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Abstract

Natural language explanations play a funda-
mental role in Natural Language Inference
(NLI) by revealing how premises logically
entail hypotheses. Recent work has shown
that the interaction of Large Language Mod-
els (LLMs) with theorem provers (TPs) can
help verify and improve the validity of NLI ex-
planations. However, TPs require translating
natural language into machine-verifiable for-
mal representations, a process that introduces
the risk of semantic information loss and un-
faithful interpretation, an issue compounded by
LLMs’ challenges in capturing critical logical
structures with sufficient precision. Moreover,
LLMs are still limited in their capacity for rigor-
ous and robust proof construction within formal
verification frameworks. To mitigate issues re-
lated to faithfulness and robustness, this paper
investigates strategies to (1) alleviate seman-
tic loss during autoformalisation, (2) efficiently
identify and correct syntactic errors in logical
representations, (3) explicitly use logical ex-
pressions to guide LLMs in generating struc-
tured proof sketches, and (4) increase LLMs’
capacity of interpreting TP’s feedback for it-
erative refinement. Our empirical results on a
range of LLMs demonstrate that the proposed
strategies yield significant improvements in aut-
oformalisation (+18.46%, +34.2%, +39.77%)
and explanation refinement (+29.5%, +51.5%,
+41.25%) over the state-of-the-art models over
the e-SNLI, QASC and WorldTree benchmarks.
Moreover, we show that specific interventions
on the hybrid LLM-TP architecture can sub-
stantially improve efficiency, drastically reduc-
ing the number of iterations required for suc-
cessful verification.!

1 Introduction

Recent studies in Natural Language Inference
(NLI) have developed models to leverage natu-
ral language explanations as a mechanism for rea-
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soning in support of a hypothesis (Wiegreffe and
Marasovié, 2021; Chen et al., 2021; Thayaparan
et al., 2020; Valentino et al., 2022). Providing
sound and logically valid natural language expla-
nations lies at the core of NLI, as such transparent
justifications enhance both interpretability and reli-
ability for downstream tasks (Camburu et al., 2018;
Valentino et al., 2022; He et al., 2024). Recent
methods, in particular, have leveraged the inferen-
tial and linguistic capabilities of Large Language
Models (LLMs) by integrating them with external
theorem provers (TPs) to automatically verify the
logical validity of explanations for NLI (Pan et al.,
2023; Olausson et al., 2023; Quan et al., 2024b;
Dalal et al., 2024).

However, these integrated neuro-symbolic ap-
proaches still face notable challenges. First, Auto-
mated Theorem Provers (ATP) require a machine-
verifiable formal language, yet LLMs often fail to
produce precise autoformalisations, underscoring
their limited capacity to faithfully convert complex
natural language inputs into rigorous formal rep-
resentations (Wu et al., 2022; Jiang et al., 2024;
Quan et al., 2024b). Second, syntactic errors are
frequently introduced during the autoformalisation
process, leading to reduced theorem-proving suc-
cess rates when dealing with more complex mate-
rial inferences (Pan et al., 2023; Olausson et al.,
2023; Zhang et al., 2024). Third, when provided
with external feedback on complex explanations,
LLMs often struggle to combine axioms (expla-
nations) into cohesive proofs and effectively self-
correct, limiting their effectiveness in more com-
plex NLI settings (Quan et al., 2024a,b).

In this paper, we build upon the state-of-the-
art LLM-based theorem proving framework for
NLI, Explanation-Refiner (Quan et al., 2024b). In
particular, we explore methodologies to improve
the faithfulness of autoformalisation and deliver
a more robust way to effectively and efficiently
provide logically valid explanations. We further
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Figure 1: An illustration of our proposed interventions for improving LLM-driven theorem proving for NLI. The
interventions employ different techniques including syntactic parsing, quantifier refinement, logical consistency
refinement, and logical expression extraction to guide LLMs in generating more faithful and robust proof sketches
for NLI and effectively refine natural language explanations. This approach provides more structured and explicit
feedback by pinpointing the exact logical errors identified in the explanations.

examine how varying degrees of dataset complex-
ity in multi-hop reasoning affect the reliability of
proof step generation in LLM-Driven theorem prov-
ing. In general, we implement a neuro-symbolic
framework to address the following research ques-
tions: RQI: "To what extent can we deliver faithful
autoformalisation that preserves semantic infor-
mation?" RQ2: "What types of syntactic errors
commonly appear in formal representations, and
how effectively can state-of-the-art LLMs refine
these errors?" RQ3: "Can state-of-the-art LLMs
generate structured proof steps that can effectively
provide feedback to refine explanations with com-
plex sentences and logical relations?"

To answer these questions, we investigate how
to systematically leverage syntactic parsing during
autoformalisation to guide LLMs generate logical
representation of explanations. In addition, we de-
fine the general autoformalisation error types and
use LLMs to refine these errors explicitly from the
output message of a TP. Furthermore, we propose
a method to extract the logical propositions, rela-
tions and implications to guide LLMs to generate
proof sketches for automated theorem proving and
explanation refinement.

