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ABSTRACT

Physics-Informed Neural Networks (PINNs) have shown strong potential for
learning physically consistent representations from sparse data, but often strug-
gle to generalize to geometries with varying shapes. To address this challenge, we
introduce latent PDE mapping, a technique for mapping geometry-specific par-
tial differential equations (PDEs) to a shared latent PDE representation using the
deformation gradient. We embed latent PDE mapping into the PINN framework
(LPM-PINN), enabling PINNs to capture geometric variability while preserving
the governing physics. This integration facilitates accurate predictions of nonlin-
ear, time-dependent systems even in geometries well beyond the training distri-
bution. We demonstrate LPM-PINN on a challenging nonlinear time-dependent
PDE with sharp gradients, the Aliev–Panfilov model of cardiac electrophysiol-
ogy, in both 2D and 3D. Our results show that LPM-PINN generalizes robustly
across diverse geometries, including shapes with drastically changing boundaries.
These findings establish latent PDE mapping as a promising approach for extend-
ing PINNs to applications with variable geometries and complex physics.

1 INTRODUCTION

Physics-informed neural networks (PINNs) (Raissi et al., 2019) have emerged as a new paradigm
for learning physically consistent representations from sparse observations (Karniadakis et al., 2021;
Cuomo et al., 2022). However, PINNs face significant challenges when making predictions on ge-
ometries with varying shapes, often requiring retraining when encountering novel morphologies out-
side the training distribution (Gao et al., 2021). This limitation is critical in time-sensitive applica-
tions (e.g. medicine) where short compute times and generalization across diverse physiologically-
derived shapes are required. Here, we have chosen a prominent example that arises in cardiac
electrophysiology, where accurate cardiac arrest risk assessments require adaptation to diverse heart
geometries, and integration into medical workflows requires fast computations.

To address this issue, we introduce latent PDE mapping, a technique that maps geometry-specific
partial differential equations (PDEs) to a shared latent PDE representation. Using affine shape pa-
rameterization, a predefined latent geometry, and the deformation gradient; our method expresses the
loss terms of a PINN (LPM-PINN) using latent coordinates. This approach preserves the underly-
ing dynamics while capturing geometric variability, enabling accurate predictions on unseen shapes
in nonlinear, time-dependent systems. We apply latent PDE mapping to the Aliev-Panfilov model
of cardiac electrophysiology, a representative benchmark for challenging nonlinear time-dependent
PDE dynamics. The proposed approach offers a broadly applicable strategy for extending PINNs to
problems involving geometries with variable shapes.

1.1 OUR CONTRIBUTIONS

• We introduce latent PDE mapping, a novel technique that maps geometry-specific PDEs
to a shared latent PDE, enabling PINNs to learn meaningful representations from sparse
observations across diverse geometrical shapes.

• We construct a PINN (LPM-PINN), which applies latent PDE mapping to the
Aliev–Panfilov model of cardiac electrophysiology, a challenging nonlinear, time-
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dependent PDE with sharp gradients in 2D and 3D. LPM-PINN provides accurate solutions
even in extreme rotation scenarios where the boundary changes radically.

• We provide theoretical and empirical evidence that latent PDE mapping properly accounts
for geometric variability in the physics loss gradient, yielding more generalizable represen-
tations.

2 RELATED WORK

Several approaches have explored extensions of PINNs to variable geometries. The earliest studies
modified network architectures, replacing multilayer perceptrons with physics-informed convolu-
tional neural networks (Gao et al., 2021), physics-informed graph neural networks (Dalton et al.,
2023; Peng et al., 2023; Würth et al., 2024; Gao et al., 2022), or physics-informed PointNet (Kashefi
& Mukerji, 2022). These models are better suited to handle variable geometries than basic PINNs,
but require uniform grids, complex meshing at inference, or struggle to generalize across PDE
parameters (Zhong & Meidani, 2025). To overcome these challenges, other studies have instead
augmented PINNs with shape descriptors (Regazzoni et al., 2022; Costabal et al., 2024) or global
geometric parameters (Sun et al., 2023; Ghosh et al., 2024). While showing promising results, these
methods still couple the learning process to specific shapes, which can result in suboptimal training
and limited generalization.

Another research direction involves latent geometries, where inputs are embedded into a common
latent space to facilitate comparison and efficient representation across different shapes. Regazzoni
et al. (2022) proposed a universal latent space for parameterized geometries, enabling learning across
varying shapes. Similarly, Mezzadri et al. (2023) introduced a framework that aligns geometric
variability through latent embeddings, enabling simple linear elasticity models to generalize across
freeform domains. More recently, Burbulla (2023) introduced a PDE mapping to low-dimensional
manifolds and applied it to simple linear PDEs. However, all previously mentioned latent geometry
studies are limited to simple, linear, static PDEs. This limits the methods’ utility in real-world
applications, which are often complex, nonlinear, and dynamic. Moreover, no work has yet shown
that PINNs with mapped PDEs can generalize well to diverse geometries.

