
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT PDE MAPPING FOR SHAPE-GENERALIZABLE
PHYSICS-INFORMED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) have shown strong potential for
learning physically consistent representations from sparse data, but often strug-
gle to generalize to geometries with varying shapes. To address this challenge, we
introduce latent PDE mapping, a technique for mapping geometry-specific par-
tial differential equations (PDEs) to a shared latent PDE representation using the
deformation gradient. We embed latent PDE mapping into the PINN framework
(LPM-PINN), enabling PINNs to capture geometric variability while preserving
the governing physics. This integration facilitates accurate predictions of nonlin-
ear, time-dependent systems even in geometries well beyond the training distri-
bution. We demonstrate LPM-PINN on a challenging nonlinear time-dependent
PDE with sharp gradients, the Aliev–Panfilov model of cardiac electrophysiology,
in both 2D and 3D. Our results show that LPM-PINN generalizes robustly across
diverse geometries, including shapes with drastically changing boundaries that lie
outside the training distribution. These findings establish latent PDE mapping
as a promising approach for boosting the geometric generalizability of physics-
informed neural networks.

1 INTRODUCTION

Physics-informed neural networks (PINNs) (Raissi et al., 2019) have emerged as a new paradigm
for learning physically consistent representations from sparse observations (Karniadakis et al., 2021;
Cuomo et al., 2022). However, PINNs face significant challenges when making predictions on ge-
ometries with varying shapes, often requiring retraining when encountering novel morphologies out-
side the training distribution (Gao et al., 2021). This limitation is critical in time-sensitive applica-
tions (e.g. medicine) where short compute times and generalization across diverse physiologically-
derived shapes are required. Here, we have chosen a prominent example that arises in cardiac
electrophysiology, where accurate cardiac arrest risk assessments require adaptation to diverse heart
geometries, and integration into medical workflows requires fast computations.

To address this issue, we introduce latent PDE mapping, a technique that maps geometry-specific
partial differential equations (PDEs) to a shared latent PDE representation. Using affine shape pa-
rameterization, a predefined latent geometry, and the deformation gradient; our method expresses the
loss terms of a PINN (LPM-PINN) using latent coordinates. This approach preserves the underly-
ing dynamics while capturing geometric variability, enabling accurate predictions on unseen shapes
in nonlinear, time-dependent systems. We apply latent PDE mapping to the Aliev-Panfilov model
of cardiac electrophysiology, a representative benchmark for challenging nonlinear time-dependent
PDE dynamics. The proposed approach offers a broadly applicable strategy for extending physics-
informed neural networks to problems involving geometries with variable shapes, complementary
to the current state of the art approaches involving operator and graph-neural architectures Li et al.
(2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Würth et al. (2024).

1.1 OUR CONTRIBUTIONS

• We introduce latent PDE mapping, a novel technique that maps geometry-specific PDEs
to a shared latent PDE, enabling PINNs to learn meaningful representations from sparse
observations across diverse geometrical shapes.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We implement latent PDE mapping in a conceptually simple PINN framework (LPM-
PINN), involving the Aliev–Panfilov model of cardiac electrophysiology, a challenging
nonlinear, time-dependent PDE with sharp gradients in 2D and 3D. Our results show
that LPM-PINN provides accurate solutions even in extreme rotation scenarios where the
boundary changes radically.

• We provide theoretical and empirical evidence that latent PDE mapping properly accounts
for geometric variability in the physics loss gradient, yielding more generalizable represen-
tations.

2 RELATED WORK

Recent developments within scientific machine learning have enabled the creation of flexible neural
network PDE solvers that can generalize to new geometries without needing retraining. Neural op-
erators Li et al. (2023a;b); Yin et al. (2024); Zhong & Meidani (2025), and graph neural networks
Würth et al. (2024) are currently the two leading approaches. Neural operators possess rich math-
ematical universal approximation properties, guaranteeing that the neural network’s parameterized
solutions can approximate arbitrarily closely PDE solutions from varying geometries. Neverthe-
less, most neural operator approaches Li et al. (2023a;b); Yin et al. (2024) are data-hungry, often
requiring extensive PDE solution datasets across diverse geometries to achieve high accuracy. This
motivates the pursuit of data-efficient approaches capable of learning from fewer geometric sam-
ples, an essential consideration in domains where data collection is costly or ethically constrained,
such as medicine. In response, PINNs have emerged, leveraging governing physical laws to learn
effectively from sparse data Gao et al. (2021); Zhong & Meidani (2025); Würth et al. (2024); Dalton
et al. (2023); Peng et al. (2023); Gao et al. (2022); Kashefi & Mukerji (2022).

A common approach for geometry-aware PINN studies has been to develop specialized network ar-
chitectures, replacing multilayer perceptrons with physics-informed convolutional neural networks
(Gao et al., 2021), physics-informed graph neural networks (Dalton et al., 2023; Peng et al., 2023;
Würth et al., 2024; Gao et al., 2022), or physics-informed PointNet (Kashefi & Mukerji, 2022).
These methods are better suited to handle variable geometries than basic fully-connected PINNs,
but require uniform grids, complex meshing at inference, or struggle to generalize across PDE pa-
rameters (Zhong & Meidani, 2025). To overcome these challenges, PINNs have been augmented
with shape descriptors (Regazzoni et al., 2022; Costabal et al., 2024) or global geometric parameters
(Sun et al., 2023; Ghosh et al., 2024; Zhong & Meidani, 2025). While showing promising results,
these methods formulate their physics losses in terms of the varying physical domains, which limits
the gradient information available to the networks during training.

Another research direction involves combining physics-based losses with latent geometries, where
inputs are embedded into a common latent space to facilitate comparison and efficient representation
learning across different shapes. Regazzoni et al. (2022) proposed a universal latent space for pa-
rameterized geometries, enabling learning across varying shapes. Similarly, Mezzadri et al. (2023)
introduced a framework that aligns geometric variability through latent embeddings, enabling simple
linear elasticity models to generalize across freeform domains. More recently, Burbulla (2023) intro-
duced a PDE mapping to low-dimensional manifolds and applied it to simple linear PDEs. However,
the current latent-geometry PINN methods Mezzadri et al. (2023); Regazzoni et al. (2022); Burbulla
(2023) are limited to simple, linear, static PDEs. This limits the methods’ utility in real-world appli-
cations, which are often complex, nonlinear, and dynamic. Moreover, no work has yet shown that
PINNs with mapped PDEs can generalize well to geometries outside of the training distribution.

Building on recent scientific machine learning studies involving mapped geometries Li et al.
(2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Mezzadri et al. (2023); Regazzoni et al.
(2022); Burbulla (2023), the latent PDE mapping introduces a broadly applicable mathematical
framework that moves beyond simple PDE mapping to PINN formulations with geometrically vari-
able shapes and nonlinear, time-dependent PDEs. Furthermore, we introduce the use of the defor-
mation gradient to accurately map nonlinear PDEs within PINNs, thereby enabling more accurate
gradient calculations in which the effect of the geometric variability is included in the physics loss
gradient.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 LATENT PDE MAPPING

We consider a time-dependent PDE defined over a geometry Ω(s). Here, s is a set of shape param-
eters describing the overall geometry of Ω. The governing PDE is given as

F (u (x, t; s)) = f(x, t, u; s), (x, t) ∈ Ω(s)× T (1)

where F denotes a differential operator, f represents a source term that introduces external influ-
ences into the system, x ∈ Ω(s) ⊂ Rd are the spatial coordinates, t ∈ T ⊂ R is the time, and u is
the unknown PDE solution. In practice, obtaining an exact solution to equation 1 is often intractable
due to the complexity of the underlying system. To address this, we employ a PINN to approximate
the solution such that

