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ABSTRACT

Physics-Informed Neural Networks (PINNs) have shown strong potential for
learning physically consistent representations from sparse data, but often strug-
gle to generalize to geometries with varying shapes. To address this challenge, we
introduce latent PDE mapping, a technique for mapping geometry-specific par-
tial differential equations (PDEs) to a shared latent PDE representation using the
deformation gradient. We embed latent PDE mapping into the PINN framework
(LPM-PINN), enabling PINNs to capture geometric variability while preserving
the governing physics. This integration facilitates accurate predictions of nonlin-
ear, time-dependent systems even in geometries well beyond the training distri-
bution. We demonstrate LPM-PINN on a challenging nonlinear time-dependent
PDE with sharp gradients, the Aliev–Panfilov model of cardiac electrophysiology,
in both 2D and 3D. Our results show that LPM-PINN generalizes robustly across
diverse geometries, including shapes with drastically changing boundaries that lie
outside the training distribution. These findings establish latent PDE mapping
as a promising approach for boosting the geometric generalizability of physics-
informed neural networks.

1 INTRODUCTION

Physics-informed neural networks (PINNs) (Raissi et al., 2019) have emerged as a new paradigm
for learning physically consistent representations from sparse observations (Karniadakis et al., 2021;
Cuomo et al., 2022). However, PINNs face significant challenges when making predictions on ge-
ometries with varying shapes, often requiring retraining when encountering novel morphologies out-
side the training distribution (Gao et al., 2021). This limitation is critical in time-sensitive applica-
tions (e.g. medicine) where short compute times and generalization across diverse physiologically-
derived shapes are required. Here, we have chosen a prominent example that arises in cardiac
electrophysiology, where accurate cardiac arrest risk assessments require adaptation to diverse heart
geometries, and integration into medical workflows requires fast computations.

To address this issue, we introduce latent PDE mapping, a technique that maps geometry-specific
partial differential equations (PDEs) to a shared latent PDE representation. Using affine shape pa-
rameterization, a predefined latent geometry, and the deformation gradient; our method expresses the
loss terms of a PINN (LPM-PINN) using latent coordinates. This approach preserves the underly-
ing dynamics while capturing geometric variability, enabling accurate predictions on unseen shapes
in nonlinear, time-dependent systems. We apply latent PDE mapping to the Aliev-Panfilov model
of cardiac electrophysiology, a representative benchmark for challenging nonlinear time-dependent
PDE dynamics. The proposed approach offers a broadly applicable strategy for extending physics-
informed neural networks to problems involving geometries with variable shapes, complementary
to the current state of the art approaches involving operator and graph-neural architectures Li et al.
(2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Würth et al. (2024).

1.1 OUR CONTRIBUTIONS

• We introduce latent PDE mapping, a novel technique that maps geometry-specific PDEs
to a shared latent PDE, enabling PINNs to learn meaningful representations from sparse
observations across diverse geometrical shapes.
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• We implement latent PDE mapping in a conceptually simple PINN framework (LPM-
PINN), involving the Aliev–Panfilov model of cardiac electrophysiology, a challenging
nonlinear, time-dependent PDE with sharp gradients in 2D and 3D. Our results show
that LPM-PINN provides accurate solutions even in extreme rotation scenarios where the
boundary changes radically.

• We provide theoretical and empirical evidence that latent PDE mapping properly accounts
for geometric variability in the physics loss gradient, yielding more generalizable represen-
tations.

