

000 001 002 003 004 005 LATENT PDE MAPPING FOR SHAPE-GENERALIZABLE 006 PHYSICS-INFORMED NEURAL NETWORKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Physics-Informed Neural Networks (PINNs) have shown strong potential for
012 learning physically consistent representations from sparse data, but often strug-
013 gle to generalize to geometries with varying shapes. To address this challenge, we
014 introduce *latent PDE mapping*, a technique for mapping geometry-specific par-
015 tial differential equations (PDEs) to a shared latent PDE representation using the
016 deformation gradient. We embed latent PDE mapping into the PINN framework
017 (LPM-PINN), enabling PINNs to capture geometric variability while preserving
018 the governing physics. This integration facilitates accurate predictions of nonlin-
019 ear, time-dependent systems even in geometries well beyond the training distri-
020 bution. We demonstrate LPM-PINN on a challenging nonlinear time-dependent
021 PDE with sharp gradients, the Aliev–Panfilov model of cardiac electrophysiology,
022 in both 2D and 3D. Our results show that LPM-PINN generalizes robustly across
023 diverse geometries, including shapes with drastically changing boundaries that lie
024 outside the training distribution. These findings establish latent PDE mapping
025 as a promising approach for boosting the geometric generalizability of physics-
026 informed neural networks.
027

028 1 INTRODUCTION 029

030 Physics-informed neural networks (PINNs) (Raissi et al., 2019) have emerged as a new paradigm
031 for learning physically consistent representations from sparse observations (Karniadakis et al., 2021;
032 Cuomo et al., 2022). However, PINNs face significant challenges when making predictions on
033 geometries with varying shapes, often requiring retraining when encountering novel morphologies out-
034 side the training distribution (Gao et al., 2021). This limitation is critical in time-sensitive applica-
035 tions (e.g. medicine) where short compute times and generalization across diverse physiologically-
036 derived shapes are required. Here, we have chosen a prominent example that arises in cardiac
037 electrophysiology, where accurate cardiac arrest risk assessments require adaptation to diverse heart
038 geometries, and integration into medical workflows requires fast computations.

039 To address this issue, we introduce *latent PDE mapping*, a technique that maps geometry-specific
040 partial differential equations (PDEs) to a shared latent PDE representation. Using affine shape par-
041 ameterization, a predefined latent geometry, and the deformation gradient; our method expresses the
042 loss terms of a PINN (LPM-PINN) using latent coordinates. This approach preserves the underly-
043 ing dynamics while capturing geometric variability, enabling accurate predictions on unseen shapes
044 in nonlinear, time-dependent systems. We apply latent PDE mapping to the Aliev-Panfilov model
045 of cardiac electrophysiology, a representative benchmark for challenging nonlinear time-dependent
046 PDE dynamics. The proposed approach offers a broadly applicable strategy for extending physics-
047 informed neural networks to problems involving geometries with variable shapes, complementary
048 to the current state of the art approaches involving operator and graph-neural architectures Li et al.
049 (2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Würth et al. (2024).

050 1.1 OUR CONTRIBUTIONS 051

- 052 • We introduce *latent PDE mapping*, a novel technique that maps geometry-specific PDEs
053 to a shared latent PDE, enabling PINNs to learn meaningful representations from sparse
054 observations across diverse geometrical shapes.

054

- We implement *latent PDE mapping* in a conceptually simple PINN framework (LPM-PINN), involving the Aliev–Panfilov model of cardiac electrophysiology, a challenging
- 055 nonlinear, time-dependent PDE with sharp gradients in 2D and 3D. Our results show
- 056 that LPM-PINN provides accurate solutions even in extreme rotation scenarios where the
- 057 boundary changes radically.

058

- We provide theoretical and empirical evidence that latent PDE mapping properly accounts
- 059 for geometric variability in the physics loss gradient, yielding more generalizable represen-
- 060 tations.

061

062

2 RELATED WORK

063

064

Recent developments within scientific machine learning have enabled the creation of flexible neural

065 network PDE solvers that can generalize to new geometries without needing retraining. Neural

066 operators Li et al. (2023a;b); Yin et al. (2024); Zhong & Meidani (2025), and graph neural networks

067 Würth et al. (2024) are currently the two leading approaches. Neural operators possess rich

068 mathematical universal approximation properties, guaranteeing that the neural network’s parameterized

069 solutions can approximate arbitrarily closely PDE solutions from varying geometries. Neverthe-

070 less, most neural operator approaches Li et al. (2023a;b); Yin et al. (2024) are data-hungry, often

071 requiring extensive PDE solution datasets across diverse geometries to achieve high accuracy. This

072 motivates the pursuit of data-efficient approaches capable of learning from fewer geometric sam-

073 ples, an essential consideration in domains where data collection is costly or ethically constrained,

074 such as medicine. In response, PINNs have emerged, leveraging governing physical laws to learn

075 effectively from sparse data Gao et al. (2021); Zhong & Meidani (2025); Würth et al. (2024); Dalton

076 et al. (2023); Peng et al. (2023); Gao et al. (2022); Kashefi & Mukerji (2022).

077

078 A common approach for geometry-aware PINN studies has been to develop specialized network ar-

079 chitectures, replacing multilayer perceptrons with physics-informed convolutional neural networks

080 (Gao et al., 2021), physics-informed graph neural networks (Dalton et al., 2023; Peng et al., 2023;

081 Würth et al., 2024; Gao et al., 2022), or physics-informed PointNet (Kashefi & Mukerji, 2022).

082 These methods are better suited to handle variable geometries than basic fully-connected PINNs,

083 but require uniform grids, complex meshing at inference, or struggle to generalize across PDE pa-

084 rameters (Zhong & Meidani, 2025). To overcome these challenges, PINNs have been augmented

085 with shape descriptors (Regazzoni et al., 2022; Costabal et al., 2024) or global geometric parameters

086 (Sun et al., 2023; Ghosh et al., 2024; Zhong & Meidani, 2025). While showing promising results,

087 these methods formulate their physics losses in terms of the varying physical domains, which limits

088 the gradient information available to the networks during training.

089

090 Another research direction involves combining physics-based losses with latent geometries, where

091 inputs are embedded into a common latent space to facilitate comparison and efficient representation

092 learning across different shapes. Regazzoni et al. (2022) proposed a universal latent space for

093 parameterized geometries, enabling learning across varying shapes. Similarly, Mezzadri et al. (2023)

094 introduced a framework that aligns geometric variability through latent embeddings, enabling simple

095 linear elasticity models to generalize across freeform domains. More recently, Burbulla (2023) intro-

096 duced a PDE mapping to low-dimensional manifolds and applied it to simple linear PDEs. However,

097 the current latent-geometry PINN methods Mezzadri et al. (2023); Regazzoni et al. (2022); Burbulla

098 (2023) are limited to simple, linear, static PDEs. This limits the methods’ utility in real-world appli-

099 cations, which are often complex, nonlinear, and dynamic. Moreover, no work has yet shown that

100 PINNs with mapped PDEs can generalize well to geometries outside of the training distribution.

101 Building on recent scientific machine learning studies involving mapped geometries Li et al.

102 (2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Mezzadri et al. (2023); Regazzoni et al.

103 (2022); Burbulla (2023), the latent PDE mapping introduces a broadly applicable mathematical

104 framework that moves beyond simple PDE mapping to PINN formulations with geometrically vari-

105 able shapes and nonlinear, time-dependent PDEs. Furthermore, we introduce the use of the defor-

106 mation gradient to accurately map nonlinear PDEs within PINNs, thereby enabling more accurate

107 gradient calculations in which the effect of the geometric variability is included in the physics loss

108 gradient.

108
109

3 LATENT PDE MAPPING

110
111
We consider a time-dependent PDE defined over a geometry $\Omega(s)$. Here, s is a set of shape parameters
112
describing the overall geometry of Ω . The governing PDE is given as

113
$$\mathcal{F}(u(\mathbf{x}, t; s)) = f(\mathbf{x}, t, u; s), \quad (\mathbf{x}, t) \in \Omega(s) \times \mathcal{T} \quad (1)$$

114
115
116
117
118
where \mathcal{F} denotes a differential operator, f represents a source term that introduces external influences into the system, $\mathbf{x} \in \Omega(s) \subset \mathbb{R}^d$ are the spatial coordinates, $t \in \mathcal{T} \subset \mathbb{R}$ is the time, and u is the unknown PDE solution. In practice, obtaining an exact solution to equation 1 is often intractable due to the complexity of the underlying system. To address this, we employ a PINN to approximate the solution such that

119
$$\mathcal{NN}(\mathbf{x}, t, s; \theta) = u_\theta \approx u(\mathbf{x}, t; s) \quad (2)$$

120
121
122
where θ represents the trainable parameters. PINNs are known to offer a data-efficient machine learning alternative by embedding physical laws directly into the neural network via PDE residuals in the loss function (Raissi et al., 2019). The residual is defined as

123
124
$$\mathcal{R} = \mathcal{F}(u(\mathbf{x}, t; s)) - f(\mathbf{x}, t, u; s) = 0, \quad (\mathbf{x}, t) \in \Omega(s) \times \mathcal{T} \quad (3)$$

125
126
127
where \mathcal{R} depends on $\Omega(s)$ and the shape parameters s . With latent PDE mapping, we rather express the geometry-specific residual in equation 3 over a latent geometry. Thus, we assume that there exists a continuous map between $\Omega(s)$ and a predefined latent geometry Ω_0 , defined as

128
$$\Phi := \mathbf{X} \rightarrow \mathbf{x} \quad (4)$$

129
130
131
where \mathbf{X} is a given point in Ω_0 while \mathbf{x} is the associated point in $\Omega(s)$. Physical quantities can be mapped from $\Omega(s)$ to Ω_0 , or vice versa, through the deformation gradient and deformation Jacobian given in their most general form as

132
133
$$\mathbf{F}(\mathbf{X}, t, s) = \mathbf{I} + \nabla \mathbf{U}(\mathbf{X}, t, s) \quad (5)$$

134
135
136
137
138
and $J(\mathbf{X}, t, s) = \det(\mathbf{F})$, respectively (Holzapfel, 2000). Here, \mathbf{I} is the identity tensor and $\mathbf{U}(\mathbf{X}, t, s) = \mathbf{x}(\mathbf{X}, t, s) - \mathbf{X}$ is the displacement field at time t for the shape parameters s . In this study, we use the deformation gradient to map the geometry-specific \mathcal{R} in equation 3 to a shared latent representation, yielding

139
$$\mathcal{R}(\mathbf{X}, t, u, \mathbf{F}, J) = \mathcal{F}(u(\mathbf{X}, t; s), \mathbf{F}, J) - f(\mathbf{X}, t, u, \mathbf{F}, J; s), \quad (\mathbf{X}, t) \in \Omega_0 \times \mathcal{T}. \quad (6)$$

140
141
142
In this way, the dependency on s has been moved from the physical geometry $\Omega(s)$ into the PDE itself through the deformation gradient \mathbf{F} . This approach is what we refer to as the *latent PDE mapping* technique.144
145

3.1 APPLICATION TO NONLINEAR, TIME-DEPENDENT, STIFF SYSTEMS: THE 146 ALIEV-PANFILOV PDE

147
148
149
150
151
We demonstrate our latent PDE mapping technique on the Aliev-Panfilov model from cardiac electrophysiology. The Aliev-Panfilov PDE (Aliev & Panfilov, 1996) is used to describe the evolution of transmembrane potential V over a physical geometry representing cardiac tissue and offers a fair representation of challenging PDEs due to its nonlinearity, sharp gradients, and time-dependency. The PDE can be expressed over a physical geometry $\Omega(s)$ as

152
153
154
155
$$\begin{cases} \frac{\partial V}{\partial \tau} = \nabla \cdot (\mathbf{D} \nabla V) - kV(V - a)(V - 1) - VW & \text{in } \Omega(s), \\ \frac{\partial W}{\partial \tau} = \left(\epsilon_0 + \frac{\mu_1 W}{V + \mu_2} \right) (-W - kV(V - a - 1)) & \text{in } \Omega(s), \\ \mathbf{D} \nabla V \cdot \mathbf{n} = 0 & \text{on } \partial \Omega(s) \end{cases} \quad (7)$$

156
157
158
159
160
161
where V , W , and τ are dimensionless variables representing the transmembrane potential, recovery variable, and time, respectively. $V \in [0, 1]$ is given in arbitrary units (AU), while $\tau = 12.9t$ is measured in temporal units (TU) with t given in milliseconds. The tissue conductivity is defined by the diffusion tensor \mathbf{D} , while $k, a, \epsilon_0, \mu_1, \mu_2$ are parameters controlling the overall shape and temporal dynamics of V and W . Additionally, the PDE employs a no-flux Neumann boundary condition where \mathbf{n} is the vector normal to the boundary of $\Omega(s)$. Consequently, there is no leakage of V to regions outside of $\Omega(s)$.