The latent PDE mapping introduced here moves beyond simple PDE mapping to PINN formulations
with geometrically variable shapes and nonlinear, time-dependent PDEs. Furthermore, we introduce
the use of the deformation gradient to accurately map nonlinear PDEs within PINNs.

3 LATENT PDE MAPPING

We consider a time-dependent PDE defined over a geometry Ω(s). Here, s is a set of shape param-
eters describing the overall geometry of Ω. The governing PDE is given as

F (u (x, t; s)) = f(x, t, u; s), (x, t) ∈ Ω(s)× T (1)

where F denotes a differential operator, f represents a source term that introduces external influ-
ences into the system, x ∈ Ω(s) ⊂ Rd are the spatial coordinates, t ∈ T ⊂ R is the time, and u is
the unknown PDE solution. In practice, obtaining an exact solution to equation 1 is often intractable
due to the complexity of the underlying system. To address this, we employ a PINN to approximate
the solution such that

NN (x, t, s; θ) = uθ ≈ u(x, t; s) (2)

where θ represents the trainable parameters. PINNs are known to offer a data-efficient machine
learning alternative by embedding physical laws directly into the neural network via PDE residuals
in the loss function (Raissi et al., 2019). The residual is defined as

R = F (u (x, t; s))− f(x, t, u; s) = 0, (x, t) ∈ Ω(s)× T (3)

where R depends on Ω(s) and the shape parameters s. With latent PDE mapping, we rather express
the geometry-specific residual in equation 3 over a latent geometry. Thus, we assume that there
exists a continuous map between Ω(s) and a predefined latent geometry Ω0, defined as

Φ := X → x (4)

2
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where X is a given point in Ω0 while x is the associated point in Ω(s). Physical quantities can be
mapped from Ω(s) to Ω0, or vice versa, through the deformation gradient and deformation Jacobian
given as

F(X, t, s) = I +∇U(X, t, s) (5)

and J(X, t, s) = det(F), respectively (Holzaphel, 2000). Here, I is the identity tensor and
U(X, t, s) = x(X, t, s) − X is the displacement field at time t for the shape parameters s. In
this study, we use the deformation gradient to map the geometry-specific R in equation 3 to a shared
latent representation, yielding

R(X, t, u,F, J) = F (u (X, t; s) ,F, J)− f(X, t, u,F, J ; s), (X, t) ∈ Ω0 × T . (6)

In this way, the dependency on s has been moved from the physical geometry Ω(s) into the PDE
itself through the deformation gradient F. This approach is what we refer to as the latent PDE
mapping technique.

3.1 APPLICATION TO NONLINEAR, TIME-DEPENDENT, STIFF SYSTEMS: THE
ALIEV-PANFILOV PDE

We demonstrate our latent PDE mapping technique on the Aliev-Panfilov model from cardiac eletro-
physiology. The Aliev-Panfilov PDE (Aliev & Panfilov, 1996) is used to describe the evolution of
transmembrane potential V over a physical geometry representing cardiac tissue and offers a fair
representation of challenging PDEs due to its nonlinearity, sharp gradients, and time-dependency.
The PDE can be expressed over a physical geometry Ω(s) as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s)

(7)

where V,W, and τ are dimensionless variables representing the transmembrane potential, recovery
variable, and time, respectively. V ∈ [0, 1] is given in arbitrary units (AU), while τ = 12.9t is
measured in temporal units (TU) with t given in milliseconds. The tissue conductivity is defined
by the diffusion tensor D, while k, a, ϵ0, µ1, µ2 are parameters controlling the overall shape and
temporal dynamics of V and W . Additionally, the PDE employs a no-flux Neumann boundary
condition where n is the vector normal to the boundary of Ω(s). Consequently, there is no leakage
of V to regions outside of Ω(s).

We apply our latent PDE mapping technique to the Aliev-Panfilov PDE in equation 7. For a time-
independent mapping, the latent PDE representation is given as

∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(V,W ) (−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(8)

where N is the normal vector to the boundary of the latent geometry Ω0, F = F(X, t, s) and
J = J(X, t, s). A detailed derivation of equation 8 can be found in Appendix A.

3.2 ACCURATE GRADIENT CALCULATION WITH LATENT PDE MAPPING

The physics loss in PINNs is typically evaluated with the mean squared error (MSE) of R (Wang
et al., 2023), given as

Lphys =
1

Nphys

Nphys∑
i

R2
i (9)

using a traditional mini-batch approach with Nphys collocation points to evaluate R. This approach
treats R as independent of Ω(s) during optimization, which is not the case and can lead to inaccurate
gradient estimates. Thus, a more accurate formulation is to evaluate the physics loss as a continuous
integral

Lphys =

∫
Ω(s)

R(x, t, u, s)2dΩ (10)
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and apply the Leibniz integral rule when computing the shape gradient ∂Lphys

∂s . This results in

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (11)

where n is the outward unit normal to the boundary ∂Ω(s) and dS is an infinitesimally small part
of the boundary. The second term in equation 11 accounts for the movement of the boundary, which
is neglected in the discrete loss formulation in equation 9. This omission can lead to inaccurate
gradient estimates, hindering training and resulting in suboptimal PINNs.

