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ABSTRACT

Reinforcement Learning (RL) has emerged as a pivotal strategy for adapting Large
Language Model (LLM) agents to specialized domains and complex tool-use sce-
narios. However, existing approaches typically instantiate the policy as a param-
eterized LLM, relying on gradient-based updates such as Group Relative Policy
Optimization (GRPO). This paradigm incurs prohibitive computational costs and
risks catastrophic forgetting, often making it impractical for resource-constrained
scenarios. In this work, we propose a fundamental rethinking of agentic RL
by introducing Training-Free Group Relative Policy Optimization (Training-Free
GRPO). It instantiates the policy as a frozen LLM paired with a variable experien-
tial context, shifting optimization from the parameter space to the context space.
Mirroring the iterative structure of vanilla GRPO, our method replaces gradient
descent with multi-epoch RL learning by introspecting on groups of trial-and-
error rollouts, where the LLM extracts a semantic group advantage to iteratively
refine its problem-solving experiences without parameter updates. Experiments
on mathematical reasoning and web search tasks demonstrate that Training-Free
GRPO establishes a new Pareto frontier between test-time performance and learn-
ing cost. Also, we show that applying our method to a frozen flagship LLM like
DeepSeek-V3.1-Terminus using merely 100 training samples yields superior per-
formance to fully fine-tuning a 32B LLM, while slashing learning costs by orders
of magnitude from $800 to $8. It offers a highly effective and accessible pathway
for optimizing LLM behaviors in real-world applications.
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Figure 1: (a) Training-free GRPO instantiates RL policy as a frozen LLM paired with a variable ex-
periential context, optimizing through trial-and-error process. After offline learning, such optimized
experiences guide the LLM during online inference on test samples. (b-c) On AIME’24 benchmark,
Training-free GRPO effectively interpolates the Pareto frontier with and without tool use, offering a
significantly lower learning cost while still delivering meaningful performance improvements.
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1 INTRODUCTION

Reinforcement Learning (RL) is a fundamental paradigm of learning through systematic trial-and-
error (Kaelbling et al.l [1996), where an agent interacts with an environment, observing states and
executing actions to maximize reward signals by adjusting a policy. With the emerging capability of
Large Language Models (LLMs) in complex, real-world environments (Mai et al., 2025; Xue et al.,
2025; Jin et al.| 2025} [Team, 2025} Zhang et al.l 2024; |Huang et al., |2023; |Wang et al., [2024bga;
Yuksekgonul et al.| [2025)), RL has become a pivotal strategy for adapting LLM agents to specialized
domains and tools (Feng et al.| 2025a; {Tongyi DeepResearch Team| [2025; Tao et al.,|2025; |L1 et al.}
2025)). Among these studies, the policy is typically instantiated as a parameterized LLM. And their
policy optimization is usually based on gradient-based updates in the parameter space, employing
Group Relative Policy Optimization (GRPO) (Shao et al.l 2024) or its variants (Liu et al.l 2025;
Yu et al, 2025} [Zheng et al.| [2025). While these RL algorithms effectively enhance task-specific
capabilities, their reliance on fine-tuning parameters poses significant practical challenges:

* Computational Cost: Even for smaller LLMs, fine-tuning demands substantial computational
resources, making it both costly and environmentally unsustainable. For larger models, the costs
become prohibitive.

* Poor Generalization: Parameters optimized for specific tasks often suffer from catastrophic for-
getting, degrading cross-domain generalization. For practical applications with multiple subtasks,
this necessitates deploying multiple specialized models which increases system complexity.

» Data Scarcity: Effective fine-tuning needs large volumes of high-quality annotated data that are
scarce in specialized domains. With limited samples, LLMs are highly susceptible to overfitting.

* Diminishing Returns: In practice, resource constraints often result in fine-tuning smaller LLMs
with fewer than 32 billion parameters. Paradoxically, larger API-based LLMs often deliver supe-
rior cost-effective service through deployment scalability, leading to the marginal gains of fine-
tuning smaller models.

These limitations suggest a fundamental rethinking of RL in the LLM era. Indeed, RL extends
far beyond gradient-based updates of parameterized models. By definition, a policy is simply a
mapping from states to actions (Kaelbling et al., [1996)). For example, the policy could be simple
look-up tables (Gittins et al., 2011). Furthermore, even when neural networks serve as the policy,
RL optimization can use gradient-free methods that search for optimal policies (Arulkumaran et al.,
2017). This broader perspective leads to a critical question: Given that a policy can be any mapping,
and optimization is not strictly bound to gradient updates, must we incur the prohibitive cost and
suffer the poor generalizability of updating LLM parameters in RL?

Building upon this insight, we propose instantiating the RL policy as the union of a frozen LLM
and its variable context, thereby shifting optimization from the parameter space to the context space.
As illustrated in Figure[(a), during multi-epoch RL process, the context evolves through trial-and-
error. By leveraging the LLM’s intrinsic In-Context Learning (ICL) capabilities (Brown et al.,|2020),
this strategy could achieve policy improvement without modifying a single model weight in RL.
Specifically, we introduce Training-Free Group Relative Policy Optimization (Training-Free
GRPO), which mirrors the multi-epoch vanilla GRPO but replaces gradient descent with evolving
experiences in the context. In each epoch, for every training sample, the agent generates a group
of trials based on current experiences. Rather than calculating a numerical advantage for parameter
tuning, LLM could introspect on these diverse outputs and distill a semantic group advantage, a
textual optimization direction derived from contrasting successful and failed trials. Such advantage
optimizes the current experiences in the context, serving as a refined policy for subsequent epochs.

By evaluating challenging mathematical reasoning and interactive web searching tasks, we demon-
strate that Training-Free GRPO significantly enhances the performance of frozen LLMs, such as
Qwen2.5-32B-Instruct (Yang et al., 2025a) and DeepSeek-V3.1-Terminus (DeepSeek-All [2024),
using only dozens of training samples. As shown in Figure[I[b)-(c), it establishes a new Pareto fron-
tier between test-time performance and learning costs, offering an effective and efficient alternative
to both fine-tuning small LLMs and the direct usage of large LLMs.
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Figure 2: Comparison of vanilla GRPO and Training-Free GRPO.
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Our principal contributions are summarized as follows:

* A Context-based RL Paradigm: We demonstrate that trial-and-error Reinforcement Learning
can be effectively instantiated by utilizing a frozen LLM with evolving context as the policy,
optimizing the context rather than model parameters.

* Training-Free GRPO: We propose the algorithm that computes semantic group advantage to
iteratively refine the policy context, mirroring the vanilla GRPO process while eliminating costly
gradient updates.

* Efficiency and Generalization: Training-Free GRPO achieves competitive performance with
a fraction of the computational resources required for fine-tuning LLMs, better preserving the
LLM’s generalizability.

