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Accelerated gradient descent: A guaranteed bound
for a heuristic restart strategy

Walaa M. Moursi* Viktor Pavlovic' Stephen A. Vavasis*

Abstract

The O(1/k?) convergence rate in function value of accelerated gradient descent is optimal, but
there are many modifications that have been used to speed up convergence in practice. Among these
modifications are restarts, that is, starting the algorithm with the current iteration being considered
as the initial point. We focus on the adaptive restart techniques introduced by O’Donoghue and
Candes, specifically their gradient restart strategy. While the gradient restart strategy is a heuristic
in general, we prove that applying gradient restarts preserves and in fact improves the O(1/k?)
bound, hence establishing function value convergence, for one-dimensional functions. Applications
of our results to separable and nearly separable functions are presented.

1. Introduction

In 1983, Nesterov introduced acceleration to the classical gradient descent method [10]. This accel-
eration method involves the addition of an extrapolation based on previous iterates, the new iterate
is then computed as a classical gradient step from this extrapolation. Accelerated gradient descent
(AGD) is also known as gradient descent with momentum. This is because the extrapolation step
is computed using an increasing sequence of scalars. Due to this added momentum AGD is a non-
monotonic method as extrapolated points can overshoot the minimizer and cause an increase in
function value.

Several restarting algorithms have been proposed recently as discussed in Section 2.1. Restart-
ing means that the momentum term is set to its initial value of zero, and the current iteration is
used as the new starting point. In effect, this deletes the memory used previously to compute the
extrapolation steps.

O’Donoghue and Candes introduced an adaptive restart strategy that does not depend on any prop-
erties of the objective function [11]. The authors offer two heuristic schemes to restart AGD. The
first is a function value scheme that restarts whenever non-monotonicity is detected, and the second
restarts when the gradient makes an obtuse angle with the direction of the iterates. The latter scheme
uses only already computed information. The authors suggest that the gradient based scheme is fa-
vorable as it is more numerically stable. While both schemes perform well in practice and tend
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to drastically improve the performance of AGD, unlike AGD, there is no proof of function value
convergence for the restarted scheme. The authors have provided an analysis when the objective
is quadratic and suggest that this analysis carries over to a quadratic region around the minimizer.
There have however been examples, such as in the work by Hinder and Lubin [8] who give a simple
function for which the restarts drastically underperform until the iterates get close to the minimizer
[8]. Recall that a function f : R™ — R is L-smooth if it has Lipschitz continuous gradient, i.e., for
all x and y in R™ we have,

IVf(@) = VI < Lilz = yl|. (M
Throughout the remainder of this paper, we assume that
f :R"™ — Ris convex and L-smooth, where L > 0, and S := Argmin f # & 2)
and we set
f* = min f(R"). (3)

In this paper we provide analysis for the case n = 1. Our results, primarily Theorem 8 and Theo-
rem 9 below, reveal that applying the gradient restart improves the classical right-hand side bound
of AGD and hence preserves the function value convergence of the iterates of the restarted scheme.
Unlike the O’Donoghue and Candes restart scheme, our analysis varies in that if the restart condi-
tion (see (16) below) is satisfied then we restart at x rather than ;. Computational experiments
(see Appendix D and Appendix E) suggest that in practice restarting from x 1 offers slightly better
practical performance for n > 1.

2. Framework and Related Works

Recalling (2), our framework for AGD is that of an unconstrained convex optimization problem

min f(z). 4)
TER™
Let (tx)ken be a sequence of scalars such that tp = 1 and (Vk > 1) (see, e.g., [5])
ty > M2 > 1 =tgand t7 > 74 — tpy1. 5)

Two popular choices for the sequence of ¢; are given by,

1++4/1+4¢2 144/1+4¢3

thpr = —Y5 b, f=E2g = N0k gy = B2 (6)

Let x¢g € R", and set yg = x¢. Throughout this paper we set
T=1d—1Vf. (7

Classical AGD updates zo (Vk € N) as follows:
i1 = T(yk) (8a)
Yht = Tppr T (@ — @) (8b)
We set

x* := Pg(xp) € S, 9
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where Pg denotes the orthogonal projection (this is also known as the closest point mapping) onto
the set .S which is convex, closed, and by assumption (see (2)) nonempty.
Note that the classical upper bound for AGD is (Vk € N)

2L||xo — x*||?