With latent PDE mapping, the dependency of s is moved from the geometry into the PDE itself via
the deformation gradient F. Consequently, the integrand does not vary with s and the shape gradient
can be computed directly

∂Lphys

∂s
=

∫
Ω0

∂

∂s
R(X, t, u,F, J)2dΩ0. (12)

Thus, the straightforward MSE in equation 9 can be applied during training without sacrificing
gradient accuracy. Based on these considerations, we hypothesized that improving the accuracy of
the physics loss gradient via latent PDE mapping can improve the generalizability of PINNs to novel
geometries.

4 CARDIAC ELECTROPHYSIOLOGY DATASETS WITH VARIABLE GEOMETRIES

We constructed four and seven families of geometries in 2D and 3D, respectively, for training and
testing of our PINNs. In 2D, the latent geometry Ω0 was defined as a 10×10 mm square, while in
3D it was a 10 × 10 × 10 mm cube. Families belonging to 2D and 3D are denoted with a G and
H, respectively. In the following, we describe the generation of 2D datasets. The extension to 3D is
straightforward and provided in detail in Appendix B.2.

The geometries were generated by deforming Ω0 through different affine transformations expressed
in their most general form as

x = AX +XTMX (13)
with

A =

[
a1 a2
a3 a4

]
, M =

[
m1 0
0 m4

]
. (14)

The elements of A and M , referred to as affine parameters, are denoted by s =
{a1, a2, a3, a4,m1,m4}. Each family of geometries corresponded to a distinct deformation type:
expansion (Gexp), shearing (Gshear), nonlinear deformation (Gnonlin), and rotation (Grot). Figure 1
illustrates one representative geometry from each family, while Table 4 in Appendix B.1 gives the
affine parameter ranges for all families.

For each family, we generated two branches. The first branch (Gk) contained 50 geometries, which
were later split into training, validation, and test sets. The second branch (G∗

k) contained 35 geome-
tries generated from parameter ranges outside those of Gk, and was used exclusively for testing. We
refer to test geometries in Gk as the internal family and G∗

k as the external family.

In 3D, the same procedure was applied with the same number of geometries and versions per family.
However, only linear deformation types were considered. The 3D families are denoted as Hp

k where
k indicates the deformation type (expansion, shearing, or rotation) and p indicates the direction of
the deformation when applicable (Hx

rot = rotation about the x-axis, Hxy
shear = shearing along the

xy-plane, etc.).

Synthetic cardiac electrophysiology data We used openCARP (Plank* et al., 2021; openCARP
consortium et al., 2024) to create synthetic data that was used to approximate the ground truth
PDE solution during training and testing of the PINNs. Thus, we solved the Aliev-Panfilov PDE
in equation 7 over the physical geometries using the finite element method (FEM). All geometries
were stimulated by an external current at nodes located at the left boundary/plane. Sheet fibers were
oriented along the x-axis with isotropic conductivities, resulting in a planar wave propagation. All
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Figure 1: From left to right, the figure shows an example of a geometry from Gexp, Gshear, Gnonlin,
and Grot. All geometries were externally stimulated at the left edge nodes (yellow). The dashed line
illustrates the latent geometry Ω0 in 2D.

simulations were run for 520ms, yielding a full cycle of polarization and re-polarization. Solutions
at t < 6ms were excluded to remove applied current from the system. The exact configurations
used for synthetic data generation are listed in Table 7 in Appendix D.

5 PINN TRAINING PROCEDURES AND EVALUATION METHODS

We developed three PINNs for comparison and evaluation of the latent PDE mapping. The first
PINN (LPM-PINN) incorporates the latent PDE mapping technique and uses affine parameters as
additional inputs. The second (Affine-PINN) and third (Basic-PINN) PINNs adopt the conventional
physics loss formulated over the physical geometries. However, the Affine-PINN integrates affine
parameters as input, whereas the Basic-PINN relies exclusively on spatiotemporal inputs. This setup
enables a systematic evaluation of the contribution of latent PDE mapping to PINN training, as well
as the added benefits of including affine parameters.