NN (x, t, s; θ) = uθ ≈ u(x, t; s) (2)
where θ represents the trainable parameters. PINNs are known to offer a data-efficient machine
learning alternative by embedding physical laws directly into the neural network via PDE residuals
in the loss function (Raissi et al., 2019). The residual is defined as

R = F (u (x, t; s))− f(x, t, u; s) = 0, (x, t) ∈ Ω(s)× T (3)

where R depends on Ω(s) and the shape parameters s. With latent PDE mapping, we rather express
the geometry-specific residual in equation 3 over a latent geometry. Thus, we assume that there
exists a continuous map between Ω(s) and a predefined latent geometry Ω0, defined as

Φ := X → x (4)

where X is a given point in Ω0 while x is the associated point in Ω(s). Physical quantities can be
mapped from Ω(s) to Ω0, or vice versa, through the deformation gradient and deformation Jacobian
given in their most general form as

F(X, t, s) = I +∇U(X, t, s) (5)

and J(X, t, s) = det(F), respectively (Holzaphel, 2000). Here, I is the identity tensor and
U(X, t, s) = x(X, t, s) − X is the displacement field at time t for the shape parameters s. In
this study, we use the deformation gradient to map the geometry-specific R in equation 3 to a shared
latent representation, yielding

R(X, t, u,F, J) = F (u (X, t; s) ,F, J)− f(X, t, u,F, J ; s), (X, t) ∈ Ω0 × T . (6)

In this way, the dependency on s has been moved from the physical geometry Ω(s) into the PDE
itself through the deformation gradient F. This approach is what we refer to as the latent PDE
mapping technique.

3.1 APPLICATION TO NONLINEAR, TIME-DEPENDENT, STIFF SYSTEMS: THE
ALIEV-PANFILOV PDE

We demonstrate our latent PDE mapping technique on the Aliev-Panfilov model from cardiac eletro-
physiology. The Aliev-Panfilov PDE (Aliev & Panfilov, 1996) is used to describe the evolution of
transmembrane potential V over a physical geometry representing cardiac tissue and offers a fair
representation of challenging PDEs due to its nonlinearity, sharp gradients, and time-dependency.
The PDE can be expressed over a physical geometry Ω(s) as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s)

(7)

where V,W, and τ are dimensionless variables representing the transmembrane potential, recovery
variable, and time, respectively. V ∈ [0, 1] is given in arbitrary units (AU), while τ = 12.9t is
measured in temporal units (TU) with t given in milliseconds. The tissue conductivity is defined
by the diffusion tensor D, while k, a, ϵ0, µ1, µ2 are parameters controlling the overall shape and
temporal dynamics of V and W . Additionally, the PDE employs a no-flux Neumann boundary
condition where n is the vector normal to the boundary of Ω(s). Consequently, there is no leakage
of V to regions outside of Ω(s).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We apply our latent PDE mapping technique to the Aliev-Panfilov PDE in equation 7. For a time-
independent mapping, the latent PDE representation is given as

∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(V,W ) (−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(8)

where N is the normal vector to the boundary of the latent geometry Ω0, F = F(X, s) and J =
J(X, s). A detailed derivation of equation 8 can be found in Appendix A.

3.2 ACCURATE GRADIENT CALCULATION WITH LATENT PDE MAPPING

The physics loss in PINNs is typically evaluated with the mean squared error (MSE) of R (Wang
et al., 2023), given as

Lphys =
1

Nphys

Nphys∑
i

R2
i (9)

using a traditional mini-batch approach with Nphys collocation points to evaluate R. This approach
treats R as independent of Ω(s) during optimization, which is not the case and can lead to inaccurate
gradient estimates. Thus, a more accurate formulation is to evaluate the physics loss as a continuous
integral

Lphys =

∫
Ω(s)

R(x, t, u, s)2dΩ (10)

and apply the Leibniz integral rule when computing the shape gradient ∂Lphys

∂s . This results in

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (11)

where n is the outward unit normal to the boundary ∂Ω(s) and dS is an infinitesimally small part
of the boundary. The second term in equation 11 accounts for the movement of the boundary, which
is neglected in the discrete loss formulation in equation 9. This omission can lead to inaccurate
gradient estimates, hindering training and resulting in suboptimal PINNs.

With latent PDE mapping, the dependency of s is moved from the geometry into the PDE itself via
the deformation gradient F. Consequently, the integrand does not vary with s and the shape gradient
can be computed directly

∂Lphys

∂s
=

∫
Ω0

∂

∂s
R(X, t, u,F, J)2dΩ0. (12)

Thus, the straightforward MSE in equation 9 can be applied during training without sacrificing
gradient accuracy. Based on these considerations, we hypothesized that improving the accuracy of
the physics loss gradient via latent PDE mapping can improve the generalizability of PINNs to novel
geometries.

4 CARDIAC ELECTROPHYSIOLOGY DATASETS WITH VARIABLE GEOMETRIES

We constructed four and seven families of geometries in 2D and 3D, respectively, for training and
testing of our PINNs. In 2D, the latent geometry Ω0 was defined as a 10×10 mm square, while in
3D it was a 10 × 10 × 10 mm cube. Families belonging to 2D and 3D are denoted with a G and
H, respectively. In the following, we describe the generation of 2D datasets. The extension to 3D is
straightforward and provided in detail in Appendix B.2.

The geometries were generated by deforming Ω0 through different affine transformations expressed
in their most general form as

x = AX +XTMX (13)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with

A =

[
a1 a2
a3 a4

]
, M =

[
m1 0
0 m4

]
. (14)

The elements of A and M , referred to as affine parameters, are denoted by s =
{a1, a2, a3, a4,m1,m4}. Each family of geometries corresponded to a distinct deformation type:
expansion (Gexp), shearing (Gshear), nonlinear deformation (Gnonlin), and rotation (Grot). Figure 1
illustrates one representative geometry from each family, while Table 5 in Appendix B.1 gives the
affine parameter ranges for all families. The deformations employed in this work were static in time;
however, the approach can be extended to time-dependent deformations as shown in Section 3.

For each family, we generated two branches. The first branch (Gk) contained 50 geometries, which
were later split into training, validation, and test sets. The second branch (G∗

k) contained 35 geome-
tries generated from parameter ranges outside those of Gk, and was used exclusively for testing. We
refer to test geometries in Gk as the internal family and G∗

k as the external family.

In 3D, the same procedure was applied with the same number of geometries and versions per family.
However, only linear deformation types were considered. The 3D families are denoted as Hp

k where
k indicates the deformation type (expansion, shearing, or rotation) and p indicates the direction of
the deformation when applicable (Hx

rot = rotation about the x-axis, Hxy
shear = shearing along the

xy-plane, etc.).

0 5 10
x [mm]

0

5

10

0

0 5 10
x [mm]

0

5

10

0 5 10
x [mm]

0

5

10

0 5 10
x [mm]

0

5

10

y 
[m

m
]

Figure 1: From left to right, the figure shows an example of a geometry from Gexp, Gshear, Gnonlin,
and Grot. All geometries were externally stimulated at the left edge nodes (yellow) in the isotropic
scenario. The dashed line illustrates the latent geometry Ω0 in 2D.