2 TRAINING-FREE GRPO

In this section, we introduce Training-Free GRPO that instantiates the RL policy as a frozen LLM
with variable context, thereby achieving policy optimization in the context space without any LLM
parameter update.

Vanilla GRPO. As shown in Figure 2} the vanilla GRPO instantiates the RL policy as a tunable
LLM my. It operates by first generating a group of G outputs {01, 02, ...,05} for a given query
q using the current policy LLM, i.e., mg(0; | ¢). Each output o; is then independently scored with
a reward model R, which could be a rule-based function or an LLM judging whether o, matches
the ground truth y, producing the scalar reward r; = R(0;,y). With rewards r = {r1,...,r¢},

it calculates a group-relative advantage A; = %‘Ei‘)‘(r) for each output 0;. By combining a KL-
divergence penalty against a reference model ¢, it constructs a PPO-clipped objective function

Jareo(6), which is then maximized to update the LLM parameters 6.

Training-Free GRPO repurposes the core logic of such group relative policy optimization, but trans-
lates it into a context-based gradient-free process. Instead of instantiating the RL policy as a tunable
LLM my, our policy Ty ¢ is a permanently frozen LLM with a variable experiential knowledge £
initialized to () in the context.

Rollout and Reward. As shown in Figure [2] our rollout and reward process mirrors that of GRPO
exactly. Given a query g, we perform a parallel rollout to generate a group of G trajectories or
outputs {01, 09,...,0a} by directly injecting all the current experiences £ into the context, i.e.,
7,c(0;|q). Identical to the above standard GRPO setup, we score each output o; by the reward
model R to obtain a scalar reward r; = R(0;,y).
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Figure 3: Example of a Training-Free GRPO learning step.

Group Advantage Computation. To provide an optimization direction for policy LLM parame-
ters 6, vanilla GRPO computes a numerical advantage A; that quantifies each output o;’s relative
quality within its group. Specially, when all G outputs from a group receive identical rewards (i.e.,
std(r) = 0), 4; = 0 and no optimization direction will be provided. Similarly, Training-Free GRPO
performs an analogous comparison between outputs within each group, but produces a semantic
group advantage A, in the form of natural language, as shown in Figure@ Ajex; articulates the
reasons for the relative success or failure of output o;, functionally equivalent to vanilla GRPO’s A;,
delivering the optimization direction of what actions could lead to high rewards. Also, for groups
with std(r) = 0, Awx, Will not be generated due to the lack of optimization direction. Specifi-
cally, for each output o;, we first ask the same frozen LLM My to provide a step-by-step summary
s; = My (psummary, q,0i,y), where Dsummary 18 @ prompt template that incorporates the query g, output
o0; and ground truth y. With such summaries s = {s1, s, ..., Sg}, the LLM My then extracts the
Aext; = Mo(Daavs 4, 1,8, y, 1) for each output o;, where p,qy is the prompt template for advantage
generation.

Optimization. Whereas vanilla GRPO optimizes the LLM policy my via gradient ascent on
Jcrro(#) computed by all advantages A;in a single batch, we freeze the LLM parameter 6 in
our policy 7y ¢ and optimize the experiential knowledge £ using all semantic advantages Ayex; from
the current batch. Specifically, given existing £, the same frozen LLM My generates a list of oper-
ations, where each operation could be:

* Add: Directly append a new experience inspired by Ay, to the experiential knowledge &.
* Delete: Remove a low-quality experience from £ according to Ayex, -
* Modify: Refine or improve an existing experience in £ based on insights from Ayey; .

* Keep: The experiential knowledge £ remains unchanged.

Similar to vanilla GRPO, we run the above process for multiple epochs, where each epoch may
contain several optimization batches. In each batch, after updating the experiential knowledge &,
the policy mp ¢(-|¢) produces a shifted output distribution in subsequent learning batches. This
mirrors the effect of the GRPO policy LLM update by steering the parameters € towards higher-
reward outputs, but achieves this by altering the experiential knowledge £ in the context rather than
the LLM parameters. And our frozen LLM parameters 6 acts as a strong prior, ensuring output
coherence and providing a built-in stability analogous to the KL-divergence constraint in GRPO
that prevents the policy from deviating excessively from 7.
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Table 1: Learning cost and evaluation performance of agentic tool-use Reinforcement Learning (RL)
methods on AIME benchmarks (Mean@32, %) and WebWalker QA (Average accuracy, %).

LLM Method Training Set Cost AIME’24 AIME’25 WebWalker
ReAct - - 80.0 67.9 67.5
DeepSeek-V3.1-Terminus DAPO-100 ~$18 82.7(12.7) 73.3(15.4) 58.8
ReAct+Ours s En1100  ~$40 796 68.1 71.0 (13.5)
ReAct - - 318 255 26.6
DAPO-100  ~$03 342 (12.4) 284 (12.9) 30.3
Qwen2.5-32B-Tnstruct  RCACHOUIS o100 ~$18 296 245 32.4(15.8)
Retool DAPO-100  ~$1,000 43.2 353 31.9
MiroThinker AFM-100  ~$1.200 20.8 13.9 35.8

Table 2: Learning cost and Mean @32 (%) of tool-free RL methods on AIME benchmarks.

LLM Method Training Set  Cost AIME’24  AIME’25
Direct Prompting - - 68.6 529

DeepSeek-V3.1-Terminus  Training-Free GRPO  DAPO-100 ~$8 72.6 (14.0) 54.0(T1.1)
GRPO Training DAPO-100 ~$5,000 75.7 57.1
Direct Prompting - - 16.4 13.2

Qwen2.5-32B-Instruct Training-Free GRPO  DAPO-100 ~$0.2 16.8 (10.4)  13.8 (10.6)
GRPO Training DAPO-100 ~$800 20.3 14.4

3 EVALUTION

Training-Free GRPO instantiates the Reinforcement Learning (RL) policy as a frozen LLM with
variable experiential context for offline learning, and such learned experiences work for In-Context
Learning (ICL) during online inference. In this section, we compare Training-Free GRPO against
parameter-tuning RL methods in two distinct settings:

» Agentic Tool-Use Setting involving math tasks with Python and web search tasks with Google.

*» Tool-Free Setting assessed on mathematical reasoning tasks.

3.1 EXPERIMENTAL SETUP

Benchmarks. For mathematical reasoning, we conduct our evaluation on the challenging AIME’24
and AIME’25 benchmarks (AIME, [2025). To ensure robust and statistically reliable results, we
evaluate each question with 32 independent runs and report the average Pass@1 score, which we
denote as Mean@32. For web searching, we evaluate on the WebWalker QA benchmark (Wu et al.,
2023)), reporting the average accuracy.