All PINNs were trained by minimizing a hybrid loss function defined as

L(θ) = Ldata(θ) + Lphys(θ) + Lbc(θ) + Lic(θ) (15)

where Ldata(θ) is the loss due to known FEM data, Lphys(θ) is the loss described by the governing
PDE residual, Lbc(θ) is the loss associated with the boundary condition, and Lic(θ) is the loss asso-
ciated with the initial condition. The loss terms were equally weighted, and each term was evaluated
using the MSE over a given set of spatiotemporal points (Ndata, Nphys, Nbc, Nic). Furthermore,
we defined the physics and boundary loss in LPM-PINN as

LLPM
phys ≡ 1

Nphys

Nphys∑
R(X, τ, V̂ , Ŵ ,F, J), LLPM

bc ≡ 1

Nbc

Nbc∑
R(X, τ, V̂ ,F, J) (16)

and the conventional losses in Affine-PINN and Basic-PINN as

Lconv
phys ≡

1

Nphys

Nphys∑
R(x, τ, V̂ , Ŵ ), Lconv

bc ≡ 1

Nbc

Nbc∑
R(x, τ, V̂ ). (17)

where X ∈ Ω0 and x ∈ Ω(s). We used a fully connected neural network with 10 hidden layers
in each PINN. Each layer had 25 neurons, and we employed the tanh as activation function to
handle second-order derivatives in the backward pass. All PINNs predicted V̂ and Ŵ as outputs. A
complete overview of the hyperparameters for each PINN can be found in Table 6 in Appendix C.

Each internal family (Gk, Hk) was split into a training set, validation set, and test set. Unlike the
conventional split used in machine learning, we adopted an inverted allocation strategy with 20%
train data (10 geometries), 10% validation data (5 geometries), and 70% test data (35 geometries)
in order to emphasize the applicability of PINNs in data-limited regimes. Furthermore, we selected
Ndata = 14, Nphys = 700, Nbc = 80, and Nic = 30 spatial locations from each geometry in the
training set and trained the models for 5000 epochs. Nphys, Nbc, and Nic were resampled at every
epoch to ensure that the physics was learned over the entire geometry.

During training, we evaluated L(θ) for each geometry in the validation set. Since our validation
set spanned multiple distinct geometries, we selected the best PINN state as the state that gave the

5
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lowest maximum L(θ) across the validation geometries, rather than the lowest average L(θ). This
criterion ensured that the PINN generalized effectively to geometries differing substantially from
those seen during training. To reduce computational overhead, we computed the validation loss
every 10 epochs using a subsample of points from each geometry.

Evaluation metrics We employed the relative L2 error (εL2) as an evaluation metric, given as

εL2 =

√∑Ntest

i

(
V̂i − Vi

)2

√∑Ntest

i V 2
i

(18)

where V̂ is the predicted transmembrane potential and V is the approximated FEM data used as
ground truth. Results are presented as the mean relative L2 error across all geometries in the given
family with the corresponding standard deviation.

6 EXPERIMENTS

In the following sections, we present results from a series of experiments used to evaluate and
compare the PINNs’ performance when generalizing across diverse geometries in 2D and 3D. Fur-
thermore, we investigate the role of the missing boundary shape gradients when latent PDE mapping
is not applied.

6.1 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 2D?

The results indicate consistently low prediction errors for all PINNs across test geometries in the
internal families Gexp, Gshear, and Gnonlin (Table 1). Moreover, the results show that LPM-PINN
and Affine-PINN generalize to the corresponding external families with only a modest increase in
prediction error, whereas the Basic-PINN exhibits errors of an order of magnitude higher on the
same families. Notably, LPM-PINN is the only PINN that achieves accurate predictions on the G∗

rot
family, while Affine-PINN and Basic-PINN yield significantly inaccurate results, as illustrated in
the last row of Figure 2. These findings demonstrate that latent PDE mapping improves geometric
generalizability, particularly when the boundary undergoes radical changes.

Table 2 shows that LPM-PINN can learn and make accurate predictions when trained on geometries
from two different families. In contrast, Affine-PINN and Basic-PINN fail to learn meaningful
representations in the same setting, except for Affine-PINN on Gshear+ Grot. Figure 5 in Appendix
E.1 visualizes predictions on the same geometries as in Figure 2, showing that the higher error is
not limited to the Grot and G∗

rot family, but arises from degraded performance across both families.
Hence, the results indicate that latent PDE mapping can enhance generalizability when learning
across fundamentally different geometries.

Table 1: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries of each geometry family in 2D.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.019 ± 0.004 0.024± 0.005 0.057± 0.028
G∗
exp 0.044 ± 0.013 0.070 ± 0.036 0.166 ± 0.043

Gshear 0.024 ± 0.002 0.029 ± 0.004 0.082 ± 0.029
G∗
shear 0.074 ± 0.027 0.077 ± 0.024 0.203 ± 0.041

Gnonlin 0.029 ± 0.005 0.029 ± 0.009 0.058 ± 0.024
G∗
nonlin 0.055 ± 0.020 0.054 ± 0.019 0.126 ± 0.044

Grot 0.017 ± 0.001 0.055 ± 0.016 0.229 ± 0.021
G∗
rot 0.020 ± 0.002 0.272 ± 0.137 0.331 ± 0.042
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Figure 2: Snapshots of predicted transmembrane voltages (V ). Each row corresponds to a geometry
taken from the presented external family (G∗

exp, G∗
shear, G∗

nonlin, G∗
rot) at a given time point. The left

column shows the FEM ground truth approximation.

Table 2: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and ex-
ternal (G∗

k) test geometries from a combination of families in 2D. In this setting, the PINNs were
trained on 20 geometries, validated on 10 geometries, and tested on 70 geometries sampled from the
corresponding families.