162 We apply our latent PDE mapping technique to the Aliev-Panfilov PDE in equation 7. For a time-
 163 independent mapping, the latent PDE representation is given as
 164

$$\begin{cases} \frac{\partial V}{\partial \tau} = \frac{1}{J} \nabla \cdot (J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V) - kV(V-a)(V-1) - VW & \text{in } \Omega_0, \\ \frac{\partial W}{\partial \tau} = \left(\epsilon_0 + \frac{\mu_1 W}{V+\mu_2} \right) (V, W) (-W - kV(V-a-1)) & \text{in } \Omega_0, \\ J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot \mathbf{N} = 0 & \text{on } \partial \Omega_0, \end{cases} \quad (8)$$

169 where \mathbf{N} is the normal vector to the boundary of the latent geometry Ω_0 , $\mathbf{F} = \mathbf{F}(\mathbf{X}, s)$ and $J =$
 170 $J(\mathbf{X}, s)$. A detailed derivation of equation 8 can be found in Appendix A.
 171

172 3.2 ACCURATE GRADIENT CALCULATION WITH LATENT PDE MAPPING

174 The physics loss in PINNs is typically evaluated with the mean squared error (MSE) of \mathcal{R} (Wang
 175 et al., 2023), given as

$$\mathcal{L}_{phys} = \frac{1}{N_{phys}} \sum_i^{N_{phys}} \mathcal{R}_i^2 \quad (9)$$

179 using a traditional mini-batch approach with N_{phys} collocation points to evaluate \mathcal{R} . This approach
 180 treats \mathcal{R} as independent of $\Omega(s)$ during optimization, which is not the case and can lead to inaccurate
 181 gradient estimates. Thus, a more accurate formulation is to evaluate the physics loss as a continuous
 182 integral

$$\mathcal{L}_{phys} = \int_{\Omega(s)} \mathcal{R}(\mathbf{x}, t, u, s)^2 d\Omega \quad (10)$$

185 and apply the Leibniz integral rule when computing the shape gradient $\frac{\partial \mathcal{L}_{phys}}{\partial s}$. This results in
 186

$$\frac{\partial \mathcal{L}_{phys}}{\partial s} = \int_{\Omega(s)} \frac{\partial}{\partial s} \mathcal{R}(\mathbf{x}, t, u, s)^2 d\Omega + \int_{\partial \Omega(s)} \mathcal{R}(\mathbf{x}, t, u, s)^2 \frac{\partial \mathbf{x}}{\partial s} \cdot \mathbf{n} dS \quad (11)$$

190 where \mathbf{n} is the outward unit normal to the boundary $\partial \Omega(s)$ and dS is an infinitesimally small part
 191 of the boundary. The second term in equation 11 accounts for the movement of the boundary, which
 192 is neglected in the discrete loss formulation in equation 9. This omission can lead to inaccurate
 193 gradient estimates, hindering training and resulting in suboptimal PINNs.

194 With latent PDE mapping, the dependency of s is moved from the geometry into the PDE itself via
 195 the deformation gradient \mathbf{F} . Consequently, the integrand does not vary with s and the shape gradient
 196 can be computed directly

$$\frac{\partial \mathcal{L}_{phys}}{\partial s} = \int_{\Omega_0} \frac{\partial}{\partial s} \mathcal{R}(\mathbf{X}, t, u, \mathbf{F}, J)^2 d\Omega_0. \quad (12)$$

200 Thus, the straightforward MSE in equation 9 can be applied during training without sacrificing
 201 gradient accuracy. Based on these considerations, we hypothesized that improving the accuracy of
 202 the physics loss gradient via latent PDE mapping can improve the generalizability of PINNs to novel
 203 geometries.

205 4 CARDIAC ELECTROPHYSIOLOGY DATASETS WITH VARIABLE GEOMETRIES

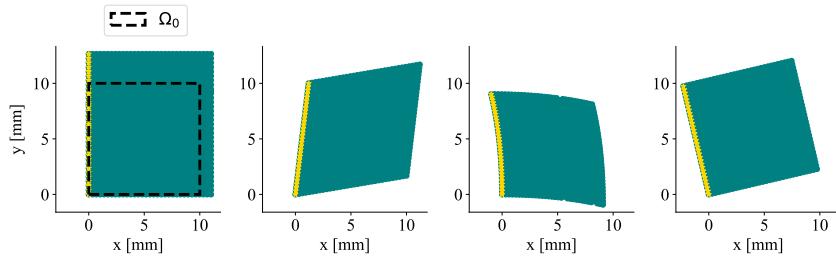
207 We constructed four and seven families of geometries in 2D and 3D, respectively, for training and
 208 testing of our PINNs. In 2D, the latent geometry Ω_0 was defined as a 10×10 mm square, while in
 209 3D it was a $10 \times 10 \times 10$ mm cube. Families belonging to 2D and 3D are denoted with a \mathcal{G} and
 210 \mathcal{H} , respectively. In the following, we describe the generation of 2D datasets. The extension to 3D is
 211 straightforward and provided in detail in Appendix B.2.

212 The geometries were generated by deforming Ω_0 through different affine transformations expressed
 213 in their most general form as
 214

$$\mathbf{x} = \mathbf{A} \mathbf{X} + \mathbf{X}^T \mathbf{M} \mathbf{X} \quad (13)$$

216 with

217
$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} m_1 & 0 \\ 0 & m_4 \end{bmatrix}. \quad (14)$$
 218

219
220 The elements of \mathbf{A} and \mathbf{M} , referred to as *affine parameters*, are denoted by $s =$
221 $\{a_1, a_2, a_3, a_4, m_1, m_4\}$. Each family of geometries corresponded to a distinct deformation type:
222 expansion (\mathcal{G}_{exp}), shearing (\mathcal{G}_{shear}), nonlinear deformation (\mathcal{G}_{nonlin}), and rotation (\mathcal{G}_{rot}). Figure 1
223 illustrates one representative geometry from each family, while Table 5 in Appendix B.1 gives the
224 affine parameter ranges for all families. The deformations employed in this work were static in time;
225 however, the approach can be extended to time-dependent deformations as shown in Section 3.
226227 For each family, we generated two branches. The first branch (\mathcal{G}_k) contained 50 geometries, which
228 were later split into training, validation, and test sets. The second branch (\mathcal{G}_k^*) contained 35 geometries
229 generated from parameter ranges outside those of \mathcal{G}_k , and was used exclusively for testing. We
230 refer to test geometries in \mathcal{G}_k as the *internal family* and \mathcal{G}_k^* as the *external family*.231 In 3D, the same procedure was applied with the same number of geometries and versions per family.
232 However, only linear deformation types were considered. The 3D families are denoted as \mathcal{H}_k^p where
233 k indicates the deformation type (expansion, shearing, or rotation) and p indicates the direction of
234 the deformation when applicable (\mathcal{H}_{rot}^x = rotation about the x -axis, \mathcal{H}_{shear}^{xy} = shearing along the
235 xy -plane, etc.).236
237 Figure 1: From left to right, the figure shows an example of a geometry from \mathcal{G}_{exp} , \mathcal{G}_{shear} , \mathcal{G}_{nonlin} ,
238 and \mathcal{G}_{rot} . All geometries were externally stimulated at the left edge nodes (yellow) in the isotropic
239 scenario. The dashed line illustrates the latent geometry Ω_0 in 2D.
240241
242
243
244
245 **Synthetic cardiac electrophysiology data** We used *openCARP* (Plank* et al., 2021; *openCARP*
246 consortium et al., 2024) to create synthetic data that was used to approximate the ground truth
247 PDE solution during training and testing of the PINNs. Thus, we solved the Aliev-Panfilov PDE
248 in equation 7 over the physical geometries using the finite element method (FEM). We created
249 both isotropic and anisotropic datasets to explore different PDE dynamics. In the isotropic case, all
250 geometries were stimulated by an external current at nodes located at the left boundary/plane. Sheet
251 fibers were oriented along the x -axis with, resulting in a planar wave propagation. The anisotropic
252 datasets were generated by applying a point stimulus to all nodes within a radius of 0.75 mm in the
253 center of the geometry. The fiber orientations were deformed according to the affine transformation
254 to ensure consistent PDE dynamics. In both cases, all simulations were run for 520 ms, yielding a
255 full cycle of polarization and re-polarization. Solutions at $t < 6$ ms were excluded to remove applied
256 current from the system. The exact configurations used for synthetic data generation are listed in
257 Table 8 and 9 in Appendix D.
258

259

260

5 PINN TRAINING PROCEDURES AND EVALUATION METHODS

261

262 We developed three PINNs for comparison and evaluation of the latent PDE mapping. The first
263 PINN (LPM-PINN) incorporates the latent PDE mapping technique and uses affine parameters as
264 additional inputs. The second (Affine-PINN) and third (Basic-PINN) PINNs adopt the conventional
265 physics loss formulated over the physical geometries. However, the Affine-PINN integrates affine
266 parameters as input, whereas the Basic-PINN relies exclusively on spatiotemporal inputs. This setup
267 enables a systematic evaluation of the contribution of latent PDE mapping to PINN training, as well
268 as the added benefits of including affine parameters.
269

270 All PINNs were trained by minimizing a hybrid loss function defined as
 271

$$\mathcal{L}(\theta) = \mathcal{L}_{data}(\theta) + \mathcal{L}_{phys}(\theta) + \mathcal{L}_{bc}(\theta) + \mathcal{L}_{ic}(\theta) \quad (15)$$

273 where $\mathcal{L}_{data}(\theta)$ is the loss due to known FEM data, $\mathcal{L}_{phys}(\theta)$ is the loss described by the governing
 274 PDE residual, $\mathcal{L}_{bc}(\theta)$ is the loss associated with the boundary condition, and $\mathcal{L}_{ic}(\theta)$ is the loss asso-
 275 ciated with the initial condition. The loss terms were equally weighted, and each term was evaluated
 276 using the MSE over a given set of spatiotemporal points (\mathcal{N}_{data} , \mathcal{N}_{phys} , \mathcal{N}_{bc} , \mathcal{N}_{ic}). Furthermore,
 277 we defined the physics and boundary loss in LPM-PINN as

$$\mathcal{L}_{phys}^{LPM} \equiv \frac{1}{\mathcal{N}_{phys}} \sum_{i=1}^{\mathcal{N}_{phys}} \mathcal{R}(\mathbf{X}, \tau, \hat{V}, \hat{W}, \mathbf{F}, J), \quad \mathcal{L}_{bc}^{LPM} \equiv \frac{1}{\mathcal{N}_{bc}} \sum_{i=1}^{\mathcal{N}_{bc}} \mathcal{R}(\mathbf{X}, \tau, \hat{V}, \hat{W}, \mathbf{F}, J) \quad (16)$$

281 and the conventional losses in Affine-PINN and Basic-PINN as
 282

$$\mathcal{L}_{phys}^{conv} \equiv \frac{1}{\mathcal{N}_{phys}} \sum_{i=1}^{\mathcal{N}_{phys}} \mathcal{R}(\mathbf{x}, \tau, \hat{V}, \hat{W}), \quad \mathcal{L}_{bc}^{conv} \equiv \frac{1}{\mathcal{N}_{bc}} \sum_{i=1}^{\mathcal{N}_{bc}} \mathcal{R}(\mathbf{x}, \tau, \hat{V}). \quad (17)$$

285 where $\mathbf{X} \in \Omega_0$ and $\mathbf{x} \in \Omega(s)$. For the isotropic datasets, each PINN consisted of a fully connected
 286 neural network with 10 hidden layers with 25 neurons in each layer, while for the anisotropic
 287 datasets, each PINN had 8 hidden layers with 64 neurons each to reflect the increased complexity of
 288 the PDE dynamics. Furthermore, we employed the $tanh$ as activation function in all cases to handle
 289 second-order derivatives (equation 8) needed to calculate the physics loss (equation 9). All PINNs
 290 predicted \hat{V} and \hat{W} as outputs. A complete overview of the hyperparameters for each PINN can be
 291 found in Table 7 in Appendix C.