Synthetic cardiac electrophysiology data We used openCARP (Plank* et al., 2021; openCARP
consortium et al., 2024) to create synthetic data that was used to approximate the ground truth
PDE solution during training and testing of the PINNs. Thus, we solved the Aliev-Panfilov PDE
in equation 7 over the physical geometries using the finite element method (FEM). We created
both isotropic and anisotropic datasets to explore different PDE dynamics. In the isotropic case, all
geometries were stimulated by an external current at nodes located at the left boundary/plane. Sheet
fibers were oriented along the x-axis with, resulting in a planar wave propagation. The anisotropic
datasets were generated by applying a point stimulus to all nodes within a radius of 0.75 mm in the
center of the geometry. The fiber orientations were deformed according to the affine transformation
to ensure consistent PDE dynamics. In both cases, all simulations were run for 520ms, yielding a
full cycle of polarization and re-polarization. Solutions at t < 6ms were excluded to remove applied
current from the system. The exact configurations used for synthetic data generation are listed in
Table 8 and 9 in Appendix D.

5 PINN TRAINING PROCEDURES AND EVALUATION METHODS

We developed three PINNs for comparison and evaluation of the latent PDE mapping. The first
PINN (LPM-PINN) incorporates the latent PDE mapping technique and uses affine parameters as
additional inputs. The second (Affine-PINN) and third (Basic-PINN) PINNs adopt the conventional
physics loss formulated over the physical geometries. However, the Affine-PINN integrates affine
parameters as input, whereas the Basic-PINN relies exclusively on spatiotemporal inputs. This setup
enables a systematic evaluation of the contribution of latent PDE mapping to PINN training, as well
as the added benefits of including affine parameters.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

All PINNs were trained by minimizing a hybrid loss function defined as

L(θ) = Ldata(θ) + Lphys(θ) + Lbc(θ) + Lic(θ) (15)

where Ldata(θ) is the loss due to known FEM data, Lphys(θ) is the loss described by the governing
PDE residual, Lbc(θ) is the loss associated with the boundary condition, and Lic(θ) is the loss asso-
ciated with the initial condition. The loss terms were equally weighted, and each term was evaluated
using the MSE over a given set of spatiotemporal points (Ndata, Nphys, Nbc, Nic). Furthermore,
we defined the physics and boundary loss in LPM-PINN as

LLPM
phys ≡ 1

Nphys

Nphys∑
R(X, τ, V̂ , Ŵ ,F, J), LLPM

bc ≡ 1

Nbc

Nbc∑
R(X, τ, V̂ ,F, J) (16)

and the conventional losses in Affine-PINN and Basic-PINN as

Lconv
phys ≡

1

Nphys

Nphys∑
R(x, τ, V̂ , Ŵ ), Lconv

bc ≡ 1

Nbc

Nbc∑
R(x, τ, V̂ ). (17)

where X ∈ Ω0 and x ∈ Ω(s). For the isotropic datasets, each PINN consisted of a fully con-
nected neural network with 10 hidden layers with 25 neurons in each layer, while for the anisotropic
datasets, each PINN had 8 hidden layers with 64 neurons each to reflect the increased complexity of
the PDE dynamics. Furthermore, we employed the tanh as activation function in all cases to handle
second-order derivatives (equation 8) needed to calculate the physics loss (equation 9). All PINNs
predicted V̂ and Ŵ as outputs. A complete overview of the hyperparameters for each PINN can be
found in Table 7 in Appendix C.

Each internal family (Gk, Hk) was split into a training set, validation set, and test set. Unlike the
conventional split used in machine learning, we adopted an inverted allocation strategy with 20%
train data, 10% validation data, and 70% test data in order to restrict the available training data.
Thus, each family (Gk, Hk) had 10 train geometries, 5 validation geometries, and 35 test geometries.
Additionally, in some experiments, we merged two families to generate a dataset (Gk1 + Gk2) with
greater geometric variability. In these cases, each family contributed equally to each split, resulting
in 20 train geometries, 10 validation geometries, and 70 test geometries. Furthermore, we selected
Ndata = 14, Nphys = 700, Nbc = 80, and Nic = 30 spatial locations from each geometry in the
training set and trained the models for 5000 epochs. Nphys, Nbc, and Nic were resampled at every
epoch to ensure that the physics was learned over the entire geometry.

During training, we evaluated L(θ) for each geometry in the validation set. Since our validation
set spanned multiple distinct geometries, we selected the best PINN state as the state that gave the
lowest maximum L(θ) across the validation geometries, rather than the lowest average L(θ). This
criterion ensured that the PINN generalized effectively to geometries differing substantially from
those seen during training. To reduce computational overhead, we computed the validation loss
every 10 epochs using a subsample of points from each geometry.

Evaluation metrics We employed the relative L2 error (εL2) as an evaluation metric, given as

εL2 =

√∑Ntest

i

(
V̂i − Vi

)2

√∑Ntest

i V 2
i

(18)

where V̂ is the predicted transmembrane potential and V is the approximated FEM data used as
ground truth. Results are presented as the mean relative L2 error across all geometries in the given
family with the corresponding standard deviation.

6 EXPERIMENTS

In the following sections, we present results from a series of experiments used to evaluate and
compare the PINNs’ performance when generalizing across diverse geometries in 2D and 3D. Fur-
thermore, we investigate the role of the missing boundary shape gradients when latent PDE mapping
is not applied.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6.1 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 2D?

The results indicate consistently low prediction errors for all PINNs across test geometries in the
internal families Gexp, Gshear, and Gnonlin when applied to isotropic PDE dynamics (Table 1).
Moreover, the results show that LPM-PINN and Affine-PINN generalize to the corresponding exter-
nal families with only a modest increase in prediction error, whereas the Basic-PINN exhibits errors
of an order of magnitude higher on the same families. Notably, LPM-PINN is the only PINN that
achieves accurate predictions on the G∗

rot family, while Affine-PINN and Basic-PINN yield signifi-
cantly inaccurate results, as illustrated in the last row of Figure 5 in Appendix E.1. These findings
demonstrate that latent PDE mapping improves geometric generalizability, particularly when the
boundary undergoes radical changes.

Table 2 shows that LPM-PINN can learn and make accurate predictions when trained on geometries
from two different families with isotropic PDE dynamics. In contrast, Affine-PINN and Basic-PINN
fail to learn meaningful representations in the same setting, except for Affine-PINN on Gshear+ Grot.
Figure 6 in Appendix E.1 visualizes predictions on the same geometries as in Figure 5 in Appendix
E.1, showing that the higher error is not limited to the Grot and G∗

rot family, but arises from degraded
performance across both families. Hence, the results indicate that latent PDE mapping can enhance
generalizability when learning across fundamentally different geometries.

Table 1: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries of each geometry family in 2D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.019 ± 0.004 0.024± 0.005 0.057± 0.028
G∗
exp 0.044 ± 0.013 0.070 ± 0.036 0.166 ± 0.043

Gshear 0.024 ± 0.002 0.029 ± 0.004 0.082 ± 0.029
G∗
shear 0.074 ± 0.027 0.077 ± 0.024 0.203 ± 0.041

Gnonlin 0.029 ± 0.005 0.029 ± 0.009 0.058 ± 0.024
G∗
nonlin 0.055 ± 0.020 0.054 ± 0.019 0.126 ± 0.044

Grot 0.017 ± 0.001 0.055 ± 0.016 0.229 ± 0.021
G∗
rot 0.020 ± 0.002 0.272 ± 0.137 0.331 ± 0.042

Does latent PDE mapping handle anisotropic PDE dynamics? Table 3 shows that both LPM-
PINN and Affine-PINN make accurate predictions on internal test geometries, whereas the Basic-
PINN struggles with anisotropic PDE dynamics. The table and visualization in Figure 2 also indicate
that LPM-PINN generalizes better to external geometries than Affine-PINN, suggesting that it learns
a more robust representation of the anisotropic dynamics. The results demonstrate that as the com-
plexity of the underlying problem increases, the benefits of an explicit latent representation become
more pronounced.