2 RELATED WORK

Recent developments within scientific machine learning have enabled the creation of flexible neural
network PDE solvers that can generalize to new geometries without needing retraining. Neural op-
erators Li et al. (2023a;b); Yin et al. (2024); Zhong & Meidani (2025), and graph neural networks
Würth et al. (2024) are currently the two leading approaches. Neural operators possess rich math-
ematical universal approximation properties, guaranteeing that the neural network’s parameterized
solutions can approximate arbitrarily closely PDE solutions from varying geometries. Neverthe-
less, most neural operator approaches Li et al. (2023a;b); Yin et al. (2024) are data-hungry, often
requiring extensive PDE solution datasets across diverse geometries to achieve high accuracy. This
motivates the pursuit of data-efficient approaches capable of learning from fewer geometric sam-
ples, an essential consideration in domains where data collection is costly or ethically constrained,
such as medicine. In response, PINNs have emerged, leveraging governing physical laws to learn
effectively from sparse data Gao et al. (2021); Zhong & Meidani (2025); Würth et al. (2024); Dalton
et al. (2023); Peng et al. (2023); Gao et al. (2022); Kashefi & Mukerji (2022).

A common approach for geometry-aware PINN studies has been to develop specialized network ar-
chitectures, replacing multilayer perceptrons with physics-informed convolutional neural networks
(Gao et al., 2021), physics-informed graph neural networks (Dalton et al., 2023; Peng et al., 2023;
Würth et al., 2024; Gao et al., 2022), or physics-informed PointNet (Kashefi & Mukerji, 2022).
These methods are better suited to handle variable geometries than basic fully-connected PINNs,
but require uniform grids, complex meshing at inference, or struggle to generalize across PDE pa-
rameters (Zhong & Meidani, 2025). To overcome these challenges, PINNs have been augmented
with shape descriptors (Regazzoni et al., 2022; Costabal et al., 2024) or global geometric parameters
(Sun et al., 2023; Ghosh et al., 2024; Zhong & Meidani, 2025). While showing promising results,
these methods formulate their physics losses in terms of the varying physical domains, which limits
the gradient information available to the networks during training.

Another research direction involves combining physics-based losses with latent geometries, where
inputs are embedded into a common latent space to facilitate comparison and efficient representation
learning across different shapes. Regazzoni et al. (2022) proposed a universal latent space for pa-
rameterized geometries, enabling learning across varying shapes. Similarly, Mezzadri et al. (2023)
introduced a framework that aligns geometric variability through latent embeddings, enabling simple
linear elasticity models to generalize across freeform domains. More recently, Burbulla (2023) intro-
duced a PDE mapping to low-dimensional manifolds and applied it to simple linear PDEs. However,
the current latent-geometry PINN methods Mezzadri et al. (2023); Regazzoni et al. (2022); Burbulla
(2023) are limited to simple, linear, static PDEs. This limits the methods’ utility in real-world appli-
cations, which are often complex, nonlinear, and dynamic. Moreover, no work has yet shown that
PINNs with mapped PDEs can generalize well to geometries outside of the training distribution.

Building on recent scientific machine learning studies involving mapped geometries Li et al.
(2023a;b); Yin et al. (2024); Zhong & Meidani (2025); Mezzadri et al. (2023); Regazzoni et al.
(2022); Burbulla (2023), the latent PDE mapping introduces a broadly applicable mathematical
framework that moves beyond simple PDE mapping to PINN formulations with geometrically vari-
able shapes and nonlinear, time-dependent PDEs. Furthermore, we introduce the use of the defor-
mation gradient to accurately map nonlinear PDEs within PINNs, thereby enabling more accurate
gradient calculations in which the effect of the geometric variability is included in the physics loss
gradient.
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3 LATENT PDE MAPPING

We consider a time-dependent PDE defined over a geometry Ω(s). Here, s is a set of shape param-
eters describing the overall geometry of Ω. The governing PDE is given as

F (u (x, t; s)) = f(x, t, u; s), (x, t) ∈ Ω(s)× T (1)

where F denotes a differential operator, f represents a source term that introduces external influ-
ences into the system, x ∈ Ω(s) ⊂ Rd are the spatial coordinates, t ∈ T ⊂ R is the time, and u is
the unknown PDE solution. In practice, obtaining an exact solution to equation 1 is often intractable
due to the complexity of the underlying system. To address this, we employ a PINN to approximate
the solution such that

