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ABSTRACT

Recent advances in Large Language Model (LLM) agents have demonstrated their
promising general capabilities. However, their performance in specialized real-
world domains often degrades due to challenges in effectively integrating external
tools and specific prompting strategies. While methods like agentic reinforce-
ment learning have been proposed to address this, they typically rely on costly
parameter updates such as Supervised Fine-Tuning (SFT) or Group Relative Pol-
icy Optimization (GRPO) to alter output distribution. However, we argue that
LLMs can achieve a similar effect on the output distribution by introducing a
token prior, which is a far more lightweight approach that not only addresses
practical data scarcity but also avoids the common issue of overfitting. To this
end, we propose Training-free Group Relative Policy Optimization (Training-free
GRPO), a cost-effective solution that enhances LLM agent performance with-
out any parameter updates. Our method leverages minimal ground-truth data
to perform multiple rollouts, where a group-based relative scoring mechanism
is applied to iteratively distill high-quality experiential knowledge in each epoch.
Such knowledge serves as the learned token prior, which is seamlessly integrated
during LLM API calls to guide model behavior. Experiments on mathematical
reasoning and web searching tasks demonstrate that Training-free GRPO, when
applied to DeepSeek-V3.1, significantly improves out-of-domain performance.
With just a few dozen training samples, Training-free GRPO outperforms fine-
tuned small LLMs and achieves competitive results. Our code is available at
https://anonymous.4open.science/r/Training-Free-GRPO/.

Figure 1: Training-free GRPO serves as a cost-effective alternative on AIME24 benchmarks.

1 INTRODUCTION

Large Language Models (LLMs) are emerging as powerful general-purpose agents capable of in-
teracting with complex, real-world environments. They have shown remarkable capabilities across
a wide range of tasks, including complex problem-solving (Feng et al., 2025a), advanced web re-
search (Tongyi DeepResearch Team, 2025), code generation and debugging (Huang et al., 2023),
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and proficient computer use (Wang et al., 2024a). Despite their impressive capabilities, LLM agents
often underperform in specialized, real-world domains. These scenarios typically demand the inte-
gration of external tools (e.g., calculators, APIs, databases), along with domain-specific task defini-
tions and prompting strategies. Deploying a general-purpose agent out-of-the-box in such settings
often results in suboptimal performance due to limited familiarity with domain-specific requirements
or insufficient exposure to necessary tools.

To bridge this gap, agentic training has emerged as a promising strategy to facilitate the adaptation
of LLM agents to specific domains and their associated tools. Recent advancements in agentic re-
inforcement learning (Agentic RL) approaches have employed Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) and its variants to align model behaviors in the parameter space. Al-
though these methods effectively enhance task-specific capabilities, their reliance on tuning LLM
parameters poses several practical challenges:

• Data Scarcity: Fine-tuning LLMs typically necessitates large volumes of high-quality, carefully
annotated data, which are often scarce and prohibitively expensive to obtain in specialized do-
mains. Additionally, with limited samples, models are highly susceptible to overfitting, leading to
poor generalization.

• Computational Cost: Even for smaller models, fine-tuning demands substantial computational
resources, making it both costly and environmentally unsustainable. For larger models, the costs
become prohibitive. Furthermore, fine-tuned models require dedicated deployment and are often
limited to specific applications, rendering them inefficient for low-frequency use cases compared
to more versatile general-purpose models.

• Diminishing Returns: The prohibitive training costs usually compel existing approaches to fine-
tune smaller LLMs with fewer than 32 billion parameters, due to resource constraints rather than
optimal design choices. While larger models would be preferred, the computational expense of
fine-tuning necessitates this compromise. Paradoxically, API-based or open-source larger LLMs
often deliver better cost-performance ratios through scalability and continuous model updates.
However, these general-purpose models underperform in specialized domains where fine-tuning
is necessary, creating a cost-performance dilemma.

Such limitations inherent in parameter tuning motivate a fundamental research question: Is applying
RL in parametric space the only viable approach? Can we enhance LLM agent performance in a
non-parametric way with lower data and computational costs?

We answer this question affirmatively by proposing Training-free Group Relative Policy Opti-
mization (Training-free GRPO), a novel and efficient method that improves LLM agent behavior
in a manner similar to vanilla GRPO, while preserving the original model parameters unchanged.
Our approach is motivated by the insight that LLMs can adapt their output distribution not only
through parameter tuning, but also by leveraging a lightweight token prior, which encapsulates ex-
periential knowledge obtained from a minimal set of training samples.

