tania et al., 2024) domains using the support of524

automated theorem provers. Several studies (Pan525

et al., 2023; Jiang et al., 2024) transform natural526

language sentences into logical forms. In contrast,527

our work tackles real-world occurrences of mate-528

rial inferences rather than purely synthetic data,529

thereby requiring more robust semantic representa-530

tions and autoformalisation process to capture the531

complexity of multi-step reasoning over material532

inferences.533

Proof Generation Proof generation refers to the 534

task of generating intermediate proof steps as tac- 535

tic predictions in automated theorem proving (Li 536

et al., 2024). Recent work harness LLMs to pro- 537

duce formal proof scripts (Jiang et al., 2022a; First 538

et al., 2023; Frieder et al., 2024; Welleck and Saha, 539

2023), often by translating high-level reasoning 540

into low-level tactics. Quan et al. (2024b), for ex- 541

ample, directly converts a rough inference strategy 542

into theorem proving proof steps. In contrast, our 543

approach synthesises logical reasoning guidance 544

in close iterative dialogue with automated provers 545

to provide more robust and interpretable proofs in 546

contrast to LLM-driven single-pass methods. 547

6 Conclusion 548

In this paper, we proposed formally-guided meth- 549

ods to address the challenges involved in using 550

external theorem provers to verify and refine natu- 551

ral language explanations in NLI. By incorporating 552

syntactic parsing, targeted syntactic error checking, 553

logical-relation guidance, and detailed feedback at 554

each proof step, our approach significantly outper- 555

forms prior work in both faithfulness of autofor- 556

malisation and robustness of iterative explanation 557

refinement. Ablation studies highlight the critical 558

role of these components in reducing syntactic er- 559

rors, maintaining consistency, and promoting more 560

efficient logical verification and refinement. 561

Limitations 562

Although our framework substantially improves 563

both the consistency of autoformalisation and the 564

robustness of explanation verification, certain limi- 565
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tations remain. First, LLMs can still introduce vari-566

able inconsistencies, erroneous implications, and567

incorrect quantifiers that are not fully resolved by568

automated checking. Second, some explanations569

require nuanced real-world knowledge or domain-570

specific axioms that exceed current formal reason-571

ing capabilities, requiring expert oversight. Finally,572

the reliability of our iterative refinement pipeline573

hinges on high-quality LLM output and proof-step574

feedback; degraded model performance or noisy575

system responses can hinder successful verification.576

Future work may explore more advanced semantic577

checks, stronger model calibration, and selective578

human intervention to further enhance faithfulness579

and correctness.580

Ethical statement581

While this work focuses on the introduction of582

mechanisms for improving the control and logical583

consistency properties of LLM-based NLI, having584

an overall positive impact, further investigations585

are needed to understand the specific conditions in586

which these methods can perform. The application587

of these methods on real-world or critical settings588

need to be complemented by human supervision or589

extensive quantitative and qualitative assessment.590
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A Ablation study 985

Table 3 shows the overall results on the ablation 986

study for all LLMs. 987

B Informalisation 988

We perform an autoformalisation process that 989

transforms natural language sentences into Neo- 990

Davidsonian event-based semantics by leveraging 991

their underlying structure. One way to measure 992

the faithfulness of this autoformalisation is to trans- 993

late the constructed logical forms back into natural 994

language and then compare the generated (infor- 995

malised) sentences with the original ones using 996

cosine similarity. 997

We employ a rule-based method to transform 998

Neo-Davidsonian logical forms back into coherent 999

natural language. First, we parse a logical form 1000

that may contain multiple conjuncts, typically con- 1001

nected by the logical “and” operator (∧). Each con- 1002

junct is treated as an atomic predicate with the gen- 1003

eral structure Predicate(arg1, arg2, . . . ). Once the 1004

form is separated into atomic predicates, we distin- 1005

guish between role predicates (e.g., Agent(e1, x), 1006

Patient(e1, y)) and entity-attribute predicates 1007

(e.g., Child(x), Blonde(x)). The role predicates 1008

specify how each entity participates in the event 1009

(agent, patient, theme, location, etc.), while the at- 1010

tribute predicates detail intrinsic properties of those 1011

entities (for instance, “child,” “blonde,” “small,” or 1012

“plastic”). 1013

After identifying these predicates, we group to- 1014

gether all attributes describing the same entity vari- 1015

able. In particular, we parse the attributes from 1016

right to left, treating the rightmost attribute as 1017

the head noun and the preceding ones as adjec- 1018

tives. For example, if a single entity x is associ- 1019

ated with Child(x) and Blonde(x), we combine 1020

those attributes to form a concise descriptor such 1021

as “blonde child.” Likewise, if another entity y has 1022

attributes Plastic(y) and Small(y), we might call 1023

it “small plastic”. 1024

Next, we convert these role–entity pairings into 1025

simple event-level sentences. For each event ei, 1026
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Figure 4: Number of theories that contain logical consistency error at each syntax error refinement stage.