NN (x, t, s; θ) = uθ ≈ u(x, t; s) (2)
where θ represents the trainable parameters. PINNs are known to offer a data-efficient machine
learning alternative by embedding physical laws directly into the neural network via PDE residuals
in the loss function (Raissi et al., 2019). The residual is defined as

R = F (u (x, t; s))− f(x, t, u; s) = 0, (x, t) ∈ Ω(s)× T (3)

where R depends on Ω(s) and the shape parameters s. With latent PDE mapping, we rather express
the geometry-specific residual in equation 3 over a latent geometry. Thus, we assume that there
exists a continuous map between Ω(s) and a predefined latent geometry Ω0, defined as

Φ := X → x (4)

where X is a given point in Ω0 while x is the associated point in Ω(s). Physical quantities can be
mapped from Ω(s) to Ω0, or vice versa, through the deformation gradient and deformation Jacobian
given in their most general form as

F(X, t, s) = I +∇U(X, t, s) (5)

and J(X, t, s) = det(F), respectively (Holzaphel, 2000). Here, I is the identity tensor and
U(X, t, s) = x(X, t, s) − X is the displacement field at time t for the shape parameters s. In
this study, we use the deformation gradient to map the geometry-specific R in equation 3 to a shared
latent representation, yielding

R(X, t, u,F, J) = F (u (X, t; s) ,F, J)− f(X, t, u,F, J ; s), (X, t) ∈ Ω0 × T . (6)

In this way, the dependency on s has been moved from the physical geometry Ω(s) into the PDE
itself through the deformation gradient F. This approach is what we refer to as the latent PDE
mapping technique.

3.1 APPLICATION TO NONLINEAR, TIME-DEPENDENT, STIFF SYSTEMS: THE
ALIEV-PANFILOV PDE

We demonstrate our latent PDE mapping technique on the Aliev-Panfilov model from cardiac eletro-
physiology. The Aliev-Panfilov PDE (Aliev & Panfilov, 1996) is used to describe the evolution of
transmembrane potential V over a physical geometry representing cardiac tissue and offers a fair
representation of challenging PDEs due to its nonlinearity, sharp gradients, and time-dependency.
The PDE can be expressed over a physical geometry Ω(s) as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s)

(7)

where V,W, and τ are dimensionless variables representing the transmembrane potential, recovery
variable, and time, respectively. V ∈ [0, 1] is given in arbitrary units (AU), while τ = 12.9t is
measured in temporal units (TU) with t given in milliseconds. The tissue conductivity is defined
by the diffusion tensor D, while k, a, ϵ0, µ1, µ2 are parameters controlling the overall shape and
temporal dynamics of V and W . Additionally, the PDE employs a no-flux Neumann boundary
condition where n is the vector normal to the boundary of Ω(s). Consequently, there is no leakage
of V to regions outside of Ω(s).
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We apply our latent PDE mapping technique to the Aliev-Panfilov PDE in equation 7. For a time-
independent mapping, the latent PDE representation is given as

∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(V,W ) (−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(8)

where N is the normal vector to the boundary of the latent geometry Ω0, F = F(X, s) and J =
J(X, s). A detailed derivation of equation 8 can be found in Appendix A.

3.2 ACCURATE GRADIENT CALCULATION WITH LATENT PDE MAPPING

The physics loss in PINNs is typically evaluated with the mean squared error (MSE) of R (Wang
et al., 2023), given as

Lphys =
1

Nphys

Nphys∑
i

R2
i (9)

using a traditional mini-batch approach with Nphys collocation points to evaluate R. This approach
treats R as independent of Ω(s) during optimization, which is not the case and can lead to inaccurate
gradient estimates. Thus, a more accurate formulation is to evaluate the physics loss as a continuous
integral

Lphys =

∫
Ω(s)

R(x, t, u, s)2dΩ (10)

and apply the Leibniz integral rule when computing the shape gradient ∂Lphys

∂s . This results in

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (11)

where n is the outward unit normal to the boundary ∂Ω(s) and dS is an infinitesimally small part
of the boundary. The second term in equation 11 accounts for the movement of the boundary, which
is neglected in the discrete loss formulation in equation 9. This omission can lead to inaccurate
gradient estimates, hindering training and resulting in suboptimal PINNs.