Our empirical evaluation on e-SNLI (Camburu
et al., 2018), QASC (Khot et al., 2019), and

WorldTree (Jansen et al., 2018) shows that the pro-
posed framework improves the faithfulness of aut-
oformalisation by 18.46%, 34.2%, 39.77%, respec-
tively, compared to Explanation-Refiner. Addition-
ally, the number of refined explanations produced
by our framework exceeds that of Explanation-
Refiner across all LL.Ms: raising refinement rates
from 41% to 95%, 17% to 90%, and 7% to 73%
across all three datasets. To summarise, the main
contributions of this paper are:

1. We introduce a novel neuro-symbolic frame-
work that delivers more robust and faith-
ful verification and refinement of explana-
tions in NLI, surpassing existing LLM-driven
theorem-proving approaches.

2. We conduct a quantitative evaluation of ex-
planation refinement and autoformalisation
across different LLMs, achieving an average
improvement of 29.5%, 51.5%, and 41.25%
more refined explanations, as well as 5.06%,
6.86%, and 32.16% on syntactic errors reduc-
tion compared to the state-of-the-art.

3. We adopt a range of automatic metrics to mea-
sure the quality of explanations and autofor-
malisation, showing that the proposed frame-



work significantly improve the faithfulness of
the autoformalisation process.

4. We also perform a manual evaluation to assess
the perceived quality of the formalised logical
forms and conduct an extensive ablation study,
elucidating the role of each proposed compo-
nent and identifying key factors influencing
automated theorem proving for NLI.

2 Automated Theorem Proving for
Explanation-Based NLI

In this paper, we define an explanation E; as a
set of facts {f1, fo,..., fn} that establish a logi-
cally valid entailment between premises p; and a
hypothesis h;, such that p; U E; = h; holds.

In this work, we leverage an external theorem
prover T'P to systematically verify these entail-
ments in an automated manner. Specifically, given
the set of input sentences S = p; U {h;} U E;, we
aim to build a set of logical forms ¢ = {®(s) |
s € S}, where ® is the autoformalisation process
that converts natural language sentences into sym-
bolic representations. From these logical forms,
we construct a theory © = (A, 7), where A =
{a1,aq9,...,ay} is the set of axioms derived from
formalising F;, and 7 is the theorem to be proven,
composed of p; and h;. If an automated theorem
prover (AT P) can derive a valid proof for O, we
conclude that F; is sound and logically valid. Oth-
erwise, we refine F; by using the failed proof steps
as feedback, iteratively generating a refined expla-
nation E! that ultimately leads to a valid justifica-
tion.

3 Methodology

To effectively enhance the joint inference capabil-
ities and robustness between LLMs and theorem
provers for explanation-based NLI, we propose a
novel framework on enhancing three key compo-
nents: autoformalisation, logical and syntactic error
checking and refinement, and LL.M-guided proof
construction. As illustrated in Figure 1, the pipeline
begins with the automated formalisation of natural
language into logical representations.

Unlike the previous state-of-the-art approach
(i.e., Explanation-Refiner), we begin with a syn-
tactic parsing step that guides LLLMs in translating
natural language elements into a formal specifica-
tion compatible with theorem provers. The LLM is
prompted to automatically formalise the explana-
tory sentences into axioms and construct a theorem

composed of assumption clauses (drawn from the
premise) and a proof goal (derived from the hypoth-
esis). After formalising the input sentences, we
apply a quantifier and a logical consistency check
along with a refinement process.

Similar to Jiang et al. (2022b) and Quan et al.
(2024b), we adopt Isabelle/HOL (Nipkow et al.,
2002) to formally verify the constructed the-
ory. Specifically, we invoke the Sledgehammer
tool (Paulson and Blanchette, 2012) within Is-
abelle/HOL to call upon multiple automated the-
orem provers (e.g., CVC42, Vampire®), which
attempt to prove the theorem derived from the
translated NLI tasks. If any prover succeeds, we
conclude that the explanation is logically sound,
thereby confirming that the premise entails the hy-
pothesis. If no proof is found, we use an LLM
to extract logical propositions and relations from
the natural language explanations. We then em-
ploy an intermediate propositional representation
to derive further implications among these propo-
sitions, prompting the LLM to generate a step-by-
step proof sketch—rather than having the LLM
serve directly as a proof planner as in Explanation-
Refiner.

We then iteratively attempt to prove each sub-
proof step, gathering information about failed steps,
using it as feedback to prompt the LLM to generate
an updated explanation to refine the logical errors
identified in the previous proof sketch to start a new
iteration.

3.1 Isabelle/HOL Theory Generation

Autoformalisation plays a critical role in integrat-
ing theorem provers with LLMs, especially for
complex sentence structures. Similar to Quan et al.
(2024b), we apply Neo-Davidsonian event-based
semantics (Parsons, 1990) to formalising the nat-
ural language sentences within each aspect of an
event with distinct predicates. This approach pro-
vides a robust foundation for formalising explana-
tory sentences while maximising content preserva-
tion (Maienborn et al., 2011).