_ < 10
flag) — 7 < k12 (10)
We now recall the following useful fact which will be used later.
Fact 1 (see [4, Theorem 10.16]) Let x € R" and let y € R™. Then
f(x) = f(T() = lle = T = Fllz - yll*. (11

2.1. Restarts

We will focus on adaptive restart strategies. These strategies restart the algorithm according to
whether some condition is satisfied at the current iteration. In [11] O’Donoghue and Candes pro-
posed two conditions for restarts: the function value and gradient based conditions. The function
value condition imposes restarts whenever

f(@pr1) > f(xg). (12)

On the other hand, the gradient based condition imposes restarts whenever

(Vf(yk), Thy1 — zx) > 0. (13)

This indicates that there is a disagreement in the direction the iterates should go in, and thus it
would be good to restart. The function scheme requires evaluating the objective at x; which may
be expensive, while the gradient based scheme requires no new computations whatsoever.

Giselsson and Boyd introduced different adaptive restart schemes [7]. Their framework consid-
ers the composite model where the objective function is of the form F' = f + g where g is convex,
lower semicontinuous, and proper. This is the setup for FISTA [5]. Note that AGD can be seen as a
special case of FISTA when we set g = 0. They suggest that non-monotonicity of function values is
a good indicator of when to restart, and provide a new condition which implies non-monotonicity,
namely

(yr—1 — T, 21 — 5 (2K +yp—1)) > 0. (14)

In addition to this new restart test, they provide a convergence rate to a modified version of the
restarted AGD algorithm. A notable difference between their restart scheme and the ones intro-
duced in [11] is that they do not reset the parameter sequence of ¢;’s. This allowed the authors to
deduce an O(1/k?) convergence rate similar to classical AGD.

Another common assumption is that of quadratic growth [9], [1], [6] and [2]. We say that f satisfies
a quadratic growth condition if there exists p > 0 such that

f(@) = f* > Ella = Ps(a)|P”. 1s)
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Necoara, Nesterov, and Glineur provide a fixed restart strategy for such functions [9]. They derive
the optimal restart frequency based on the knowledge of the parameter .

The growth parameter p is rarely known exactly, and thus many restart strategies for this class
of functions work by estimating it. In Feroq and Qu [6], the authors show that their adaptive restart
strategy which requires an estimation of the growth parameter, satisfies a linear convergence rate.
In Aujol et al. [2] the authors use restarting and adaptive backtracking to estimate both L and p and
prove a linear convergence rate without any prior knowledge of the actual values of the parameters,
thus they are able to run FISTA without any parameters.

Hinder and Lubin provide another adaptive restart strategy based on a potential function that is
always computable [8, Theorem 3]. Their analysis requires the assumption that f is strongly con-
vex, and this assumption cannot be reduced to quadratic growth. According to their computational
experiments, their restart method is comparable to the heuristic methods in [11] in general. How-
ever, they provided an example of a strongly convex and L—smooth separable function on R”
where the gradient based restarts (13) performed worse than classical AGD while their proposed
restart scheme performed better. In passing, we point out that our analysis identifies the drawback
of applying restart condition (13) in this case. As a consequence of our analysis, we show that for
separable functions the condition (13) should be applied in a separable way by checking (13) for
each coordinate.

3. Contributions

Recalling (2), we provide analysis for the case n = 1. We focus only on the gradient restart
condition (13). In the one-dimensional case this condition boils down to

I (y)(@p41 — 21) > 0. (16)

Observe that if for some k € {0,1,2...} we had f/(x) = 0, then z}, is a minimizer and we stop
the algorithm.

Remark 2 In passing we point out that in our scheme, we employ the restart condition (16) with
a slight modification to that proposed in [11]. Indeed, if (16) is satisfied our algorithm keeps xy11
the same, it resets Y1 ‘= Tp41 and ti1 := 1. Note that this is different from the scheme proposed
in [11] which sets Tyy1 = Tk, Yk+1 ‘= Tk, th+1 ‘= 1 whenever (16) is satisfied. We have observed
that our modification offers slightly better performance with the restarts (see Fig. 1 and Fig. 2
below).