Methods. We compare Training-Free GRPO against RL methods that perform gradient-based policy
optimization on DeepSeek-V3.1-Terminus (DeepSeek-All, 2024) and Qwen2.5-32B-Instruct (Yang
et al., 2025a) models. For agentic tool-use tasks, we compare against Retool (Feng et al.| [2025a)
and MiroThinker (Team, 2025)), which represent the state of the art in math reasoning and web
search, respectively. For tool-free math tasks, we include vanilla GRPO (Shao et al.| |2024) as our
baseline. All baselines are run with their default hyperparameters and trained to convergence. We
run Training-Free GRPO for 3 epochs with batch size of 50, using a group size of 5 for math tasks
and 3 for web tasks. The temperature of the frozen LLMs is set to 0.7 during learning and 0.3
during evaluation. To simulate real-world scenarios with limited annotated data, all methods are
constrained to 100 training samples. For math, we use a random subset of 100 questions from
DAPO-Math-17k (Yu et al.l [2025), denoted as DAPO-100. For web search, we use 100 randomly
sampled questions from the AFM web interaction RL dataset (Li et al.,|2025)), denoted as AFM-100.
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3.2 MAIN RESULTS

Effectiveness of Training-Free GRPO. Table [1| and Table [2 summarize the performance of tool-
augmented agentic RL and tool-free RL methods, respectively. Whether utilizing the flagship
DeepSeek-V3.1-Terminus or the smaller Qwen2.5-32B-Instruct, Training-Free GRPO consistently
achieves performance gains over naive baselines, i.e., ReAct (Yao et al., [2023b) in agentic RL set-
tings and direct prompting in tool-free RL scenarios. As shown in Table I} applying Training-Free
GRPO to the frozen DeepSeek-V3.1-Terminus reaches 82.7% on AIME’24, 73.3% on AIME’25,
and 71.0% on WebWalker. This represents substantial absolute gains of +2.7%, +5.4%, and +3.5%,
respectively, achieved by injecting experiences learned with only 100 out-of-domain samples and
zero gradient updates. Crucially, since we only modify in-context prompts for standard inference
protocols like direct prompting or ReAct, Training-Free GRPO is distinct from Test-Time Scal-
ing (TTS) methods that introduce new generative mechanisms during inference. Consequently, our
approach is orthogonal to TTS and can be seamlessly combined with any TTS strategy during in-
ference. Notably, applying Training-Free GRPO to Qwen2.5-32B-Instruct yields more marginal
improvements compared to the flagship DeepSeek-V3.1-Terminus in Table [2] This suggests that
the effectiveness of context-based RL optimization is dependent on the underlying model’s intrinsic
reasoning and introspection capabilities, indicating that certain model capability is a prerequisite for
effectively applying Training-Free GRPO.

Comparison within Identical LLM. When restricted to an identical LLM, gradient-based RL meth-
ods like ReTool and MiroThinker naturally secure higher in-domain performance, benefiting from
the extensive search space available via parameter updates. However, as illustrated in Figure [T(b)-
(c), Training-Free GRPO effectively interpolates the Pareto frontier, offering a significantly lower
learning cost while still delivering meaningful performance improvements. Furthermore, Table|T]re-
veals a critical limitation of parameter tuning. For example, MiroThinker trained on the web-based
AFM-100 dataset suffers a severe performance collapse on mathematical AIME benchmarks. This
phenomenon highlights that parameter-based specialization is susceptible to catastrophic forgetting,
narrowing the model’s capabilities to the training domain at the expense of generalizability. In real-
world applications, this would necessitate the high-complexity deployment of multiple specialized
models. In contrast, Training-Free GRPO successfully circumvents this issue by maintaining a sin-
gle, general-purpose frozen LLM. It allows for flexible domain switching simply by plugging the
corresponding learned experiences into the context during inference.

Practical View: Fine-tuning Small Models vs. Prompting Large Models. In practice, the strate-
gic decision for small teams or cost-sensitive scenarios often lies between fine-tuning a smaller
LLM or directly leveraging a flagship model like DeepSeek-V3.1-Terminus. Applying Training-
Free GRPO to DeepSeek-V3.1-Terminus offers a far superior solution, which not only slashes learn-
ing costs by orders of magnitude from $1,000 to $18 as shown in Table |1} but also yields signifi-
cantly higher performance than fine-tuned 32B models (82.7% vs. 43.2% on AIME’24 Mean@32).
This establishes an accessible, high-performance pathway for real-world applications without the
prohibitive infrastructure costs of full model training.

3.3 ABLATION ANALYSIS

We perform ablation studies on tool-augmented Training-Free GRPO in both mathematical reason-
ing and web search scenarios. The results are presented in Figure[d] and Table 3]

Setup. To ensure efficiency for ablation studies, we adopt a default group size of G = 3 for both
math reasoning and web search scenarios. When evaluating on the WebWalker QA benchmark,
we use a stratified random sample of 51 instances from the test set, where the sampling is propor-
tionally stratified by difficulty level to guarantee balanced representation across different levels of
complexity. Unless specified otherwise, all other hyperparameters remain the same as in Section[3.1]

Learning Dynamics. As illustrated in Figure 4] during the 3-epoch learning process, we observe
a steady and significant improvement in Mean@3 on the training set. Concurrently, the Mean @32
performance on both AIME’24 and AIME’25 improves with each step, peaking at 81.9% and 71.2%
respectively. This demonstrates that experiences learned from only 100 problems generalize effec-
tively to out-of-domain benchmarks. We also observe that the average number of tool calls consis-
tently decreases on both in-domain and out-domain datasets, suggesting that Training-Free GRPO
teaches the agent to find shortcuts and use tools more efficiently.
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Figure 4: Statistics at each Training-Free GRPO epoch, run on math tasks with tool use and
DeepSeek-V3.1-Terminus.

Table 3: Ablation study of Training-Free GRPO on DeepSeek-V3.1-Terminus with tool use, evalu-
ated on AIME benchmarks (Mean@32, %) and WebWalker QA subset (Average accuracy, %).

Method AIME24 AIME25 WebWalker (subset)
ReAct 80.0 67.9 66.7
ReAct + Directly Generated Experiences 79.8 67.3 70.6
ReAct + Training-Free GRPO (w/o ground truths) 80.5 68.3 72.6
ReAct + Training-Free GRPO (group size G = 1) 80.1 68.9 72.5
ReAct + Training-Free GRPO (group size G = 3) 81.9 71.2 74.5
ReAct + Training-Free GRPO (group size G = 5) 82.7 73.3 74.5

Effectiveness of Learned Experiences. In Table [3] we compare our method against a baseline
where ReAct is enhanced with experiences directly generated by DeepSeek-V3.1-Terminus, match-
ing the format and quantity learned from Training-Free GRPO. Crucially, such directly generated ex-
periences significantly underperform experiences learned by Training-Free GRPO, and even slightly
degrade the mathematical ability compared to the ReAct baseline. It highlights that the performance
gains of our method stem specifically from the context-based trial-and-error RL process that evolves
transferable experiential knowledge.