With latent PDE mapping, the dependency of s is moved from the geometry into the PDE itself via
the deformation gradient F. Consequently, the integrand does not vary with s and the shape gradient
can be computed directly

∂Lphys

∂s
=

∫
Ω0

∂

∂s
R(X, t, u,F, J)2dΩ0. (12)

Thus, the straightforward MSE in equation 9 can be applied during training without sacrificing
gradient accuracy. Based on these considerations, we hypothesized that improving the accuracy of
the physics loss gradient via latent PDE mapping can improve the generalizability of PINNs to novel
geometries.

4 CARDIAC ELECTROPHYSIOLOGY DATASETS WITH VARIABLE GEOMETRIES

We constructed four and seven families of geometries in 2D and 3D, respectively, for training and
testing of our PINNs. In 2D, the latent geometry Ω0 was defined as a 10×10 mm square, while in
3D it was a 10 × 10 × 10 mm cube. Families belonging to 2D and 3D are denoted with a G and
H, respectively. In the following, we describe the generation of 2D datasets. The extension to 3D is
straightforward and provided in detail in Appendix B.2.

The geometries were generated by deforming Ω0 through different affine transformations expressed
in their most general form as

x = AX +XTMX (13)
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with

A =

[
a1 a2
a3 a4

]
, M =

[
m1 0
0 m4

]
. (14)

The elements of A and M , referred to as affine parameters, are denoted by s =
{a1, a2, a3, a4,m1,m4}. Each family of geometries corresponded to a distinct deformation type:
expansion (Gexp), shearing (Gshear), nonlinear deformation (Gnonlin), and rotation (Grot). Figure 1
illustrates one representative geometry from each family, while Table 5 in Appendix B.1 gives the
affine parameter ranges for all families. The deformations employed in this work were static in time;
however, the approach can be extended to time-dependent deformations as shown in Section 3.

For each family, we generated two branches. The first branch (Gk) contained 50 geometries, which
were later split into training, validation, and test sets. The second branch (G∗

k) contained 35 geome-
tries generated from parameter ranges outside those of Gk, and was used exclusively for testing. We
refer to test geometries in Gk as the internal family and G∗

k as the external family.

In 3D, the same procedure was applied with the same number of geometries and versions per family.
However, only linear deformation types were considered. The 3D families are denoted as Hp

k where
k indicates the deformation type (expansion, shearing, or rotation) and p indicates the direction of
the deformation when applicable (Hx

rot = rotation about the x-axis, Hxy
shear = shearing along the

xy-plane, etc.).
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Figure 1: From left to right, the figure shows an example of a geometry from Gexp, Gshear, Gnonlin,
and Grot. All geometries were externally stimulated at the left edge nodes (yellow) in the isotropic
scenario. The dashed line illustrates the latent geometry Ω0 in 2D.

Synthetic cardiac electrophysiology data We used openCARP (Plank* et al., 2021; openCARP
consortium et al., 2024) to create synthetic data that was used to approximate the ground truth
PDE solution during training and testing of the PINNs. Thus, we solved the Aliev-Panfilov PDE
in equation 7 over the physical geometries using the finite element method (FEM). We created
both isotropic and anisotropic datasets to explore different PDE dynamics. In the isotropic case, all
geometries were stimulated by an external current at nodes located at the left boundary/plane. Sheet
fibers were oriented along the x-axis with, resulting in a planar wave propagation. The anisotropic
datasets were generated by applying a point stimulus to all nodes within a radius of 0.75 mm in the
center of the geometry. The fiber orientations were deformed according to the affine transformation
to ensure consistent PDE dynamics. In both cases, all simulations were run for 520ms, yielding a
full cycle of polarization and re-polarization. Solutions at t < 6ms were excluded to remove applied
current from the system. The exact configurations used for synthetic data generation are listed in
Table 8 and 9 in Appendix D.