Our proposed restart algorithm in the one-dimensional case is given in Algorithm 1 below.
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Algorithm 1: AGD with Restarts

Input: z( € R, (?k)keN is a sequence of scalars that satisfies (5).
Initialization: yo = z0, (t3)ren = (tg)ren-

General step: For k£ > 0 update z, via

Trr1 = T(yx)

If
f'(y) (@1 — z1) <0
update y via

tr—1
tit1

Ykt1 1= Tht1 + (Tp41 — =) -

Else restart as follows: yg1+1 := Tk+1, (tktmr1)meN ‘= (tm)meN-

Proposition 3 Let zo € R and let (zk)ken and (Y )ken be the sequences obtained by Algorithm 1.
Let k € N be such that for all k < k the restart condition (16) has not been satisfied. Then the
following hold.

(i) If xi, < a* then the restart condition in (10) is satisfied at iteration k if and only if x}, < x* <
Th+1-

(ii) If x, > x* then the restart condition in (16) is satisfied at iteration k if and only if xj, > x* >
Th41-

Proof See Appendix A. |

Remark 4 A direct consequence of Proposition 3 is that we get an ordering of the iterates xy,
between restarts. Indeed, suppose we have two restarts, r1 and ro with ro > r1. If y,, < x* then
forallk € {ry,...r9 — 1} we have f'(yx) < 0. Since we do not restart at any of these iterations
we must have that xy+1 — x> 0. Similarly, if y,, > x* we deduce that xj, — xj, < 0.

We will also state the following proposition:

Proposition 5 Let z9 € R and let (zy)ren and (yx)ken be the sequences obtained by Algorithm 1.
Let k € N be such that for all k < k — 1 the restart condition (16) has not been satisfied and that k
is the first iteration where the restart condition is satisfied, i.e.,

S () (@p1 — 1) > 0. A7)
Define zj11 := (1 — tg)xk + tgxrr1. Then,

|2k41 — 2| >tz — 27|
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Proof Suppose that xg < x*. By Proposition 3 we have xj, < x* < xg1. It follows from this, the
definition of 2z and (5) that

[2k1 — 2| = |(1 = t)ak + tewpyr — 2|
= |(1 = tp) (2 — 2%) + tp(zpy1 — 27

18
:(tk—1)]a:k—$*|+tk|:ck+1—x*| ( )
> tg|opy — 27
The case where xg > x* is shown similarly. [ |

Remark 6 A careful look at the proof of Proposition 5 in view of Remark 4 reveals that the conclu-
sion of Proposition 5 generalizes to any number of restarts.

We now recall the following useful fact.

Fact 7 (see, e.g., [3, Theorem 30.4]) Let xo € R and let (zi)ken, and (tx)ken be given by AGD
(8). For k € {0,1,2...} we set

2pt1 = (1 —te) g + teTpy1, (192)
5k = f(l'k) — f(a:*) (19b)

Then we have the following monotonicity property
b1 + Floepr — 2 < 10k + Flae — 2 (20)

We are now ready for our main result. For restarts using the gradient condition (16), we have the
following theorem.

Theorem 8 (a single restart.) Ler xg € R and let (x)ren, (Yk)ren, (tk)ken be given by Algo-
rithm 1. Suppose that iteration r is the first iteration where we have

J () (@r g1 — ) > 0, (21)

and that iteration T is the second iteration where we have f'(y7)(x741—ax7) > 0. Then the following

hold.