LPM-PINN Affine-PINN Basic-PINN
Gexp+ Grot 0.022 ± 0.006 0.911 ± 0.065 0.199 ± 0.061
G∗
exp+ G∗

rot 0.138 ± 0.102 1.111 ± 0.268 0.285 ± 0.084
Gshear+ Grot 0.021 ± 0.005 0.027 ± 0.003 2.571 ± 0.067
G∗
shear+ G∗

rot 0.048 ± 0.033 0.152 ± 0.128 2.634 ± 0.174
Gnonlin+ Grot 0.024 ± 0.003 1.104 ± 0.114 0.186 ± 0.073
G∗
nonlin+ G∗

rot 0.035 ± 0.013 1.181 ± 0.181 0.272 ± 0.122

6.2 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 3D?

The results show that all PINNs can generalize to both the internal and external families when tested
on rotations around the x-axis and on shearing along the yz-plane (Hx

rot, Hx∗
rot, H

yz
shearand Hyz∗

shear;
Table 3). Beyond these settings, LPM-PINN and Affine-PINN generalize well to the remaining
shearing directions and expansion families, whereas Basic-PINN struggles to make accurate predic-
tions on the corresponding external families (Figure 6 in Appendix E.2). Table 3 further shows that
LPM-PINN is the only PINN capable of handling rotations around the y- and z-axes. In these cases,
both Affine-PINN and Basic-PINN produce entirely inaccurate predictions on the external families,
as illustrated in Figure 3.

7
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Table 3: Mean relative L2 FEM-PINN discrepancy ± std evaluated over the internal (Hp
k) and

external (Hp∗
k ) test geometries from the geometry families in 3D.

LPM-PINN Affine-PINN Basic-PINN
Hexp 0.015 ± 0.001 0.015 ± 0.002 0.047 ± 0.019
H∗

exp 0.050 ± 0.017 0.082 ± 0.025 0.166 ± 0.044
Hxy

shear 0.020 ± 0.006 0.023 ± 0.004 0.083 ± 0.027
Hxy∗

shear 0.077 ± 0.030 0.075 ± 0.020 0.212 ± 0.049
Hxz

shear 0.020 ± 0.005 0.024 ± 0.004 0.078 ± 0.025
Hxz∗

shear 0.072 ± 0.029 0.068 ± 0.017 0.209 ± 0.049
Hyz

shear 0.015 ± 0.002 0.014 ± 0.001 0.016 ± 0.000
Hyz∗

shear 0.018 ± 0.005 0.017 ± 0.003 0.016 ± 0.001
Hx

rot 0.016 ± 0.004 0.021 ± 0.011 0.015 ± 0.001
Hx∗

rot 0.070 ± 0.034 0.073 ± 0.035 0.020 ± 0.004
Hy

rot 0.014 ± 0.001 2.014 ± 0.188 0.234 ± 0.057
Hy∗

rot 0.036 ± 0.023 1.212 ± 0.134 0.369 ± 0.094
Hz

rot 0.012 ± 0.000 0.033 ± 0.006 0.224 ± 0.050
Hz∗

rot 0.014 ± 0.002 0.402 ± 0.182 0.382 ± 0.074

Figure 3: Snapshots of predicted transmembrane voltages (V ). Each row corresponds to a geometry
taken from the presented external family (Hx∗

rot, H
y∗
rot, Hz∗

rot) at a given time point. The left column
shows the FEM ground truth approximation.

6.3 HOW LARGE ARE THE MISSING BOUNDARY SHAPE GRADIENTS WHEN LATENT PDE
MAPPING IS NOT USED?

Figure 4 shows that the omitted boundary information (equation 11) in the shape gradients is large
across all 2D cases (see Appendix F for computational details). For every family shown in Figure
4, the missing boundary information (blue) exceeds the shape gradient used in the Affine-PINN
(orange). The magnitude of this missing information depends on the boundary movement when
making changes to s (Figure 9a in Appendix F): the family with the smallest gap in Figure 4 also
exhibits the smallest boundary change in Figure 9a. A similar trend appears in 3D, where shearing
families show the lowest boundary changes (Figure 9b, Appendix F) and correspondingly small
missing information (Figure 7, Appendix E.2), while expansion and rotational families exhibit larger

8
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Figure 4: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Gexp, Gshear, Gnonlin, and Grot.

boundary changes (Figure 9b, Appendix F) and larger omissions (Figure 8, Appendix E.2). These
findings indicate that the missing boundary shape gradients are of substantial sizes when latent PDE
mapping is not applied, leading to suboptimal learning.

7 DISCUSSION

This work presents latent PDE mapping, a novel technique for mapping geometry-specific PDEs
to a shared latent PDE representation. Latent PDE mapping moves the shape dependence from the
geometry into the PDE itself through the deformation gradient. This representation allows essential
boundary information to be incorporated into the physics loss during training of PINNs (LPM-
PINN).