5 PINN TRAINING PROCEDURES AND EVALUATION METHODS

We developed three PINNs for comparison and evaluation of the latent PDE mapping. The first
PINN (LPM-PINN) incorporates the latent PDE mapping technique and uses affine parameters as
additional inputs. The second (Affine-PINN) and third (Basic-PINN) PINNs adopt the conventional
physics loss formulated over the physical geometries. However, the Affine-PINN integrates affine
parameters as input, whereas the Basic-PINN relies exclusively on spatiotemporal inputs. This setup
enables a systematic evaluation of the contribution of latent PDE mapping to PINN training, as well
as the added benefits of including affine parameters.

5
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All PINNs were trained by minimizing a hybrid loss function defined as

L(θ) = Ldata(θ) + Lphys(θ) + Lbc(θ) + Lic(θ) (15)

where Ldata(θ) is the loss due to known FEM data, Lphys(θ) is the loss described by the governing
PDE residual, Lbc(θ) is the loss associated with the boundary condition, and Lic(θ) is the loss asso-
ciated with the initial condition. The loss terms were equally weighted, and each term was evaluated
using the MSE over a given set of spatiotemporal points (Ndata, Nphys, Nbc, Nic). Furthermore,
we defined the physics and boundary loss in LPM-PINN as

LLPM
phys ≡ 1

Nphys

Nphys∑
R(X, τ, V̂ , Ŵ ,F, J), LLPM

bc ≡ 1

Nbc

Nbc∑
R(X, τ, V̂ ,F, J) (16)

and the conventional losses in Affine-PINN and Basic-PINN as

Lconv
phys ≡

1

Nphys

Nphys∑
R(x, τ, V̂ , Ŵ ), Lconv

bc ≡ 1

Nbc

Nbc∑
R(x, τ, V̂ ). (17)

where X ∈ Ω0 and x ∈ Ω(s). For the isotropic datasets, each PINN consisted of a fully con-
nected neural network with 10 hidden layers with 25 neurons in each layer, while for the anisotropic
datasets, each PINN had 8 hidden layers with 64 neurons each to reflect the increased complexity of
the PDE dynamics. Furthermore, we employed the tanh as activation function in all cases to handle
second-order derivatives (equation 8) needed to calculate the physics loss (equation 9). All PINNs
predicted V̂ and Ŵ as outputs. A complete overview of the hyperparameters for each PINN can be
found in Table 7 in Appendix C.

Each internal family (Gk, Hk) was split into a training set, validation set, and test set. Unlike the
conventional split used in machine learning, we adopted an inverted allocation strategy with 20%
train data, 10% validation data, and 70% test data in order to restrict the available training data.
Thus, each family (Gk, Hk) had 10 train geometries, 5 validation geometries, and 35 test geometries.
Additionally, in some experiments, we merged two families to generate a dataset (Gk1 + Gk2) with
greater geometric variability. In these cases, each family contributed equally to each split, resulting
in 20 train geometries, 10 validation geometries, and 70 test geometries. Furthermore, we selected
Ndata = 14, Nphys = 700, Nbc = 80, and Nic = 30 spatial locations from each geometry in the
training set and trained the models for 5000 epochs. Nphys, Nbc, and Nic were resampled at every
epoch to ensure that the physics was learned over the entire geometry.

During training, we evaluated L(θ) for each geometry in the validation set. Since our validation
set spanned multiple distinct geometries, we selected the best PINN state as the state that gave the
lowest maximum L(θ) across the validation geometries, rather than the lowest average L(θ). This
criterion ensured that the PINN generalized effectively to geometries differing substantially from
those seen during training. To reduce computational overhead, we computed the validation loss
every 10 epochs using a subsample of points from each geometry.