() (Vk <r+1)wehave f(xp) — f* < %

(i) f(zr42) < flre)
(i) (Vke {r+3,...,7+1}) we have

2 L(wg — 2%)? _ 2L(wo — z*)?
(k—r)(r+2)> S CESE

flzg) — [ < < (22)

Proof See Appendix B. |
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Theorem 9 (multiple restarts.) Let xo € R and set (Vk € N) ¢, = % Let (x)ren be given by
Algorithm 1. Let p € N. Suppose that ), is the pP-iteration such that

f,(yrp)(xrp+l - xrp) > 0. (23)

Then (Vp > 2) (Vk € {rp +2,...,7p41 + 1}) we have

") < 2 ‘L )2 (4
flaw) = 1@") < ((k—rp)(rp—rp_l+2)...(r2—r1+2)(r1+2)> §(x0_$ ;4
2L(xo — z*)?
< m (24b)
Proof See Appendix C. |

Remark 10 For sufficiently large k and r, the upper bound of 8/((k — r)(r + 2))? in (22) can
be much smaller than the classical factor 2/(k + 1)? for k > r. For example, if r = 10,000,
k = 11,000, then the factor in our new bound is ~ 8 - 10~ versus 2/(k +1)? ~ 1.7 - 1078, The
right-hand side of (24a) further improves (22).

Corollary 11 Let o € R and set (Vk € N) t;, = % Let (z1,)ken be given by Algorithm 1 . Then
flxg) = f* (25)

Proof This is a direct consequence of Theorem 8 and Theorem 9. |

4. Conclusion

In our main result, we prove that the gradient based restarts of O’Donoghue and Candes [11] em-
ployed with a slight modification (see Remark 2) improve the classical right-hand side bound from
AGD when n = 1. The modification in Remark 2 allowed the use of Proposition 5, and in compu-
tational experiments it performed slightly better, even in cases where n > 1.

One remark is that our proof translates to higher dimensions if one has a restart condition that im-
plies tx||xg+1 — z*|| < ||zk+1 — «*||. While this cannot be useful in practice because it requires
prior knowledge of the minimizer, we have experimentally observed that in cases where we do
know the minimizer this restart condition performs well. Giselsson and Boyd also noted that having
||xr — 2*|| < ||z — «*|| would improve the constant in their convergence analysis. A direction of
further research would be to create a restart condition which would imply this condition. Although
the analysis of Algorithm 1 does not extend to higher dimensions, we want to remark on the case
of nearly separable functions. For such functions, we observed that running Algorithm 1 in parallel
along each coordinate can perform better than using the restarting algorithm of O’Donoghue and
Candes as illustrated in Appendix F.
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Appendix A.

Proof of Proposition 3. Let j > 1 and suppose that z; and y; are given by the updates in (8). Using
the fact that f/(z*) = 0 yields

(2 —2*)(yj1 — 2*) = (yj-1 — ) = £ F'(y;-1) (g1 — 2*) > 0. (26)
Moreover, because x; is a gradient step from y;_; of size 1/L we learn that
|lzj —a*| < |yj—1 — 2. 27

(i): “=": Suppose that the gradient condition is satisfied at iteration k, i.e., f'(yx)(zx11 — xx) > 0.
Then for j < k — 1 we have f'(y;)(zj+1 — x;) < 0. In particular, for j = k — 1 we learn that

' (Y1) (@p — 21-1) < 0. (28)

Because z; < z*, using (27) and (26) applied with j replaced by k£ we conclude that i1 < x3 <
x*. Therefore f'(yr_1) < 0 and consequently by (28) we have

Tp = Th—1- (29)

We claim that y;, > z*. Indeed, Algorithm 1 gives us,

tr—1
tkt+1

Yp = T + (T — p—1)- (30)

Since %, is an increasing sequence and ¢; > 1 for all £ > 1, alongside the fact that z, — xx_1 > 0,
we obtain that y;, > x.. Suppose for eventual contradiction that ¢ < x*. Then the above arguments
yields f'(yx) < 0and zj11 = yr, — 1 f'(Yx) > Yx > @%. This implies that

I (ye) (@1 — 2x) <0

which is absurd in view of (17). Therefore we have that y;, > z* which, in turn, implies that
f'(yx) > 0 and that 2* < x,11 < yx. Hence we conclude z;, < x* < zj41. “<”: Suppose that
T < ¥ < xpy1. Then (26) and (27) applied with j replaced by k and with j replaced by k£ + 1
implies

Y1 < Tp < 2" < Tpg1 < Yk, (31)

which immediately implies that
F(yr) (@ps1 — 1) > 0. (32)
Therefore the gradient restart condition is satisfied at iteration k. (ii): Proceed similarly to the proof
of (1). |

Appendix B.