However, simply using few-shot prompting for
autoformalisation does not guarantee a faithful pro-
cess, which may lead to inconsistencies between
the natural and formal languages expressions. To
alleviate this, we begin by performing syntactic
parsing via the LLMs on all provided sentences to
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extract their grammatical structure, identifying the
main predicate-argument structure. These elements
are subsequently mapped onto the agent, event ac-
tion, and patient roles within a Neo-Davidsonian
event semantics framework. For example, consider
the sentence "The father and son kicked the ball".
We can parse it as:

S
NP-SBJ vp
The father and  son “/ NP-OBJ
kicked the ball

indicating that "The father and son" is the subject
while "the ball" is the object. Thus we could build
the Neo-Davidsonian event semantics to formalise
it as:

dxyze. (Father(x) A Son(y) A Ball(z) A Kicked(e) A
Agent(e, x) A Agent(e, y) A Patient(e, z))

By leveraging such a process, we construct a clear
representation indicating that the father and the son
are the agents performing the event (kick), while
the ball is the patient receiving the action, thus
capturing all relevant semantic information in the
transition from natural language to formal language.
We then construct the Isabelle/HOL theory with
axioms (explanatory sentences) and the theorem
(premise and hypothesis sentences).

3.2 Autoformalisation Critiques

Recent studies have identified errors and inconsis-
tencies in LLM-generated outputs as a challenge in
autoformalisation and have proposed several meth-
ods (Pan et al., 2023; Zhang et al., 2024; Gandarela
et al., 2025) to address them. In our work, we
categorise the errors in this phase into three main
dimensions: quantifier scoping error, syntax errors,
and logical inconsistencies.

Quantifier Scoping Error The quantifiers indi-
cate the scope of logical deductions. In syntheti-
cally generated datasets quantifiers are constrained
to predefined settings. In contrast, in naturally oc-
curring NL settings settings, incorrect quantifiers in
axioms may still prove a theorem within a formal
system, but when those logical forms are restated
in natural language, their soundness may fail to
hold in the real world. For example, one cannot
declare “all animals are mammals." Thus, we intro-
duce a quantifier check and refinement soft-critique

stage to prompt the LLM to compare the quantifiers
in the logical forms against real-world knowledge,
thereby avoiding any over-scoped quantifiers.

Syntax Errors Internal syntax errors, primarily
those caused by missing brackets or type unifica-
tion conflicts of logical variables, can often be iden-
tified through the theorem prover’s output. Once
identified through a hard critique via the TP, these
errors can be systematically refined or corrected
by adjusting the syntax or revising type declara-
tions. We then employ an LLM for refinement to
support the systematic correction of these output
errors (constrained within up to five iterations).

Logical Inconsistencies In a formal system, if
contradictory or meaningless axioms are intro-
duced, the system becomes inconsistent. By the
principle of explosion (ex falso [sequitur] quodli-
bet), any proposition can then be derived from such
an inconsistency. To test such errors within the
autoformalised axioms, we construct a modified
theorem 7gyse by replacing the conclusion of 7
with "False". We then attempt to prove this modi-
fied theorem, if the TP finds a proof, it indicates a
contradiction within the axioms. In this case, we
use an LLM to refine the axioms and attempt to
solve the contradictions.

3.3 Proof, Verification and Refinement

After autoformalisation checking and refinement,
we employ the theorem prover T'P to verify the log-
ical validity of the axioms and determine whether
A = 7 holds. We first use the Sledgehammer tool
in Isabelle/HOL for ATPs to automatically find a
proof of the theorem. If a proof is found, we extract
all possible proofs from Sledgehammer’s results
and state that the explanation is logically valid. If
Sledgehammer fails to find a proof, we construct a
proof sketch to attempt a step-by-step proving us-
ing ATPs based on a set of logical interpretations.

Logical Propositions, Relations and Implica-
tions Liu etal. (2025) employ logical expressions
to guide LLMs and mitigate information loss in
intermediate reasoning processes. Similarly, we
begin with a logical proposition extraction step. In
this step, we use an LLM to extract logical propo-
sitions and relations from the explanation E;. Con-
sider the following extracted logical relations as an
example: A: it is raining; B: the grass is wet; C:
kids can play outside; D: kids are happy as well
as the following logical relations: A — B (if it is



e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter
Explanation-Refiner
Llama3.1-70b 23% 51% 408 4% 18% 4.07 2% 15% 5.23
GPT-40-mini  13% 30% 3.65 3% 20% 512 0% 4% 5.00
GPT-40 31% 71% 362 4% 26% 435 2% 13% 4.18
Deepseek-V3  25% 69% 282 4% 38% 371 3% 31% 452
Our Approach
Llama3.1-70b 36% 78% 238 11% 68% 290 6% 52% 4.62
GPT-40-mini  32% 77% 227 12% 71% 335 5% 47% 4.75
GPT-40 39% 89% 154 10% 79% 322 9% 56% 3.86
Deepseek-V3  41% 95% 150 17% 90% 2.53 7% 73% 3.55

Table 1: Comparison of our approach with Explanation-Refiner on different LLMs across three datasets. Init.
represents the number of explanations that are initially verified as logically valid. Final indicates the number of
explanations that are refined within a maximum of 10 iterations, while #Iter indicates the average iteration required

to refine an explanation.

raining, the grass is wet) and B — —C' (if the grass
is wet, kids cannot play outside). Next, we leverage
the extracted logical relations using a SymPy-based
propositional-level representation (Meurer et al.,
2017) # to derive additional implications based on
formal logical laws. For instance, from the example
above, SymPy can deduce A — —C (if it is raining,
kids cannot play outside). Algorithm 1 shows the
implementation of SymPy to find derived logical
implications.

Proof Sketch By combining the logical propo-
sitions, relations, and these derived implications,
the LLM can construct a step-by-step guided proof
sketch that establishes a logical reasoning chain
to prove the goal. As shown in Figure 6, the com-
ments partially indicates how the logical expression
guides LLMs to build the step-wise proof steps,
while we replace the proof tactics with <ATP>,
which uses Sledgehammer to search for proofs.