Original Sentence: The boy is inside of the building.
Logical Form 1: ∃x y e. Boy(x) ∧ Building(y) ∧ Inside(e) ∧ Agent(e, x) ∧ Patient(e, y)
Informalised Sentence 1: Boy in side building.
Sentence Similarity: 0.9344

Logical Form 2: ∃x y e. Boy(x) ∧ Building(y) ∧ Inside(e) ∧ Agent(e, x)
Informalised Sentence 2: Boy in side.
Sentence Similarity: 0.8127

Figure 5: An example of the faithfulness between two informalised logical forms

we identify which entity is the Agent and which is1027

the Patient (or any other role labels), then build1028

a straightforward sentence. For instance, if x is1029

“blonde child” and y is “small plastic item,” the cor-1030

responding natural language description might by1031

constructed from the event verb “Puts” as “blonde1032

child puts small plastic item” The specific event1033

verb (“puts,” “picks,” “hands over,” etc.) would1034

depend on how the event predicate itself is repre-1035

sented in the logical form.1036

In cases where the logical form contains implica-1037

tion, we divide the logical forms into sub-formulas.1038

Complex operators and connectives (i.e. ∨) will1039

be mapped carefully to their closest equivalents in1040

English.1041

As shown in Figure 5, different formalised log-1042

ical forms can affect the faithfulness of the auto-1043

formalisation. For instance, Logical Form 2 omits1044

the Patient argument, causing the rule-based sys-1045

tem to skip translating the predicate information1046

for the building back into natural language, and1047

thus producing an unfaithful representation.1048

C Datasets, LLMs and Theorem Prover1049

The datasets used in our experiments are sourced1050

from open academic works and include sam-1051

ples from e-SNLI (Camburu et al., 2018), QASC1052

(Khot et al., 2019), and WorldTree (Jansen et al.,1053

2018). We employed Isabelle/HOL (Nipkow1054

et al., 2002) as the theorem prover, which is1055

distributed under the revised BSD license, and 1056

used Explanation-Refiner (Quan et al., 2024b) as 1057

our baseline work, which is under the MIT li- 1058

cense. Additionally, we utilised API calls for GPT- 1059

4o (gpt-4o-2024-08-06) (OpenAI, 2023), GPT-4o- 1060

mini (gpt-4o-mini-2024-07-18) (OpenAI, 2023), 1061

Deepseek-V3 (Deepseek-V3-671b) (DeepSeek-AI 1062

et al., 2024), and Llama3.1-70b (LLama3.1-70b- 1063

Instruct) (Grattafiori et al., 2024). All temperature 1064

is set to 0. 1065

D Prompts 1066

Tables 4, 6, 5, and 7 show the prompts we used for 1067

syntactic parsing, logical proposition extraction, 1068

logical relation extraction, and proof construction. 1069
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Algorithm 1: Deriving logical implications with SymPy
Input : logical_information: string with propositions and relations
Output :result: string with processed relations and implications

1 logical_props, logical_exprs← ParseInput(logical_information)

2 if logical_exprs = ∅ then
3 result← format_propositions(logical_props)
4 return result
5 else
6 Initialise symbols_dict, symbol_meanings← {}
7 foreach (key, value) ∈ logical_props do
8 sanitized_key← sanitize(key)
9 symbol← create_symbol(sanitized_key)

10 Update symbols_dict and symbol_meanings
11 end foreach
12 // Define SymPy logical operators dictionary
13 logical_operators← {
14 symbols_dict, Not: SymPy negation,
15 And: SymPy conjunction,
16 Or: SymPy disjunction,
17 Implies: SymPy implication,
18 Equivalent: SymPy equivalence
19 }
20 propositions← []
21 initial_implications← ∅
22 foreach expr ∈ logical_exprs do
23 expr← replace_symbols(expr)
24 // Evaluate using SymPy’s logical operators
25 prop← evaluate_with_sympy(expr, logical_operators)
26 // Apply SymPy’s simplification rules
27 simplified_prop← sympy.simplify(prop)
28 propositions.append(prop)
29 initial_implications.add(simplified_prop)
30 end foreach
31 derived_implications← ∅
32 logical_atoms← get_atoms(propositions)
33 literals← logical_atoms ∪ {¬atom | atom ∈ logical_atoms}
34 // Use SymPy’s satisfiability checker
35 foreach (antecedent, consequent) ∈ literals × literals do
36 if antecedent ̸= consequent then
37 implication← antecedent =⇒ consequent
38 // Check using SymPy’s logical rules
39 is_new←¬equivalent_to_any(implication, initial_implications)
40 is_valid← check_entailment(propositions, implication)
41 if is_new and is_valid then
42 derived_implications.add(implication)
43 end if
44 end if
45 end foreach
46 result← format_output(logical_props, logical_exprs, derived_implications)
47 return result
48 end if
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter

Ablations on our approach

Llama3.1-70b (- logical relations) 34% 74%(−4%) 2.43 9% 58%(−10%) 2.94 7% 44%(−8%) 5.42
Llama3.1-70b (- detailed feedback) 32% 66%(−12%) 3.42 10% 34%(−34%) 3.64 5% 24%(−28%) 8.12
Llama3.1-70b (- refine quantifiers) 28% 77%(−1%) 2.18 9% 68%(−0%) 2.88 3% 50%(−2%) 4.52
Llama3.1-70b (- refine syntax errors) 18% 57%(−21%) 4.58 5% 53%(−15%) 4.47 3% 30%(−20%) 6.12
GPT-4o-mini (- logical relations) 27% 65%(−12%) 2.31 11% 57%(−14%) 4.12 6% 27%(−20%) 5.19
GPT-4o-mini (- detailed feedback) 30% 62%(−15%) 4.56 9% 46%(−25%) 3.87 3% 19%(−28%) 6.21
GPT-4o-mini (- refine quantifiers) 26% 78%(+4%) 2.10 5% 73%(+2%) 2.92 4% 46%(−1%) 5.13
GPT-4o-mini (- refine syntax errors) 15% 43%(−34%) 2.86 3% 34%(−37%) 3.65 3% 10%(−37%) 5.21
GPT-4o (- logical relations) 34% 74%(−15%) 2.24 12% 58%(−21%) 3.46 6% 38%(−18%) 4.36
GPT-4o (- detailed feedback) 35% 83%(−6%) 2.86 13% 56%(−23%) 4.45 5% 17%(−39%) 6.46
GPT-4o (- refine quantifiers) 34% 87%(−2%) 1.63 14% 83%(+4%) 2.89 7% 49%(−7%) 3.65
GPT-4o (- refine syntax errors) 21% 74%(−15%) 2.34 5% 58%(−21%) 4.11 2% 24%(−32%) 6.48
Deepseek-V3 (- logical relations) 39% 89%(−6%) 1.68 16% 77%(−13%) 2.64 10% 58%(−15%) 4.01
Deepseek-V3 (- detailed feedback) 31% 86%(−9%) 3.22 22% 69%(−21%) 4.12 6% 41%(−32%) 6.13
Deepseek-V3 (- refine quantifiers) 34% 96%(+1%) 1.64 14% 93%(+3%) 1.89 6% 70%(−3%) 3.23
Deepseek-V3 (- refine syntax errors) 28% 77%(−18%) 2.69 12% 68%(−22%) 2.84 4% 46%(−27%) 5.32

e-SNLI QASC WorldTree

V. I. Q. V. I. Q. V. I. Q.

Explanation-Refiner

Llama3.1-70b 24% 10% 10% 43% 12% 34% 45% 15% 27%
GPT-4o-mini 18% 8% 7% 41% 8% 32% 39% 9% 29%
GPT-4o 9% 3% 6% 18% 9% 18% 33% 8% 16%
Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%

Ablations

Llama3.1-70b (- refine quantifiers) 23% 8% 13%(+3%) 39% 11% 43%(+9%) 43% 13% 36%(+9%)
Llama3.1-70b (- refine syntax errors) 41%(+17%) 10% 9% 53%(+10%) 8% 34% 65%(+20%) 11% 23%
GPT-4o-mini (- refine quantifiers) 14% 5% 11%(+4%) 35% 10% 47%(+15%) 41% 10% 34%(+5%)
GPT-4o-mini (- refine syntax errors) 39%(+21%) 4% 9% 63%(+21%) 7% 12% 55%(+16%) 7% 23%
GPT-4o (- refine quantifiers) 9% 2% 10%(+4%) 13% 2% 23%(+5%) 38% 6% 19%(+3%)
GPT-4o (- refine syntax errors) 16%(+7%) 1% 3% 38%(+20%) 3% 7% 56%(+23%) 3% 16%
Deepseek-V3 (- refine quantifiers) 25% 5% 16%(+6%) 31% 14% 35%(+10%) 32% 11% 38%(+7%)
Deepseek-V3 (- refine syntax errors) 38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 3: Top – Ablation study on the impacts of removing components on the analysis of number of explanation
refined across three datasets. Bottom – Comparison of manually evaluated variable, implication, and quantifier errors
in the autoformalisation process from a randomly sampled set of 100 Isabelle/HOL theories across all iterations for
each LLM.

Table 4: Prompts used for syntactic parsing.