Training-free GRPO retains the multi-epoch rollout mechanism of vanilla GRPO, where multiple
outputs are generated for each query to explore the policy space and evaluate potential strategies.
While vanilla GRPO relies on gradient-based parameter updates to iteratively improve policy per-
formance, Training-free GRPO eliminates this requirement by employing inference-only operations
using LLMs. Rather than calculating a numerical advantage for gradient ascent within each group of
rollouts, our method leverages LLMs to introspect on each group and distill a semantic advantage.
This process requires multiple optimization iterations to progressively refine the policy, mirroring
the iterative training structure of GRPO but without parameter updates. At each optimization step,
this semantic advantage refines external experiential knowledge and guide policy outputs based on
evolving contextual priors, thereby achieving policy optimization effects without modifying any
model parameters.

By evaluating challenging mathematical reasoning and interactive web browsing tasks, we demon-
strate that our method significantly enhances the performance of frozen policy models such as
DeepSeek-V3.1 (DeepSeek AI, 2025) with only dozens of training samples. It outperforms fine-
tuned models and achieves competitive results at a fraction of the computational cost, offering a
simple and much more efficient alternative to traditional fine-tuning techniques.

Our principal contributions are threefold:
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Figure 2: Comparison of Training-free GRPO and vanilla GRPO.

• A New Training-free RL Paradigm: We introduce Training-free GRPO, which shifts policy
optimization from the parameter space to the context space by leveraging evolving token priors
without gradient updates.

• Semantic Group Advantage: We replace numerical group advantage in vanilla GRPO with se-
mantic group advantage, enabling LLMs to introspect their own rollouts and continuously updat-
ing experiential knowledge.

• Data and Computational Efficiency: Experiments confirm that Training-free GRPO effectively
enhances the performance of a frozen policy with minimal training samples, offering a practical
and cost-effective alternative across different domains.

2 TRAINING-FREE GRPO

In this section, we introduce our Training-free GRPO, a method designed to replicate the align-
ment benefits of the GRPO algorithm without performing any gradient-based updates to the policy
model’s parameters.

Vanilla GRPO. As shown in Figure 2, the vanilla GRPO procedure operates by first generat-
ing a group of G outputs {o1, o2, . . . , oG} for a given query q using the current policy LLM πθ.
Each output oi is then independently scored with a reward model R. Subsequently, with rewards
r = {r1, . . . , rG}, it calculates a group-relative advantage Âi =

ri−mean(r)
std(r) for each output oi. By

combining a KL-divergence penalty against a reference model, it constructs a PPO-clipped objective
function JGRPO(θ), which is then maximized to update the LLM parameters θ.

Training-free GRPO repurposes the core logic of this group-based relative evaluation but translates
it into a non-parametric, inference-time process. Instead of updating the parameters θ, we leave θ
permanently frozen and maintain an external experience library E , which is initialized to ∅.

Rollout and Reward. As shown in Figure 2, our rollout and reward process mirrors that of
GRPO exactly. Given a query q, we perform a parallel rollout to generate a group of G outputs
{o1, o2, . . . , oG} using the LLM. Notably, while GRPO uses the current trainable policy πθ, our
policy conditions on the experience library, πθ(·|q, E). Identical to the standard GRPO setup, we
score each output oi by the reward model R to obtain a scalar reward ri = R(q, oi).

Group Advantage Computation. To provide an optimization direction for policy parameters,
vanilla GRPO computes a numerical advantage Âi that quantifies each output oi’s relative qual-
ity within its group. Similarly, Training-free GRPO performs an analogous comparison within each
group but produces a semantic advantage in the form of natural language experience. Since Âi = 0
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Figure 3: Example of a Training-free GRPO learning step.

when all G outputs receive identical rewards (i.e., std(r) = 0) in vanilla GRPO, we generate such
semantic advantages only for groups with both clear winners and losers. Specifically, for each out-
put oi, we first ask the same LLM M to provide a corresponding summary si = M(psummary(q, oi))
separately, where psummary is a prompt template that incorporates the query q and output oi to form
a structured summarization request. Given the summaries {s1, s2, . . . , sG} and the current experi-
ence library E , the LLM M articulates the reasons for the relative success or failure of the outputs,
followed by extracting a concise natural language experience Atext = M(pextract(q, si, E)), where
pextract is another prompt template for experience extraction. This natural language experience Atext

serves as our semantic advantage, functionally equivalent to vanilla GRPO’s Âi, encoding the criti-
cal experiential knowledge of what actions lead to high rewards.