Robustness to Reward Signal. We further evaluate a variant of Training-Free GRPO where ground
truth answers y are redacted during the learning process. In this setting, the reward model R cannot
verify correctness of each rollout o; against y, so the semantic group advantage is derived solely
by comparing rollouts within each group, forcing the LLM to rely on implicit majority voting and
self-consistency. As shown in Table [3] it still improves the ReAct baseline on both math reasoning
and web search tasks, demonstrating its robustness and applicability to domains where ground truths
are scarce or unavailable.

Impact of Group Size. Finally, we analyze the necessity of group-relative computation by setting
the group size to G = 1, where the LLM is limited to distilling experiences from a single rollout
per query, removing the ability to compare diverse trajectories. The results in Table [3| show that
G = 1 significantly underperforms compared to larger group settings. Moreover, we observe a
positive correlation between group size and performance on AIME benchmarks. This confirms that
the group-relative mechanism is essential, as larger groups provide a richer context for contrasting
successful trajectories against less effective ones, thereby enabling the model to identify and distill
more effective experiential knowledge.

4 RELATED WORK

This work introduces Training-Free GRPO, which enhances LLM agents by shifting Reinforcement
Learning (RL) optimization from the parameter space to the context space. To situate our method,
we review the following concepts, analyzing their connections to and distinctions from our approach.
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Figure 5: Conceptual comparison of paradigms that improve LLM performance. (a) Reinforcement
Learning (RL) (Kaelbling et al., |1996): Optimizes a policy which is any state-to-action mapping
to maximize reward signals. (b) In-Context Learning (ICL) (Brown et al., 2020): Inject exam-
ples within the context to help model adapt online without updating model weights. (c) Test-Time
Scaling (TTS) (Zhang et al.||[2025a): Improves performance by allocating more computation during
online inference rather than through prior offline optimization.

LLM Agents. By leveraging external tools, LLMs can overcome inherent limitations, such as
lacking real-time knowledge and precise computation. This has spurred the development of LLM
agents that interleave reasoning with actions. Foundational frameworks like ReAct (Yao et al.,
2023b) prompt LLMs to generate explicit reasoning and actionable steps, enabling dynamic plan-
ning through tool use. Furthermore, Toolformer (Schick et al.l [2023) demonstrates that LLMs can
learn to self-supervise the invocation of APIs via parameter fine-tuning. Subsequent research has
produced sophisticated single- and multi-agent systems, such as MetaGPT (Hong et al., 2024),
CodeAct (Wang et al.|[2024c)), and OWL (Hu et al.| [2025)), which significantly enhance the quality of
planning, action execution, and tool integration. As confirmed in Section[3} our Training-Free GRPO
method successfully enhances tool-based LLM agents on both math reasoning and web search tasks,
demonstrating its potential for real-world agentic applications.

Reinforcement Learning. As shown in Figure [5(a), Reinforcement learning (RL) is a fundamental
paradigm that performs trial-and-error (Kaelbling et al., [1996)), where an agent interacts, observes
and executes actions to maximize reward signals by optimizing a policy. A policy is defined as a
mapping from states to actions (Kaelbling et al.l [1996)), such as simple look-up tables (Gittins et al.,
2011)) and neural networks (Arulkumaran et al.| [2017). Also, RL optimization could be gradient-
based strategies or gradient-free methods that search for optimal policies (Arulkumaran et al.,[2017)).
Recent RL studies that enhance LLM performance typically instantiate the policy as a parameter-
ized LLM, and their optimization is usually based on gradient-based updates in the parameter space.
For example, Proximal Policy Optimization (PPO) (Schulman et al.,[2017)) employs a policy model
for generation and a separate critic model to estimate token-level value. Group Relative Policy
Optimization (GRPO) (Shao et al [2024) eliminates the need for a critic by estimating advantages
directly from groups of responses. Recent research try to apply RL to transform LLMs from passive
generators into autonomous agents that learn through environmental interaction. GiGPO (Feng et al.,
2025b) implements a two-level grouping mechanism for trajectories, enabling precise credit assign-
ment at both the episode and individual step levels. ReTool (Feng et al., [2025a) uses PPO to train
an agent to interleave natural language with code execution for mathematical reasoning. Chain-of-
Agents (Li et al.| 2025)) facilitates multi-agent collaboration within a single model by using dynamic,
context-aware activation of specialized tool and role-playing agents. Tongyi Deep Research (Tongyi
DeepResearch Team, 2025) introduces synthetic data generation pipeline and conduct customized
on-policy agentic RL framework. In this paper, Training-Free GRPO adopts a significantly different
way of instantiating the RL policy and the RL optimization process. We instantiate the RL policy as
a frozen LLM and variable context, where the experiences within context are iteratively optimized
via trial-and-error powered by frozen LLMs without parameter tuning on a separate training set.

In-Context Learning. As shown in Figure 5(b), In-Context Learning allows frozen LLMs to learn
given only a few examples during online inference (Brown et al.,|2020; Dong et al.,2024)). Typically,
ICL methods organize the examples in the form of input-output demonstration, using various strate-
gies for example selection (Liu et al.| 2022), reformatting (Hao et al., [2022)) and ordering (Lu et al.,
2022). Training-Free GRPO is distinct from such typical few-shot ICL methods, since it does not
directly inject input-output examples into the context during online inference. Instead, we include
the learned abstract experiential knowledge in the context, which are optimized through trial-and-
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error RL process on a separate training set during offline learning phase. Such experiences provide
suggestions like “Constraint reduction: When solving constrained approximation problems, first an-
alyze sum/integer constraints to reduce continuous problems to discrete combinatorial selection” for
math reasoning. They can guide the frozen LLM for better performance, satisfying the broader idea
of ICL, which is to learn from analogy (Dong et al., 2024).

Test-Time Scaling. As shown in Figure [5(c), Test-Time Scaling (TTS) is defined as methods
that allocate additional computation on test samples during online inference phase (Zhang et al.,
2025a)), such as Chain-of-Thought (CoT) (Wei et al.| 2022) and Tree-of-Thought (ToT) (Yao et al.,
2023al). Recent iterative refinement mechanisms during online inference also falls into the concept
of TTS (Zhang et al, |20254), including Self-Refine (Madaan et al.| 2023)), Reflexion (Shinn et al.,
2023)), TextGrad (Yuksekgonul et al., [2025)), and In-context reinforcement learning (ICRL) (Song
et al., [2025; [Monea et al.| 2024). Self-Refine (Madaan et al., 2023)) generates an initial output and
then provide verbal feedback for subsequent revisions on the same test sample. Similarly, Reflex-
ion (Shinn et al., 2023) incorporates an external feedback signal for reflection and a new attempt
during testing on a single sample. TextGrad (Yuksekgonul et al.| [2025) proposes a more general
framework, treating optimization as a process of back-propagating textual feedback through a struc-
tured computation graph. Recently, In-Context Reinforcement Learning (ICRL) (Song et al.| 2025
Monea et al.| |2024) demonstrates that LLMs can learn from scalar reward signals by receiving
prompts containing their past outputs and associated feedback. A key characteristic of these TTS
methods is their focus on iterative, within-sample improvement for a single test sample during on-
line inference. In contrast, Training-Free GRPO optimizes the experiences on a separate training set
without accessing any test samples during offline learning, while its online inference remains simple
prompting or ReAct, which is orthogonal to TTS and could be combined with any TTS strategies.