6.2 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 3D?

The results show that all PINNs can generalize to both the internal and external families when tested
on rotations around the x-axis and on shearing along the yz-plane (Hx

rot, Hx∗
rot, H

yz
shearand Hyz∗

shear;
Table 4). Beyond these settings, LPM-PINN and Affine-PINN generalize well to the remaining
shearing directions and expansion families, whereas Basic-PINN struggles to make accurate predic-
tions on the corresponding external families (Figure 7 in Appendix E.2). Table 4 further shows that
LPM-PINN is the only PINN capable of handling rotations around the y- and z-axes. In these cases,
both Affine-PINN and Basic-PINN produce entirely inaccurate predictions on the external families,
as illustrated in Figure 3.

6.3 HOW LARGE ARE THE MISSING BOUNDARY SHAPE GRADIENTS WHEN LATENT PDE
MAPPING IS NOT USED?

Figure 4 shows that the omitted boundary information (equation 11) in the shape gradients is large
across all 2D cases (see Appendix F for computational details). For every family shown in Figure
4, the missing boundary information (blue) exceeds the shape gradient used in the Affine-PINN

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries from a combination of families in 2D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp+ Grot 0.022 ± 0.006 0.911 ± 0.065 0.199 ± 0.061
G∗
exp+ G∗

rot 0.138 ± 0.102 1.111 ± 0.268 0.285 ± 0.084
Gshear+ Grot 0.021 ± 0.005 0.027 ± 0.003 2.571 ± 0.067
G∗
shear+ G∗

rot 0.048 ± 0.033 0.152 ± 0.128 2.634 ± 0.174
Gnonlin+ Grot 0.024 ± 0.003 1.104 ± 0.114 0.186 ± 0.073
G∗
nonlin+ G∗

rot 0.035 ± 0.013 1.181 ± 0.181 0.272 ± 0.122

Figure 2: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms in the anisotropic
scenario. Each row corresponds to a geometry taken from the presented external family (G∗

exp,
G∗
shear, G∗

nonlin, G∗
rot). The left column shows the FEM ground truth approximation.

(orange). The magnitude of this missing information depends on the boundary movement when
making changes to s (Figure 10a in Appendix F): the family with the smallest gap in Figure 4 also
exhibits the smallest boundary change in Figure 10a. A similar trend appears in 3D, where shearing
families show the lowest boundary changes (Figure 10b, Appendix F) and correspondingly small
missing information (Figure 8, Appendix E.2), while expansion and rotational families exhibit larger
boundary changes (Figure 10b, Appendix F) and larger omissions (Figure 9, Appendix E.2). These
findings indicate that the missing boundary shape gradients are of substantial sizes when latent PDE
mapping is not applied, leading to suboptimal learning.

7 DISCUSSION

This work presents latent PDE mapping, a novel technique for mapping geometry-specific PDEs
to a shared latent PDE representation. Latent PDE mapping moves the shape dependence from the
geometry into the PDE itself through the deformation gradient. This representation allows essential
boundary information to be incorporated into the physics loss during training of PINNs (LPM-
PINN).

The empirical results demonstrate that latent PDE mapping enhances generalization across diverse
2D and 3D geometries for both isotropic and anisotropic PDE dynamics. In particular, the method
is advantageous in scenarios where the training data comprises multiple geometric types (Table 2,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries of each geometry family in 2D anisotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.040 ± 0.010 0.038 ± 0.008 0.205 ± 0.062
G∗
exp 0.071 ± 0.017 0.074 ± 0.013 0.496 ± 0.105

Gshear 0.053 ± 0.016 0.061 ± 0.017 0.229 ± 0.066
G∗
shear 0.125 ± 0.072 0.125 ± 0.037 0.444 ± 0.063

Gnonlin 0.062 ± 0.021 0.065 ± 0.020 0.151 ± 0.037
G∗
nonlin 0.108 ± 0.037 0.115 ± 0.037 0.266 ± 0.078

Grot 0.052 ± 0.020 0.102 ± 0.047 0.420 ± 0.031
G∗
rot 0.180 ± 0.094 0.650 ± 0.181 0.582 ± 0.098

Table 4: Mean relative L2 FEM-PINN discrepancy ± std evaluated over the internal (Hp
k) and

external (Hp∗
k ) test geometries from the geometry families in 3D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Hexp 0.015 ± 0.001 0.015 ± 0.002 0.047 ± 0.019
H∗

exp 0.050 ± 0.017 0.082 ± 0.025 0.166 ± 0.044
Hxy

shear 0.020 ± 0.006 0.023 ± 0.004 0.083 ± 0.027
Hxy∗

shear 0.077 ± 0.030 0.075 ± 0.020 0.212 ± 0.049
Hxz

shear 0.020 ± 0.005 0.024 ± 0.004 0.078 ± 0.025
Hxz∗

shear 0.072 ± 0.029 0.068 ± 0.017 0.209 ± 0.049
Hyz

shear 0.015 ± 0.002 0.014 ± 0.001 0.016 ± 0.000
Hyz∗

shear 0.018 ± 0.005 0.017 ± 0.003 0.016 ± 0.001
Hx

rot 0.016 ± 0.004 0.021 ± 0.011 0.015 ± 0.001
Hx∗

rot 0.070 ± 0.034 0.073 ± 0.035 0.020 ± 0.004
Hy

rot 0.014 ± 0.001 2.014 ± 0.188 0.234 ± 0.057
Hy∗

rot 0.036 ± 0.023 1.212 ± 0.134 0.369 ± 0.094
Hz

rot 0.012 ± 0.000 0.033 ± 0.006 0.224 ± 0.050
Hz∗

rot 0.014 ± 0.002 0.402 ± 0.182 0.382 ± 0.074

Figure 6) or where boundary conditions undergo significant variation due to rotations (last row in
Figure 2 and 3). In such settings, conventional PINNs that rely exclusively on shape descriptors
exhibit reduced performance, while latent PDE mapping provides a more robust learning represen-
tation.

A central insight emerging from this study concerns the role of missing boundary shape gradients.
Adding the boundary gradient via latent PDE mapping can boost the ability of PINNs to generalize
to new shapes (see LPM-PINN versus Affine-PINN in Table 1-4). Indeed, in the absence of latent
PDE mapping, the omitted boundary terms can be larger than the remaining gradients (Figure 4).
However, boundary gradient size does not necessarily translate directly into performance improve-
ment. Thus, there is a need for more research to further investigate this issue.

The utility of latent PDE mapping depends on the overall boundary movement in the geometric
families and on the PDE dynamics. Families with high boundary movements have a correspondingly
higher missing boundary shape gradient when latent PDE mapping is not applied. Furthermore,
latent PDE mapping improves learning and generalizability when geometric variability modifies
the underlying PDE dynamics. In our case, the results show strong improvements when the initial
activation site is moved substantially (last row in Figure 2 and 3).

It should be noted that latent PDE mapping introduces an additional computational overhead. As
shown in Tables 11 and 12 in Appendix G, the training and inference times for LPM-PINN and
Affine-PINN are largely comparable. However, the mapping to the reference geometry and defor-
mation gradient computation add extra preprocessing costs with an average cost of 4.59 ± 1.06
seconds per geometry in 2D and an average cost of 35.01 ± 2.33 seconds per geometry in 3D. Im-
portantly, this overhead is incurred only once prior to training or inference. Thus, the improvement

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 3: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (Hx∗

rot, H
y∗
rot, Hz∗

rot). The left column shows
the FEM ground truth approximation.