Proof of Theorem 8. Observe that > 2. In the following we let (Zx)ken, (Ux)ken, and (tx)xen
be given by the classical AGD update (8) with the starting point Tg := x. Clearly, tg = to = 1.
Moreover, for all k¥ < r we have,

Ty = :Ek,fk = tg. (33)
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Furthermore, since we keep the point after the restart iteration we have 11 = x,41. Now since at
iteration r + 1 we reset the parameter sequence we have that now ¢,1; = 1, which means that for
k > r + 1 we have the relation that j, = #,_(,11). For k € {0,1,2... } we set

Zit1 := (1 — )T + txThp1s (34a)
O = f(@k) — f(z") (34b)
and we set
21 = (L — tp) Tk + thpy, (35a)
(Sk = f(:(:k) — f(a:*) (35b)
Due to the restart,
Zrgo = (1 = tpp1)Trq1 + trp1Zrg2 = Tryo. (36)

Let k > r + 2. Using Fact 7 we have

Ok = flan) = f@") < g (F(zk — 2")" + ti_10%) (37a)
< 7 (51— ) + 1 90k) (37b)
< (37¢)

(37d)
< g (52 = 27 + 17110042 (37¢)
=7 (52— 2" + 0,42) (376)

where we now used in the equality that .1 = 1, and that 2,49 = x,12. Recall from Algorithm 1
that we update x;, by taking a gradient step from yz_1.

1
Lr42 = Yr41 — Zf,(yrﬂ)

but since we restarted we have that y,41 = Z,41, SO

1
Lr42 = Tr41 — Zf/(xvﬂrl)-

This observation allows us to make further progress. On the one hand, recalling y,11 = Z,41, it
follows from (27) applied with j replaced by r + 2 that

(Try2 — )% < (pg1 — %) (38)

On the other hand, because x; 12 is a gradient step from ;1 with a proper step-length we have that
f(@rs1) = f(xry1) > f(zr42) > f(2*) which, in view of (35b), implies that §, 12 < 0p41 = 0pq1.
Combining this and (37f) yields

0k < 52— (E(zp1 — 2%)2 + 041) (39)

tk—r—?

10
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where we used that x,11 = Z, 11, and that 4 1 = t_(,4.1)—1 = 2. Proposition 5 yields

1 (L1 B
o < Z <2t2(2r+1 —2*)® + 5r+1> (40a)
k—r—2 r
1 L 9=
=5 ((zm — )%+ tf&TH) (40b)
tk—r—Qtr 2
< (40¢)
(40d)
1 _
tk—r—Qtr
1 _
=2 (3 ") +4) (40f)
k—r—2%
L 2
= 2 ah)? (zo — 2%) (40g)
8L

ST oneraE @ o

where (40g) follows from Fact 1 applied with « replaced by z* and y replaced by zy and (40g)
follows from (5). To finish the proof we claim that for £ > r 4+ 3 we have

4 1
< . 41
=) +2)2 = el @1
Indeed, observe that
dhe2k+1)<(k—r)(r+2) (42a)
srk—(r+2)>2, (42b)
which is always true for k& > r + 3 by recalling that » > 2. By definition, z,42 = T(z,41) and
hence |z,4+2 — 2| < |xp41 — 2| and f(zr42) < f(@ry1). [
Appendix C.