292 Each internal family $(\mathcal{G}_k, \mathcal{H}_k)$ was split into a training set, validation set, and test set. Unlike the
 293 conventional split used in machine learning, we adopted an inverted allocation strategy with 20%
 294 train data, 10% validation data, and 70% test data in order to restrict the available training data.
 295 Thus, each family $(\mathcal{G}_k, \mathcal{H}_k)$ had 10 train geometries, 5 validation geometries, and 35 test geometries.
 296 Additionally, in some experiments, we merged two families to generate a dataset $(\mathcal{G}_{k1} + \mathcal{G}_{k2})$ with
 297 greater geometric variability. In these cases, each family contributed equally to each split, resulting
 298 in 20 train geometries, 10 validation geometries, and 70 test geometries. Furthermore, we selected
 299 $\mathcal{N}_{data} = 14$, $\mathcal{N}_{phys} = 700$, $\mathcal{N}_{bc} = 80$, and $\mathcal{N}_{ic} = 30$ spatial locations from each geometry in the
 300 training set and trained the models for 5000 epochs. \mathcal{N}_{phys} , \mathcal{N}_{bc} , and \mathcal{N}_{ic} were resampled at every
 301 epoch to ensure that the physics was learned over the entire geometry.

302 During training, we evaluated $\mathcal{L}(\theta)$ for each geometry in the validation set. Since our validation
 303 set spanned multiple distinct geometries, we selected the best PINN state as the state that gave the
 304 lowest maximum $\mathcal{L}(\theta)$ across the validation geometries, rather than the lowest average $\mathcal{L}(\theta)$. This
 305 criterion ensured that the PINN generalized effectively to geometries differing substantially from
 306 those seen during training. To reduce computational overhead, we computed the validation loss
 307 every 10 epochs using a subsample of points from each geometry.

308 **Evaluation metrics** We employed the relative L_2 error (ε_{L2}) as an evaluation metric, given as
 309

$$\varepsilon_{L2} = \frac{\sqrt{\sum_i^{N_{test}} (\hat{V}_i - V_i)^2}}{\sqrt{\sum_i^{N_{test}} V_i^2}} \quad (18)$$

310 where \hat{V} is the predicted transmembrane potential and V is the approximated FEM data used as
 311 ground truth. Results are presented as the mean relative L_2 error across all geometries in the given
 312 family with the corresponding standard deviation.

313 6 EXPERIMENTS

314 In the following sections, we present results from a series of experiments used to evaluate and
 315 compare the PINNs' performance when generalizing across diverse geometries in 2D and 3D. Fur-
 316 thermore, we investigate the role of the missing boundary shape gradients when latent PDE mapping
 317 is not applied.

324 6.1 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 2D?
325

326 The results indicate consistently low prediction errors for all PINNs across test geometries in the
327 internal families \mathcal{G}_{exp} , \mathcal{G}_{shear} , and \mathcal{G}_{nonlin} when applied to isotropic PDE dynamics (Table 1).
328 Moreover, the results show that LPM-PINN and Affine-PINN generalize to the corresponding external
329 families with only a modest increase in prediction error, whereas the Basic-PINN exhibits errors
330 of an order of magnitude higher on the same families. Notably, LPM-PINN is the only PINN that
331 achieves accurate predictions on the \mathcal{G}_{rot}^* family, while Affine-PINN and Basic-PINN yield signifi-
332 cantly inaccurate results, as illustrated in the last row of Figure 5 in Appendix E.1. These findings
333 demonstrate that latent PDE mapping improves geometric generalizability, particularly when the
334 boundary undergoes radical changes.

335 Table 2 shows that LPM-PINN can learn and make accurate predictions when trained on geometries
336 from two different families with isotropic PDE dynamics. In contrast, Affine-PINN and Basic-PINN
337 fail to learn meaningful representations in the same setting, except for Affine-PINN on $\mathcal{G}_{shear} + \mathcal{G}_{rot}$.
338 Figure 6 in Appendix E.1 visualizes predictions on the same geometries as in Figure 5 in Appendix
339 E.1, showing that the higher error is not limited to the \mathcal{G}_{rot} and \mathcal{G}_{rot}^* family, but arises from degraded
340 performance across both families. Hence, the results indicate that latent PDE mapping can enhance
341 generalizability when learning across fundamentally different geometries.

342 Table 1: Mean relative L_2 PINN-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and exter-
343 nal (\mathcal{G}_k^*) test geometries of each geometry family in 2D isotropic scenarios.

	LPM-PINN	Affine-PINN	Basic-PINN
\mathcal{G}_{exp}	0.019 \pm 0.004	0.024 \pm 0.005	0.057 \pm 0.028
\mathcal{G}_{exp}^*	0.044 \pm 0.013	0.070 \pm 0.036	0.166 \pm 0.043
\mathcal{G}_{shear}	0.024 \pm 0.002	0.029 \pm 0.004	0.082 \pm 0.029
\mathcal{G}_{shear}^*	0.074 \pm 0.027	0.077 \pm 0.024	0.203 \pm 0.041
\mathcal{G}_{nonlin}	0.029 \pm 0.005	0.029 \pm 0.009	0.058 \pm 0.024
\mathcal{G}_{nonlin}^*	0.055 \pm 0.020	0.054 \pm 0.019	0.126 \pm 0.044
\mathcal{G}_{rot}	0.017 \pm 0.001	0.055 \pm 0.016	0.229 \pm 0.021
\mathcal{G}_{rot}^*	0.020 \pm 0.002	0.272 \pm 0.137	0.331 \pm 0.042

355 **Does latent PDE mapping handle anisotropic PDE dynamics?** Table 3 shows that both LPM-
356 PINN and Affine-PINN make accurate predictions on internal test geometries, whereas the Basic-
357 PINN struggles with anisotropic PDE dynamics. The table and visualization in Figure 2 also indicate
358 that LPM-PINN generalizes better to external geometries than Affine-PINN, suggesting that it learns
359 a more robust representation of the anisotropic dynamics. The results demonstrate that as the
360 complexity of the underlying problem increases, the benefits of an explicit latent representation become
361 more pronounced.

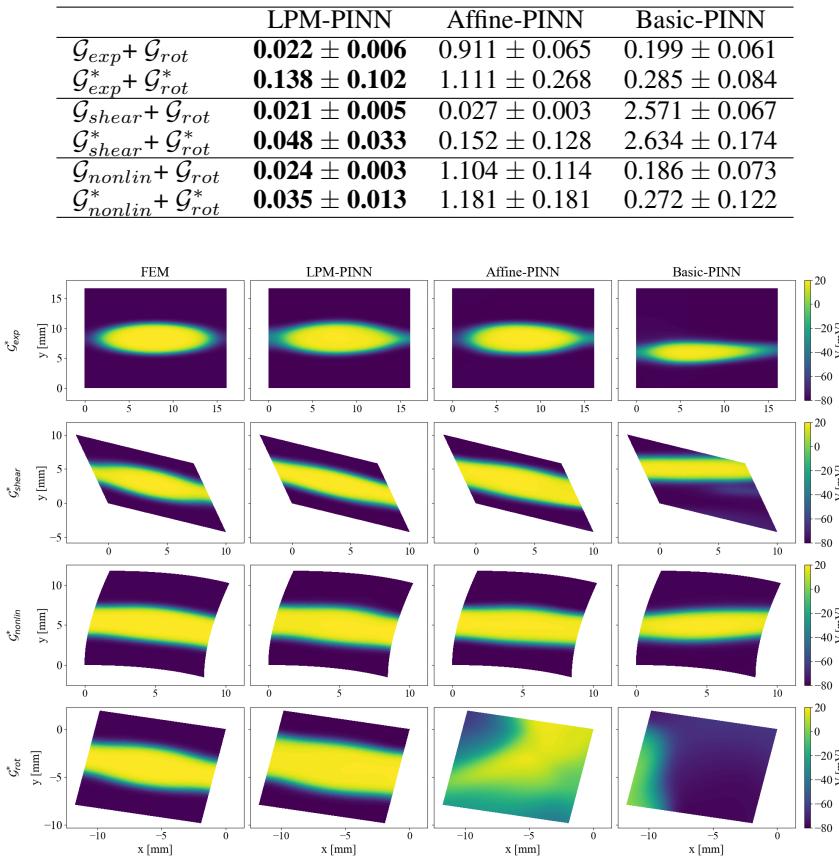
362 6.2 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 3D?

363 The results show that all PINNs can generalize to both the internal and external families when tested
364 on rotations around the x -axis and on shearing along the yz -plane (\mathcal{H}_{rot}^x , \mathcal{H}_{rot}^{xz} , \mathcal{H}_{shear}^{yz} and $\mathcal{H}_{shear}^{yz*}$;
365 Table 4). Beyond these settings, LPM-PINN and Affine-PINN generalize well to the remaining
366 shearing directions and expansion families, whereas Basic-PINN struggles to make accurate predictions
367 on the corresponding external families (Figure 7 in Appendix E.2). Table 4 further shows that
368 LPM-PINN is the only PINN capable of handling rotations around the y - and z -axes. In these cases,
369 both Affine-PINN and Basic-PINN produce entirely inaccurate predictions on the external families,
370 as illustrated in Figure 3.

371 6.3 HOW LARGE ARE THE MISSING BOUNDARY SHAPE GRADIENTS WHEN LATENT PDE
372 MAPPING IS NOT USED?

373 Figure 4 shows that the omitted boundary information (equation 11) in the shape gradients is large
374 across all 2D cases (see Appendix F for computational details). For every family shown in Figure
375 4, the missing boundary information (blue) exceeds the shape gradient used in the Affine-PINN

378 Table 2: Mean relative L_2 PINN-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and external
 379 (\mathcal{G}_k^*) test geometries from a combination of families in 2D isotropic scenarios.



409 Figure 2: Snapshots of predicted transmembrane voltages (V) at $t = 50$ ms in the anisotropic
 410 scenario. Each row corresponds to a geometry taken from the presented external family (\mathcal{G}_{exp}^* ,
 411 \mathcal{G}_{shear}^* , \mathcal{G}_{nonlin}^* , \mathcal{G}_{rot}^*). The left column shows the FEM ground truth approximation.

414 (orange). The magnitude of this missing information depends on the boundary movement when
 415 making changes to s (Figure 10a in Appendix F): the family with the smallest gap in Figure 4 also
 416 exhibits the smallest boundary change in Figure 10a. A similar trend appears in 3D, where shearing
 417 families show the lowest boundary changes (Figure 10b, Appendix F) and correspondingly small
 418 missing information (Figure 8, Appendix E.2), while expansion and rotational families exhibit larger
 419 boundary changes (Figure 10b, Appendix F) and larger omissions (Figure 9, Appendix E.2). These
 420 findings indicate that the missing boundary shape gradients are of substantial sizes when latent PDE
 421 mapping is not applied, leading to suboptimal learning.

7 DISCUSSION

425 This work presents *latent PDE mapping*, a novel technique for mapping geometry-specific PDEs
 426 to a shared latent PDE representation. Latent PDE mapping moves the shape dependence from the
 427 geometry into the PDE itself through the deformation gradient. This representation allows essential
 428 boundary information to be incorporated into the physics loss during training of PINNs (LPM-
 429 PINN).

430 The empirical results demonstrate that latent PDE mapping enhances generalization across diverse
 431 2D and 3D geometries for both isotropic and anisotropic PDE dynamics. In particular, the method
 432 is advantageous in scenarios where the training data comprises multiple geometric types (Table 2,

432 Table 3: Mean relative L_2 PINN-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and exter-
 433 nal (\mathcal{G}_k^*) test geometries of each geometry family in 2D anisotropic scenarios.

	LPM-PINN	Affine-PINN	Basic-PINN
\mathcal{G}_{exp}	0.040 ± 0.010	0.038 ± 0.008	0.205 ± 0.062
\mathcal{G}_{exp}^*	0.071 ± 0.017	0.074 ± 0.013	0.496 ± 0.105
\mathcal{G}_{shear}	0.053 ± 0.016	0.061 ± 0.017	0.229 ± 0.066
\mathcal{G}_{shear}^*	0.125 ± 0.072	0.125 ± 0.037	0.444 ± 0.063
\mathcal{G}_{nonlin}	0.062 ± 0.021	0.065 ± 0.020	0.151 ± 0.037
\mathcal{G}_{nonlin}^*	0.108 ± 0.037	0.115 ± 0.037	0.266 ± 0.078
\mathcal{G}_{rot}	0.052 ± 0.020	0.102 ± 0.047	0.420 ± 0.031
\mathcal{G}_{rot}^*	0.180 ± 0.094	0.650 ± 0.181	0.582 ± 0.098

444
 445 Table 4: Mean relative L_2 FEM-PINN discrepancy \pm std evaluated over the internal (\mathcal{H}_k^p) and
 446 external (\mathcal{H}_k^{p*}) test geometries from the geometry families in 3D isotropic scenarios.