0 2000 4000
Epochs

10 1

100

101

102

103

M
ea

n 
m

ag
ni

tu
de

exp

0 2000 4000
Epochs

shear

0 2000 4000
Epochs

nonlin

0 2000 4000
Epochs

rot

Missing shape gradient information Shape gradient in conv
phys

Figure 4: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Gexp, Gshear, Gnonlin, and Grot.

in external predictive performance offered by LPM-PINN must be weighed against this additional
data-preparation step. In practice, this cost is modest: the data mapping and deformation gradient
computation were performed on a laptop CPU (Intel Core Ultra 9 185H) for our experiments, and
could be significantly reduced by offloading these operations to a GPU.

Limitations and future work Our study has several limitations that open directions for future
research. First, we relied on parameterized geometries, which may not always be available for
more complex or realistic geometries encountered in real-world applications. Thus, extending latent
PDE mapping to alternative shape representations is a critical future direction. One possibility is to
employ principal component analysis modes as inputs to the PINN, rather than affine parameters,
which has shown promise for representing cardiac geometries (Yin et al., 2024; Mauger et al., 2019).
While our preliminary experiments (Table 10 in Appendix E.1) suggest that such extensions are
feasible, a comprehensive exploration is beyond the scope of this paper. Second, the current study
focuses exclusively on the Aliev–Panfilov model. Although the latent PDE mapping technique is, in
principle, applicable to a broad class of architectures and physical systems, its use in alternative PDE
settings remains an open direction for future work. Finally, our validation of the advantage of latent
PDE mapping was limited to rotation transformations and simple geometries. The effectiveness
of latent PDE mapping in more complex geometries remains to be determined. This will be an
essential next step for proving the applicability of latent PDE mapping in realistic industrial and
medical scenarios.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Synthetic datasets can be created by following the description given in Section 4 and Appendix D
with parameter ranges as presented in Table 5 in Appendix B.1 for 2D and Table 6 in Appendix B.2
for 3D. Implementation details regarding developed PINNs are presented in Section 5 and Appendix
C, where the selected hyperparameters for each PINN are presented in Table 7. The source code and
datasets used to reproduce results in Section 6 will be shared in the camera-ready submission, if
accepted, to preserve anonymity during the double-blind review process.

REFERENCES

Rubin R Aliev and Alexander V Panfilov. A simple two-variable model of cardiac excitation. Chaos,
Solitons & Fractals, 7(3):293–301, 1996.

Samuel Burbulla. Physics-informed neural networks for transformed geometries and manifolds.
arXiv preprint arXiv:2311.15940, 2023.

Francisco Sahli Costabal, Simone Pezzuto, and Paris Perdikaris. δ-pinns: physics-informed neu-
ral networks on complex geometries. Engineering Applications of Artificial Intelligence, 127:
107324, 2024.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

David Dalton, Dirk Husmeier, and Hao Gao. Physics-informed graph neural network emulation of
soft-tissue mechanics. Computer Methods in Applied Mechanics and Engineering, 417:116351,
2023.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal
of Computational Physics, 428:110079, 2021.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks:
A unified framework for solving pde-governed forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 390:114502, 2022.

Shinjan Ghosh, Julian Busch, Georgia Olympia Brikis, and Biswadip Dey. Geometry-aware pinns
for turbulent flow prediction. arXiv preprint arXiv:2412.01954, 2024.

Gerhard A. Holzaphel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley,
2000.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Ali Kashefi and Tapan Mukerji. Physics-informed pointnet: A deep learning solver for steady-
state incompressible flows and thermal fields on multiple sets of irregular geometries. Journal of
Computational Physics, 468:111510, 2022.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for pdes on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023a.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
informed neural operator for large-scale 3d pdes. Advances in Neural Information Processing
Systems, 36:35836–35854, 2023b.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charlène Mauger, Kathleen Gilbert, Aaron M Lee, Mihir M Sanghvi, Nay Aung, Kenneth Fung,
Valentina Carapella, Stefan K Piechnik, Stefan Neubauer, Steffen E Petersen, et al. Right ventric-
ular shape and function: cardiovascular magnetic resonance reference morphology and biventric-
ular risk factor morphometrics in uk biobank. Journal of Cardiovascular Magnetic Resonance,
21(1):41, 2019.

Francesco Mezzadri, Joshua Gasick, and Xiaoping Qian. A framework for physics-informed deep
learning over freeform domains. Computer-Aided Design, 160:103520, 2023.

openCARP consortium, Christoph Augustin, Patrick M. Boyle, Vincent Loechner, Raphaël Colin,
Atoli Huppé, Matthias Gsell, Marie Houillon, Yung-Lin (Cary) Huang, Kristian Gregorius Hus-
tad, Elias Karabelas, Axel Loewe, Lena Myklebust, Aurel Neic, Mark Nothstein, Gernot Plank,
Anton Prassl, Jorge Sánchez, Gunnar Seemann, Tomas Stary, Arun Thangamani, Nico Tippmann,
Tiago Trevisan Jost, Ed Vigmond, Eike Moritz Wülfers, and Moritz Linder. openCARP, 2024.
URL https://git.opencarp.org/openCARP/openCARP.

Jiang-Zhou Peng, Nadine Aubry, Yu-Bai Li, Mei Mei, Zhi-Hua Chen, and Wei-Tao Wu. Physics-
informed graph convolutional neural network for modeling geometry-adaptive steady-state natu-
ral convection. International Journal of Heat and Mass Transfer, 216:124593, 2023.

Gernot Plank*, Axel Loewe*, Aurel Neic*, Christoph Augustin, Yung-Lin (Cary) Huang, Matthias
Gsell, Elias Karabelas, Mark Nothstein, Jorge Sánchez, Anton Prassl, Gunnar Seemann*, and
Ed Vigmond*. The openCARP simulation environment for cardiac electrophysiology. Computer
Methods and Programs in Biomedicine, 208:106223, 2021. doi: 10.1016/j.cmpb.2021.106223.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Francesco Regazzoni, Stefano Pagani, and Alfio Quarteroni. Universal solution manifold networks
(usm-nets): non-intrusive mesh-free surrogate models for problems in variable domains. Journal
of Biomechanical Engineering, 144(12):121004, 2022.

Yubiao Sun, Ushnish Sengupta, and Matthew Juniper. Physics-informed deep learning for simul-
taneous surrogate modeling and pde-constrained optimization of an airfoil geometry. Computer
Methods in Applied Mechanics and Engineering, 411:116042, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Tobias Würth, Niklas Freymuth, Clemens Zimmerling, Gerhard Neumann, and Luise Kärger.
Physics-informed meshgraphnets (pi-mgns): Neural finite element solvers for non-stationary and
nonlinear simulations on arbitrary meshes. Computer Methods in Applied Mechanics and Engi-
neering, 429:117102, 2024.

Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, and Mauro Maggioni. A
scalable framework for learning the geometry-dependent solution operators of partial differential
equations. Nature Computational Science, 4(12):928–940, 2024.

Weiheng Zhong and Hadi Meidani. Physics-informed geometry-aware neural operator. Computer
Methods in Applied Mechanics and Engineering, 434:117540, 2025.

12

https://git.opencarp.org/openCARP/openCARP


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DERIVATION OF LATENT PDE MAPPING APPLIED TO THE
ALIEV-PANFILOV PDE

In the following section, we give a detailed derivation of how the Aliev-Panfilov PDE in equation 7
is mapped from a physical geometry Ω(s) to a latent geometry Ω0. For convenience, we restate the
equations over Ω(s) here as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s).