Optimization. Whereas vanilla GRPO updates its model parameters θ via gradient ascent on
JGRPO(θ) computed by all advantages in a single batch, we update our experience library E us-
ing all semantic advantages Atext from the current batch. Specifically, given the existing experiences
library E , we prompt the LLM to generate a list of operations based on all these Atext, where each
operation could be: (1) Add: Directly append the experience described in Atext to the experience li-
brary E . (2) Delete: Based on Atext, remove a low-quality experience from the experience library E .
(3) Modify: Refine or improve an existing experience in the experience library E based on insights
from Atext. (4) Keep: The experience library E remains unchanged. After updating the experience
library E , the conditioned policy πθ(y|q, E) produces a shifted output distribution in subsequent
batches or epochs. This mirrors the effect of a GRPO policy update by steering the model towards
higher-reward outputs, but achieves this by altering the context rather than the model’s fundamental
parameters. The frozen base model πθ acts as a strong prior, ensuring output coherence and provid-
ing a built-in stability analogous to the KL-divergence constraint in GRPO that prevents the policy
from deviating excessively from πref.

3 EVALUTION

To compare Training-free GRPO with competitive baselines, we conduct comprehensive experi-
ments on both tool-integrated mathematical reasoning and web searching benchmarks.
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Table 1: Mean@32 on AIME 2024 and AIME 2025 (%).

Type Method Model Tool AIME24 AIME25

Prompt - Qwen2.5-32B-Instruct - 21.8 17.8
RL GRPO Qwen2.5-32B-Instruct - 40.0 36.7
Prompt ReAct Qwen2.5-32B-Instruct CI 29.6 23.1
RL ReTool Qwen2.5-32B-Instruct CI 67.0 49.3
RL SimpleTIR Qwen2.5-32B-Instruct CI 59.9 49.2
RL ZeroTIR Qwen2.5-32B-Instruct CI 56.7 33.3
RL AFM Qwen2.5-32B-Instruct CI 66.7 59.8

Prompt - DeepSeek-V3.1 - 66.3 49.8
Prompt ReAct DeepSeek-V3.1 CI 74.8 61.5
RL Training-free GRPO DeepSeek-V3.1 CI 79.6 68.5

3.1 TOOL-INTEGRATED MATH REASONING

We first evaluate Training-free GRPO on challenging mathematical problem-solving tasks that re-
quire a code interpreter (CI) tool.

Benchmarks. We conduct our evaluation on the challenging AIME24 and AIME25 bench-
marks (AIME, 2025), which are representative of complex, out-of-domain mathematical reasoning
challenges. To ensure robust and statistically reliable results, we evaluate each problem with 32
independent runs and report the average Pass@1 score, which we denote as Mean@32.

Methods. We compare several competitive LLMs of varying scales, including Qwen2.5-32B-
Instruct (Qwen et al., 2025) and DeepSeek-V3.1 (DeepSeek AI, 2025). For each model, we evaluate
two primary configurations: (1) Direct Prompting (a text-only input/output process), and (2) Re-
Act (Yao et al., 2023) with a code interpreter tool. We also present results from recent RL methods
that incorporate tool-use capabilities, including ReTool (Feng et al., 2025a), SimpleTIR (Xue et al.,
2025), ZeroTIR (Mai et al., 2025), and AFM (Li et al., 2025b). For our Training-free GRPO exper-
iments, we randomly sample 100 problems from the DAPO-Math-17K dataset (Yu et al., 2025) and
run the learning process for 3 epochs with a single batch per epoch. We use a temperature of 0.7
and a group size of 5 during the Training-free GRPO learning phase, and a temperature of 0.3 for
the final evaluation on the AIME 2024 and 2025 benchmarks.

Main Results. As detailed in Table 1, our approach demonstrates remarkable improvement in
mathematical reasoning. Based on DeepSeek-V3.1 with ReAct, already establishes a strong base-
line, achieving 74.8% on AIME24 and 61.5% on AIME25. This performance surpasses various
state-of-the-art RL methods like ReTool and AFM, which are fine-tuned on the smaller 32B-scale
model. This observation highlights the inherent limitations of smaller models, even with extensive
parameter-based training.

Applying Training-free GRPO to the frozen DeepSeek-V3.1 model elevates its performance to
79.6% on AIME24 and 68.5% on AIME25. This represents a significant absolute gains of +4.8%
and +7.0% respectively, achieved with only 100 training examples and zero gradient updates. This
result clearly demonstrates that guiding a powerful, frozen model through context-space optimiza-
tion is a more effective and efficient strategy than exhaustively fine-tuning a less capable model.

Learning Dynamics. During the 3-step learning process on the training data, we observe a steady
and significant improvement in both Mean@5 (from 81.8% to 90.4%) and Pass@5 (from 94% to
97%). Concurrently, the average number of tool calls increases from 5.9 to 6.3, indicating that as the
agent refines its experiences at each step, it learns to utilize the code interpreter more effectively to
solve training problems, validating the effectiveness of our semantic advantage guided optimization.