	LPM-PINN	Affine-PINN	Basic-PINN
\mathcal{H}_{exp}	0.015 ± 0.001	0.015 ± 0.002	0.047 ± 0.019
\mathcal{H}_{exp}^*	0.050 ± 0.017	0.082 ± 0.025	0.166 ± 0.044
\mathcal{H}_{shear}^{xy}	0.020 ± 0.006	0.023 ± 0.004	0.083 ± 0.027
$\mathcal{H}_{shear}^{xy*}$	0.077 ± 0.030	0.075 ± 0.020	0.212 ± 0.049
\mathcal{H}_{shear}^{xz}	0.020 ± 0.005	0.024 ± 0.004	0.078 ± 0.025
$\mathcal{H}_{shear}^{xz*}$	0.072 ± 0.029	0.068 ± 0.017	0.209 ± 0.049
\mathcal{H}_{shear}^{yz}	0.015 ± 0.002	0.014 ± 0.001	0.016 ± 0.000
$\mathcal{H}_{shear}^{yz*}$	0.018 ± 0.005	0.017 ± 0.003	0.016 ± 0.001
\mathcal{H}_{rot}^x	0.016 ± 0.004	0.021 ± 0.011	0.015 ± 0.001
\mathcal{H}_{rot}^{x*}	0.070 ± 0.034	0.073 ± 0.035	0.020 ± 0.004
\mathcal{H}_{rot}^y	0.014 ± 0.001	2.014 ± 0.188	0.234 ± 0.057
\mathcal{H}_{rot}^{y*}	0.036 ± 0.023	1.212 ± 0.134	0.369 ± 0.094
\mathcal{H}_{rot}^z	0.012 ± 0.000	0.033 ± 0.006	0.224 ± 0.050
\mathcal{H}_{rot}^{z*}	0.014 ± 0.002	0.402 ± 0.182	0.382 ± 0.074

463
 464 Figure 6) or where boundary conditions undergo significant variation due to rotations (last row in
 465 Figure 2 and 3). In such settings, conventional PINNs that rely exclusively on shape descriptors
 466 exhibit reduced performance, while latent PDE mapping provides a more robust learning repres-
 467 entation.

468
 469 A central insight emerging from this study concerns the role of missing boundary shape gradients.
 470 Adding the boundary gradient via latent PDE mapping can boost the ability of PINNs to generalize
 471 to new shapes (see LPM-PINN versus Affine-PINN in Table 1-4). Indeed, in the absence of latent
 472 PDE mapping, the omitted boundary terms can be larger than the remaining gradients (Figure 4).
 473 However, boundary gradient size does not necessarily translate directly into performance improve-
 474 ment. Thus, there is a need for more research to further investigate this issue.

475
 476 The utility of latent PDE mapping depends on the overall boundary movement in the geometric
 477 families and on the PDE dynamics. Families with high boundary movements have a correspondingly
 478 higher missing boundary shape gradient when latent PDE mapping is not applied. Furthermore,
 479 latent PDE mapping improves learning and generalizability when geometric variability modifies
 480 the underlying PDE dynamics. In our case, the results show strong improvements when the initial
 481 activation site is moved substantially (last row in Figure 2 and 3).

482
 483 It should be noted that latent PDE mapping introduces an additional computational overhead. As
 484 shown in Tables 11 and 12 in Appendix G, the training and inference times for LPM-PINN and
 485 Affine-PINN are largely comparable. However, the mapping to the reference geometry and defor-
 486 mation gradient computation add extra preprocessing costs with an average cost of 4.59 ± 1.06
 487 seconds per geometry in 2D and an average cost of 35.01 ± 2.33 seconds per geometry in 3D. Im-
 488 portantly, this overhead is incurred only once prior to training or inference. Thus, the improvement

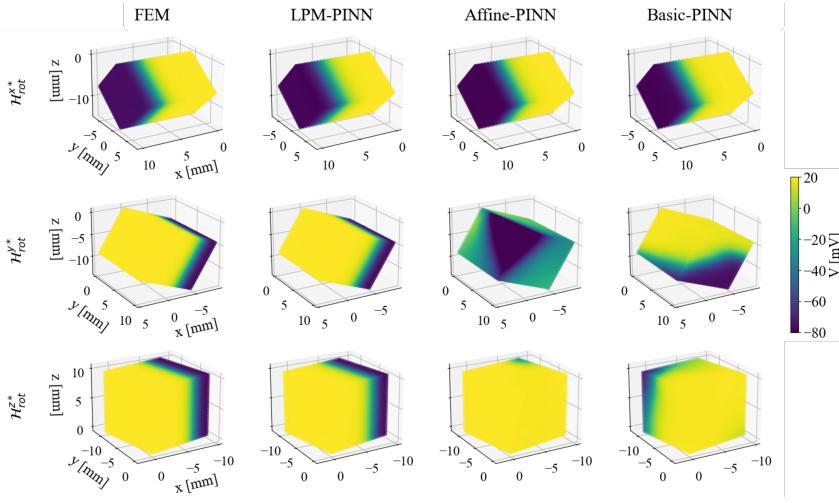


Figure 3: Snapshots of predicted transmembrane voltages (V) at $t = 50$ ms. Each row corresponds to a geometry taken from the presented external family (\mathcal{H}_{rot}^{x*} , \mathcal{H}_{rot}^{y*} , \mathcal{H}_{rot}^{z*}). The left column shows the FEM ground truth approximation.

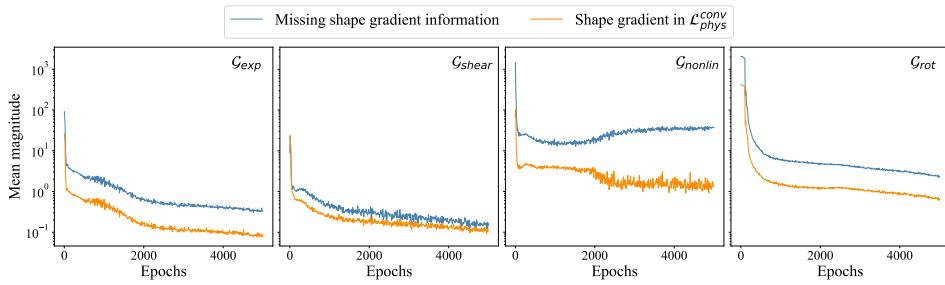


Figure 4: Numerical approximations of the missing shape gradients at the boundary and shape gradients used in $\mathcal{L}_{phys}^{conv}$ when training the Affine-PINN. The figure shows the mean magnitude across training geometries in \mathcal{G}_{exp} , \mathcal{G}_{shear} , \mathcal{G}_{nonlin} , and \mathcal{G}_{rot} .

in external predictive performance offered by LPM-PINN must be weighed against this additional data-preparation step. In practice, this cost is modest: the data mapping and deformation gradient computation were performed on a laptop CPU (Intel Core Ultra 9 185H) for our experiments, and could be significantly reduced by offloading these operations to a GPU.

Limitations and future work Our study has several limitations that open directions for future research. First, we relied on parameterized geometries, which may not always be available for more complex or realistic geometries encountered in real-world applications. Thus, extending latent PDE mapping to alternative shape representations is a critical future direction. One possibility is to employ principal component analysis modes as inputs to the PINN, rather than affine parameters, which has shown promise for representing cardiac geometries (Yin et al., 2024; Mauger et al., 2019). While our preliminary experiments (Table 10 in Appendix E.1) suggest that such extensions are feasible, a comprehensive exploration is beyond the scope of this paper. Second, the current study focuses exclusively on the Aliev–Panfilov model. Although the latent PDE mapping technique is, in principle, applicable to a broad class of architectures and physical systems, its use in alternative PDE settings remains an open direction for future work. Finally, our validation of the advantage of latent PDE mapping was limited to rotation transformations and simple geometries. The effectiveness of latent PDE mapping in more complex geometries remains to be determined. This will be an essential next step for proving the applicability of latent PDE mapping in realistic industrial and medical scenarios.

540

REPRODUCIBILITY STATEMENT

541

542 Synthetic datasets can be created by following the description given in Section 4 and Appendix D
 543 with parameter ranges as presented in Table 5 in Appendix B.1 for 2D and Table 6 in Appendix B.2
 544 for 3D. Implementation details regarding developed PINNs are presented in Section 5 and Appendix
 545 C, where the selected hyperparameters for each PINN are presented in Table 7. The source code and
 546 datasets used to reproduce results in Section 6 will be shared in the camera-ready submission, if
 547 accepted, to preserve anonymity during the double-blind review process.

548

549

REFERENCES

550

551 Rubin R Aliev and Alexander V Panfilov. A simple two-variable model of cardiac excitation. *Chaos, Solitons & Fractals*, 7(3):293–301, 1996.

552

553 Samuel Burbulla. Physics-informed neural networks for transformed geometries and manifolds.
 554 *arXiv preprint arXiv:2311.15940*, 2023.

555

556 Francisco Sahli Costabal, Simone Pezzuto, and Paris Perdikaris. δ -pinns: physics-informed neu-
 557 ral networks on complex geometries. *Engineering Applications of Artificial Intelligence*, 127:
 558 107324, 2024.

559

560 Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
 561 and Francesco Piccialli. Scientific machine learning through physics-informed neural networks:
 562 Where we are and what’s next. *Journal of Scientific Computing*, 92(3):88, 2022.

563

564 David Dalton, Dirk Husmeier, and Hao Gao. Physics-informed graph neural network emulation of
 565 soft-tissue mechanics. *Computer Methods in Applied Mechanics and Engineering*, 417:116351,
 566 2023.

567

568 Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convo-
 569 lutional neural networks for solving parameterized steady-state pdes on irregular domain. *Journal
 570 of Computational Physics*, 428:110079, 2021.

571

572 Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks:
 573 A unified framework for solving pde-governed forward and inverse problems. *Computer Methods
 574 in Applied Mechanics and Engineering*, 390:114502, 2022.

575

576 Shinjan Ghosh, Julian Busch, Georgia Olympia Brikis, and Biswadip Dey. Geometry-aware pinns
 577 for turbulent flow prediction. *arXiv preprint arXiv:2412.01954*, 2024.

578

579 Gerhard A. Holzapfel. *Nonlinear Solid Mechanics: A Continuum Approach for Engineering*. Wiley,
 580 2000.

581

582 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 583 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

584

585 Ali Kashefi and Tapan Mukerji. Physics-informed pointnet: A deep learning solver for steady-
 586 state incompressible flows and thermal fields on multiple sets of irregular geometries. *Journal of
 587 Computational Physics*, 468:111510, 2022.

588

589 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
 590 ator with learned deformations for pdes on general geometries. *Journal of Machine Learning
 591 Research*, 24(388):1–26, 2023a.

592

593 Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
 594 Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
 595 informed neural operator for large-scale 3d pdes. *Advances in Neural Information Processing
 596 Systems*, 36:35836–35854, 2023b.

597

598 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 599 nonlinear operators via deepnet based on the universal approximation theorem of operators.
 600 *Nature machine intelligence*, 3(3):218–229, 2021.

594 Charlène Mauger, Kathleen Gilbert, Aaron M Lee, Mihir M Sanghvi, Nay Aung, Kenneth Fung,
 595 Valentina Carapella, Stefan K Piechnik, Stefan Neubauer, Steffen E Petersen, et al. Right ventric-
 596 ular shape and function: cardiovascular magnetic resonance reference morphology and biventric-
 597 ular risk factor morphometrics in uk biobank. *Journal of Cardiovascular Magnetic Resonance*,
 598 21(1):41, 2019.

599 Francesco Mezzadri, Joshua Gasick, and Xiaoping Qian. A framework for physics-informed deep
 600 learning over freeform domains. *Computer-Aided Design*, 160:103520, 2023.

601

602 openCARP consortium, Christoph Augustin, Patrick M. Boyle, Vincent Loechner, Raphaël Colin,
 603 Atoli Huppé, Matthias Gsell, Marie Houillon, Yung-Lin (Cary) Huang, Kristian Gregorius Hus-
 604 tad, Elias Karabelas, Axel Loewe, Lena Myklebust, Aurel Neic, Mark Nothstein, Gernot Plank,
 605 Anton Prassl, Jorge Sánchez, Gunnar Seemann, Tomas Stary, Arun Thangamani, Nico Tippmann,
 606 Tiago Trevisan Jost, Ed Vigmond, Eike Moritz Wülfers, and Moritz Linder. openCARP, 2024.
 607 URL <https://git.opengarp.org/openCARP/openCARP>.