Evaluation metrics We employed the relative L2 error (εL2) as an evaluation metric, given as

εL2 =

√∑Ntest

i

(
V̂i − Vi

)2

√∑Ntest

i V 2
i

(18)

where V̂ is the predicted transmembrane potential and V is the approximated FEM data used as
ground truth. Results are presented as the mean relative L2 error across all geometries in the given
family with the corresponding standard deviation.

6 EXPERIMENTS

In the following sections, we present results from a series of experiments used to evaluate and
compare the PINNs’ performance when generalizing across diverse geometries in 2D and 3D. Fur-
thermore, we investigate the role of the missing boundary shape gradients when latent PDE mapping
is not applied.
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6.1 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 2D?

The results indicate consistently low prediction errors for all PINNs across test geometries in the
internal families Gexp, Gshear, and Gnonlin when applied to isotropic PDE dynamics (Table 1).
Moreover, the results show that LPM-PINN and Affine-PINN generalize to the corresponding exter-
nal families with only a modest increase in prediction error, whereas the Basic-PINN exhibits errors
of an order of magnitude higher on the same families. Notably, LPM-PINN is the only PINN that
achieves accurate predictions on the G∗

rot family, while Affine-PINN and Basic-PINN yield signifi-
cantly inaccurate results, as illustrated in the last row of Figure 5 in Appendix E.1. These findings
demonstrate that latent PDE mapping improves geometric generalizability, particularly when the
boundary undergoes radical changes.

Table 2 shows that LPM-PINN can learn and make accurate predictions when trained on geometries
from two different families with isotropic PDE dynamics. In contrast, Affine-PINN and Basic-PINN
fail to learn meaningful representations in the same setting, except for Affine-PINN on Gshear+ Grot.
Figure 6 in Appendix E.1 visualizes predictions on the same geometries as in Figure 5 in Appendix
E.1, showing that the higher error is not limited to the Grot and G∗

rot family, but arises from degraded
performance across both families. Hence, the results indicate that latent PDE mapping can enhance
generalizability when learning across fundamentally different geometries.

Table 1: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries of each geometry family in 2D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.019 ± 0.004 0.024± 0.005 0.057± 0.028
G∗
exp 0.044 ± 0.013 0.070 ± 0.036 0.166 ± 0.043

Gshear 0.024 ± 0.002 0.029 ± 0.004 0.082 ± 0.029
G∗
shear 0.074 ± 0.027 0.077 ± 0.024 0.203 ± 0.041

Gnonlin 0.029 ± 0.005 0.029 ± 0.009 0.058 ± 0.024
G∗
nonlin 0.055 ± 0.020 0.054 ± 0.019 0.126 ± 0.044

Grot 0.017 ± 0.001 0.055 ± 0.016 0.229 ± 0.021
G∗
rot 0.020 ± 0.002 0.272 ± 0.137 0.331 ± 0.042

Does latent PDE mapping handle anisotropic PDE dynamics? Table 3 shows that both LPM-
PINN and Affine-PINN make accurate predictions on internal test geometries, whereas the Basic-
PINN struggles with anisotropic PDE dynamics. The table and visualization in Figure 2 also indicate
that LPM-PINN generalizes better to external geometries than Affine-PINN, suggesting that it learns
a more robust representation of the anisotropic dynamics. The results demonstrate that as the com-
plexity of the underlying problem increases, the benefits of an explicit latent representation become
more pronounced.