Furthermore, as shown in Figure 4, the Mean@32 performance on both AIME24 and AIME25
generally improves with each step, demonstrating that the learned experiences from only 100 DAPO-
Math-17K problems generalize effectively and the necessity of multi-step learning. More strikingly,
the average number of tool calls decreases during AIME evaluation, from 8.4 to 6.7 for AIME24 and
from 10.9 to 9.1 for AIME25. This suggests that Training-free GRPO does not simply encourage
correct reasoning and action; it also teaches the agent to use tools more efficiently and judiciously.
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Figure 4: Detailed performance at each Training-free GRPO step.

Table 2: Mean@32 of Training-free GRPO with DeepSeek-V3.1 (%).

Type Method AIME24 AIME25

Prompt ReAct 74.8 61.5
Prompt ReAct + Self-generated Experiences 78.0 65.1
RL Training-free GRPO without Ground Truths 79.1 67.7
RL Training-free GRPO 79.6 68.5

Such learned experiential knowledge helps the agent prune suboptimal reasoning paths and avoid
erroneous or redundant tool calls, leading to more direct and robust solutions.

Effectiveness of Learned Experiences. In Table 2, we also include the ReAct enhanced with the
experiences generated by DeepSeek-V3.1, matching the quantity learned from Training-free GRPO.
Interestingly, we find that such self-generated experiences also significantly boost the performance
on both benchmarks. However, the experiences learned through Training-free GRPO consistently
outperform them, achieving performance gains of +1.6% and +3.4% on AIME24 and AIME25,
respectively. This highlights the superior quality and effectiveness of the Training-free GRPO for
enhancing reasoning capabilities and overall performance.

Robustness to Reward Signal. Table 2 also presents a variant of Training-free GRPO, where the
ground truth answers are not provided. In such cases, the semantic advantage is directly obtained by
comparing the rollouts within each group, where the LLM can only rely on implicit majority voting,
self-discrimination and self-reflection. Although it does surpass the default version with ground
truths, Training-free GRPO still achieves an impressive results of 79.1% on AIME24 and 67.7% on
AIME25. Thus, Training-free GRPO demonstrates robustness and applicability to domains where
ground truths are scarce or unavailable, further broadening its practical utility.

3.2 WEB SEARCHING

In this section, we evaluate the effectiveness of Training-free GRPO in addressing web searching
tasks by leveraging minimal experiential data to enhance agent behavior.

Datasets. For training, we constructed a minimal training set by randomly sampling 100 trajecto-
ries from the AFM (Chain-of-Agents) web interaction RL dataset (Li et al., 2025a). AFM provides
high-quality, multi-turn interactions between agents and web environments, collected via reinforce-
ment learning in realistic browsing scenarios. For evaluation, we employ WebWalkerQA bench-
mark (Wu et al., 2025), a widely-used dataset for assessing web agent performance. Its tasks require
understanding both natural language instructions and complex web page structures, making it a
rigorous evaluation framework for generalist agents.

6
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Table 3: pass@1 on WebWalkerQA.

Type Method Model pass@1

Prompt ReAct DeepSeek-V3.1 63.4
RL Training-free GRPO DeepSeek-V3.1 67.1

Table 4: Ablation results on WebWalkerQA subset.

Setting Model pass@1 pass@3

ReAct DeepSeek-V3.1 66.67 72.55
ReAct QwQ-32B 27.45 43.14
Random Experiences DeepSeek-V3.1 68.63 78.43
Training-free GRPO w/o GT DeepSeek-V3.1 70.59 74.51
Training-free GRPO QwQ-32B 25.49 45.10
Training-free GRPO DeepSeek-V3.1 74.51 84.31

Methods. Our proposed Training-free GRPO is applied to DeepSeek-V3.1 model without any
gradient-based updates. We perform 3 epochs of training-free optimization with a group size of
G = 3. The temperature settings follow those used in prior mathematical experiments.

Main Results. We evaluate the effectiveness of our proposed Training-free GRPO method on the
WebWalkerQA benchmark. As shown in Table 3, our method achieves a pass@1 score of 67.1%
when using DeepSeek-V3.1 model, demonstrating significant performance improvements. Notably,
this surpasses the baseline prompt-only approach with the same model, which achieves 63.4%, indi-
cating that our approach effectively steers model behavior through learned experiential knowledge
rather than relying solely on static prompting strategies.

Ablation. We conduct ablation studies on a stratified random sample of 51 instances from the
WebWalkerQA test set, where the sampling is proportionally stratified by difficulty level to ensure
balanced representation across different levels of complexity. All ablated models are evaluated after
2 epochs of experience optimization. The results are summarized in Table 4.