Explanation Refinement If the automated the-
orem prover fails or finds no proofs in a previous
proof step, we extract that proof step along with the
proof strategy from the comments part as feedback
to prompt the LLM to refine the logical error (i.e.,
missing premises) of the related explanatory sen-
tences and process into next iteration to iteratively
verify and refine the explanation. We followed the
same prompts used in Explanation-Refiner (Quan
et al., 2024b) for autoformalisation. Prompts used
for syntactic parsing, quantifier refinement, logical

*https://www.sympy.org/en/index.html

consistency and proof steps generation are reported
in Appendix D.

4 Empirical Evaluation

4.1 Datasets and Models

We conducted experiments with four state-of-the-
art LLMs within the proposed framework: GPT-
40 (OpenAl, 2023), GPT-40-mini (OpenAl, 2023),
Llama3.1-70b (Grattafiori et al., 2024), Deepseek-
V3 (DeepSeek-Al et al., 2024). Follow Quan et al.
(2024b), we applied three sampled NLI datasets
of e-SNLI (Camburu et al., 2018), QASC (Khot
et al., 2019), and WorldTree (Jansen et al., 2018)
each comprising 100 instances. We compare our
approach with Explanation-Refiner (Quan et al.,
2024b), a state-of-the-art LLM-driven theorem
prover for NLI that adopts a similar pipeline but
without incorporating the specific strategies for
guiding autoformalisation via syntactic parsing,
performing consistency and quantification checks,
and guide refinement via proof sketches and ex-
plicit implication derivation.

4.2 Results

The proposed architectural interventions effec-
tively improve the verification and refinement
of natural language explanations. Table 1 and
Figure 2 compares our proposed framework with
Explanation-Refiner on the tasks of verifying and
refining natural language explanations across mul-
tiple LLMs. The results show that our approach
more effectively and efficiently refines explana-
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tory sentences for explanation-based NLI. In con-
trast, Explanation-Refiner achieves substantially
lower refinement rates, for example, 51% versus
78% in e-SNLI for Llama3.1, 69% versus 95% for
Deepseek-V3, 30% versus 77% for GPT-40-mini,
and 71% versus 89% for GPT-40. Furthermore,
Explanation-Refiner generally requires more iter-
ations to refine each explanation, indicating that
although it may identify specific logical errors, it
is less efficient. For instance, Explanation-Refiner
requires an average of 4.31 iterations in the QASC
dataset, compared to 3.0 for our approach. Its per-
formance is particularly limited on the WorldTree
dataset, which contains complex, real-world sci-
entific explanations requiring multi-hop reasoning.
By contrast, our framework refines a significantly
larger number of explanations in WorldTree, un-
derscoring its capacity to handle more challenging
inference scenarios.

The refinement process effectively corrects aut-
oformalisation errors. Figure 2d, 2e and 2f
presents the number of theories in the last itera-
tion containing syntactic and inconsistency errors
over five syntax error refinement iterations, com-
paring our proposed framework with Explanation-
Refiner. Overall, our framework yields fewer syn-
tactic errors. By incorporating syntactic parsing
into autoformalisation, it guides LLMs to capture
fine-grained logical properties of natural language
sentences, thereby reducing type unification errors

in constructed theories. Empirically, most syntactic
errors diminish considerably within the first three
iterations, after which the rate of improvement sta-
bilises. The evaluation results of the number of
theories that contain logical consistency errors are
shown in Figure 4.

Syntactic parsing provides more faithfulness to-
wards autoformalisation We convert the auto-
formalised logical forms back into natural language
sentences using a rule-based algorithm that recon-
structs each sentence from its action/verb predi-
cates and corresponding argument information. We
then calculate the cosine similarity between these
reconstructed (informalised) sentences between the
original sentences as the faithfulness of autofor-
malisation as shown in Figure 3. Our approach
shows a generally higher faithfulness compared to
Explanation-Refiner, with an average of 0.7938,
0.7804, and 0.5975, compared to 0.6706, 0.5714,
and 0.4220 across all three datasets. Our findings
indicate that certain models exhibit comparatively
lower similarity scores than others. Further inves-
tigation reveals that models such as Llama3.1-70b
tend to generate non-existent predicates during for-
malisation in Explanation-Refiner, resulting in over-
generation that undermines faithfulness and intro-
duces extraneous information into the theory. More
details about the rule-based algorithm are included
in the Appendix B.