(19)

The mapping is achieved by applying the deformation gradient F(X, t, s) and the deformation Ja-
cobian J(X, t, s) to quantities in equation 19, as well as performing a variable substitution x → X
where x ∈ Ω(s) and X ∈ Ω0. The deformation gradient F is given as

F(X, t, s) = I +∇U(X, t, s) (20)

where U(X, t, s) = x(X, t, s) − X , while the deformation Jacobian is given as J(X, t, s) =
det(F).

We start by introducing how quantities in equation 19 are mapped when applying principles from
nonlinear solid mechanics (Holzaphel, 2000). Quantities that do not involve any divergences or
gradients are mapped directly through a volume change defined as

dv = JdV (21)

where dv and dV are infinitesimally small volume elements in Ω(s) and Ω0, respectively. Gradients
of a scalar field ϕ are mapped as

∇ϕ(x, t) = F−T∇ϕ(X, t) (22)

which is obtained by applying the chain rule to ∇ϕ(x, t). Finally, Nanson’s formula is used to map
vector elements from Ω(s) to Ω0. The formula yields

dsn = JF−T dSN (23)

where dsn and dSN give the vector elements of infinitesimally small surface areas defined on Ω(s)
and Ω0.

Next, we rewrite the divergence term in equation 19 in integral form as∫
Ω(s)

∇ · (D∇V )dΩ

By applying Gauss’s divergence theorem, we have that∫
Ω(s)

∇ · (D∇V )dΩ =

∫
∂Ω(s)

D∇V · dsn (24)

where ∂Ω(s) is the surface of Ω(s) and n is the vector normal to the surface. We utilize the rela-
tionship of gradients in equation 22 and Nanson’s formula in equation 23, such that the divergence
term in equation 24 can be expressed over Ω0 as∫

∂Ω(s)

D∇V · dsn =

∫
∂Ω0

DF−T∇V · JF−T dSN (25)

In the 2D case, we have that

D ∈ R2x2, F ∈ R2x2, ∇V ∈ R2x1.

Hence, by assuming that F is invertible, the terms in equation 25 can be reorganized as∫
∂Ω(s)

D∇V · dsn =

∫
∂Ω0

JF−1DF−T∇V · dSN (26)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Finally, by applying Gauss’s divergence theorem again, the divergence term in Ω(s) and Ω0 can be
expressed as ∫

Ω(s)

∇ · (D∇V )dΩ =

∫
Ω0

∇ ·
(
JF−1DF−T∇V

)
dΩ0 (27)

By following the same procedure, the boundary condition in equation 19 can be rewritten as∫
Ω(s)

(D∇V · n)dΩ =

∫
Ω0

(JF−1DF−T∇V ·N)dΩ0 (28)

The remaining parts of equation 19 do not include any divergences or gradients, and are mapped
directly through a volume change as defined in equation 21. Consequently, equation 19 can be
expressed over Ω0 as

∂
∂τ (JV ) = ∇ · (JF−1DF−T∇V )− JkV (V − a)(V − 1)− JVW in Ω0,
∂
∂τ (JW ) = J

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(29)

For time-independent mappings, we finally arrive at
∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(30)

B ADDITIONAL DETAILS ON DATASET GENERATION

B.1 2D GEOMETRIES

Table 5 presents the data ranges used when creating the first three internal (Gk) and external (G∗
k)

families in 2D. Additionally, the rotational family (Grot and G∗
rot) was created by defining A as a

rotational matrix

Grot and G∗
rot : A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(31)

with θ ∈ [−π
2 ,

π
2 ] for Grot and θ /∈ [−π

2 ,
π
2 ] for G∗

rot. All values were sampled uniformly from the
given ranges.

Table 5: Parameter ranges for the first three internal (Gk) and external (G∗
k) families in 2D. Values

were sampled uniformly from the given ranges.

a1, a4 a2, a3 m1,m4

Gexp [1.0, 1.4] 0.0 0.0
G∗
exp [1.4, 1.8] 0.0 0.0

Gshear 1.0 [−0.2, 0.2] 0.0
G∗
shear 1.0 [−0.5,−0.2] ∪ [0.2, 0.5] 0.0

Gnonlin 1.0 0.0 [−0.015, 0.015]
G∗
nonlin 1.0 0.0 [−0.025,−0.015] ∪ [0.015, 0.025]

B.2 3D GEOMETRIES

In 3D, we constructed seven families by applying linear affine transformations to a 10 × 10 × 10
mm cube. The linear transformations were defined as

x = AX (32)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Parameter ranges for the internal (Hk) and external (H∗
k) expansion/shearing families in

3D. All values were sampled uniformly from the given ranges.

a1, a5, a9 a2, a4 a3, a7 a6, a8
Hexp [1.0, 1.4] 0.0 0.0 0.0
H∗

exp [1.4, 1.8] 0.0 0.0 0.0
Hxy

shear 1.0 [−0.2, 0.2] 0.0 0.0
Hxy∗

shear 1.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0 0.0
Hxz

shear 1.0 0.0 [−0.2, 0.2] 0.0
Hxz∗

shear 1.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0
Hyz

shear 1.0 0.0 0.0 [−0.2, 0.2]
Hyz∗

shear 1.0 0.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2]

with

A =

[
a1 a2 a3
a4 a5 a6
a7 a8 a9

]
. (33)

Similarly to the 2D scenario, each family was constructed using a distinct deformation type: expan-
sion (Hexp), shearing (Hshear), and rotation (Hrot). The parameter ranges used for the expansion
and shearing families are presented in Table 6. Additionally, for the rotational families, A was
defined as

Hx
rot and Hx∗

rot : A =

[
1.0 0.0 0.0
0.0 cos(θ) − sin(θ)
0.0 sin(θ) cos(θ)

]
,

Hy
rot and Hy∗

rot : A =

[
cos(θ) 0.0 sin(θ)
0.0 1.0 0.0

− sin(θ) 0.0 cos(θ)

]
,

Hz
rot and Hz∗

rot : A =

[
cos(θ) − sin(θ) 0.0
sin(θ) cos(θ) 0.0
0.0 0.0 1.0

]
,

with θ ∈ [−π
2 ,

π
2 ] for internal families and θ /∈ [−π

2 ,
π
2 ] for external families. All values were

sampled uniformly from the given ranges.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Table 7 presents the hyperparameters used in each PINN. The PINNs were implemented with Py-
Torch, and experiments were run on NVIDIA HGX H200 GPUs.

D ADDITIONAL DETAILS ON SYNTHETIC DATA GENERATION

We generated the synthetic data using openCARP (Plank* et al., 2021; openCARP consortium et al.,
2024) with parameters as listed in Table 8 and 9. The diffusion tensor D was defined as

D =

 σilσel

σil+σel
0 0

0 σitσet

σit+σet
0

0 0 σinσen

σin+σen

 (34)

in 3D, while in 2D the diffusion tensor was defined as a 2x2 tensor with entries corresponding
to longitudinal and transverse directions. Before running the simulation, we meshed the physical
geometry using triangular elements in 2D and tetrahedral elements in 3D. The maximum element
size was set to 0.05 and 0.4 in 2D and 3D, respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Overview of PINN configurations.

LPM-PINN Affine-PINN Basic-PINN

Input dim 2D 9 9 3
3D 16 16 4

Hidden layers isotropic 10 10 10
anisotropic 8 8 8

Hidden dim isotropic 25 25 25
anisotropic 64 64 64

Output dim 2 2 2
Epochs 5000 5000 5000
Batch size 264 264 264
Optimizer Adam Adam Adam

Learning rate < 100 epochs 10−3 10−3 10−3

> 100 epochs 10−4 10−4 10−4

Activation tanh tanh tanh
Ndata 14 14 14
Nphys (resampled) 700 700 700
Nbc (resampled) 80 80 80
Nic (resampled) 30 30 30

Table 8: Parameter values used to create synthetic data. PDE parameters were selected in accordance
with Aliev & Panfilov, 1996.