6.2 DOES LATENT PDE MAPPING IMPROVE GEOMETRIC GENERALIZABILITY IN 3D?

The results show that all PINNs can generalize to both the internal and external families when tested
on rotations around the x-axis and on shearing along the yz-plane (Hx

rot, Hx∗
rot, H

yz
shearand Hyz∗

shear;
Table 4). Beyond these settings, LPM-PINN and Affine-PINN generalize well to the remaining
shearing directions and expansion families, whereas Basic-PINN struggles to make accurate predic-
tions on the corresponding external families (Figure 7 in Appendix E.2). Table 4 further shows that
LPM-PINN is the only PINN capable of handling rotations around the y- and z-axes. In these cases,
both Affine-PINN and Basic-PINN produce entirely inaccurate predictions on the external families,
as illustrated in Figure 3.

6.3 HOW LARGE ARE THE MISSING BOUNDARY SHAPE GRADIENTS WHEN LATENT PDE
MAPPING IS NOT USED?

Figure 4 shows that the omitted boundary information (equation 11) in the shape gradients is large
across all 2D cases (see Appendix F for computational details). For every family shown in Figure
4, the missing boundary information (blue) exceeds the shape gradient used in the Affine-PINN

7
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Table 2: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries from a combination of families in 2D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp+ Grot 0.022 ± 0.006 0.911 ± 0.065 0.199 ± 0.061
G∗
exp+ G∗

rot 0.138 ± 0.102 1.111 ± 0.268 0.285 ± 0.084
Gshear+ Grot 0.021 ± 0.005 0.027 ± 0.003 2.571 ± 0.067
G∗
shear+ G∗

rot 0.048 ± 0.033 0.152 ± 0.128 2.634 ± 0.174
Gnonlin+ Grot 0.024 ± 0.003 1.104 ± 0.114 0.186 ± 0.073
G∗
nonlin+ G∗

rot 0.035 ± 0.013 1.181 ± 0.181 0.272 ± 0.122

Figure 2: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms in the anisotropic
scenario. Each row corresponds to a geometry taken from the presented external family (G∗

exp,
G∗
shear, G∗

nonlin, G∗
rot). The left column shows the FEM ground truth approximation.

(orange). The magnitude of this missing information depends on the boundary movement when
making changes to s (Figure 10a in Appendix F): the family with the smallest gap in Figure 4 also
exhibits the smallest boundary change in Figure 10a. A similar trend appears in 3D, where shearing
families show the lowest boundary changes (Figure 10b, Appendix F) and correspondingly small
missing information (Figure 8, Appendix E.2), while expansion and rotational families exhibit larger
boundary changes (Figure 10b, Appendix F) and larger omissions (Figure 9, Appendix E.2). These
findings indicate that the missing boundary shape gradients are of substantial sizes when latent PDE
mapping is not applied, leading to suboptimal learning.

7 DISCUSSION

This work presents latent PDE mapping, a novel technique for mapping geometry-specific PDEs
to a shared latent PDE representation. Latent PDE mapping moves the shape dependence from the
geometry into the PDE itself through the deformation gradient. This representation allows essential
boundary information to be incorporated into the physics loss during training of PINNs (LPM-
PINN).

The empirical results demonstrate that latent PDE mapping enhances generalization across diverse
2D and 3D geometries for both isotropic and anisotropic PDE dynamics. In particular, the method
is advantageous in scenarios where the training data comprises multiple geometric types (Table 2,
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Table 3: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and exter-
nal (G∗

k) test geometries of each geometry family in 2D anisotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.040 ± 0.010 0.038 ± 0.008 0.205 ± 0.062
G∗
exp 0.071 ± 0.017 0.074 ± 0.013 0.496 ± 0.105

Gshear 0.053 ± 0.016 0.061 ± 0.017 0.229 ± 0.066
G∗
shear 0.125 ± 0.072 0.125 ± 0.037 0.444 ± 0.063

Gnonlin 0.062 ± 0.021 0.065 ± 0.020 0.151 ± 0.037
G∗
nonlin 0.108 ± 0.037 0.115 ± 0.037 0.266 ± 0.078

Grot 0.052 ± 0.020 0.102 ± 0.047 0.420 ± 0.031
G∗
rot 0.180 ± 0.094 0.650 ± 0.181 0.582 ± 0.098

Table 4: Mean relative L2 FEM-PINN discrepancy ± std evaluated over the internal (Hp
k) and

external (Hp∗
k ) test geometries from the geometry families in 3D isotropic scenarios.