The empirical results demonstrate that latent PDE mapping enhances generalization across diverse
2D and 3D geometries. In particular, the method is advantageous in scenarios where the training
data comprises multiple geometric types (Table 2, Figure 5) or where boundary conditions undergo
significant variation due to rotations (last row in Figure 2 and 3). In such settings, conventional
PINNs that rely exclusively on shape descriptors exhibit reduced performance, while latent PDE
mapping provides a more robust learning representation.

A central insight emerging from this study concerns the role of missing boundary shape gradients.
In the absence of latent PDE mapping, the omitted boundary terms can be larger than the gradients
actually employed for optimization (Figure 4). This omission can result in suboptimal PINNs that
struggle to generalize beyond the training distribution.

The utility of latent PDE mapping depends on the overall boundary movement in the geometric
families and on the PDE dynamics. Families with high boundary movements have a correspondingly
higher missing boundary shape gradient when latent PDE mapping is not applied. Furthermore,
latent PDE mapping improves learning and generalizability when geometric variability modifies
the underlying PDE dynamics. In our case, the results show strong improvements when the initial
activation site is moved substantially (last row in Figure 2 and 3).

Limitations and future work Our study has several limitations that open directions for future
research. First, we relied on parameterized geometries, which may not always be available for more
complex or realistic geometries encountered in real-world applications. Thus, extending latent PDE
mapping to alternative shape representations is a critical future direction. One possibility is to em-
ploy principal component analysis modes as inputs to the PINN, rather than affine parameters, which
has shown promise for representing cardiac geometries (Yin et al., 2024; Mauger et al., 2019). Sec-
ond, the present study is restricted to simplified PDE dynamics, including planar waves and isotropic
properties. Future work should evaluate latent PDE mapping under more challenging conditions,
such as anisotropic properties and varying initial conditions. Finally, our validation of the advantage
of latent PDE mapping was limited to rotation transformations and simple geometries. The effec-
tiveness of latent PDE mapping in more complex geometries remains to be determined. This will be
an essential next step for proving the applicability of latent PDE mapping in realistic industrial and
medical scenarios.
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REPRODUCIBILITY STATEMENT

Synthetic datasets can be created by following the description given in Section 4 and Appendix D
with parameter ranges as presented in Table 4 in Appendix B.1 for 2D and Table 5 in Appendix B.2
for 3D. Implementation details regarding developed PINNs are presented in Section 5 and Appendix
C, where the selected hyperparameters for each PINN are presented in Table 6. The source code and
datasets used to reproduce results in Section 6 will be shared in the camera-ready submission, if
accepted, to preserve anonymity during the double-blind review process.
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A DERIVATION OF LATENT PDE MAPPING APPLIED TO THE
ALIEV-PANFILOV PDE

In the following section, we give a detailed derivation of how the Aliev-Panfilov PDE in equation 7
is mapped from a physical geometry Ω(s) to a latent geometry Ω0. For convenience, we restate the
equations over Ω(s) here as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s).

(19)

The mapping is achieved by applying the deformation gradient F(X, t, s) and the deformation Ja-
cobian J(X, t, s) to quantities in equation 19, as well as performing a variable substitution x → X
where x ∈ Ω(s) and X ∈ Ω0. The deformation gradient F is given as

F(X, t, s) = I +∇U(X, t, s) (20)

where U(X, t, s) = x(X, t, s) − X , while the deformation Jacobian is given as J(X, t, s) =
det(F).

We start by introducing how quantities in equation 19 are mapped when applying principles from
nonlinear solid mechanics (Holzaphel, 2000). Quantities that do not involve any divergences or
gradients are mapped directly through a volume change defined as

dv = JdV (21)

where dv and dV are infinitesimally small volume elements in Ω(s) and Ω0, respectively. Gradients
of a scalar field ϕ are mapped as

∇ϕ(x, t) = F−T∇ϕ(X, t) (22)

which is obtained by applying the chain rule to ∇ϕ(x, t). Finally, Nanson’s formula is used to map
vector elements from Ω(s) to Ω0. The formula yields

dsn = JF−T dSN (23)

where dsn and dSN give the vector elements of infinitesimally small surface areas defined on Ω(s)
and Ω0.

Next, we rewrite the divergence term in equation 19 in integral form as∫
Ω(s)

∇ · (D∇V )dΩ

By applying Gauss’s divergence theorem, we have that∫
Ω(s)

∇ · (D∇V )dΩ =

∫
∂Ω(s)

D∇V · dsn (24)

where ∂Ω(s) is the surface of Ω(s) and n is the vector normal to the surface. We utilize the rela-
tionship of gradients in equation 22 and Nanson’s formula in equation 23, such that the divergence
term in equation 24 can be expressed over Ω0 as∫

∂Ω(s)

D∇V · dsn =

∫
∂Ω0

DF−T∇V · JF−T dSN (25)

In the 2D case, we have that

D ∈ R2x2, F ∈ R2x2, ∇V ∈ R2x1.