Using random experiences only slightly improves over ReAct (68.63% vs. 66.67%), confirming
that mere in-context examples offer limited gains, which enhances the quality and strategic consis-
tency of the experiences extracted by our method. Training-free GRPO without ground truth reaches
70.59%, demonstrating—consistent with math results—that relative reward evaluation remains ef-
fective even without ground truth.

Applying Training-free GRPO to QwQ-32B (Team, 2025) yields only 25.49% pass@1, significantly
lower than the 74.51% achieved with DeepSeek-V3.1, and even underperforming its own ReAct
baseline (27.45%). This may suggest that the effectiveness of our method is dependent on the under-
lying model’s reasoning and tool-use capabilities, indicating that model capability is a prerequisite
for effective experience-based optimization

4 COMPARING RL ON CONTEXT SPACE AND PARAMETER SPACE

4.1 CROSS-DOMAIN TRANSFER ANALYSIS

A critical advantage of Training-free GRPO lies in its ability to achieve strong performance across
diverse domains without suffering from the domain specialization trade-off observed in parameter-
tuned methods. As demonstrated in Table 5, we observe a striking pattern of performance degra-
dation when domain-specialized models are transferred to different domains. For instance, ReTool
specifically trained on mathematical reasoning tasks, achieves competitive performance of 67.0% on
AIME24 within its specialized domain. However, when transferred to web navigation tasks on Web-
Walker, its performance drops dramatically to only 18.3%. Similarly, MiroThinker optimized for
web interactions, demonstrates strong web capabilities but achieves only 36.5% on AIME24. This
significant performance drop highlights that parameter-based specialization narrows the model’s ca-
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Table 5: Cross-domain transfer performance comparison (pass@1, %).

Method Training Domain AIME24 AIME25 WebWalker

ReTool (Qwen2.5-32B-Instruct) Math 67.0 49.3 18.3
MiroThinker (Qwen3-32B) Web 36.5 29.6 53.6
Training-free GRPO (DeepSeek-V3.1) Math / Web 79.6 68.5 67.1

pabilities to excel in the training domain at the expense of generalizability. In contrast, Training-free
GRPO applied to the frozen LLM achieves state-of-the-art performance in both domains simulta-
neously by simply plugging in domain-specific learned experiences. Such cross-domain robustness
makes Training-free GRPO particularly valuable for real-world applications where agents must op-
erate in multifaceted environments with diverse requirements.

4.2 COMPUTATIONAL COSTS

As shown in Figure 1, we further analyze the economic advantages of Training-free GRPO by com-
paring its computational costs with a vanilla training approach, specifically ReTool, on mathematical
problem-solving tasks. This comparison highlights the practical benefits of our method in scenarios
characterized by limited data, constrained budgets, or volatile inference demand.

Training Cost. Using the same dataset and experimental setup, we replicate the training process of
ReTool on Qwen2.5-32B-Instruct. The training requires approximately 20 thousand NVIDIA A100
GPU hours. Assuming a conservative rental price of $0.5 per GPU hour, the total training expense
amounts to roughly $10,000. In contrast, Training-free GRPO, when applied to DeepSeek-V3.1,
achieves superior performance on the same evaluation benchmarks (Section 3.1) while requiring
only minimal fine-tuning. It requires only 3 training steps over 100 samples completed within 6
hours, which consumes 77 million input tokens and 6 million output tokens, amounting to a total
cost of approximately $55 based on the official DeepSeek AI pricing1. The drastic reduction in
training cost by over two orders of magnitude makes our approach especially cost-effective.

Inference Cost. Deploying a trained model like ReTool-32B entails significant fixed infrastructure
costs. In a typical serving setup, 4 NVIDIA A100 GPUs with vLLM-based batching requests can
process about 400 problems per hour from the AIME24 and AIME25 benchmarks. At the same
$0.5 per GPU-hour pricing, the inference cost per problem averages $0.005. While this per-instance
cost is relatively low, it presupposes continuous GPU availability, which becomes inefficient under
fluctuating or low request volumes. In contrast, Training-free GRPO incurs a token-based cost. On
average, each request consumes 82 thousand input tokens and 6 thousand output tokens, totaling
about $0.06 per problem. Although per-query inference with a large API-based model is more ex-
pensive than with a dedicated small model, many real-world applications, particularly specialized
or low-traffic services, experience irregular and modest usage patterns. In such cases, maintain-
ing a dedicated GPU cluster is economically unjustifiable. By leveraging the shared, on-demand
infrastructure of large model services like DeepSeek, Training-free GRPO eliminates fixed serv-
ing overhead and aligns costs directly with actual usage. This pay-as-you-go model is distinctly
advantageous in settings where demand is unpredictable or sparse.