Proof of Theorem 9. We introduce the following notation to identify the multiple restarts. We

denote by (xg-”)) jen the sequence of iterates given by starting AGD with x(()”) = 2,41 and t((]”) =

tr,+1 = 1. We can now identify that between two consecutive restarts say r; and ;4.1 we have that

(:I:gi),mgri), .%gi), .. a:g:jr)l_ri) coincide with (2,41, %y, 12, Tr,43, ..., %p,,, ). For iterations k >
rp we have that, (x(()r”), xY”), . 7372272«,,—1) coincide with with (z,, 41, Zr, 42, ..., 2x). Upholding

the notation of (19) we similarly denote the corresponding values of 2(ri) §(ri) and ¢(") . We proceed

11
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similarly to the proof of Theorem 8. Let & > r,, + 2. Then

Flaw) = f@*) = fa?) ) = f(a®) (43a)
1 L. () 2 4 ) y25(m)
< m (2(zk—prp—1 — ")+ (40 )00 (43b)
k—rp—2
< (43c)
1 L T T T
< 7(2{ ) _ x*)2 4 (t(() p))?éi ») (43d)
(t(rp) )2 2
k—rp—2
1 L .
= (2P -2 ) (43e)
(17,2 \2
We now use that mY“’) is a gradient step from a:(()rp) to conclude,
. 1 L, . r
F@) = f@@*) €~ S (e — ") + & (44a)
(t(rp) )2 2
k—rp—2
_ 1 L, (1) 2 slrp=1)
- m (2($Tpprp1+1 )+, (44b)
k—rp—2
where we get equality because when the r, restart gets triggered we keep :cg{ _7",1))71 .1 unchanged
and set m(()rp) = :L"i?_ _7“;1;)7 ,+1- We can now use Proposition 5 to obtain
rp—1 * 1 rp—1 *
oy v =3 S ) = (45)
Tp—Tp—1

Combining (44) and (45) and factoring out the w%m term we obtain
t

Tp—Tp—1

. 1 L -1 * -1 -1
f(xk) - f([l? ) S (rp) 9 (Tp—l) 9 <2(zq(";p—rp)1+1 -z )2 + (t1("zprp)_1)257(~;p_rp)1+l> .
(tk—rp—Q) (t'r‘p—rp,1)
(46)
We now repeat the same procedure. Since the terms in the parentheses on the right-hand side of (46)

have the monotonicity property from Fact 7, we use it repeatedly until we obtain an expression of the

form of the right-hand side of in (20) that features zY“. We then apply the fact that zY") = :1:(1”),

which is a gradient step from x[()”), and finally use Proposition 5. Observe that every time we
apply Proposition 5 an additional factor of 1/ (tgfl,T .)? for some i € {1,...,p} appears in the
denominator of the right-hand side of the inequality (46). This is done p times until the term in the

parentheses reduces to (L/2)(xg — x*)2. We therefore obtain

e T (Flan-a7). @

12
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Recall that for each i € {1,...,p} (Vk € {0,...,7;}) we have t,(:i) = (k +2)/2, hence:

1 2
) E—r (48)
tk rp—2 P
and 1 5
= . 49
£ro) i —Ti-1+ 2 )
Ti—Ti—1

Now let k& € N. Observe that if k < ro + 1 we obtain the O(1/k?) function value convergence rate
from Theorem 8. We now show that (Vp > 2) (Vk > 7, + 2) we have

op+1
(k—rp)(rp—rp_1+2)...(re —r1+2)(r1 +2) S (k—r1)(r +2) & (k+1)

(50)

We proceed by induction on p. We first verify the base case at p = 2. Applying (48) and (49) to
(47) we get

8 °L )
(k—ﬁxm—mﬁﬁxm+20 glao =) eb

ﬂm%ﬁ@ﬂ§<

For k = ro 4+ 2 we have

5 8
(k—=mr2)(ra — 11+ 2)(r1 +2) - (r2 +2 —r2)(ra — 11 + 2)(r1 + 2) (52a)
8
@) ((r2 +2) — 1) (r +2)) (52b)
B : = & (52¢)

(k—r)(r1+2) — k+1
where the inequality follows from the fact thatry > 2and k = ro+2 > r1+3. Now let k > ro+3.
Then

4
k—TQ)TQ—T1+2)(T1+2) k 71 T‘1+2)

- T1+2 < —7"2 T2—T1+2 k—T1> (53.’:1)
B —ry) B (k—ro)(re —r1 +2)

T‘1+2 < —7“2 2—7”1—1—2)(/{3—7’1) (k—TQ)(TQ—Tl—i-Q)(k—Tl)) (53b)
B —?”1) (k—TQ)(TQ—T1+2) c
=575 oo a o) 39

Write k = 79 + a where a > 3. It is sufficient to show that the numerator of the right-hand side of
(53c) is nonpositive. To this end we have

2k —r1) —(k—ro)(ro—r1+2)=2(rg+a—r1)— (re+a—ro)(ra—r1+2)  (54a)
=2a(rg —711) —2a —a(ry — 1) (54b)
= (2 — a)(rz — Tl) S 0 (540)

13



AGD: A GUARANTEED BOUND FOR A HEURISTIC RESTART STRATEGY.