Hence, by assuming that F is invertible, the terms in equation 25 can be reorganized as∫
∂Ω(s)

D∇V · dsn =

∫
∂Ω0

JF−1DF−T∇V · dSN (26)

12
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Finally, by applying Gauss’s divergence theorem again, the divergence term in Ω(s) and Ω0 can be
expressed as ∫

Ω(s)

∇ · (D∇V )dΩ =

∫
Ω0

∇ ·
(
JF−1DF−T∇V

)
dΩ0 (27)

By following the same procedure, the boundary condition in equation 19 can be rewritten as∫
Ω(s)

(D∇V · n)dΩ =

∫
Ω0

(JF−1DF−T∇V ·N)dΩ0 (28)

The remaining parts of equation 19 do not include any divergences or gradients, and are mapped
directly through a volume change as defined in equation 21. Consequently, equation 19 can be
expressed over Ω0 as

∂
∂τ (JV ) = ∇ · (JF−1DF−T∇V )− JkV (V − a)(V − 1)− JVW in Ω0,
∂
∂τ (JW ) = J

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(29)

For time-independent mappings, we finally arrive at
∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(30)

B ADDITIONAL DETAILS ON DATASET GENERATION

B.1 2D GEOMETRIES

Table 4 presents the data ranges used when creating the first three internal (Gk) and external (G∗
k)

families in 2D. Additionally, the rotational family (Grot and G∗
rot) was created by defining A as a

rotational matrix

Grot and G∗
rot : A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(31)

with θ ∈ [−π
2 ,

π
2 ] for Grot and θ /∈ [−π

2 ,
π
2 ] for G∗

rot. All values were sampled uniformly from the
given ranges.

Table 4: Parameter ranges for the first three internal (Gk) and external (G∗
k) families in 2D. Values

were sampled uniformly from the given ranges.

a1, a4 a2, a3 m1,m4

Gexp [1.0, 1.4] 0.0 0.0
G∗
exp [1.4, 1.8] 0.0 0.0

Gshear 1.0 [−0.2, 0.2] 0.0
G∗
shear 1.0 [−0.5,−0.2] ∪ [0.2, 0.5] 0.0

Gnonlin 1.0 0.0 [−0.015, 0.015]
G∗
nonlin 1.0 0.0 [−0.025,−0.015] ∪ [0.015, 0.025]

B.2 3D GEOMETRIES

In 3D, we constructed seven families by applying linear affine transformations to a 10 × 10 × 10
mm cube. The linear transformations were defined as

x = AX (32)

13
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Table 5: Parameter ranges for the internal (Hk) and external (H∗
k) expansion/shearing families in

3D. All values were sampled uniformly from the given ranges.

a1, a5, a9 a2, a4 a3, a7 a6, a8
Hexp [1.0, 1.4] 0.0 0.0 0.0
H∗

exp [1.4, 1.8] 0.0 0.0 0.0
Hxy

shear 1.0 [−0.2, 0.2] 0.0 0.0
Hxy∗

shear 1.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0 0.0
Hxz

shear 1.0 0.0 [−0.2, 0.2] 0.0
Hxz∗

shear 1.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0
Hyz

shear 1.0 0.0 0.0 [−0.2, 0.2]
Hyz∗

shear 1.0 0.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2]

with

A =

[
a1 a2 a3
a4 a5 a6
a7 a8 a9

]
. (33)

Similarly to the 2D scenario, each family was constructed using a distinct deformation type: expan-
sion (Hexp), shearing (Hshear), and rotation (Hrot). The parameter ranges used for the expansion
and shearing families are presented in Table 5. Additionally, for the rotational families, A was
defined as

Hx
rot and Hx∗

rot : A =

[
1.0 0.0 0.0
0.0 cos(θ) − sin(θ)
0.0 sin(θ) cos(θ)

]
,

Hy
rot and Hy∗

rot : A =

[
cos(θ) 0.0 sin(θ)
0.0 1.0 0.0

− sin(θ) 0.0 cos(θ)

]
,

Hz
rot and Hz∗

rot : A =

[
cos(θ) − sin(θ) 0.0
sin(θ) cos(θ) 0.0
0.0 0.0 1.0

]
,

with θ ∈ [−π
2 ,

π
2 ] for internal families and θ /∈ [−π

2 ,
π
2 ] for external families. All values were

sampled uniformly from the given ranges.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Table 6 presents the hyperparameters used in each PINN. The PINNs were implemented with Py-
Torch, and experiments were run on NVIDIA HGX H200 GPUs.

D ADDITIONAL DETAILS ON SYNTHETIC DATA GENERATION

We generated the synthetic data using openCARP (Plank* et al., 2021; openCARP consortium et al.,
2024) with parameters as listed in Table 7. Before running the simulation, we meshed the physical
geometry using triangular elements in 2D and tetrahedral elements in 3D. The maximum element
size was set to 0.05 and 0.4 in 2D and 3D, respectively.