e-SNLI QASC WorldTree
Init. Final #Iter  Init. Final #Iter  Init. Final #Iter
Ablations on our approach
GPT-4o (- logical relations) 34%  TA%(-15%) 224  12% 58%(-21%) 346 6%  38%(-18%) 4.36
GPT-4o0 (- detailed feedback) 35%  83%(—6%) 286 13% 56%(-23%) 445 5% 17%(-39%) 6.46
GPT-4o (- refine quantifiers) 34%  87%(-2%) 1.63  14%  83%(+4%) 289 1%  49%(-1%)  3.65
GPT-do (- refine syntax errors) __ 21%  74%(-15%) 234 = 5%  S8%(=21%) 411 2%  24%(-32%) 648
Deepseek-V3 (- logical relations) 39%  89%(—6%) 1.68 16% T1%(-13%) 2.64 10% 58%(-15%) 4.01
Deepseek-V3 (- detailed feedback) 31%  86%(-9%) 322 2% 69%(-21%) 412 6%  41%(-32%) 6.13
Deepseek-V3 (- refine quantifiers) 34%  96%(+1%) 1.64  14%  93%(+3%) 1.89 6% 70%(-3%) 3.23
Deepseek-V3 (- refine syntax errors) 28%  77%(-18%) 2.69 12%  68%(-22%) 2.84 4%  46%(-27%) 5.32
e-SNLI QASC WorldTree
V. L Q. V. L Q. V. L Q.
Explanation-Refiner
GPT-40 9% 3% 6% 18% 9% 18% 33% 8% 16%
Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%
Ablations
GPT-4o (- refine quantifiers) 9% 2%  10%(+4%) 13% 2%  23%(+5%) 38% 6%  19%(+6%)
GPT-do (- refine synaxerrors) ___ 16%(7%) _ 1% 3% 8GG%) 3% _Th_ _ SN 3% _16%
Deepseek-V3 (- refine quantifiers) 25% 5%  16%(+6%) 31% 14%  35%(+10%) 32% 11%  38%(+71%)
Deepseek-V3 (- refine syntax errors)  38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 2: Top — Ablation study on the impacts of removing components from the overall architecture. Bottom —
Comparison of manually evaluated variable, implication, and quantifier errors in the autoformalisation process from
arandomly sampled set of 100 Isabelle/HOL theories across all iterations for each LLM.

Logically guided proof sketches provide effec-
tive feedback for explanation refinement By
constructing proof steps from logical propositions,
relations, and derived implications, our method
more precisely pinpoints logical errors, enabling
the LLM to iteratively refine explanatory sentences
in subsequent attempts to prove the theorem. As
shown in Figure 3, the average utility defined as the
proportion of newly introduced explanations that
are applied in the next iteration’s proof remains
consistently higher for our approach compared to
Explanation-Refiner, even as the number of itera-
tions increases. In contrast, Explanation-Refiner’s
utility markedly decreases over successive itera-
tions.

4.3 Ablation Study

We conducted several ablations studies to evaluate
the impact of the proposed components. Table 2
shows the results on GPT-40 and Deepseek-V3,
while Table 3 in Appendix A shows the full abla-
tions.

Detailed feedback and syntax error refinement
impacts most on the number of explanation re-
fined The most significant drop in performance
are observed from removing detailed feedback and
syntax error refinement steps. Providing detailed,
step-level feedback to the LLM proves significantly
more effective than using only a binary signal (i.e.,

provable or unprovable). When replacing detailed
with binary feedback, the number of refined expla-
nations dropped substantially; for instance, GPT-40
showed a 39% decrease in refined explanations in
the WorldTree dataset. Excluding the syntactic er-
ror refinement stage frequently yielded theories that
failed under theorem prover scrutiny, thereby pro-
ducing little to no useful feedback for subsequent
refinement.

Logical expression aids LLMs in constructing
proofs and reduces hallucinations that could
lead to incorrect or failed proofs for explanation
refinement. Eliminating the logical expression-
guided proof step generation component led to an
increase in required iterations for explanation re-
finement and a reduction in the total number of
successfully refined explanations. These findings
highlight the importance of logical expressions in
constructing coherent proofs and mitigating hallu-
cinations that otherwise result in incorrect or failed
proofs.

Variable and quantifier errors in the autoformal-
isation process significantly impact faithfulness.

We further conducted a human evaluation on three
types of errors: variable errors (identifiable by the
theorem prover), implication errors, and quantifier
errors (not identifiable by the theorem prover) as
shown in Table 2. Our findings suggest that us-
ing LLMs for autoformalisation still leaves notable
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Figure 3: Top — The average faithfulness of the autoformalisation process across different LLMs. Bottom — The
utility of explanation at different refinement iterations. A higher utility indicating the newly refined explanation are

more likely be used in the proof of next iteration.

gaps, particularly in accurately handling variables
and quantifiers. As shown in Table 2, removing the
quantifier refinement did not substantially alter the
number of refined explanations. However, human
evaluation indicates that the number of quantifier-
related errors increased when this refinement was
omitted. Explanation-Refiner does not apply a syn-
tactic parsing and quantifier refinement resulting
in more errors being introduced for variable, im-
plication and quantifier errors as shown in Table 2.
Thus, we introduced both syntax error refinement
and quantifier error refinement processes. Our re-
sults show a significant reduction in the overall
error rate following the corresponding soft-critique
model refinements.

5 Related Work

Autoformalisation Autoformalisation aims to
convert informal language into formal represen-
tations. Recent work explores this task in both
mathematical (Wu et al., 2022; Jiang et al., 2022b;
Agrawal et al., 2022; Zhang et al., 2024) and logi-
cal (Olausson et al., 2023; Quan et al., 2024a; Kir-
tania et al., 2024) domains using the support of
automated theorem provers. Several studies (Pan
et al., 2023; Jiang et al., 2024) transform natural
language sentences into logical forms. In contrast,
our work tackles real-world occurrences of mate-
rial inferences rather than purely synthetic data,
thereby requiring more robust semantic representa-
tions and autoformalisation process to capture the
complexity of multi-step reasoning over material
inferences.