608 Jiang-Zhou Peng, Nadine Aubry, Yu-Bai Li, Mei Mei, Zhi-Hua Chen, and Wei-Tao Wu. Physics-
 609 informed graph convolutional neural network for modeling geometry-adaptive steady-state natu-
 610 ral convection. *International Journal of Heat and Mass Transfer*, 216:124593, 2023.

611

612 Gernot Plank*, Axel Loewe*, Aurel Neic*, Christoph Augustin, Yung-Lin (Cary) Huang, Matthias
 613 Gsell, Elias Karabelas, Mark Nothstein, Jorge Sánchez, Anton Prassl, Gunnar Seemann*, and
 614 Ed Vigmond*. The openCARP simulation environment for cardiac electrophysiology. *Computer
 615 Methods and Programs in Biomedicine*, 208:106223, 2021. doi: 10.1016/j.cmpb.2021.106223.

616 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 617 deep learning framework for solving forward and inverse problems involving nonlinear partial
 618 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

619 Francesco Regazzoni, Stefano Pagani, and Alfio Quarteroni. Universal solution manifold networks
 620 (usm-nets): non-intrusive mesh-free surrogate models for problems in variable domains. *Journal
 621 of Biomechanical Engineering*, 144(12):121004, 2022.

622

623 Yubiao Sun, Ushnish Sengupta, and Matthew Juniper. Physics-informed deep learning for sim-
 624 ulaneous surrogate modeling and pde-constrained optimization of an airfoil geometry. *Computer
 625 Methods in Applied Mechanics and Engineering*, 411:116042, 2023.

626 Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
 627 tial differential equations with physics-informed deepnets. *Science advances*, 7(40):eabi8605,
 628 2021.

629

630 Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
 631 physics-informed neural networks. *arXiv preprint arXiv:2308.08468*, 2023.

632 Tobias Würth, Niklas Freymuth, Clemens Zimmerling, Gerhard Neumann, and Luise Kärger.
 633 Physics-informed meshgraphnets (pi-mgns): Neural finite element solvers for non-stationary and
 634 nonlinear simulations on arbitrary meshes. *Computer Methods in Applied Mechanics and Engi-
 635 neering*, 429:117102, 2024.

636

637 Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, and Mauro Maggioni. A
 638 scalable framework for learning the geometry-dependent solution operators of partial differential
 639 equations. *Nature Computational Science*, 4(12):928–940, 2024.

640 Weiheg Zhong and Hadi Meidani. Physics-informed geometry-aware neural operator. *Computer
 641 Methods in Applied Mechanics and Engineering*, 434:117540, 2025.

642

643

644

645

646

647

648
 649 A DERIVATION OF LATENT PDE MAPPING APPLIED TO THE
 650 ALIEV-PANFILOV PDE

651
 652 In the following section, we give a detailed derivation of how the Aliev-Panfilov PDE in equation 7
 653 is mapped from a physical geometry $\Omega(s)$ to a latent geometry Ω_0 . For convenience, we restate the
 654 equations over $\Omega(s)$ here as

$$655 \quad \begin{cases} \frac{\partial V}{\partial \tau} = \nabla \cdot (\mathbf{D} \nabla V) - kV(V-a)(V-1) - VW & \text{in } \Omega(s), \\ 656 \quad \frac{\partial W}{\partial \tau} = \left(\epsilon_0 + \frac{\mu_1 W}{V+\mu_2} \right) (-W - kV(V-a-1)) & \text{in } \Omega(s), \\ 657 \quad \mathbf{D} \nabla V \cdot \mathbf{n} = 0 & \text{on } \partial \Omega(s). \end{cases} \quad (19)$$

658
 659 The mapping is achieved by applying the deformation gradient $\mathbf{F}(\mathbf{X}, t, s)$ and the deformation Ja-
 660 cobian $J(\mathbf{X}, t, s)$ to quantities in equation 19, as well as performing a variable substitution $\mathbf{x} \rightarrow \mathbf{X}$
 661 where $\mathbf{x} \in \Omega(s)$ and $\mathbf{X} \in \Omega_0$. The deformation gradient \mathbf{F} is given as

$$662 \quad \mathbf{F}(\mathbf{X}, t, s) = \mathbf{I} + \nabla \mathbf{U}(\mathbf{X}, t, s) \quad (20)$$

663
 664 where $\mathbf{U}(\mathbf{X}, t, s) = \mathbf{x}(\mathbf{X}, t, s) - \mathbf{X}$, while the deformation Jacobian is given as $J(\mathbf{X}, t, s) =$
 665 $\det(\mathbf{F})$.

666
 667 We start by introducing how quantities in equation 19 are mapped when applying principles from
 668 nonlinear solid mechanics (Holzapfel, 2000). Quantities that do not involve any divergences or
 669 gradients are mapped directly through a volume change defined as

$$670 \quad dv = J dV \quad (21)$$

671
 672 where dv and dV are infinitesimally small volume elements in $\Omega(s)$ and Ω_0 , respectively. Gradients
 673 of a scalar field ϕ are mapped as

$$674 \quad \nabla \phi(\mathbf{x}, t) = \mathbf{F}^{-T} \nabla \phi(\mathbf{X}, t) \quad (22)$$

675
 676 which is obtained by applying the chain rule to $\nabla \phi(\mathbf{x}, t)$. Finally, Nanson's formula is used to map
 677 vector elements from $\Omega(s)$ to Ω_0 . The formula yields

$$678 \quad d\mathbf{s}n = J \mathbf{F}^{-T} d\mathbf{s}N \quad (23)$$

679
 680 where $d\mathbf{s}n$ and $d\mathbf{s}N$ give the vector elements of infinitesimally small surface areas defined on $\Omega(s)$
 681 and Ω_0 .

682 Next, we rewrite the divergence term in equation 19 in integral form as

$$683 \quad \int_{\Omega(s)} \nabla \cdot (\mathbf{D} \nabla V) d\Omega$$

686 By applying Gauss's divergence theorem, we have that

$$688 \quad \int_{\Omega(s)} \nabla \cdot (\mathbf{D} \nabla V) d\Omega = \int_{\partial \Omega(s)} \mathbf{D} \nabla V \cdot d\mathbf{s}n \quad (24)$$

690
 691 where $\partial \Omega(s)$ is the surface of $\Omega(s)$ and \mathbf{n} is the vector normal to the surface. We utilize the
 692 relationship of gradients in equation 22 and Nanson's formula in equation 23, such that the divergence
 693 term in equation 24 can be expressed over Ω_0 as

$$694 \quad \int_{\partial \Omega(s)} \mathbf{D} \nabla V \cdot d\mathbf{s}n = \int_{\partial \Omega_0} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot J \mathbf{F}^{-T} d\mathbf{s}N \quad (25)$$

696 In the 2D case, we have that

$$697 \quad \mathbf{D} \in \mathbb{R}^{2 \times 2}, \quad \mathbf{F} \in \mathbb{R}^{2 \times 2}, \quad \nabla V \in \mathbb{R}^{2 \times 1}.$$

699 Hence, by assuming that \mathbf{F} is invertible, the terms in equation 25 can be reorganized as

$$701 \quad \int_{\partial \Omega(s)} \mathbf{D} \nabla V \cdot d\mathbf{s}n = \int_{\partial \Omega_0} J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot d\mathbf{s}N \quad (26)$$

Finally, by applying Gauss's divergence theorem again, the divergence term in $\Omega(s)$ and Ω_0 can be expressed as

$$\int_{\Omega(s)} \nabla \cdot (\mathbf{D} \nabla V) d\Omega = \int_{\Omega_0} \nabla \cdot (J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V) d\Omega_0 \quad (27)$$

By following the same procedure, the boundary condition in equation 19 can be rewritten as

$$\int_{\Omega(s)} (\mathbf{D} \nabla V \cdot \mathbf{n}) d\Omega = \int_{\Omega_0} (J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot \mathbf{N}) d\Omega_0 \quad (28)$$

The remaining parts of equation 19 do not include any divergences or gradients, and are mapped directly through a volume change as defined in equation 21. Consequently, equation 19 can be expressed over Ω_0 as

$$\begin{cases} \frac{\partial}{\partial \tau} (JV) = \nabla \cdot (J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V) - JkV(V-a)(V-1) - JVW & \text{in } \Omega_0, \\ \frac{\partial}{\partial \tau} (JW) = J \left(\epsilon_0 + \frac{\mu_1 W}{V+\mu_2} \right) (-W - kV(V-a-1)) & \text{in } \Omega_0, \\ J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot \mathbf{N} = 0 & \text{on } \partial\Omega_0, \end{cases} \quad (29)$$

For time-independent mappings, we finally arrive at

$$\begin{cases} \frac{\partial V}{\partial \tau} = \frac{1}{J} \nabla \cdot (J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V) - kV(V-a)(V-1) - VW & \text{in } \Omega_0, \\ \frac{\partial W}{\partial \tau} = \left(\epsilon_0 + \frac{\mu_1 W}{V+\mu_2} \right) (-W - kV(V-a-1)) & \text{in } \Omega_0, \\ J \mathbf{F}^{-1} \mathbf{D} \mathbf{F}^{-T} \nabla V \cdot \mathbf{N} = 0 & \text{on } \partial\Omega_0, \end{cases} \quad (30)$$

B ADDITIONAL DETAILS ON DATASET GENERATION

B.1 2D GEOMETRIES

Table 5 presents the data ranges used when creating the first three internal (\mathcal{G}_k) and external (\mathcal{G}_k^*) families in 2D. Additionally, the rotational family (\mathcal{G}_{rot} and \mathcal{G}_{rot}^*) was created by defining \mathbf{A} as a rotational matrix

$$\mathcal{G}_{rot} \text{ and } \mathcal{G}_{rot}^* : \quad \mathbf{A} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad (31)$$

with $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ for \mathcal{G}_{rot} and $\theta \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$ for \mathcal{G}_{rot}^* . All values were sampled uniformly from the given ranges.

Table 5: Parameter ranges for the first three internal (\mathcal{G}_k) and external (\mathcal{G}_k^*) families in 2D. Values were sampled uniformly from the given ranges.

	a_1, a_4	a_2, a_3	m_1, m_4
\mathcal{G}_{exp}	[1.0, 1.4]	0.0	0.0
\mathcal{G}_{exp}^*	[1.4, 1.8]	0.0	0.0
\mathcal{G}_{shear}	1.0	[-0.2, 0.2]	0.0
\mathcal{G}_{shear}^*	1.0	[-0.5, -0.2] \cup [0.2, 0.5]	0.0
\mathcal{G}_{nonlin}	1.0	0.0	[-0.015, 0.015]
\mathcal{G}_{nonlin}^*	1.0	0.0	[-0.025, -0.015] \cup [0.015, 0.025]

B.2 3D GEOMETRIES

In 3D, we constructed seven families by applying linear affine transformations to a $10 \times 10 \times 10$ mm cube. The linear transformations were defined as

$$\mathbf{x} = \mathbf{A} \mathbf{X} \quad (32)$$

756 Table 6: Parameter ranges for the internal (\mathcal{H}_k) and external (\mathcal{H}_k^*) expansion/shearing families in
 757 3D. All values were sampled uniformly from the given ranges.

	a_1, a_5, a_9	a_2, a_4	a_3, a_7	a_6, a_8
\mathcal{H}_{exp}	[1.0, 1.4]	0.0	0.0	0.0
\mathcal{H}_{exp}^*	[1.4, 1.8]	0.0	0.0	0.0
\mathcal{H}_{shear}^{xy}	1.0	[-0.2, 0.2]	0.0	0.0
$\mathcal{H}_{shear}^{xy*}$	1.0	[-0.5, -0.2] \cup [0.5, 0.2]	0.0	0.0
\mathcal{H}_{shear}^{xz}	1.0	0.0	[-0.2, 0.2]	0.0
$\mathcal{H}_{shear}^{xz*}$	1.0	0.0	[-0.5, -0.2] \cup [0.5, 0.2]	0.0
\mathcal{H}_{shear}^{yz}	1.0	0.0	0.0	[-0.2, 0.2]
$\mathcal{H}_{shear}^{yz*}$	1.0	0.0	0.0	[-0.5, -0.2] \cup [0.5, 0.2]

768
 769
 770 with

$$771 \quad 772 \quad 773 \quad \mathbf{A} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}. \quad (33)$$

774
 775 Similarly to the 2D scenario, each family was constructed using a distinct deformation type: expansion
 776 (\mathcal{H}_{exp}), shearing (\mathcal{H}_{shear}), and rotation (\mathcal{H}_{rot}). The parameter ranges used for the expansion
 777 and shearing families are presented in Table 6. Additionally, for the rotational families, \mathbf{A} was
 778 defined as

$$779 \quad 780 \quad 781 \quad \mathcal{H}_{rot}^x \text{ and } \mathcal{H}_{rot}^{x*} : \quad \mathbf{A} = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & \cos(\theta) & -\sin(\theta) \\ 0.0 & \sin(\theta) & \cos(\theta) \end{bmatrix},$$

$$782 \quad 783 \quad 784 \quad \mathcal{H}_{rot}^y \text{ and } \mathcal{H}_{rot}^{y*} : \quad \mathbf{A} = \begin{bmatrix} \cos(\theta) & 0.0 & \sin(\theta) \\ 0.0 & 1.0 & 0.0 \\ -\sin(\theta) & 0.0 & \cos(\theta) \end{bmatrix},$$

$$785 \quad 786 \quad 787 \quad \mathcal{H}_{rot}^z \text{ and } \mathcal{H}_{rot}^{z*} : \quad \mathbf{A} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0.0 \\ \sin(\theta) & \cos(\theta) & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix},$$

789 with $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ for internal families and $\theta \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$ for external families. All values were
 790 sampled uniformly from the given ranges.
 791

792 C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

795 Table 7 presents the hyperparameters used in each PINN. The PINNs were implemented with *Py-
 796 Torch*, and experiments were run on NVIDIA HGX H200 GPUs.