Combining (52), (53), and (54) we conclude that for £ > r2 + 2 we have

8 < 4 < 2
(k—TQ)(TQ—T1+2)(T1+2> - (k‘—’l“l)(’l“l—l—2) —k+1

This proves the base case. Now suppose that we have restarted p times, p > 2, and for & > r), + 2
the following inequalities hold
or+l 4 2
<... < < .
(k—mrp)(rp—rp_1+2)...(ro—r1 +2)(r +2) (k—=r)(r+2) — (E+1)

(35)

Consider the iterations £ > 7,41 + 2 where 7,41 is the iteration of the p + 1 restart. If we apply
(48) and (49) to (47) we obtain,

* 2p+2 2£ )2
flzg) — f(z¥) < ((k—?"pH)Hfill(n—Ti—1+2))> 2(900 )%

We are concerned with iterations k£ > 7,1 +2 since those would be generated after the p+1 restart.
Atk = rp11 + 2 we have

op+2 op+2
T = T (562)
(k—=rpr) [ 21 (ri = rici +2)  (rpp1 +2 —1pg1) [ [ (ri — 11 +2)
op+2
= (56b)
2(rpy1 —1p +2) H?:l(ri — i1+ 2)
2p+1
= (56¢)

(k= rp) [Ti=y (ri = i1 +2)°

Observe that this is exactly what we obtain when we have p restarts. Therefore, by the inductive
hypothesis, we know that for & = r;, 1 + 2 we satisfy the upper bound at ., , 12. Fork > rp41+3
we examine

2p+2 2p+1
(k — Tp-&-l) Hfif (ri —mi—1+2)) (k —rp) H?:l(ri —ric1+2))
Proceeding similarly to the arguments in the base case (see (53) and (54)), we conclude that it is

sufficient to examine the sign of 2(k — 1) — (k — rp41) (1pp1 — rp + 2). Write k = rp41 + a where
a > 3, we now examine

7

2(k —rp) = (k= rps1)(rps1 — 1p + 2)

=2(rpr1 +a—1p) = (rpt1 + @ — 1p1) (Fpt1 — 7p +2) (58a)
=2(rpy1 +a—rp) — (a)(rpp1 —1p + 2) (58b)
=2a+2(rp41 —1p) — 2a — a(rpp1 —1p) (58¢)
=2—-a)(rps1 —rp) <0. (584d)

Hence we conclude for k > 7,1 + 2

< < ,
(b —7pt1) Hfill(ri —ri+2) " k=rp) [T (i —rici +2)) — k41

14



AGD: A GUARANTEED BOUND FOR A HEURISTIC RESTART STRATEGY.

where the second inequality follows from the inductive hypothesis. Altogether we have shown that
(Vp>2), (Vk e {r,+2,...,7p41 + 1}) we have

* 2p+1 2 L *\ 2
Jaw) = @) < ((k =Ty £ 2) (= 4 2) (1 2)) (@0 —27)" (%)
2L
< Grpe ) oo
The proof is complete. u

Appendix D. Numerical example: Simple Quadratic

In this and the upcoming appendices, we provide some numerical examples using the gradient-based
restart strategy. The examples indicate that choosing xy 1 as the new initial point after the restart
does not hamper the algorithm.

The first example is a simple quadratic f(x) = %xTQx — ¢"x, where Q is an n x n positive
definite matrix obtained by Q) = Qo + Qg + 50 Id where Q) is generated using a U0, 1] distribu-
tion, and ¢ € R"™ is randomly generated from a standard normal distribution. The Lipschitz constant
L is given by the maximum eigenvalue of (). For this experiment we set n = 500. We can see in
Fig. 1 that keeping x4 at the restart yields a modest improvement over keeping x;. Our theory
for the n = 1 case required keeping x rather than xy.