E SUPPLEMENTARY RESULTS

E.1 2D RESULTS

Figure 5 illustrates snapshots of predicted transmembrane potential (V ) for selected geometries
when the PINNs were trained on a combination of two families.
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Table 6: Overview of PINN configurations.

LPM-PINN Affine-PINN Basic-PINN

Input dim 2D 9 9 3
3D 16 16 4

Hidden dim 25 25 25
Output dim 2 2 2
Hidden layers 10 10 10
Epochs 5000 5000 5000
Batch size 264 264 264
Optimizer Adam Adam Adam

Learning rate < 100 epochs 10−3 10−3 10−3

> 100 epochs 10−4 10−4 10−4

Activation tanh tanh tanh
Ndata 14 14 14
Nphys (resampled) 700 700 700
Nbc (resampled) 80 80 80
Nic (resampled) 30 30 30

Table 7: Parameter values used to create synthetic data.

Parameter Description Value
Cm membrane capacitance 1 µFcm−2

β surface area to volume ratio 0.14 µm−1

fx, fy, fz fiber orientation 1, 0, 0
∆t time resolution 1ms
Iapp applied stimuli 5000 µAcm−2 for 0.2ms (planar wave)
gil intracellular longitudinal conductivity 0.2 Sm−1

git intracellular transversal conductivity 0.2 Sm−1

gin intracellular normal conductivity 0.2 Sm−1

gel extracellular longitudinal conductivity 1.0 Sm−1

get extracellular transversal conductivity 1.0 Sm−1

gen extracellular normal conductivity 1.0 Sm−1
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Figure 5: Snapshot of predicted transmembrane voltages (V ) for a geometry taken from G∗
exp,

G∗
shear, and G∗

nonlin at the given time point. The PINNs were trained on a combination of geometries
from the given families. The left column shows the FEM ground truth approximation.

E.2 3D RESULTS

Figure 6 visualizes snapshots of the predicted transmembrane potential (V ) for selected geometries,
while Figures 7 and 8 show the numerical approximation of missing shape gradients at the bound-
aries for expansion, shearing, and rotational families.

F COMPUTATIONAL DETAILS OF MISSING BOUNDARY INFORMATION

In the following section, we present details on how equation 11 was discretized and numerically
approximated. For convenience, we restate the equation here as

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (34)

and define

I(s) ≡
∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ (35)

B(s) ≡
∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (36)

such that
∂Lphys

∂s
= I(s) +B(s). (37)

Next, we discretize the terms and make a numerical approximation using Monte Carlo for integrals
and central finite differences for derivatives. We assume that the spatial positions are uniformly
distributed and normalize with respect to the area/boundary, such that

I(sk) ≈
1

NI(s)

NI(s)∑
i

T∑
j

R(xi, tj , uij , sk +∆s)2 −R(xi, tj , uij , sk −∆s)2

2∆s
(38)
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Figure 6: Snapshots of predicted transmembrane voltages (V ). Each row corresponds to a geometry
taken from the presented external family (H∗

exp, Hxy∗
shear, Hxz∗

shear, Hyz∗
shear) at a given time point. The

left column shows the FEM ground truth approximation.
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Figure 7: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hexp, Hxy

shear, Hxz
shear, and Hyz

shear.
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Figure 8: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hx

rot, H
y
rot, and Hz

rot.

and

B(sk) ≈
1

NB(s)

NB(s)∑
i

T∑
j

R(xi, tj , uij , sk)
2 xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s)︸ ︷︷ ︸

boundary movement

(39)

where sk is the k-th value in a set of shape parameters given as s = {s1, s2, ..., sK}. Moreover,
NI(s) and NB(s) gives the number of spatial positions used to evaluate the two terms and T is the
total number of time steps. Thus, our discretized version for the k-th shape value is given as

∆Lphys

∆sk
= I(sk) +B(sk) (40)

The magnitude of the overall change for the shape parameters (∆Lphys

∆s ) was computed by applying
the L2 norm to equation 40. Finally, we computed ∆Lphys

∆s for each geometry in a family, and
represented the numerical approximation of I and B as the mean across the given geometries. Here,
I represents the numerical computation of Lconv

phys and B represents the missing boundary information
when latent PDE mapping is not applied (see Figures 4, 7, and 8). We used ∆s = 10−6 in all
computations.

F.1 BOUNDARY MOVEMENTS

The magnitude of the numerically approximated boundary movements when making small changes
to the shape parameters s for each family in 2D and 3D are presented in Figure 9a and 9b, respec-
tively. The boundary movements were approximated by applying central finite differences, as shown
in equation 39, yielding

∆x

∆sk
=

1

NB(s)

NB(s)∑
i

xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s) (41)

where NB(s) gives the number of boundary points. Again, the overall magnitude of the boundary
movement was computed using the L2 norm and mean across the given geometries with ∆s = 10−6.
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(a) 2D families.
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Figure 9: Numerical approximations of boundary movements when making small changes to the
shape parameters s for each family in 2D and 3D.
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