798 D ADDITIONAL DETAILS ON SYNTHETIC DATA GENERATION

800 We generated the synthetic data using *openCARP* (Plank* et al., 2021; openCARP consortium et al.,
 801 2024) with parameters as listed in Table 8 and 9. The diffusion tensor \mathbf{D} was defined as
 802

$$803 \quad 804 \quad 805 \quad 806 \quad \mathbf{D} = \begin{bmatrix} \frac{\sigma_{il}\sigma_{el}}{\sigma_{ii}+\sigma_{el}} & 0 & 0 \\ 0 & \frac{\sigma_{it}\sigma_{et}}{\sigma_{it}+\sigma_{et}} & 0 \\ 0 & 0 & \frac{\sigma_{in}\sigma_{en}}{\sigma_{in}+\sigma_{en}} \end{bmatrix} \quad (34)$$

807 in 3D, while in 2D the diffusion tensor was defined as a 2x2 tensor with entries corresponding
 808 to longitudinal and transverse directions. Before running the simulation, we meshed the physical
 809 geometry using triangular elements in 2D and tetrahedral elements in 3D. The maximum element
 size was set to 0.05 and 0.4 in 2D and 3D, respectively.

Table 7: Overview of PINN configurations.

		LPM-PINN	Affine-PINN	Basic-PINN
Input dim	2D	9	9	3
	3D	16	16	4
Hidden layers	isotropic	10	10	10
	anisotropic	8	8	8
Hidden dim	isotropic	25	25	25
	anisotropic	64	64	64
Output dim		2	2	2
Epochs		5000	5000	5000
Batch size		264	264	264
Optimizer		Adam	Adam	Adam
Learning rate	< 100 epochs	10^{-3}	10^{-3}	10^{-3}
	> 100 epochs	10^{-4}	10^{-4}	10^{-4}
Activation		tanh	tanh	tanh
\mathcal{N}_{data}		14	14	14
\mathcal{N}_{phys} (resampled)		700	700	700
\mathcal{N}_{bc} (resampled)		80	80	80
\mathcal{N}_{ic} (resampled)		30	30	30

Table 8: Parameter values used to create synthetic data. PDE parameters were selected in accordance with Aliev & Panfilov, 1996.

Parameter	Description	Value
C_m	membrane capacitance	$1 \mu\text{Fcm}^{-2}$
β	surface area to volume ratio	$0.14 \mu\text{m}^{-1}$
f_x, f_y, f_z	fiber orientation	1, 0, 0
Δt	time resolution	1 ms
I_{app}	applied stimuli	$5000 \mu\text{Acm}^{-2}$ for 0.2 ms (planar wave)
k	PDE parameter	8.0
a	PDE parameter	0.15
ε_0	PDE parameter	0.002
μ_1	PDE parameter	0.2
μ_2	PDE parameter	0.3

Table 9: Conductivities used to create isotropic and anisotropic synthetic data.

Parameter	Description	Isotropic case	Anisotropic case
σ_{il}	intracellular longitudinal conductivity	0.2 Sm^{-1}	0.17 Sm^{-1}
σ_{it}	intracellular transversal conductivity	0.2 Sm^{-1}	0.019 Sm^{-1}
σ_{in}	intracellular normal conductivity	0.2 Sm^{-1}	0.019 Sm^{-1}
σ_{el}	extracellular longitudinal conductivity	1.0 Sm^{-1}	0.62 Sm^{-1}
σ_{et}	extracellular transversal conductivity	1.0 Sm^{-1}	0.24 Sm^{-1}
σ_{en}	extracellular normal conductivity	1.0 Sm^{-1}	0.24 Sm^{-1}

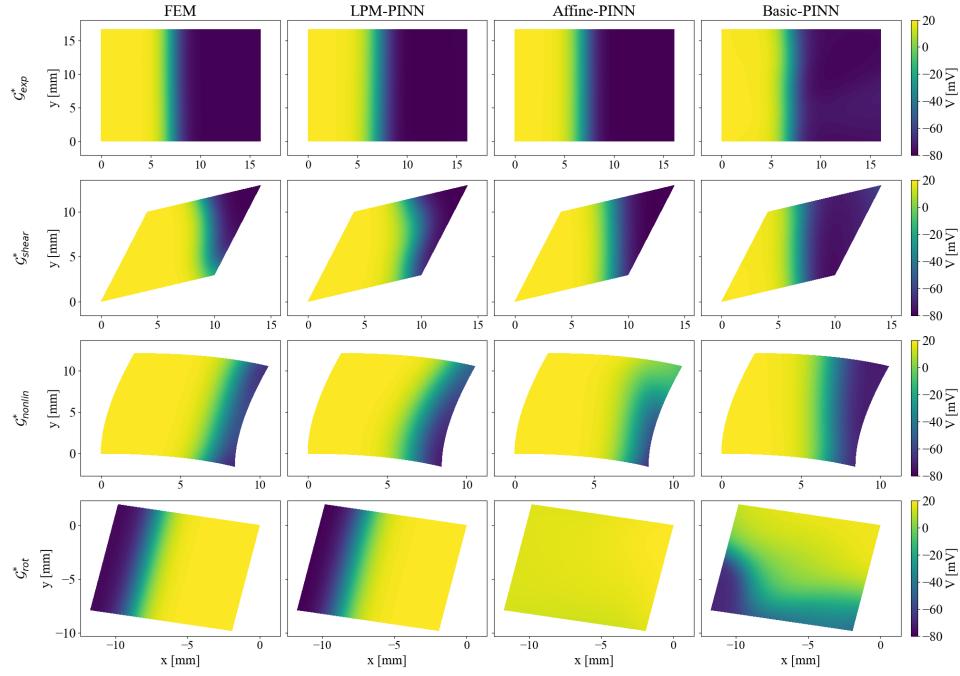


Figure 5: Snapshots of predicted transmembrane voltages (V) at $t = 50$ ms. Each row corresponds to a geometry taken from the presented external family (\mathcal{G}_{exp}^* , \mathcal{G}_{shear}^* , \mathcal{G}_{nonlin}^* , \mathcal{G}_{rot}^*) in the isotropic scenario. The left column shows the FEM ground truth approximation.

E SUPPLEMENTARY RESULTS

E.1 2D RESULTS

Figure 5 presents snapshots of predicted transmembrane potential (V) for selected geometries when the PINNs were trained on single 2D families, while Figure 6 illustrates snapshots when trained on a combination of two families. Both figures represent isotropic PDE dynamics.

E.1.1 PCA AS GEOMETRIC DESCRIPTOR

Table 10 presents the results obtained on 2D isotropic PDE dynamics when replacing affine parameters with the two PCA modes that capture more than 90% of the geometric variability in each family. A slight increase in error is observed when using PCA modes instead of affine parameters as the geometric descriptor, particularly for the external families. Nonetheless, the overall results indicate that both LPM-PINN and Affine-PINN remain capable of producing accurate predictions when supplied with alternative geometric descriptors. This demonstrates the potential of extending the methods to non-parametric geometries.

E.2 3D RESULTS

Figure 7 visualizes snapshots of the predicted transmembrane potential (V) for selected geometries, while Figures 8 and 9 show the numerical approximation of missing shape gradients at the boundaries for expansion, shearing, and rotational families.

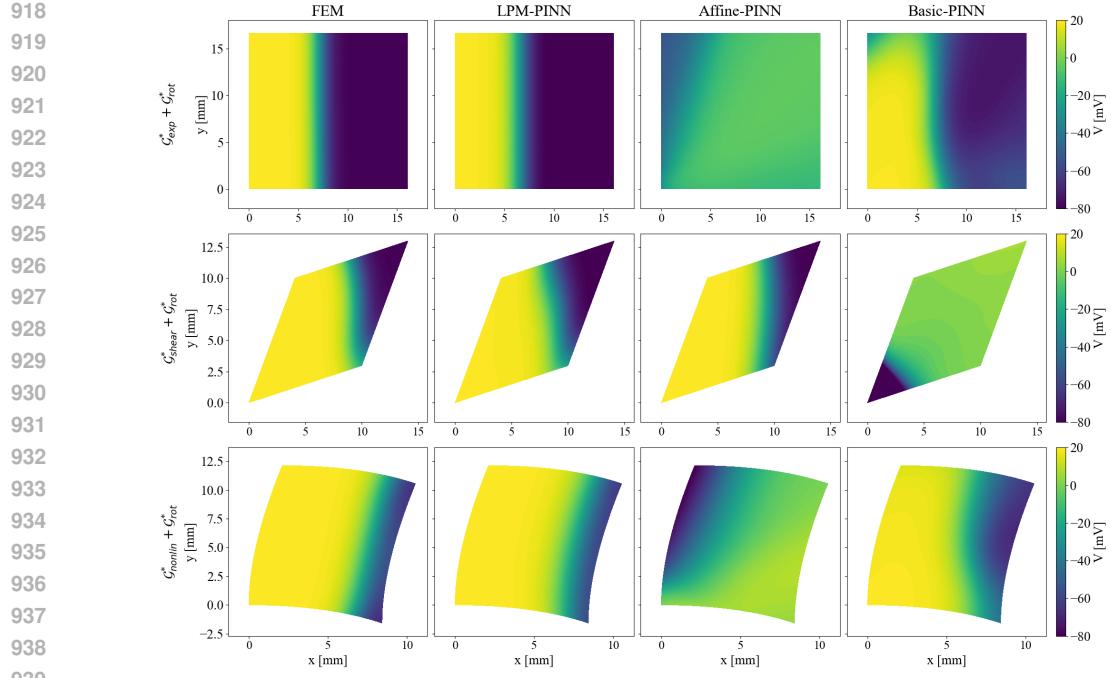


Figure 6: Snapshot of predicted transmembrane voltages (V) at $t = 50$ ms for a geometry taken from \mathcal{G}_{exp}^* , \mathcal{G}_{shear}^* , and \mathcal{G}_{nonlin}^* in the isotropic scenario. The PINNs were trained on a combination of geometries from the given families. The left column shows the FEM ground truth approximation.

Table 10: Mean relative L_2 PINN-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and external (\mathcal{G}_k^*) test geometries of each geometry family in 2D isotropic scenarios. In this case, the two first PCA modes for the corresponding family were used as additional inputs to describe the geometrical variability.