SYSTEM: You are an expert in linguistics. You will be provided with some sentences, please do a syntactic parse for each
word in that sentence. Some instructions:
1. You must give me the answer for all provided sentences. 2. Do not add any notes. 3. If no premise sentence provided,
include it in the answer as none. 4. Retain the answer words in their original form within the provided sentence.
USER: Here are some examples:
Hypothesis Sentence:
1. A woman is playing an instrument.
Subject: A woman
Verb Phrase: is playing an instrument
- Main Verb: playing
- Auxiliary Verb: is
Direct Object: an instrument
...
<<<<<<<<<<<<<
Provided sentences:

Answer:
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(* Explanation 1: A man and woman are at the park. *)
axiomatization where

explanation_1: "∃x y z. Man x ∧ Woman y ∧ Park z ∧ At x z ∧ At y z"
theorem hypothesis:

(* Premise: A man and woman sit on a park bench with a set of newlyweds behind *)
assumes asm: "Man x ∧ Woman y ∧ ParkBench z ∧ Newlyweds w ∧ Sit e ∧ Agent e x ∧ Agent e y ∧ Patient e z

∧ Behind w z"
(* Hypothesis: People outside *)
shows "∃x. People x ∧ Outside x"

proof -
(* From the premise, we have information about a man and a woman sitting on a park bench. *)
from asm have "Man x ∧ Woman y" by blast
(* Explanation 1 states that a man and a woman are at the park. *)
(* This implies that they are outside, as parks are typically outdoor locations. *)
from explanation_1 have "∃x y z. Man x ∧ Woman y ∧ Park z ∧ At x z ∧ At y z" by blast
(* Since a man and a woman are at the park, they are outside. *)
then have "People x ∧ Outside x" <ATP>
then show ?thesis <ATP>

qed

Figure 6: An example of the proof sketch constructed from logical expressions. ATPs find proofs for first two steps
using proof tactics. It failed to derive People x∧ Outside x due the logical error that missing information of People
x.

Table 5: Prompts used for extracting logical propositions and relations

SYSTEM: You are an expert in symbolic reasoning. You will be provided with an explanation. You need to extract the
logical propositions and the corresponding logical relations from the explanation.
USER: Here are some examples:
Provided Explanatory Sentences:
Explanatory Sentence 1: If it is raining, the grass will be wet.
Explanatory Sentence 2: Having a picnic is equivalent to having a meal on the grass.

Answer:
Logical Propositions:
A: it is raining (from Explanatory Sentence 1)
B: the grass will be wet (from Explanatory Sentence 1)
C: having a picnic (from Explanatory Sentence 2)
D: having a meal on the grass (from Explanatory Sentence 2)

Logical Relations:
Implies(A, B): A → B
Equivalent(C, D): C ↔ D

<<<<<<<<<<<<<
Provided Explanatory Sentences:

Answer:

Logical Propositions:

Logical Relations:

Table 6: Prompts used for refining quantifiers.

SYSTEM: You are an expert in semantics, formal language and neo-davidsonian event semantics. You will be provided with
some sentences. These sentences have been transferred into Isabelle/HOL symbolic language. However, the quantifiers in
the logical form may not be defined correctly.There might be missing variables after the quantifiers for arguments inside
the parentheses of the predicate-argument forms of an axiom or a theorem. The quantifier may not reflect to real-world
knowledge. Refine the logical forms if there are any quantifiers that are not defined correctly.

<<<<<<<<<<<<<
Strictly follow my instructions.

Provided Isabelle code:

Answer:
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Table 7: Prompts used for building proofs.

SYSTEM: You are an expert in Isabelle theorem prover, first-order logic and Davidsonian event semantics. You will be
provided with premise, explanation and hypothesis sentences. You will be provided with an Isabelle code which consistent
of some axioms, a theorem hypothesis that needs to be proven. The logical form of axioms indicates some explanation
sentences, the logical form after "assume asm:" indicates a premise sentence and the logical form after "shows" indicates
a hypothesis sentence. The natural language form is stated as the comments. You will be provided with some logical
propositions, logical relations and derived logical rules from the explanation sentences to help you construct the proof.
You need to consturct a proof about how to prove the theorem hypothesis in "proof -" and "qed" section using the premise
(logical form after "assume asm:") and explanations (axioms). The proof should be derived from the premise and explanation
sentences. You don’t need to state the automated theorem prover you will need to use. You just need to write a proof sketch.
Some instructions:
1. ’sorry’ and ‘fix’ command is not allowed.
...
5. leave the automated theorem prover and proof tactic as <ATP>
...
<<<<<<<<<<<<<
Strictly follow my instructions.

Premise Sentence:

Explanation Sentences:

Hypothesis Sentence:

Provided Isabelle Code:

Logical Information:

Known Information:

Try to prove:

Answer:
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