Proof Generation Proof generation refers to the
task of generating intermediate proof steps as tac-
tic predictions in automated theorem proving (Li
et al., 2024). Recent work harness LLMs to pro-
duce formal proof scripts (Jiang et al., 2022a; First
et al., 2023; Frieder et al., 2024; Welleck and Saha,
2023), often by translating high-level reasoning
into low-level tactics. Quan et al. (2024b), for ex-
ample, directly converts a rough inference strategy
into theorem proving proof steps. In contrast, our
approach synthesises logical reasoning guidance
in close iterative dialogue with automated provers
to provide more robust and interpretable proofs in
contrast to LLM-driven single-pass methods.

6 Conclusion

In this paper, we proposed formally-guided meth-
ods to address the challenges involved in using
external theorem provers to verify and refine natu-
ral language explanations in NLI. By incorporating
syntactic parsing, targeted syntactic error checking,
logical-relation guidance, and detailed feedback at
each proof step, our approach significantly outper-
forms prior work in both faithfulness of autofor-
malisation and robustness of iterative explanation
refinement. Ablation studies highlight the critical
role of these components in reducing syntactic er-
rors, maintaining consistency, and promoting more
efficient logical verification and refinement.

Limitations

Although our framework substantially improves
both the consistency of autoformalisation and the
robustness of explanation verification, certain limi-



tations remain. First, LLMs can still introduce vari-
able inconsistencies, erroneous implications, and
incorrect quantifiers that are not fully resolved by
automated checking. Second, some explanations
require nuanced real-world knowledge or domain-
specific axioms that exceed current formal reason-
ing capabilities, requiring expert oversight. Finally,
the reliability of our iterative refinement pipeline
hinges on high-quality LLM output and proof-step
feedback; degraded model performance or noisy
system responses can hinder successful verification.
Future work may explore more advanced semantic
checks, stronger model calibration, and selective
human intervention to further enhance faithfulness
and correctness.

Ethical statement

While this work focuses on the introduction of
mechanisms for improving the control and logical
consistency properties of LLM-based NLI, having
an overall positive impact, further investigations
are needed to understand the specific conditions in
which these methods can perform. The application
of these methods on real-world or critical settings
need to be complemented by human supervision or
extensive quantitative and qualitative assessment.
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junct is treated as an atomic predicate with the gen-
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those attributes to form a concise descriptor such
as “blonde child.” Likewise, if another entity y has
attributes Plastic(y) and Small(y), we might call
it “small plastic”.

Next, we convert these role—entity pairings into
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Figure 4: Number of theories that contain logical consistency error at each syntax error refinement stage.

Original Sentence: The boy is inside of the building.

Logical Form 1: Ix y e. Boy(x) A Building(y) A Inside(e) A Agent(e, x) A Patient(e, y)
Informalised Sentence 1: Boy in side building.

Sentence Similarity: ©.9344

Logical Form 2: dx y e. Boy(x) A Building(y) A Inside(e) A Agent(e, x)
Informalised Sentence 2: Boy in side.
Sentence Similarity: ©.8127

Figure 5: An example of the faithfulness between two informalised logical forms

we identify which entity is the Agent and which is  distributed under the revised BSD license, and
the Patient (or any other role labels), then build  used Explanation-Refiner (Quan et al., 2024b) as
a straightforward sentence. For instance, if x is  our baseline work, which is under the MIT li-
“blonde child” and y is “small plastic item,” the cor-  cense. Additionally, we utilised API calls for GPT-
responding natural language description might by 4o (gpt-40-2024-08-06) (OpenAl, 2023), GPT-4o-
constructed from the event verb “Puts” as “blonde =~ mini (gpt-40-mini-2024-07-18) (OpenAl, 2023),
child puts small plastic item” The specific event  Deepseek-V3 (Deepseek-V3-671b) (DeepSeek-Al
verb (“puts,” “picks,” “hands over,” etc.) would et al., 2024), and Llama3.1-70b (LLama3.1-70b-
depend on how the event predicate itself is repre-  Instruct) (Grattafiori et al., 2024). All temperature
sented in the logical form. is set to 0.

In cases where the logical form contains implica-
tion, we divide the logical forms into sub-formulas.

Complex operators and connectives (i.e. V) Will  Taples 4, 6, 5, and 7 show the prompts we used for
be mapped carefully to their closest equivalents in syntactic parsing, logical proposition extraction,

English. logical relation extraction, and proof construction.
As shown in Figure 5, different formalised log-

ical forms can affect the faithfulness of the auto-
formalisation. For instance, Logical Form 2 omits
the Patient argument, causing the rule-based sys-
tem to skip translating the predicate information
for the building back into natural language, and
thus producing an unfaithful representation.