Other Related Methods. Similar to Training-Free GRPO, several recent studies extract guide-
lines, templates, or workflows during an offline phase to enhance subsequent training or inference.
However, our approach is distinguished by two key factors: (1) Multi-Round Iterative Optimiza-
tion: While prior methods typically extract knowledge in a single pass during offline, Training-
Free GRPO treats experiential knowledge as an RL policy, employing multi-epoch learning to itera-
tively optimize it. (2) Contrastive Experience Distillation: Existing methods usually derive insights
solely from single successful trajectories, but Training-Free GRPO contrasts multiple successful
and failed trajectories for the same query, extracting more robust experiences as validated in Sec-
tion [3.3] Specifically, ReasonFlux (Yang et all [2025b) and its variants (Zou et all [2025; Wang
et al., [2025) construct thought templates by analyzing the reasoning behind individual solutions in
a single pass. AutoGuide (Fu et al., |[2024) generates context-aware guidelines from offline data in
a one-pass manner. Agent Workflow Memory (AWM)(Wang et al., 2024d) induces workflows ex-
clusively from successful trajectories and integrates into memory. Finally, Agent KB(Tang et al.,
20235)) constructs a hierarchical knowledge base using hand-crafted examples and a one-time off-
policy learning paradigm, collecting trajectories in the different way of online inference. In contrast,
Training-Free GRPO maintains a consistent inference pipeline during offline and online phases, and
closely mirrors on-policy RL through multi-epoch iterative updates.

5 CONCLUSION

In this paper, we introduced Training-Free GRPO, a novel paradigm that fundamentally rethinks
Reinforcement Learning by shifting policy optimization from the parameter space to the context
space. By instantiating the policy as a frozen LLM paired with variable experiential knowledge, our
method mirrors multi-epoch RL training. We replace the costly gradient updates with the optimiza-
tion of experiences via semantic group advantages, which are derived from a group of successful and
failed trajectories for the same training sample. Empirical evaluations on mathematical reasoning
and web search benchmarks demonstrate that Training-Free GRPO establishes a new Pareto frontier
between performance and learning cost. Notably, we show that optimizing the context of a flagship
DeepSeek-V3.1-Terminus with merely 100 samples outperforms parameter fine-tuned 32B LLMs,
while reducing learning costs by orders of magnitude from $800 to $8. By circumventing the risks
of catastrophic forgetting and high infrastructure barriers of parameter tuning, Training-Free GRPO
establishes a new, highly efficient pathway for adapting powerful LLM agents, making advanced
agentic capabilities more accessible and practical for real-world applications.
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A PROMPTS FOR MATH TASKS

Solve the following problem step by step. You now have the ability to selectively write executable
Python code to enhance your reasoning process, e.g., calulating numbers and verifying math computa-
tions. Never directly just printing your semantic reasoning in Python. The Python code will be executed
by an external sandbox, and the output (returned as a dict with the message in the “message” field) can
be returned to aid your reasoning and help you arrive at the final answer. The Python code should be
complete scripts, including necessary imports.

Each code snippet is wrapped with
* " python
code snippet

The last part of your final response should be in the following format:
<answer> \boxed{The final answer goes here.} </answer>

Figure 6: System prompt for math tasks.

Please solve the problem:
{problem}

When solving problems, you MUST first carefully read and understand the helpful instructions and
experiences:
{experiences}

Figure 7: Prompt for supplementing math problems with experiential knowledge €.

An agent system may be provided with some experiences, and then it produces the following trajectory
to solve the given problem. Please summarize the trajectory step-by-step:

1. For each step, describe what action is being taken, and which experience has been used in this step.
2. Given the grading of this rollout and the correct answer, identify and explain any steps that represent
detours, errors, or backtracking, highlighting why they might have occurred and what their impact was
on the trajectory’s progress.

3. Maintain all the core outcome of each step, even if it was part of a flawed process.

<trajectory> {trajectory} </trajectory>
<evaluation> {whether the answer is correct or not} </evaluation>
<groundtruth> {the ground truth answer} </groundtruth>

Only return the trajectory summary of each step, e.g.,

1. what happened in the first step and the core outcomes

2. what happened in the second step and the core outcomes
3. ..

Figure 8: Prompt for summarizing each trajectory during Training-free GRPO in math tasks.
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An agent system is provided with a set of experiences and has tried to solve the problem multiple
times with both successful and wrong solutions. Review these problem-solving attempt and extract
generalizable experiences. Follow these steps:

1. Trajectory Analysis:

— For successful steps: Identify key correct decisions and insights

— For errors: Pinpoint where and why the reasoning went wrong

— Note any important patterns or strategies used/missed

— Review why some trajectories fail? Is there any existing experiences are missed, or experiences do
not provide enough guidance?

2. Update Existing Experiences
— Some trajectories may be correct and others may be wrong, you should ensure there are experiences
can help to run correctly
— You have three options: [modify, add, delete]
+ modify: You can modify current experiences to make it helpful
* add: You can introduce new experiences to improve future performance
* delete: You can delete existing experiences
— You can update at most {max number of operations} clear, generalizable lessons for this
case
— Before updating each experience, you need to:
* Specify when it would be most relevant
* List key problem features that make this experience applicable
+ Identify similar problem patterns where this advice applies

3. Requirements for each experience that is modified or added.
— Begin with general background with several words in the experience
— Focus on strategic thinking patterns, not specific calculations
— Emphasize decision points that could apply to similar problems

Please provide reasoning in details under the guidance of the above 3 steps. After the step-by-step
reasoning, you will finish by returning in this JSON format as follows:

IR

json
[

{

“option”: “modify”,
.

“experience”: “the modified experience”,
“modified_from”: “G17” # specity the ID of experience that is modified

“option”: “add”,

“experience’”: “the added experience”,

“option”: “delete”,
“delete_id”: “the deleted experience ID”,

Note that your updated experiences may not need to cover all the options. You can only use one type of
updates or choose to remain all experiences unchanged.