5 RELATED WORK

LLM Agents. Large Language Models (LLMs) can overcome inherent limitations, such as lacking
real-time knowledge and precise computation, by leveraging external tools. This has spurred the
development of LLM agents that interleave reasoning with actions. Foundational frameworks like
ReAct (Yao et al., 2023) prompt LLMs to generate explicit chain-of-thought (CoT) and actionable
steps, enabling dynamic planning through tool use. Furthermore, Toolformer (Schick et al., 2023)
demonstrates that LLMs can learn to self-supervise the invocation of APIs via parameter fine-tuning.
Building on these principles, subsequent research has produced sophisticated single- and multi-agent
systems, such as MetaGPT (Hong et al., 2024), CodeAct (Wang et al., 2024b), and OWL (Hu et al.,
2025), which significantly enhance the quality of planning, action execution, and tool integration.

1https://api-docs.deepseek.com/quick_start/pricing
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Reinforcement Learning. Reinforcement learning (RL) has proven highly effective for aligning
large language models (LLMs) with complex, long-horizon goals. Foundational algorithms like
Proximal Policy Optimization (PPO) (Schulman et al., 2017) employ a policy model for genera-
tion and a separate critic model to estimate token-level value. Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) eliminates the need for a critic by estimating advantages directly from
groups of responses. Recent research try to apply RL to transform LLMs from passive generators
into autonomous agents that learn through environmental interaction. GiGPO (Feng et al., 2025b)
implements a two-level grouping mechanism for trajectories, enabling precise credit assignment
at both the episode and individual step levels. ReTool (Feng et al., 2025a) uses PPO to train an
agent to interleave natural language with code execution for mathematical reasoning. Chain-of-
Agents (Li et al., 2025b) facilitates multi-agent collaboration within a single model by using dy-
namic, context-aware activation of specialized tool and role-playing agents. Furthermore, Tongyi
Deep Research (Tongyi DeepResearch Team, 2025) introduces synthetic high-quality data genera-
tion pipeline and conduct customized on-policy agentic RL framework. However, such parameter-
updating approaches results in prohibitive computational cost, which typically restricts application
to LLMs with fewer than 32B parameters. Also, they only achieve diminishing returns compared
to simply using larger, more powerful frozen LLMs. In contrast, our proposed Training-free GRPO
method seeks to achieve comparable training benefits on state-of-the-art LLMs without any param-
eter updates, drastically reducing both data and computational requirements.

Training-free Methods. A parallel line of research aims to improve LLM behavior at inference time
without updating model weights. The general idea is in-context learning (ICL) (Brown et al., 2020),
which leverages external or self-generated demonstrations within a prompt to induce desired behav-
iors. More recent methods introduce iterative refinement mechanisms. Self-Refine (Madaan et al.,
2023) generates an initial output and then uses the same LLM to provide verbal feedback for subse-
quent revisions. Similarly, Reflexion (Shinn et al., 2023) incorporates an external feedback signal to
prompt the model for reflection and a new attempt. In-context reinforcement learning (ICRL) (Song
et al., 2025; Monea et al., 2024) demonstrates that LLMs can learn from scalar reward signals by be-
ing prompted with their past outputs and associated feedback. TextGrad (Yuksekgonul et al., 2025)
proposes a more general framework, treating optimization as a process of back-propagating textual
feedback through a structured computation graph. A key characteristic of these methods is their fo-
cus on iterative, within-sample improvement for a single query. In contrast, our Training-free GRPO
more closely mirrors traditional RL by learning from a separate dataset across multiple epochs to
iteratively refine a shared, high-quality experience library for all queries. Furthermore, given each
query, unlike self-critique or context updates for a single trajectory, our method explicitly com-
pares multiple rollouts per query, producing a semantic advantage to compare different trajectories
in each group. Such semantic feedback is accumulated into a concise knowledge base, enabling a
non-parametric analogue of policy improvement that biases the model’s output distribution during
inference. More specifically for optimizing agent systems, Agent KB (Tang et al., 2025) constructs
a shared, hierarchical knowledge base to enable the reuse of problem-solving experiences across
tasks. Unlike the complex reason-retrieve-refine process of Agent KB, Training-free GRPO simply
injects the learned experience into the prompt. Moreover, Agent KB relies on hand-crafted examples
and employs an off-policy learning paradigm once by collecting trajectories in the different way of
online inference. In contrast, our Training-free GRPO uses a consistent pipeline and more closely
mirrors on-policy RL with multi-epoch learning.