D Prompts

C Datasets, LLMs and Theorem Prover

The datasets used in our experiments are sourced
from open academic works and include sam-
ples from e-SNLI (Camburu et al., 2018), QASC
(Khot et al., 2019), and WorldTree (Jansen et al.,
2018). We employed Isabelle/HOL (Nipkow
et al.,, 2002) as the theorem prover, which is
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Algorithm 1: Deriving logical implications with SymPy

Input :logical_information: string with propositions and relations
Output :result: string with processed relations and implications
1 logical_props, logical_exprs <— ParseInput (logical_information)

2 if logical_exprs = () then

3 result <— format_propositions(logical_props)

4 return result

5 else

6 Initialise symbols_dict, symbol_meanings < {}
7 foreach (key, value) € logical_props do

8 sanitized_key < sanitize(key)

9 symbol <+ create_symbol(sanitized_key)

10 Update symbols_dict and symbol_meanings
1 end foreach

12 // Define SymPy logical operators dictionary
13 logical_operators «— {

14 symbols_dict, Not: SymPy negation,

15 And: SymPy conjunction,

16 Or: SymPy disjunction,

17 Implies: SymPy implication,

18 Equivalent: SymPy equivalence

19 }

20 | propositions <— ||

21 initial_implications < ()

2 foreach expr € logical_exprs do

23 expr < replace_symbols(expr)

24 // Evaluate using SymPy’s logical operators

25 prop < evaluate_with_sympy(expr, logical_operators)
26 // Apply SymPy’s simplification rules

27 simplified_prop <— sympy.simplify(prop)

28 propositions.append(prop)

29 initial_implications.add(simplified_prop)

30 end foreach

31 | derived_implications <— ()

32 logical_atoms <— get_atoms(propositions)

33 literals +— logical_atoms U {—atom | atom € logical_atoms}
34 // Use SymPy’s satisfiability checker

35 foreach (antecedent, consequent) € literals X literals do

36 if antecedent # consequent then

37 implication <— antecedent = consequent

38 // Check using SymPy’s logical rules

39 is_new <— —equivalent_to_any(implication, initial_implications)
40 is_valid <— check_entailment(propositions, implication)
a1 if is_new and is_valid then

4 derived_implications.add(implication)

43 end if

44 end if

45 end foreach
46 result <— format_output(logical_props, logical_exprs, derived_implications)
47 return result

48 end if
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter
Ablations on our approach
Llama3.1-70b (- logical relations) 34%  TA%(-4%) 243 9%  58%(-10%) 294  T%  44%(-8%) 542
Llama3.1-70b (- detailed feedback)  32%  66%(-12%) 342 10% 34%(-34%) 3.64 5% 24%(-28%) 8.12
Llama3.1-70b (- refine quantifiers) 28%  T1%(-1%) 218 9%  68%(-0%) 288 3%  50%(-2%) 4.52
Llama3.1-70b (- refine syntax errors)  18%  57%(-21%) 458 5% 53%(-15%) 447 3% 30%(-20%) 6.12
GPT-40-mini (- logical relations)  27% 65%(=12%) 231 11% 57%(-14%) 412 6%  27%(=20%) 5.19
GPT-40-mini (- detailed feedback) 30%  62%(-15%) 456 9%  46%(-25%) 387 3%  19%(-28%) 6.1
GPT-40-mini (- refine quantifiers) 26%  78%(+4%) 2.10 5% T3%(+2%) 2.92 4% 46%(—1%) 5.13
GPT-40-mini (- refine syntax errors)  15%  43%(-34%) 2.86 3% 34%(-31%) 3.65 3% 10%(-37%) 5.21
GPT-o (- logical relations) 34% TA%(-15%) 224 12% 58%(-21%) 346 6%  38%(-18%) 436
GPT-4o (- detailed feedback) 35%  83%(-6%) 2.86 13% 56%(-23%) 445 5% 17%(-39%) 6.46
GPT-4o (- refine quantifiers) 34%  8T%(-2%) 1.63  14%  83%(+4%) 289 1%  49%(-1%)  3.65
GPT-4o0 (- refine syntax errors) 21%  TA%(-15%) 234 5%  58%(-21%) 411 2%  24%(-32%) 648
Deepseck-V3 (- logical relations)  39%  89%(—6%)  1.68 16% 71%(-13%) 264 10% 58%(-15%) 4.01
Deepseek-V3 (- detailed feedback) 31%  86%(-9%) 322 2% 69%(-21%) 412 6% 41%(-32%) 6.13
Deepseek-V3 (- refine quantifiers) 34%  96%(+1%)  1.64 14%  93%(+3%) 189 6%  T0%(-3%) 323

Deepseek-V3 (- refine syntax errors)  28%  77%(-18%) 2.69 12% 68%(-22%) 2.84 4%  46%(-27%) 532

e-SNLI QASC WorldTree

V. L Q. V. L Q. V. L Q.
Explanation-Refiner
Llama3.1-70b 24% 10% 10% 43% 12% 34% 45% 15% 27%
GPT-40-mini 18% 8% 7% 41% 8% 32% 39% 9% 29%
GPT-40 9% 3% 6% 18% 9% 18% 33% 8% 16%
Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%
Ablations
Llama3.1-70b (- refine quantifiers) 23% 8%  13%(+3%) 39% 11%  43%(+9%) 43% 13%  36%(+9%)
Llamad 1-706 (- refine synt ertors)_ 4196+17%) _10%__ 9% _ _ S3%(e10%) 8% % 65%20%) 1% 23
GPT-40-mini (- refine quantifiers) 14% 5%  11%(+4%) 35% 10%  47%(+15%) 41% 10%  34%(+5%)
GPT-do-mini - refine synaxerors) _ 39%(21%) 4% _ 9% _ _ 63%G21%) 7% 12%_ _ SSUHI6%) 1% 2B
GPT-4o (- refine quantifiers) 9% 2%  10%(+4%) 13% 2%  23%(+5%) 38% 6%  19%(+3%)
GPT-4o (- refine syntax errors) 16%(+7%) 1% 3% 38%(+20%) 3% 7% 56%(+23%) 3% 16%
Deepseek-V3 (- refine quantifiers) 25% 5%  16%(+6%) 31% 14%  35%(+10%) 32% 11%  38%(+7%)
Deepseek-V3 (- refine syntax errors)  38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 3: Top — Ablation study on the impacts of removing components on the analysis of number of explanation
refined across three datasets. Bottom — Comparison of manually evaluated variable, implication, and quantifier errors
in the autoformalisation process from a randomly sampled set of 100 Isabelle/HOL theories across all iterations for
each LLM.