<problem> {problem} </problem>

<trajectories> {G trajectories in the same group} </trajectories>
<groundtruth> {answer} </groundtruth>

<experience> {experiences} </experience>

Figure 9: Prompt for semantic group advantage computation based on group rollouts during
Training-free GRPO in math tasks.
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An agent system is provided with a set of experiences and has tried to solve the problem multiple times.
From the reflections, some suggestions on the existing experiences have been posed. Your task is to
collect and think for the final experience revision plan. Each final experience must satisfy the following
requirements

1. It must be clear, generalizable lessons for this case, with no more than 32 words

2. Begin with general background with several words in the experience

3. Focus on strategic thinking patterns, not specific calculations

4. Emphasize decision points that could apply to similar problems

5. Avoid repeating saying similar experience in multiple different experiences

<experience> {experiences} </experience>
<suggested_updates> {group advantage} </suggested_updates>

Please provide reasoning in each of the suggestions, and think for how to update existing experiences
You have two update options: [modify, merge]
- modify: You can modify current experiences to make it helpful - merge: You can merge some similar
experiences into a more general forms to reduce duplication
After generating the step-by-step reasoning, you need to give the final experience revision details by
returning in this JSON format as follows:

json

[
. .
“option”: “modify”,

“experience”: “the modified experience”,
“modified_from”: “G17” # specity the ID of experience that is modified

“option”: “merge”,
“experience’”: “‘the merged experience”,
“merged_from™: [“C1”, “C3”, “S4”, ...] # specify the str IDs of experiences that is merged from,
at least 2 IDs are needed
b
{
“option”: “delete”,
“delete_id”: “the deleted experience ID”,

Note that your updated experiences may not need to cover all the options. You can only use one type of
updates or choose to remain all experiences unchanged.

<problem> {problem} </problem>
<trajectories> {G trajectories in the same group} </trajectories>
<groundtruth> {answer} </groundtruth>

Figure 10: Prompt for optimizating experiential knowledge £ based on semantic group advantages
in the same batch during Training-free GRPO on math tasks.
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B CASE STUDY

B.1 EXPERIENCE-GUIDED TOOL-INTEGRATED MATH REASONING

We consider a geometric configuration with two rectangles ABC'D and EFGH where D, E,C, F
are collinear in that order, and A, D, H, G are concyclic. Given BC' = 16, AB = 107, FG = 17,
EF = 184, the task is to determine C'E.

ReAct Baseline without Experiences. As shown in Figure the unassisted agent initializes a
coordinate system with D = (0,0) and models ABCD as axis-aligned. For EFGH, it places
E = (zy — 184,0), F = (zy,0) and, critically, sets G = (zy, +17), H = (x5 — 184, +17), i.e,,
with a positive vertical orientation for the short side. It then enforces the four-point concyclicity
of A(0,16), D(0,0), G, H via a determinant condition and solves for x, yielding x; ~ 184.092
and consequently . = xy — 184 =~ 0.092. From this, it reports C’F ~ 106.9076 and an “exact”

expression 199 — /8481.

This trajectory exhibits three systemic issues: (i) misinterpretation of the vertical orientation (wrong
sign for the y-coordinates of G, H), (ii) inconsistent handling of the order D—E—C-F' and the lack
of a unified parameterization for segment relations, and (iii) absence of systematic, comprehensive
post-solution verification—i.e., no integrated check that the final coordinates simultaneously satisfy
rectangle dimensions. These issues lead to an incorrect cyclic constraint (e.g., an intermediate re-
lation of the form z(z + 184) = 17) and acceptance of a spurious solution without full geometric
verification. Note that although C'E ~ 106.91 lies within 0 < C'E < 107, this alone does not val-
idate the solution; the critical failure was the lack of holistic consistency checks across all problem
constraints.

Tool-integrated ReAct on Math Reasoning without Experiences

Question

Rectangles ABCD and EFGH are drawn such that D, E,C, F are collinear. Also,
A, D, H,G all lie on a circle. If BC = 16,AB = 107,FG = 17, and EF = 184, what is
the length of CE?

Trajectory

[Agent] I'll place point D at the origin (0,0) and use a horizontal line for D, E, C, F. For
rectangle ABCD, set A = (0, 16), B = (107,16), C = (107,0), D = (0,0).

[Tool] Set coordinates accordingly.

[Agent] Because EFGH is a rectangle with EF' horizontal and F'G = 17, set F' = (z,0),
E = (zy —184,0), and initially set G = (zf, +17), H = (zy — 184, +17).

[Agent] Impose concyclicity of A(0,16), D(0,0),G(x¢,17), H(xy — 184,17) using the
4-point determinant condition, derive an equation in x ;.

[Tool] Solve the resulting quadratic for xy; obtain zy =~ 184.092 and thus
Te = xp — 184 ~ 0.092.

[Agent] Compute CE = |107 — x| ~ 106.9076.

[Agent] Swap point orderings (D-C-E-F, E-D-C-F’) and re-derive. At one point, use
an angle-sine relation and get z.(x. + 184) = 17 leading to z, = —92 + /8481 =~ 0.0923,
hence C'E =~ 106.9076.

[Agent] Present an “exact form” CE = 199 — /8481 as the final answer.

Outcome
Incorrect: C'E = 106.9076 (reported as 199 — 1/8481).

Figure 11: Example trajectory without experience of ReAct on math reasoning tasks.
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Tool-integrated ReAct on Math Reasoning with Experiences

Question

Rectangles ABCD and EFGH are drawn such that D, E,C, F are collinear. Also,
A, D, H,G all lie on a circle. If BC' = 16,AB = 107,FG = 17, and EF = 184, what is
the length of CE?

Experiences
[1] When solving geometry problems with intersections, validate solutions lie within
bounded regions or segments, not on extensions, to avoid extraneous answers.

[7] When solving geometry with constraints (e.g., trapezoids), validate all conditions:
parallel sides via slopes, convexity via cross products, to avoid extraneous solutions.

[29] When constructing points on line extensions, carefully interpret directional phrases
like *beyond B’.

[37] In geometry problems with points on sides of a triangle and given segment lengths,
first determine all three side lengths by summing the appropriate segments. For example, if
points on AB, AC, BC are given with AM, MB, AN, NC, BP, PC, then AB = AM + MB,
AC = AN + NC, BC = BP + PC. This ensures the triangle is consistently defined before
coordinate placement or area calculations.

Trajectory

[Agent] Fix the order D—-E—-C-F on a horizontal line. Set CE = z with the segment
constraint 0 < x < 107. (By [G29],[G1])

[Tool] Record relations: DE = 107 — z and C'F = 184 — z (from [G37]).

[Agent] Place D = (0,0), E = (107 — z,0), C' = (107,0), F = (291 — x,0), ensuring
EF =184.