6 CONCLUSION

In this paper, we introduced Training-free GRPO, a novel paradigm that reframes policy optimiza-
tion as a context-engineering problem rather than a parameter-updating one. By leveraging group-
based rollouts to iteratively distill a semantic advantage into an evolving token prior, our method
successfully steers the output distribution of a frozen LLM agent, achieving significant performance
gains in specialized domains. Experiments demonstrate that this Training-free approach not only
surmounts the practical challenges of data scarcity and high computational cost but also rivals the
effectiveness of traditional fine-tuning. Our work establishes a new, highly efficient pathway for
adapting powerful LLM agents, making advanced agentic capabilities more accessible and practical
for real-world applications.
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A PROMPTS FOR MATH TASKS

Solve the following problem step by step. You now have the ability to selectively write executable
Python code to enhance your reasoning process, e.g., calulating numbers and verifying math computa-
tions. Never directly just printing your semantic reasoning in Python. The Python code will be executed
by an external sandbox, and the output (returned as a dict with the message in the “message” field) can
be returned to aid your reasoning and help you arrive at the final answer. The Python code should be
complete scripts, including necessary imports.

Each code snippet is wrapped with
```python
code snippet
```.

The last part of your final response should be in the following format:
<answer> \boxed{The final answer goes here.} </answer>

Figure 5: System prompt for math tasks.

Please solve the problem:
{problem}

When solving problems, you MUST first carefully read and understand the helpful instructions and
experiences:
{experiences}

Figure 6: Prompt for supplementing math problems with experiential knowledge E .

An agent system may be provided with some experiences, and then it produces the following trajectory
to solve the given problem. Please summarize the trajectory step-by-step:
1. For each step, describe what action is being taken, and which experience has been used in this step.
2. Given the grading of this rollout and the correct answer, identify and explain any steps that represent
detours, errors, or backtracking, highlighting why they might have occurred and what their impact was
on the trajectory’s progress.
3. Maintain all the core outcome of each step, even if it was part of a flawed process.

<trajectory> {trajectory} </trajectory>
<evaluation> {whether the answer is correct or not} </evaluation>
<groundtruth> {the ground truth answer} </groundtruth>

Only return the trajectory summary of each step, e.g.,
1. what happened in the first step and the core outcomes
2. what happened in the second step and the core outcomes
3. ...

Figure 7: Prompt for summarizing each trajectory during Training-free GRPO in math tasks.

B CASE STUDY

See how the agent performs on MATH problems with versus without experience, as shown in Fig-
ure 10 and Figure 11.

C THE USE OF LARGE LANGUAGE MODELS

We clarify that no LLMs were employed in the writing or polishing of this paper. All content
presented herein is the result of original research and critical evaluation by the authors.
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An agent system is provided with a set of experiences and has tried to solve the problem multiple
times with both successful and wrong solutions. Review these problem-solving attempt and extract
generalizable experiences. Follow these steps:

1. Trajectory Analysis:
− For successful steps: Identify key correct decisions and insights
− For errors: Pinpoint where and why the reasoning went wrong
− Note any important patterns or strategies used/missed
− Review why some trajectories fail? Is there any existing experiences are missed, or experiences do

not provide enough guidance?

2. Update Existing Experiences
− Some trajectories may be correct and others may be wrong, you should ensure there are experiences

can help to run correctly
− You have three options: [modify, add, delete]

∗ modify: You can modify current experiences to make it helpful
∗ add: You can introduce new experiences to improve future performance
∗ delete: You can delete existing experiences

− You can update at most {max number of operations} clear, generalizable lessons for this
case

− Before updating each experience, you need to:
∗ Specify when it would be most relevant
∗ List key problem features that make this experience applicable
∗ Identify similar problem patterns where this advice applies

3. Requirements for each experience that is modified or added.
− Begin with general background with several words in the experience
− Focus on strategic thinking patterns, not specific calculations
− Emphasize decision points that could apply to similar problems

Please provide reasoning in details under the guidance of the above 3 steps. After the step-by-step
reasoning, you will finish by returning in this JSON format as follows:
```json
[

{
“option”: “modify”,
“experience”: “the modified experience”,
“modified from”: “G17” # specify the ID of experience that is modified

},
{

“option”: “add”,
“experience”: “the added experience”,

},
{

“option”: “delete”,
“delete id”: “the deleted experience ID”,

}, ...
]
```

Note that your updated experiences may not need to cover all the options. You can only use one type of
updates or choose to remain all experiences unchanged.