Parameter Description Value
Cm membrane capacitance 1 µFcm−2

β surface area to volume ratio 0.14 µm−1

fx, fy, fz fiber orientation 1, 0, 0
∆t time resolution 1ms
Iapp applied stimuli 5000 µAcm−2 for 0.2ms (planar wave)
k PDE parameter 8.0
a PDE parameter 0.15
ε0 PDE parameter 0.002
µ1 PDE parameter 0.2
µ2 PDE parameter 0.3

Table 9: Conductivities used to create isotropic and anisotropic synthetic data.

Parameter Description Isotropic case Anisotropic case
σil intracellular longitudinal conductivity 0.2 Sm−1 0.17 Sm−1

σit intracellular transversal conductivity 0.2 Sm−1 0.019 Sm−1

σin intracellular normal conductivity 0.2 Sm−1 0.019 Sm−1

σel extracellular longitudinal conductivity 1.0 Sm−1 0.62 Sm−1

σet extracellular transversal conductivity 1.0 Sm−1 0.24 Sm−1

σen extracellular normal conductivity 1.0 Sm−1 0.24 Sm−1

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (G∗

exp, G∗
shear, G∗

nonlin, G∗
rot) in the isotropic

scenario. The left column shows the FEM ground truth approximation.

E SUPPLEMENTARY RESULTS

E.1 2D RESULTS

Figure 5 presents snapshots of predicted transmembrane potential (V ) for selected geometries when
the PINNs were trained on single 2D families, while Figure 6 illustrates snapshots when trained on
a combination of two families. Both figures represent isotropic PDE dynamics.

E.1.1 PCA AS GEOMETRIC DESCRIPTOR

Table 10 presents the results obtained on 2D isotropic PDE dynamics when replacing affine pa-
rameters with the two PCA modes that capture more than 90% of the geometric variability in each
family. A slight increase in error is observed when using PCA modes instead of affine parameters
as the geometric descriptor, particularly for the external families. Nonetheless, the overall results
indicate that both LPM-PINN and Affine-PINN remain capable of producing accurate predictions
when supplied with alternative geometric descriptors. This demonstrates the potential of extending
the methods to non-parametric geometries.

E.2 3D RESULTS

Figure 7 visualizes snapshots of the predicted transmembrane potential (V ) for selected geometries,
while Figures 8 and 9 show the numerical approximation of missing shape gradients at the bound-
aries for expansion, shearing, and rotational families.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Snapshot of predicted transmembrane voltages (V ) at t = 50 ms for a geometry taken
from G∗

exp, G∗
shear, and G∗

nonlin in the isotropic scenario. The PINNs were trained on a combination
of geometries from the given families. The left column shows the FEM ground truth approximation.

Table 10: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries of each geometry family in 2D isotropic scenarios. In this case, the
two first PCA modes for the corresponding family were used as additional inputs to describe the
geometrical variability.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.020 ± 0.003 0.020 ± 0.003 0.057 ± 0.032
G∗
exp 0.153 ± 0.047 0.113 ± 0.042 0.196 ± 0.050

Gshear 0.033 ± 0.009 0.033 ± 0.009 0.087 ± 0.023
G∗
shear 0.089 ± 0.037 0.088 ± 0.030 0.204 ± 0.034

Gnonlin 0.023 ± 0.003 0.023 ± 0.002 0.062 ± 0.023
G∗
nonlin 0.139 ± 0.095 0.138 ± 0.096 0.128 ± 0.041

Grot 0.019 ± 0.002 0.040 ± 0.018 1.876 ± 0.370
G∗
rot 0.026 ± 0.007 0.524 ± 0.128 1.934 ± 0.252

F COMPUTATIONAL DETAILS OF MISSING BOUNDARY INFORMATION

In the following section, we present details on how equation 11 was discretized and numerically
approximated. For convenience, we restate the equation here as

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (35)

and define

I(s) ≡
∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ (36)

B(s) ≡
∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (37)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (H∗

exp, Hxy∗
shear, Hxz∗

shear, Hyz∗
shear) in isotropic

scenarios. The left column shows the FEM ground truth approximation.

0 2000 4000
Epochs

10 1

100

101

102

M
ea

n 
m

ag
ni

tu
de

exp

0 2000 4000
Epochs

xy
shear

0 2000 4000
Epochs

xz
shear

0 2000 4000
Epochs

yz
shear

Missing shape gradient information Shape gradient in conv
phys

Figure 8: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hexp, Hxy

shear, Hxz
shear, and Hyz

shear.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Epochs

100

103

106

109

1012

1015

M
ea

n 
m

ag
ni

tu
de

x
rot

0 100 200 300
Epochs

y
rot

0 1000 2000 3000 4000 5000
Epochs

z
rot

Missing shape gradient information Shape gradient in conv
phys

Figure 9: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hx

rot, H
y
rot, and Hz

rot.

such that
∂Lphys

∂s
= I(s) +B(s). (38)

Next, we discretize the terms and make a numerical approximation using Monte Carlo for integrals
and central finite differences for derivatives. We assume that the spatial positions are uniformly
distributed and normalize with respect to the area/boundary, such that

I(sk) ≈
1

NI(s)

NI(s)∑
i

T∑
j

R(xi, tj , uij , sk +∆s)2 −R(xi, tj , uij , sk −∆s)2

2∆s
(39)

and

B(sk) ≈
1

NB(s)

NB(s)∑
i

T∑
j

R(xi, tj , uij , sk)
2 xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s)︸ ︷︷ ︸

boundary movement

(40)

where sk is the k-th value in a set of shape parameters given as s = {s1, s2, ..., sK}. Moreover,
NI(s) and NB(s) gives the number of spatial positions used to evaluate the two terms and T is the
total number of time steps. Thus, our discretized version for the k-th shape value is given as

∆Lphys

∆sk
= I(sk) +B(sk) (41)

The magnitude of the overall change for the shape parameters (∆Lphys

∆s ) was computed by applying
the L2 norm to equation 41. Finally, we computed ∆Lphys

∆s for each geometry in a family, and
represented the numerical approximation of I and B as the mean across the given geometries. Here,
I represents the numerical computation of Lconv

phys and B represents the missing boundary information
when latent PDE mapping is not applied (see Figures 4, 8, and 9). We used ∆s = 10−6 in all
computations.

F.1 BOUNDARY MOVEMENTS

The magnitude of the numerically approximated boundary movements when making small changes
to the shape parameters s for each family in 2D and 3D are presented in Figure 10a and 10b, re-
spectively. The boundary movements were approximated by applying central finite differences, as
shown in equation 40, yielding

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

exp shear nonlin rot
0

10

20

30

40

50

60

70

Av
er

ag
e 

bo
un

da
ry

 m
ov

em
en

t

(a) 2D families.

exp xy
shear

xz
shear

yz
shear

x
rot

y
rot

z
rot

0

1

2

3

4

5

6

7

Av
er

ag
e 

bo
un

da
ry

 m
ov

em
en

t

(b) 3D families.

Figure 10: Numerical approximations of boundary movements when making small changes to the
shape parameters s for each family in 2D and 3D.

∆x

∆sk
=

1

NB(s)

NB(s)∑
i

xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s) (42)

where NB(s) gives the number of boundary points. Again, the overall magnitude of the boundary
movement was computed using the L2 norm and mean across the given geometries with ∆s = 10−6.