[Agent] Choose the vertical orientation consistently: since A = (0, 16) and D = (0, 0), set
the short side FG = 17 downward, i.e., H = (107 — z,—17) and G = (291 — z, —17).
(This corrects the sign error in the no-experience path)

[Agent] Impose concyclicity using the circle equation 22 + y? + Dx + Ey + F = 0. With
A(0,16) and D(0,0), get FF =0, E = —16.

[Tool] Substitute H(107 — z, —17) and G(291 — z, —17) to obtain two equations. Subtract
to eliminate constants and get D = 2z — 398.

[Agent] Substitute back to get the quadratic 2 — 398z + 30576 = 0.

[Tool] Compute the discriminant: 3982 — 430576 = 36100 = 1902. Roots: = = 294 and
z = 104.

[Agent] Apply the segment constraint 0 < x < 107 to discard z = 294 and select x = 104
(by [G1])

[Agent] (Full verification by [G7]) DE = 107 — 104 = 3, CF = 184 — 104 = 80,
EF = 184, FG = 17. The circle 22 + y? — 190z — 16y = 0 passes through
A=(0,16),D = (0,0), H = (3,—17),G = (187, —17). All constraints satisfied.

Outcome
Correct: CE = 104.

Figure 12: Example trajectory with experiences in Math Reasoning
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ReAct Enhanced with Experiences Learned from Training-Free GRPO. Refer to Figure
with a curated experience pool, the agent follows a structured pipeline:

* Directional ordering ([29]) and boundedness validation ([1]): It fixes the order D-E—-C-F on a
line and sets CE = z with 0 < x < 107, ensuring E lies on segment DC' and F lies beyond C'.

* Segment-addition parameterization ([37]): It uses DE + EC = DC = AB = 107 and EC +
CF = EF = 184 to obtain DE = 107 — 2, CF = 184 — z, and places D = (0,0), E =
(107 — 2,0), C' = (107,0), F = (291 — =, 0).

* Consistent vertical orientation and cyclic modeling: Noting A = (0,16), D = (0, 0), it orients
the short side downward (F'G = 17) so H = (107 — =, —17), G = (291 — z, —17). Using the
circle equation 22 +y2 + Dz + Ey + F = 0 with A and D yields F = 0, E = —16. Substituting
H and G, subtracting the two equations gives D = 2x — 398; back-substitution reduces to the
quadraticz? — 398z + 30576 = 0, with discriminant 3982 — 4 - 30576 = 36100 = 1902 and roots
o = 104, 294.

* Root selection and full verification ([1], [7]): Applying 0 < x < 107 filters out z = 294, selecting
x = 104. The agent then verifies all constraints: DF = 107 — 104 = 3, CF = 184 — 104 = 80,
EF = 184, FG = 17, and confirms that the circle 2 + y? — 190z — 16y = 0 passes through
A=(0,16), D = (0,0), H = (3,—-17), G = (187, —17).

Comparative Analysis. This case reveals a clear causal link between experience-guided behaviors
and correctness. Experience [29] eliminates directional ambiguity and enforces the correct collinear-
ity order, directly addressing the baseline’s misplacement of G, H. Experience [37] induces a clean
single-variable parameterization (DE = 107 — xz, CF = 184 — x), which simplifies the cyclic con-
straint to a solvable quadratic. Experience [1] imposes a necessary boundedness filter (0 < = < 107)
to discard extraneous roots. Finally, experience [7] mandates comprehensive post-solution verifica-
tion (rectangle dimensions, collinearity, concyclicity), preventing acceptance of spurious solutions.
Compared to the unassisted trajectory, the experience-informed reasoning corrects the vertical ori-
entation, resolves ordering and parameterization inconsistencies, and installs principled validation
gates. This case demonstrates the positive impact of integrating domain-specific experiences on
reliability and accuracy in tool-integrated mathematical reasoning.

B.2 EXPERIENCE-GUIDED WEB SEARCHING

We consider a web searching task from WebWalkerQA: quantify 2024 rewards for (i) creators in
the Creator Program (weekly amount), and (ii) players in the Play-2-Airdrop during Private Beta 4
(total pool and duration).

ReAct Baseline without Experiences. As summarized in Figure the unassisted agent issues
multiple broad searches and relies heavily on result snippets and third-party summaries, delaying
clicks into authoritative pages. It eventually opens the PB4 registration post to confirm ‘“Play-2-
Airdrop Campaign: 200,000 ILV over six months,” but continues to scan snippets for the Creator
Program value without opening the relevant official post. Connection errors to one official page
cause the agent to revert to broad searches rather than alternative primary-source strategies (e.g.,
site-specific queries or adjacent official posts). The trajectory remains incomplete: it reports the
Play-2-Airdrop figure but fails to confirm the Creator Program’s “100 ILV weekly” from an official
source, yielding an incorrect/incomplete answer.

ReAct Enhanced with Experiences Learned from Training-Free GRPO. Refer to Figure [14]
With a curated experience pool, the agent follows a disciplined pipeline: (1) prioritize official
sources ([14], [4]) and open the PB4 overview and registration posts to extract the “200,000 ILV
over six months” and Testnet/Mainnet allocation structure; (2) refine search terms to target formal
titles ([2], [12], [1]) and open “The Illuvium Creator Program Is Getting An Upgrade!”; (3) extract
the exact line “The prize pool of 100 ILV tokens awaits participating Creators each week,” and (4)
synthesize both verified statements into a complete answer aligned with the question requirements
([25]). This results in the correct, fully supported output: creators earn 100 ILV weekly; players
have a 200,000 ILV pool distributed over six months in PB4’s Play-2-Airdrop.

Comparative Analysis. Experience-guided behaviors directly address baseline deficiencies: pri-
mary source prioritization ([14], [4]) removes reliance on snippets and third-party coverage; docu-
ment identification ([1]) and iterative refinement ([2], [12]) ensure the agent locates and opens the
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exact Creator Program post; partial match evaluation ([25]) steers the agent to confirm numerical
claims at their authoritative origin. In contrast, the baseline wastes context on searches without
content acquisition, leaves critical values unverified, and produces an incomplete answer.

Tool-integrated ReAct on Web Search without Experiences

Question
In 2024, how much ILV reward can creators participating in the Creator Program and
players engaging in the Play-2-Airdrop during Private Beta 4 on the Illuvium platform earn?

Trajectory

[Agent] I'1l start with a broad web search for both program names and rewards in 2024.
[Tool] google_search(”Illuvium Creator Program Play-2-Airdrop Private Beta 4 2024
rewards ILV”")

[Agent] From snippets, PB4 mentions a “Play-2-Airdrop campaign” and “200,000 ILV over
six months.” This likely answers half the question. (continue searching rather than opening)
[Agent] I'll search specifically for the Creator Program rewards.