Table 4: Prompts used for syntactic parsing.

SYSTEM: You are an expert in linguistics. You will be provided with some sentences, please do a syntactic parse for each
word in that sentence. Some instructions:

1. You must give me the answer for all provided sentences. 2. Do not add any notes. 3. If no premise sentence provided,
include it in the answer as none. 4. Retain the answer words in their original form within the provided sentence.

USER: Here are some examples:

Hypothesis Sentence:

1. A woman is playing an instrument.

Subject: A woman

Verb Phrase: is playing an instrument

- Main Verb: playing

- Auxiliary Verb: is

Direct Object: an instrument

L
Provided sentences:

Answer:
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(* Explanation 1: A man and woman are at the park. =*)
axiomatization where
explanation_1: "3Ix y z. Man x A Woman y A Park z A At x z AN At y z"
theorem hypothesis:
(* Premise: A man and woman sit on a park bench with a set of newlyweds behind x)
assumes asm: "Man x A Woman y A ParkBench z A Newlyweds w A Sit e A Agent e x A Agent e y A Patient e z
A Behind w z"
(* Hypothesis: People outside *)
shows "3Ix. People x A Outside x"
proof -
(* From the premise, we have information about a man and a woman sitting on a park bench. x)
from asm have "Man x A Woman y" by blast
(* Explanation 1 states that a man and a woman are at the park. x)
(*x This implies that they are outside, as parks are typically outdoor locations. x)
from explanation_1 have "3x y z. Man x A Woman y A Park z A At x z A At y z" by blast
(x Since a man and a woman are at the park, they are outside. x)
then have "People x A Outside x" <ATP>
then show ?thesis <ATP>
qed

Figure 6: An example of the proof sketch constructed from logical expressions. ATPs find proofs for first two steps
using proof tactics. It failed to derive People A Outside x due the logical error that missing information of People
x.

Table 5: Prompts used for extracting logical propositions and relations

SYSTEM: You are an expert in symbolic reasoning. You will be provided with an explanation. You need to extract the
logical propositions and the corresponding logical relations from the explanation.

USER: Here are some examples:

Provided Explanatory Sentences:

Explanatory Sentence 1: If it is raining, the grass will be wet.

Explanatory Sentence 2: Having a picnic is equivalent to having a meal on the grass.

Answer:

Logical Propositions:

A: it is raining (from Explanatory Sentence 1)

B: the grass will be wet (from Explanatory Sentence 1)

C: having a picnic (from Explanatory Sentence 2)

D: having a meal on the grass (from Explanatory Sentence 2)

Logical Relations:
Implies(A, B): A —» B
Equivalent(C, D): C <+ D

L L L L L L L L L L L L
Provided Explanatory Sentences:

Answer:
Logical Propositions:

Logical Relations:

Table 6: Prompts used for refining quantifiers.

SYSTEM: You are an expert in semantics, formal language and neo-davidsonian event semantics. You will be provided with
some sentences. These sentences have been transferred into Isabelle/HOL symbolic language. However, the quantifiers in
the logical form may not be defined correctly. There might be missing variables after the quantifiers for arguments inside
the parentheses of the predicate-argument forms of an axiom or a theorem. The quantifier may not reflect to real-world
knowledge. Refine the logical forms if there are any quantifiers that are not defined correctly.

L L LL L L L L L LKL
Strictly follow my instructions.

Provided Isabelle code:

Answer:

16




Table 7: Prompts used for building proofs.

SYSTEM: You are an expert in Isabelle theorem prover, first-order logic and Davidsonian event semantics. You will be
provided with premise, explanation and hypothesis sentences. You will be provided with an Isabelle code which consistent
of some axioms, a theorem hypothesis that needs to be proven. The logical form of axioms indicates some explanation
sentences, the logical form after "assume asm:" indicates a premise sentence and the logical form after "shows" indicates
a hypothesis sentence. The natural language form is stated as the comments. You will be provided with some logical
propositions, logical relations and derived logical rules from the explanation sentences to help you construct the proof.
You need to consturct a proof about how to prove the theorem hypothesis in "proof -" and "qed" section using the premise
(logical form after "assume asm:") and explanations (axioms). The proof should be derived from the premise and explanation
sentences. You don’t need to state the automated theorem prover you will need to use. You just need to write a proof sketch.
Some instructions:

1. ’sorry’ and ‘fix’ command is not allowed.

5. leave the automated theorem prover and proof tactic as <ATP>

L L LL L L L L L LKL
Strictly follow my instructions.

Premise Sentence:
Explanation Sentences:
Hypothesis Sentence:
Provided Isabelle Code:
Logical Information:
Known Information:
Try to prove:

Answer:
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