<problem> {problem} </problem>
<trajectories> {G trajectories in the same group} </trajectories>
<groundtruth> {answer} </groundtruth>
<experience> {experiences} </experience>

Figure 8: Prompt for group advantage computation based on group rollouts during Training-free
GRPO in math tasks.
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An agent system is provided with a set of experiences and has tried to solve the problem multiple times.
From the reflections, some suggestions on the existing experiences have been posed. Your task is to
collect and think for the final experience revision plan. Each final experience must satisfy the following
requirements
1. It must be clear, generalizable lessons for this case, with no more than 32 words
2. Begin with general background with several words in the experience
3. Focus on strategic thinking patterns, not specific calculations
4. Emphasize decision points that could apply to similar problems
5. Avoid repeating saying similar experience in multiple different experiences

<experience> {experiences} </experience>
<suggested updates> {group advantage} </suggested updates>

Please provide reasoning in each of the suggestions, and think for how to update existing experiences
You have two update options: [modify, merge]
- modify: You can modify current experiences to make it helpful - merge: You can merge some similar
experiences into a more general forms to reduce duplication
After generating the step-by-step reasoning, you need to give the final experience revision details by
returning in this JSON format as follows:
```json
[

{
“option”: “modify”,
“experience”: “the modified experience”,
“modified from”: “G17” # specify the ID of experience that is modified

},
{

“option”: “merge”,
“experience”: “the merged experience”,
“merged from”: [“C1”, “C3”, “S4”, ...] # specify the str IDs of experiences that is merged from,

at least 2 IDs are needed
},
{

“option”: “delete”,
“delete id”: “the deleted experience ID”,

}, ...
]
```

Note that your updated experiences may not need to cover all the options. You can only use one type of
updates or choose to remain all experiences unchanged.

<problem> {problem} </problem>
<trajectories> {G trajectories in the same group} </trajectories>
<groundtruth> {answer} </groundtruth>

Figure 9: Prompt for optimizating experiential knowledge E based on group advantages in the same
batch during Training-free GRPO on math tasks.
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Tool-integrated Math Reasoning (no experiences)

Question
Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16,AB = 107,FG = 17, and EF = 184, what is
the length of CE?

Trajectory
[Agent] I’ll place point D at the origin (0,0) and assume C is at (107,0) and A at (0,16)
based on rectangle dimensions.
[Tool] Execute code to set up coordinate system.
[Agent] Now let me calculate the determinant condition for points A, D, G, H to be
concyclic using a 4x4 matrix.
[Tool] Execute code for determinant calculation.
[Agent] I get CE ≈ 106.91., but this doesn’t seem right geometrically. Let me try different
point orders.
[Tool] Eexecute code for various orders (D − C − E − F , E −D − C − F ). [Agent] Get
negative CE or values outside valid range, but not validate solutions.
[Tool] Execute code with errors.
[Agent] Final answer: CE ≈ 106.91. (incorrect)

Figure 10: Example trajectory without experience in Math Reasoning
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Tool-integrated Math Reasoning (with experiences)

Question
Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16,AB = 107,FG = 17, and EF = 184, what is
the length of CE?

Experiences
[1] When solving geometry problems with intersections, validate solutions lie within
bounded regions or segments, not on extensions, to avoid extraneous answers.
. . .
[29] When constructing points on line extensions, carefully interpret directional phrases
like ’beyond B’.
. . .
[37] In geometry problems with points on sides of a triangle and given segment lengths,
first determine all three side lengths by summing the appropriate segments. For example, if
points on AB, AC, BC are given with AM, MB, AN, NC, BP, PC, then AB = AM + MB,
AC = AN + NC, BC = BP + PC. This ensures the triangle is consistently defined before
coordinate placement or area calculations.
[38] n geometry problems with multiple intersecting lines and given angles that don’t sum
to 180°, look for the relationship where the sum of intersection angles equals the sum
of vertex angles. This pattern often appears when lines cross and form various angles,
particularly when right angle markers indicate vertical/horizontal references. Focus on
geometric relationships rather than coordinate calculations, and verify that the given angles
are measured from the indicated reference directions (often vertical or horizontal).
. . .

Trajectory
[Agent] I’ll place point D at the origin (0, 0) and assume points D, E, C, F are collinear in
order D − E − C − F . (Experience 29: Correct interpretation of collinear order)
[Tool] Execute code to set up coordinate system with D(0, 0), E(107 − x, 0), C(107, 0),
F (291− x, 0).
[Agent] For rectangles: A(0, 16), B(107, 16), H(107− x,−17), G(291− x,−17). (Expe-
rience 37: Determine all side lengths from given segments)
[Agent] Use circle equation: x2 + y2 +Dx + Ey + F = 0. Substitute A(0, 16), D(0, 0),
H(107− x,−17) to find F = 0, E = −16, and derive equation.
[Agent] Ensure G(291 − x,−17) lies on same circle, leading to quadratic equation:
x2 − 398x+ 30576 = 0. (Experience 38: Focus on geometric relationships)
[Tool] Execute code to solve quadratic: solutions x = 294 or x = 104.
[Agent] Select x = 104 as valid solution.
[Tool] Execute code to verify concyclicity and dimensions.
[Agent] Final answer: CE = 104. (correct)

Figure 11: Example trajectory with experiences in Math Reasoning
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