	LPM-PINN	Affine-PINN	Basic-PINN
\mathcal{G}_{exp}	0.020 ± 0.003	0.020 ± 0.003	0.057 ± 0.032
\mathcal{G}_{exp}^*	0.153 ± 0.047	0.113 ± 0.042	0.196 ± 0.050
\mathcal{G}_{shear}	0.033 ± 0.009	0.033 ± 0.009	0.087 ± 0.023
\mathcal{G}_{shear}^*	0.089 ± 0.037	0.088 ± 0.030	0.204 ± 0.034
\mathcal{G}_{nonlin}	0.023 ± 0.003	0.023 ± 0.002	0.062 ± 0.023
\mathcal{G}_{nonlin}^*	0.139 ± 0.095	0.138 ± 0.096	0.128 ± 0.041
\mathcal{G}_{rot}	0.019 ± 0.002	0.040 ± 0.018	1.876 ± 0.370
\mathcal{G}_{rot}^*	0.026 ± 0.007	0.524 ± 0.128	1.934 ± 0.252

F COMPUTATIONAL DETAILS OF MISSING BOUNDARY INFORMATION

In the following section, we present details on how equation 11 was discretized and numerically approximated. For convenience, we restate the equation here as

$$\frac{\partial \mathcal{L}_{phys}}{\partial s} = \int_{\Omega(s)} \frac{\partial}{\partial s} \mathcal{R}(\mathbf{x}, t, u, s)^2 d\Omega + \int_{\partial\Omega(s)} \mathcal{R}(\mathbf{x}, t, u, s)^2 \frac{\partial \mathbf{x}}{\partial s} \cdot \mathbf{n} dS \quad (35)$$

and define

$$I(s) \equiv \int_{\Omega(s)} \frac{\partial}{\partial s} \mathcal{R}(\mathbf{x}, t, u, s)^2 d\Omega \quad (36)$$

$$B(s) \equiv \int_{\partial\Omega(s)} \mathcal{R}(\mathbf{x}, t, u, s)^2 \frac{\partial \mathbf{x}}{\partial s} \cdot \mathbf{n} dS \quad (37)$$

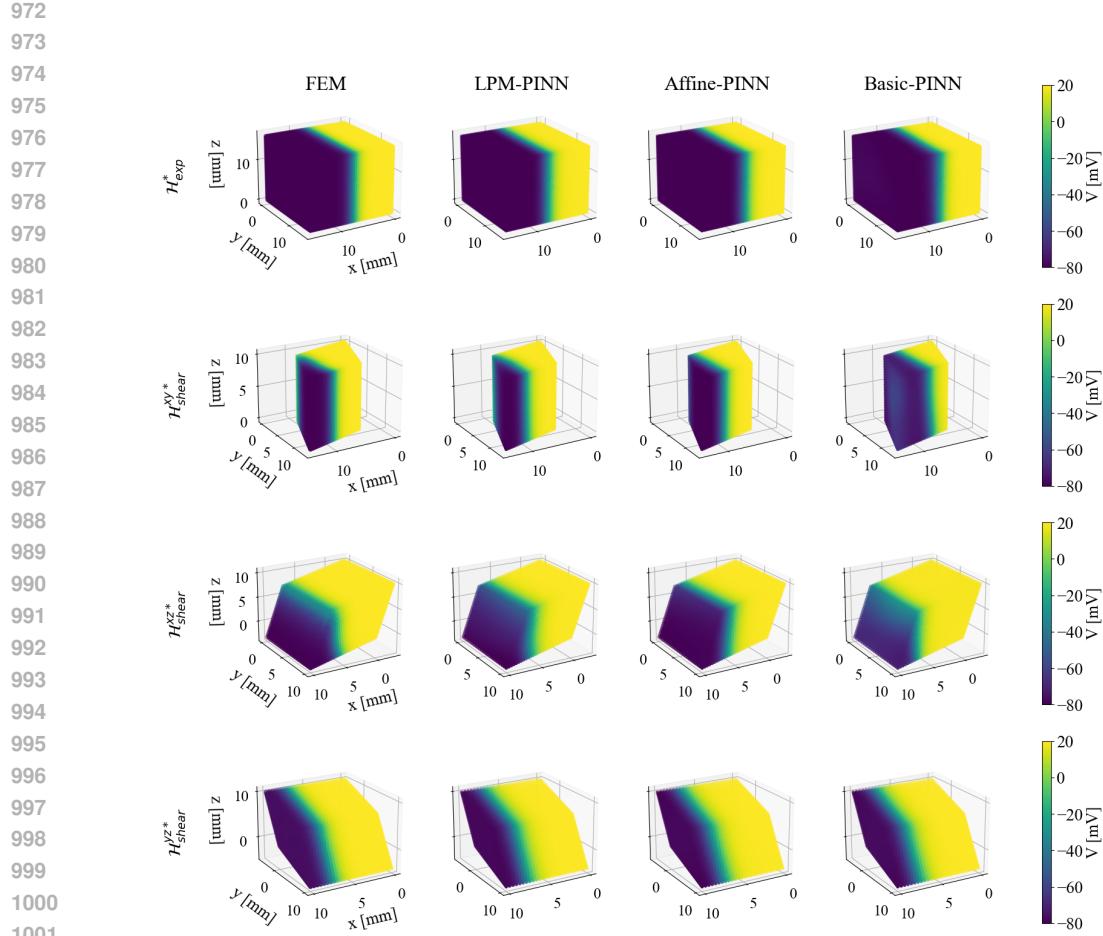


Figure 7: Snapshots of predicted transmembrane voltages (V) at $t = 50$ ms. Each row corresponds to a geometry taken from the presented external family ($\mathcal{H}_{\text{exp}}^*$, $\mathcal{H}_{\text{shear}}^{xy*}$, $\mathcal{H}_{\text{shear}}^{xz*}$, $\mathcal{H}_{\text{shear}}^{yz*}$) in isotropic scenarios. The left column shows the FEM ground truth approximation.

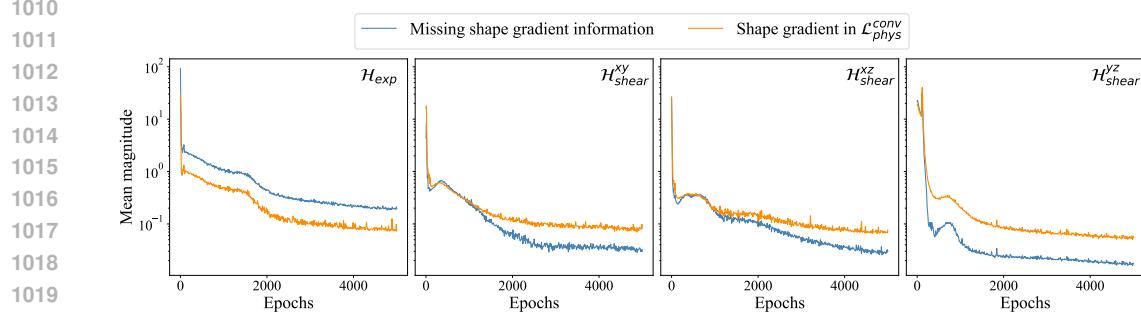


Figure 8: Numerical approximations of the missing shape gradients at the boundary and shape gradients used in $\mathcal{L}_{\text{phys}}^{\text{conv}}$ when training the Affine-PINN. The figure shows the mean magnitude across training geometries in \mathcal{H}_{exp} , $\mathcal{H}_{\text{shear}}^{xy}$, $\mathcal{H}_{\text{shear}}^{xz}$, and $\mathcal{H}_{\text{shear}}^{yz}$.

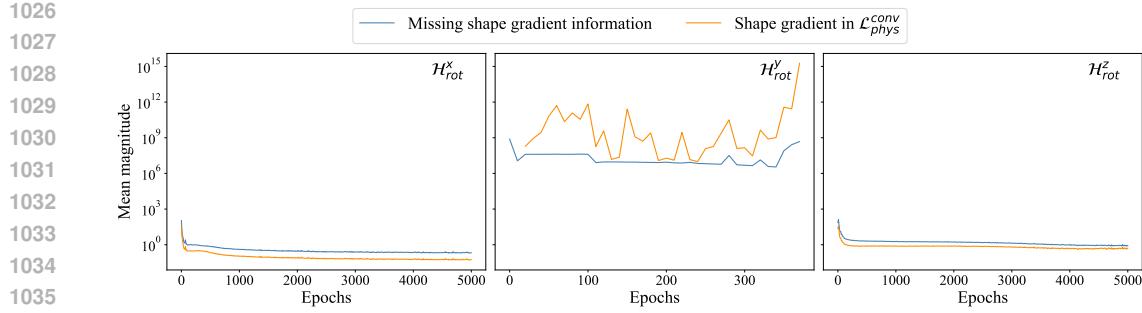


Figure 9: Numerical approximations of the missing shape gradients at the boundary and shape gradients used in $\mathcal{L}_{phys}^{conv}$ when training the Affine-PINN. The figure shows the mean magnitude across training geometries in \mathcal{H}_{rot}^x , \mathcal{H}_{rot}^y , and \mathcal{H}_{rot}^z .

such that

$$\frac{\partial \mathcal{L}_{phys}}{\partial s} = I(s) + B(s). \quad (38)$$

Next, we discretize the terms and make a numerical approximation using Monte Carlo for integrals and central finite differences for derivatives. We assume that the spatial positions are uniformly distributed and normalize with respect to the area/boundary, such that

$$I(s_k) \approx \frac{1}{N_I(s)} \sum_i^{N_I(s)} \sum_j^{\mathcal{T}} \frac{\mathcal{R}(\mathbf{x}_i, t_j, u_{ij}, s_k + \Delta s)^2 - \mathcal{R}(\mathbf{x}_i, t_j, u_{ij}, s_k - \Delta s)^2}{2\Delta s} \quad (39)$$

and

$$B(s_k) \approx \frac{1}{N_B(s)} \sum_i^{N_B(s)} \sum_j^{\mathcal{T}} \mathcal{R}(\mathbf{x}_i, t_j, u_{ij}, s_k)^2 \underbrace{\frac{\mathbf{x}_i(s_k + \Delta s) - \mathbf{x}_i(s_k - \Delta s)}{2\Delta s} \cdot \mathbf{n}_i(s)}_{\text{boundary movement}} \quad (40)$$

where s_k is the k -th value in a set of shape parameters given as $s = \{s_1, s_2, \dots, s_K\}$. Moreover, $N_I(s)$ and $N_B(s)$ gives the number of spatial positions used to evaluate the two terms and \mathcal{T} is the total number of time steps. Thus, our discretized version for the k -th shape value is given as

$$\frac{\Delta \mathcal{L}_{phys}}{\Delta s_k} = I(s_k) + B(s_k) \quad (41)$$

The magnitude of the overall change for the shape parameters ($\frac{\Delta \mathcal{L}_{phys}}{\Delta s}$) was computed by applying the L_2 norm to equation 41. Finally, we computed $\frac{\Delta \mathcal{L}_{phys}}{\Delta s}$ for each geometry in a family, and represented the numerical approximation of I and B as the mean across the given geometries. Here, I represents the numerical computation of $\mathcal{L}_{phys}^{conv}$ and B represents the missing boundary information when latent PDE mapping is not applied (see Figures 4, 8, and 9). We used $\Delta s = 10^{-6}$ in all computations.

F.1 BOUNDARY MOVEMENTS

The magnitude of the numerically approximated boundary movements when making small changes to the shape parameters s for each family in 2D and 3D are presented in Figure 10a and 10b, respectively. The boundary movements were approximated by applying central finite differences, as shown in equation 40, yielding



Figure 10: Numerical approximations of boundary movements when making small changes to the shape parameters s for each family in 2D and 3D.

$$\frac{\Delta \mathbf{x}}{\Delta s_k} = \frac{1}{N_B(s)} \sum_i^{N_B(s)} \frac{\mathbf{x}_i(s_k + \Delta s) - \mathbf{x}_i(s_k - \Delta s)}{2\Delta s} \cdot \mathbf{n}_i(s) \quad (42)$$

where $N_B(s)$ gives the number of boundary points. Again, the overall magnitude of the boundary movement was computed using the L_2 norm and mean across the given geometries with $\Delta s = 10^{-6}$.

G COMPUTATIONAL OVERHEAD

Table 11 reports mean per-epoch training times for each PINN across 2D and 3D geometries. A slight increase in computational time per epoch is observed when using LPM-PINN. Furthermore, Table 12 presents mean inference times for geometries in 2D and 3D. The results show that LPM-PINN and Affine-PINN have approximately the same inference times, while Basic-PINN is marginally faster in 2D and substantially faster in 3D. This is likely due to the reduced number of input features for Basic-PINN, which does not require the affine parameters used by LPM-PINN and Affine-PINN in addition to the spatiotemporal inputs. Additionally, the jump in inference time when moving from 2D to 3D is most likely caused by the increased number of spatial locations as well as an increased number of affine parameters in the inputs.