G COMPUTATIONAL OVERHEAD

Table 11 reports mean per-epoch training times for each PINN across 2D and 3D geometries.
A slight increase in computational time per epoch is observed when using LPM-PINN. Further-
more, Table 12 presents mean inference times for geometries in 2D and 3D. The results show that
LPM-PINN and Affine-PINN have approximately the same inference times, while Basic-PINN is
marginally faster in 2D and substantially faster in 3D. This is likely due to the reduced number of
input features for Basic-PINN, which does not require the affine parameters used by LPM-PINN
and Affine-PINN in addition to the spatiotemporal inputs. Additionally, the jump in inference time
when moving from 2D to 3D is most likely caused by the increased number of spatial locations as
well as an increased number of affine parameters in the inputs.

Finally, the additional computational cost associated with computing the deformation gradient and
mapping to the reference geometry was estimated to an average time of 4.59 ± 1.06 seconds per
geometry in 2D and 35.01± 2.33 seconds per geometry in 3D. As expected, the overhead increases
in higher dimensions (3D) and for larger geometries. However, this cost is incurred only once during
data preparation. Moreover, the reported times were obtained using a single laptop CPU (Intel Core
Ultra 9 185H), indicating that substantial reductions in preprocessing time could be achieved through
parallelized CPU execution or by offloading these computations to a GPU.

Table 11: Mean per-epoch training times for 2D and 3D geometries, given as mean ± std in seconds.
The training was performed on a GPU (NVIDIA HGX H200).

LPM-PINN Affine-PINN Basic-PINN
2D geometries 1.633 ± 0.634 1.380 ± 0.489 1.598 ± 0.649
3D geometries 1.645 ± 0.042 1.580 ± 0.047 1.470 ± 0.076

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Mean inference times per geometry for 2D and 3D geometries, given as mean ± std in
seconds. A GPU (NVIDIA HGX H200) was used during inference.

LPM-PINN Affine-PINN Basic-PINN
2D geometries 0.017 ± 0.009 0.017 ± 0.009 0.016 ± 0.009
3D geometries 0.335 ± 0.047 0.351 ± 0.055 0.132 ± 0.029

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

80

60

40

20

0

20

V 
[m

V]

(a) Training example from Gexp

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

80

60

40

20

0

20

V 
[m

V]

(b) Test example from Gexp

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

80

60

40

20

0

20

V 
[m

V]

(c) Test example from G∗
exp

Figure 11: Illustration of V at t = 30 ms at the fixed sensor points (squares) in the reference
geometry used during training and testing of the DeepONet on the Gexp family. V was computed
using an interpolation scheme at the fixed sensor points.

H DEEPONET EXPERIMENTS

In the following section, we introduce our implementation of a DeepONet as proposed by Lu et al.,
2021, as well as the results when running the DeepONet on 2D isotropic experiments using sparse
data observations.

H.1 IMPLEMENTATION DETAILS

We sampled 14 uniformly fixed sensor points in the reference geometry to train the DeepONet, as
illustrated in Figure 11. The number of sensor points in the DeepONet was chosen based on the
number of supervised data locations (Ndata = 14) used in the PINNs. Thus, the DeepONet was
trained using full time-trajectories of the transmembrane potential V at 14 fixed sensor locations.
We employed an interpolation scheme to compute the transmembrane potential V at the fixed sensor
locations. It should be noted that the PINNs received Nic = 30 resampled data points at τ = 0 to
enforce the initial condition as part of their physics loss during training. These points were not
included during training of the DeepONet due to the need for fixed sensor locations.

The DeepONet consisted of a branch network and a trunk network where each network had four
hidden layers with 50 neurons in each layer. We gave the full time-trajectories of the transmembrane
potential V at the fixed sensor locations as input to the branch network. The trunk network received
the spatiotemporal data from the corresponding sensors, and the affine parameters describing the
overall physical geometry, as input. We used the tanh as activation function, and Adam as optimizer
with a learning rate of 0.001. We trained the DeepONet for 5000 epochs and used the validation data
to find the best model obtained during training in a similar manner as for the PINNs. We used the
same datasets for training and testing as used for the PINNs. Hence, the DeepONet was trained on
the same 10 geometries, validated on the same 5 geometries, and tested on the same 35 geometries
in the single family experiments. The same geometries were also used for the combined families as
during training and testing of the PINNs.

At inference, the DeepONet received the full time-trajectory of V at the fixed sensor location for
each test geometry. Additionally, during inference, the trunk network received spatiotemporal inputs
from the entire reference geometry as input. In this way, the DeepONet made predictions of V over
the entire geometry, not just at the fixed sensor points, in accordance with the PINNs.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Epochs

10 5

10 4

10 3

10 2

10 1

M
SE

Train Loss
Validation Loss

Figure 12: Visualization of training and validation losses during training of the DeepONet on su-
pervised data from Gexp. The decrease in training loss (blue) in combination with the stagnant
validation loss (orange) indicates that there is not enough observed data available for the DeepONet
to generalize.

H.2 RESULTS

Table 13 and 14 report the mean relative L2 error of the DeepONet predictions when trained on indi-
vidual and combined 2D geometry families, respectively. The results indicate moderate L2 errors on
the internal families and an increase in errors on the external families. This suggests that the Deep-
ONet can leverage the fixed sensor locations to make predictions at new spatial positions. Although
the L2 errors in Table 13 and 14 may appear acceptable at first glance, Figure 13 shows that the
corresponding solutions are not necessarily physically consistent, exhibiting degraded wavefronts.
Hence, even though the DeepONet can learn from fixed sensor locations and generalize to new ones,
its predictions do not necessarily respect the governing physics, as previously noted by Wang et al.,
2021. This limitation underscores the motivation for incorporating physics-informed learning in the
first place.

Table 13: Mean relative L2 DeepONet-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries of each geometry family in 2D.

DeepONet
Gexp 0.048 ± 0.007
G∗
exp 0.074 ± 0.013

Gshear 0.055 ± 0.002
G∗
shear 0.068 ± 0.015

Gnonlin 0.039 ± 0.004
G∗
nonlin 0.053 ± 0.010

Grot 0.025 ± 0.002
G∗
rot 0.030 ± 0.002

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented internal family (Gexp, Gshear, Gnonlin, Grot). The left
column shows the FEM ground truth approximation.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Mean relative L2 DeepONet-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries from a combination of families in 2D. In this setting, the DeepONet
was trained on 20 geometries, validated on 10 geometries, and tested on 70 geometries sampled
from the corresponding families.

DeepONet
Gexp+ Grot 0.062 ± 0.005
G∗
exp+ G∗

rot 0.072 ± 0.017
Gshear+ Grot 0.059 ± 0.001
G∗
shear+ G∗

rot 0.063 ± 0.009
Gnonlin+ Grot 0.046 ± 0.004
G∗
nonlin+ G∗

rot 0.060 ± 0.018

25


	Introduction
	Our contributions

	Related work
	Latent PDE mapping
	Application to nonlinear, time-dependent, stiff systems: the Aliev-Panfilov PDE
	Accurate gradient calculation with latent PDE mapping

	Cardiac electrophysiology datasets with variable geometries
	PINN training procedures and evaluation methods
	Experiments
	Does latent PDE mapping improve geometric generalizability in 2D?
	Does latent PDE mapping improve geometric generalizability in 3D?
	How large are the missing boundary shape gradients when latent PDE mapping is not used?

	Discussion
	Derivation of latent PDE mapping applied to the Aliev-Panfilov PDE
	Additional details on dataset generation
	2D geometries
	3D geometries

	Hyperparameters and implementation details
	Additional details on synthetic data generation
	Supplementary results
	2D results
	PCA as geometric descriptor

	3D results

	Computational details of missing boundary information
	Boundary movements

	Computational overhead
	DeepONet Experiments
	Implementation details
	Results