[Tool] google_search(”Tlluvium Creator Program2024 rewards ILV allocation™)

[Agent] I see references (Binance Square, media blogs) to “100 ILV per week,” but can’t
confirm from illuvium.io quickly. I’ll keep searching.

[Agent] I'll fetch the PB4 registration page to confirm the Play-2-Airdrop details.

[Tool] get_content(’https://illuvium.io/news/register-now-for-private-beta-4")

[Agent] Extracted: “Play-2-Airdrop Campaign: 200,000 ILV tokens over six months.” That
confirms the second quantity.

[Agent] I'll look for the Airdrop Season details page.

[Tool] google_search("Tlluvium Airdrop Season Detailsblog post 2024”)

[Tool] get_content(’https://illuvium.io/news/illuvium-airdrop-season-details’)

[Agent] More searches for “Illuvium 100 ILV per week creator rewards April 2024 and
“site:illuvium.io Creator Program 100 ILV” yield sparse official confirmation; I’ll defer the
creator number.

[Agent] Synthesis: I will answer with what’s confirmed officially (Play-2-Airdrop 200,000
ILV over 6 months) and note the creator reward as unclear.

Outcome
Creators: (not clearly specified; mentions unverified “100 ILV per week”). Players (PB4
Play-2-Airdrop): 200,000 ILV over six months.

Figure 13: Example trajectory without experiences in Web Searching
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Tool-integrated ReAct on Web Search with Experiences

Question
In 2024, how much ILV reward can creators participating in the Creator Program and
players engaging in the Play-2-Airdrop during Private Beta 4 on the Illuvium platform earn?

Experiences

[1] Document identification: Focus on extracting formal titles and collection names from
official metadata and headers rather than inferring relationships from content descriptions.
[2] Systematic exploration: Progress from broad initial queries to targeted content extraction
using adaptive search strategies that balance discovery with precision.

[4] Source prioritization: Prioritize systematic extraction from authoritative comprehensive
documents over fragmented information for coherent topic coverage.

[12] Iterative refinement: Continuously refine search terms based on emerging patterns
while periodically re-evaluating previously encountered information to avoid overlooking
correct solutions and maintain essential contextual elements.

[14] Primary source prioritization: Prioritize locating official primary source documents
over secondary coverage to ensure accuracy and capture exact language for definitive
metadata and hierarchical relationships.

[25] Partial match evaluation: Systematically evaluate partial matches from initial searches
against all criteria before pursuing alternative paths.

Trajectory

[Agent] Goal breakdown: Two official numbers required: (1) Creator Program weekly ILV;
(2) PB4 Play-2-Airdrop total ILV and time frame.

[Agent] Start with broad search, then pivot to official illuvium.io pages for PB4 and Creator
Program. (By [2], [14], [4])

[Tool] google_search(Illuvium Creator Program rewards 2024 Private Beta 4 ILV earn-
ings”, num_results=5)

[Agent] Identify official pages in results: “Illuvium Beta 4: All You Need to Know” and
“Register Now for Private Beta 4”. Open them to confirm Play-2-Airdrop details. (By [14],
[25])

[Tool] get_content(https://illuvium.io/news/illuvium-beta-4-all-you-need-to-know)
[Agent] Extracted from official PB4 overview: Testnet phases get 10% of the Play-2-
Airdrop pool; clarifies structure and timeline.

[Tool] get_content(”https://illuvium.io/news/register-now-for-private-beta-4")

[Agent] Extracted explicit official number: “Play-2-Airdrop Campaign: 200,000 ILV
tokens” over six months. This covers the player reward for PB4 context.

[Agent] Iteratively refine search for the Creator Program exact weekly reward using formal
title cues like “Creator Program ... upgrade”. (key behavior; By [12], [1])

[Tool] google_search(”Tlluvium Creator Programiewards ILV 2024”, num_results=5)
[Agent]Click the official post: “The Illuvium Creator Program Is Getting An Upgrade
(By [14], [11, [4D)
[Tool]get_content(https://illuvium.io/news/illuvium-creator-program-is-getting-an-
upgrade”)

[Agent] Extracted exact statement from official source: “The prize pool of 100 ILV tokens
awaits participating Creators each week.” This provides the creator reward.
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Outcome
Creators can earn 100 ILV weekly in the Creator Reward Program, and 200,000 ILV will be
distributed over six months for players in the Play-2-Airdrop during Private Beta 4.

Figure 14: Example trajectory V&él{h experiences in Web Searching
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Table 4: Mean@32 (%) of few-shot In-Context Learning (ICL) on AIME benchmarks using
DeepSeek-V3.1-Terminus.

Method Context AIME’24 AIME’25
Direct Prompting - 68.6 52.9
Training-Free GRPO  Experiences learned on DAPO-100  72.6 (14.0)  54.0 (11.1)
Few-shot ICL Retrieved from DAPO-Math-17k 67.6 454

C COMPARISON WITH FEW-SHOT IN-CONTEXT LEARNING METHOD

In this appendix, we compare Training-Free GRPO against few-shot ICL baseline to evaluate the
experiential context derived from trial-and-error.

Benchmarks. We conduct our evaluation on the challenging AIME’24 and AIME’25 bench-
marks (AIME| 2025)). To ensure robust and statistically reliable results, we evaluate each question
with 32 independent runs and report the average Pass@1 score, which we denote as Mean @32.

Setup. We conduct ICL experiments using DeepSeek-V3.1-Terminus (DeepSeek-All 2024)) as a
frozen, text-only LLM without tool use. Our evaluation compares: (1) zero-shot direct prompting,
and (2) a few-shot ICL baseline that uses the Qwen3-Embedding-8B model (Zhang et al.l |2025b)
to retrieve top-3 similar questions from the DAPO-Math-17K dataset (Yu et al., 2025). Each re-
trieved example includes both the question and a verified step-by-step solution trajectory generated
by DeepSeek-V3.1-Terminus. For Training-Free GRPO, we use a group size of 5 and randomly
sample only 100 questions from DAPO-Math-17k denoted as DAPO-100, learning with 3 epochs
and a batch size of 50. The final optimized experiences are then used in context for the AIME test
questions.

Results. As presented in Table ] the experiences distilled by Training-Free GRPO exhibit clear su-
periority over both direct prompting and the standard few-shot ICL baseline. This demonstrates that
our approach effectively steers model behavior by injecting transferable problem-solving heuristics
into the context. Remarkably, although these experiences are derived from trial-and-error on merely
100 out-of-domain training samples, they prove more potent for guiding complex reasoning than
step-by-step demonstrations retrieved from the extensive DAPO-Math-17k dataset.

D THE USE OF LARGE LANGUAGE MODELS

We clarify that no LLMs were employed in the writing or polishing of this paper. All content
presented herein is the result of original research and critical evaluation by the authors.
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