Finally, the additional computational cost associated with computing the deformation gradient and mapping to the reference geometry was estimated to an average time of 4.59 ± 1.06 seconds per geometry in 2D and 35.01 ± 2.33 seconds per geometry in 3D. As expected, the overhead increases in higher dimensions (3D) and for larger geometries. However, this cost is incurred only once during data preparation. Moreover, the reported times were obtained using a single laptop CPU (Intel Core Ultra 9 185H), indicating that substantial reductions in preprocessing time could be achieved through parallelized CPU execution or by offloading these computations to a GPU.

Table 11: Mean per-epoch training times for 2D and 3D geometries, given as mean \pm std in seconds. The training was performed on a GPU (NVIDIA HGX H200).

	LPM-PINN	Affine-PINN	Basic-PINN
2D geometries	1.633 ± 0.634	1.380 ± 0.489	1.598 ± 0.649
3D geometries	1.645 ± 0.042	1.580 ± 0.047	1.470 ± 0.076

1134 Table 12: Mean inference times per geometry for 2D and 3D geometries, given as mean \pm std in
 1135 seconds. A GPU (NVIDIA HGX H200) was used during inference.

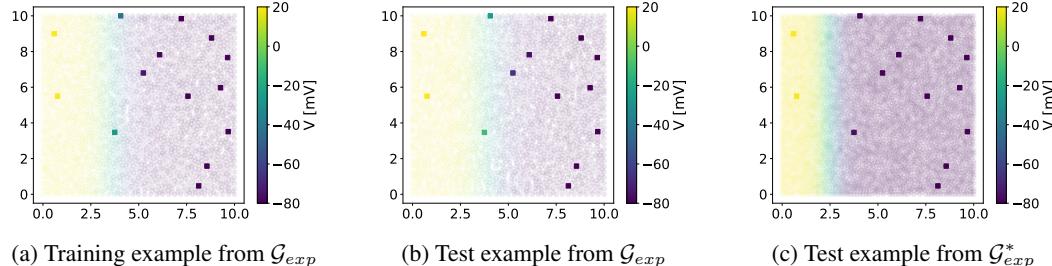
1136

1137

	LPM-PINN	Affine-PINN	Basic-PINN
2D geometries	0.017 ± 0.009	0.017 ± 0.009	0.016 ± 0.009
3D geometries	0.335 ± 0.047	0.351 ± 0.055	0.132 ± 0.029

1140

1141



1149

1150 Figure 11: Illustration of V at $t = 30$ ms at the fixed sensor points (squares) in the reference
 1151 geometry used during training and testing of the DeepONet on the \mathcal{G}_{exp} family. V was computed
 1152 using an interpolation scheme at the fixed sensor points.

1153

1154

H DEEPONET EXPERIMENTS

1155

1156

1157 In the following section, we introduce our implementation of a DeepONet as proposed by Lu et al.,
 1158 2021, as well as the results when running the DeepONet on 2D isotropic experiments using sparse
 1159 data observations.

1160

1161

H.1 IMPLEMENTATION DETAILS

1162

1163

1164 We sampled 14 uniformly fixed sensor points in the reference geometry to train the DeepONet, as
 1165 illustrated in Figure 11. The number of sensor points in the DeepONet was chosen based on the
 1166 number of supervised data locations ($\mathcal{N}_{data} = 14$) used in the PINNs. Thus, the DeepONet was
 1167 trained using full time-trajectories of the transmembrane potential V at 14 fixed sensor locations.
 1168 We employed an interpolation scheme to compute the transmembrane potential V at the fixed sensor
 1169 locations. It should be noted that the PINNs received $\mathcal{N}_{ic} = 30$ resampled data points at $\tau = 0$ to
 1170 enforce the initial condition as part of their physics loss during training. These points were not
 1171 included during training of the DeepONet due to the need for fixed sensor locations.

1172

1173

1174 The DeepONet consisted of a branch network and a trunk network where each network had four
 1175 hidden layers with 50 neurons in each layer. We gave the full time-trajectories of the transmembrane
 1176 potential V at the fixed sensor locations as input to the branch network. The trunk network received
 1177 the spatiotemporal data from the corresponding sensors, and the affine parameters describing the
 1178 overall physical geometry, as input. We used the tanh as activation function, and Adam as optimizer
 1179 with a learning rate of 0.001. We trained the DeepONet for 5000 epochs and used the validation data
 1180 to find the best model obtained during training in a similar manner as for the PINNs. We used the
 1181 same datasets for training and testing as used for the PINNs. Hence, the DeepONet was trained on
 1182 the same 10 geometries, validated on the same 5 geometries, and tested on the same 35 geometries
 1183 in the single family experiments. The same geometries were also used for the combined families as
 1184 during training and testing of the PINNs.

1185

1186

1187

1188 At inference, the DeepONet received the full time-trajectory of V at the fixed sensor location for
 1189 each test geometry. Additionally, during inference, the trunk network received spatiotemporal inputs
 1190 from the entire reference geometry as input. In this way, the DeepONet made predictions of V over
 1191 the entire geometry, not just at the fixed sensor points, in accordance with the PINNs.

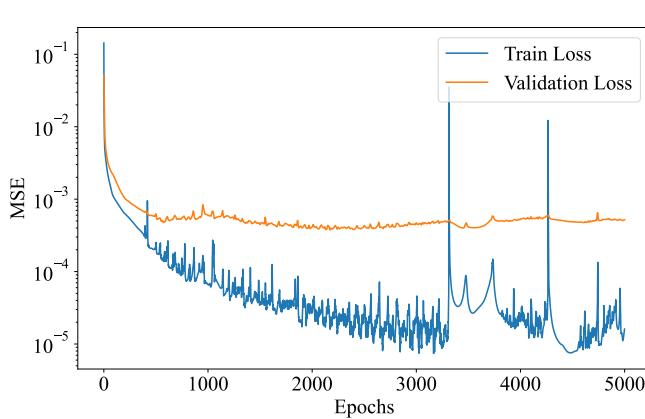


Figure 12: Visualization of training and validation losses during training of the DeepONet on supervised data from \mathcal{G}_{exp} . The decrease in training loss (blue) in combination with the stagnant validation loss (orange) indicates that there is not enough observed data available for the DeepONet to generalize.

H.2 RESULTS

Table 13 and 14 report the mean relative L_2 error of the DeepONet predictions when trained on individual and combined 2D geometry families, respectively. The results indicate moderate L_2 errors on the internal families and an increase in errors on the external families. This suggests that the DeepONet can leverage the fixed sensor locations to make predictions at new spatial positions. Although the L_2 errors in Table 13 and 14 may appear acceptable at first glance, Figure 13 shows that the corresponding solutions are not necessarily physically consistent, exhibiting degraded wavefronts. Hence, even though the DeepONet can learn from fixed sensor locations and generalize to new ones, its predictions do not necessarily respect the governing physics, as previously noted by Wang et al., 2021. This limitation underscores the motivation for incorporating physics-informed learning in the first place.

Table 13: Mean relative L_2 DeepONet-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and external (\mathcal{G}_k^*) test geometries of each geometry family in 2D.

DeepONet	
\mathcal{G}_{exp}	0.048 ± 0.007
\mathcal{G}_{exp}^*	0.074 ± 0.013
\mathcal{G}_{shear}	0.055 ± 0.002
\mathcal{G}_{shear}^*	0.068 ± 0.015
\mathcal{G}_{nonlin}	0.039 ± 0.004
\mathcal{G}_{nonlin}^*	0.053 ± 0.010
\mathcal{G}_{rot}	0.025 ± 0.002
\mathcal{G}_{rot}^*	0.030 ± 0.002

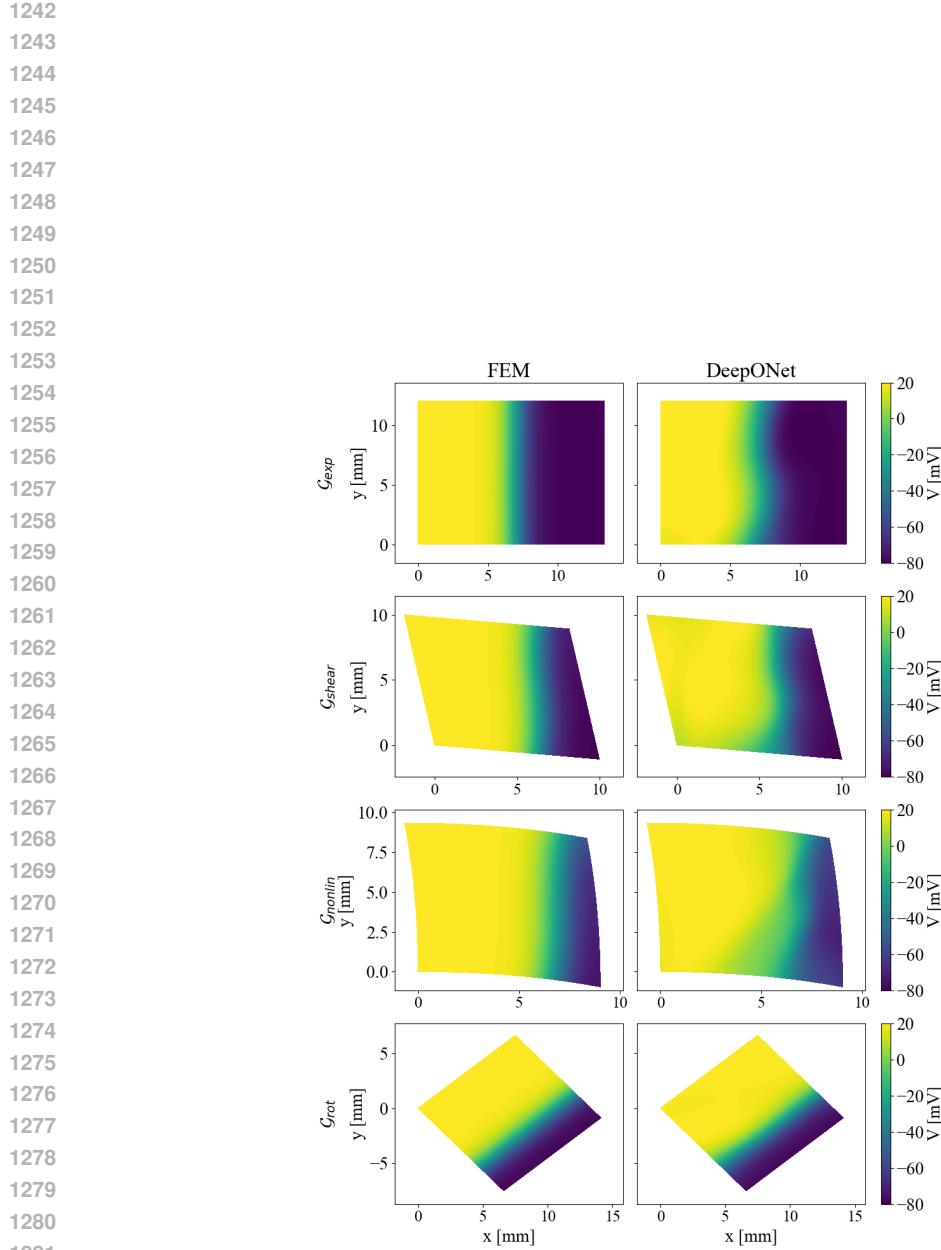


Figure 13: Snapshots of predicted transmembrane voltages (V) at $t = 50$ ms. Each row corresponds to a geometry taken from the presented internal family (\mathcal{G}_{exp} , \mathcal{G}_{shear} , \mathcal{G}_{nonlin} , \mathcal{G}_{rot}). The left column shows the FEM ground truth approximation.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316

1317 Table 14: Mean relative L_2 DeepONet-FEM discrepancy \pm std evaluated over the internal (\mathcal{G}_k) and
 1318 external (\mathcal{G}_k^*) test geometries from a combination of families in 2D. In this setting, the DeepONet
 1319 was trained on 20 geometries, validated on 10 geometries, and tested on 70 geometries sampled
 1320 from the corresponding families.

1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

DeepONet	
$\mathcal{G}_{exp} + \mathcal{G}_{rot}$	0.062 ± 0.005
$\mathcal{G}_{exp}^* + \mathcal{G}_{rot}^*$	0.072 ± 0.017
$\mathcal{G}_{shear} + \mathcal{G}_{rot}$	0.059 ± 0.001
$\mathcal{G}_{shear}^* + \mathcal{G}_{rot}^*$	0.063 ± 0.009
$\mathcal{G}_{nonlin} + \mathcal{G}_{rot}$	0.046 ± 0.004
$\mathcal{G}_{nonlin}^* + \mathcal{G}_{rot}^*$	0.060 ± 0.018