Appendix E. Huber Regression

Another numerical example is the following problem of Huber Regression. Define,

2

z?, x| <7
Yr(x) =R 2rx—712 a>7T (60)
21— 7% < —T.

Given A € R™*™ and y € R™ we consider the optimization problem,

min = 3 v (a5 — y:) (©1)
=1

z€R™ 2 —

where a; is a row of A. For this experiment we set 7 = 0.5, m = 300,n = 50, and A and y were
randomly generated using a standard normal distribution. In Fig. 2 it can be observed that restarting
using zj offers slightly better performance.

Appendix F. The Hinder-Lubin Example Expanded

Hinder and Lubin constructed a function [8, Appendix D.4] for which the restarts of O’Donoghue
and Candés performed poorly until the iterates of (zj)reny were close to the minimizer. Their
objective function is defined as

n

Py =3 ihs(wi) + Sl 62

=1
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Quadratic with n = 500

105 - — AGD
=  Grad Restart @xx
»« Grad Restart @xk+1
1D{I -
%
X 10°-
1D-1{I i
1D-15 -

0 50 100 150 200
#k iterations

Figure 1: A Julia plot. A comparison of the performances of the restart scheme in Algorithm 1
at xx41 (the pink dotted curve), the restart scheme in [11] at = (the blue dashed curve)
and the classical AGD (the solid red curve) when applied to minimize simple quadratic.

where

22/2, z> =0
h =
(%) {—5z — 522 <5 (63)

Remark that f : R" — R is (n + a)—smooth and «a-strongly convex with a unique minimizer
at z = 0. The function f is also separable, and therefore one can apply Algorithm 1 along each
coordinate. We see that the restart scheme of Algorithm 1 performs well. In most cases, we do
not have knowledge of whether the function is separable or not but there are cases where running
Algorithm 1 in parallel along each coordinate has merit. We introduce a modified function obtained
from (62) that is not separable. Given a matrix A € R™*", define

F(a) = @)+ (<amx> Sl + 1) (64)
=1

where f is the Hinder and Lubin function defined in (62), a; are the rows of A, and v € R. For
the experiment we chose m = 110,n = 100, and set § = o = v = 10~%. Note that F is now
(n+a+~3" |lai|[*) —smooth. In the experiment we compare AGD, AGD with the gradient
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Huber Regression

— AGD
1[}2.5 -
=  Grad Restart @xx
; »« Grad Restart @xk+1
0.0 -
10 A
—— "'1‘
;—bj' 5 -‘ \
~ 1027 + 3y
= A
1[}-5.1] _ ‘-
Y
. i m
1[} 7.8 - 1' 1
| I | ] |
0 50 100 150 200

#k iterations

Figure 2: A Julia plot. A comparison of the performances of the restart scheme in Algorithm 1
at xx41 (the pink dotted curve), the restart scheme in [11] at = (the blue dashed curve)
and the classical AGD (the solid red curve) when applied to solve the Huber Regression

problem.

restarts, and Algorithm 1 running along each coordinate. In Fig. 3 it can be seen that the gradi-
ent based restarts perform poorly until the iterates get close to the minimizer. On the other hand,
restarting along each coordinate performs much better even though F' is not separable.
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Non Separable Hinder Lubin Function

1[}0 _
— AGD
- = + Grad Restart @xk+1
b + «» Parallel Grad Restarts
1[}-5 -
k3

hol |
E -.
I
10719 - I
1

|
0 2000 4000
#k iterations

Figure 3: A Julia plot. A comparison of the performances of the parallel gradient restart scheme
using Algorithm 1 for each coordinate (the pink dotted curve), the restart scheme in [11]
at x4 (the blue dashed curve) and the classical AGD (the red curve) when applied to
solve the modified Hinder-Lubin function (64). As the plots reflect, while the objective
function is not separable, separate restarts still improve performance.
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