LPM-PINN Affine-PINN Basic-PINN
Hexp 0.015 ± 0.001 0.015 ± 0.002 0.047 ± 0.019
H∗

exp 0.050 ± 0.017 0.082 ± 0.025 0.166 ± 0.044
Hxy

shear 0.020 ± 0.006 0.023 ± 0.004 0.083 ± 0.027
Hxy∗

shear 0.077 ± 0.030 0.075 ± 0.020 0.212 ± 0.049
Hxz

shear 0.020 ± 0.005 0.024 ± 0.004 0.078 ± 0.025
Hxz∗

shear 0.072 ± 0.029 0.068 ± 0.017 0.209 ± 0.049
Hyz

shear 0.015 ± 0.002 0.014 ± 0.001 0.016 ± 0.000
Hyz∗

shear 0.018 ± 0.005 0.017 ± 0.003 0.016 ± 0.001
Hx

rot 0.016 ± 0.004 0.021 ± 0.011 0.015 ± 0.001
Hx∗

rot 0.070 ± 0.034 0.073 ± 0.035 0.020 ± 0.004
Hy

rot 0.014 ± 0.001 2.014 ± 0.188 0.234 ± 0.057
Hy∗

rot 0.036 ± 0.023 1.212 ± 0.134 0.369 ± 0.094
Hz

rot 0.012 ± 0.000 0.033 ± 0.006 0.224 ± 0.050
Hz∗

rot 0.014 ± 0.002 0.402 ± 0.182 0.382 ± 0.074

Figure 6) or where boundary conditions undergo significant variation due to rotations (last row in
Figure 2 and 3). In such settings, conventional PINNs that rely exclusively on shape descriptors
exhibit reduced performance, while latent PDE mapping provides a more robust learning represen-
tation.

A central insight emerging from this study concerns the role of missing boundary shape gradients.
Adding the boundary gradient via latent PDE mapping can boost the ability of PINNs to generalize
to new shapes (see LPM-PINN versus Affine-PINN in Table 1-4). Indeed, in the absence of latent
PDE mapping, the omitted boundary terms can be larger than the remaining gradients (Figure 4).
However, boundary gradient size does not necessarily translate directly into performance improve-
ment. Thus, there is a need for more research to further investigate this issue.

The utility of latent PDE mapping depends on the overall boundary movement in the geometric
families and on the PDE dynamics. Families with high boundary movements have a correspondingly
higher missing boundary shape gradient when latent PDE mapping is not applied. Furthermore,
latent PDE mapping improves learning and generalizability when geometric variability modifies
the underlying PDE dynamics. In our case, the results show strong improvements when the initial
activation site is moved substantially (last row in Figure 2 and 3).

It should be noted that latent PDE mapping introduces an additional computational overhead. As
shown in Tables 11 and 12 in Appendix G, the training and inference times for LPM-PINN and
Affine-PINN are largely comparable. However, the mapping to the reference geometry and defor-
mation gradient computation add extra preprocessing costs with an average cost of 4.59 ± 1.06
seconds per geometry in 2D and an average cost of 35.01 ± 2.33 seconds per geometry in 3D. Im-
portantly, this overhead is incurred only once prior to training or inference. Thus, the improvement

9
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Figure 3: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (Hx∗

rot, H
y∗
rot, Hz∗

rot). The left column shows
the FEM ground truth approximation.
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Figure 4: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Gexp, Gshear, Gnonlin, and Grot.

in external predictive performance offered by LPM-PINN must be weighed against this additional
data-preparation step. In practice, this cost is modest: the data mapping and deformation gradient
computation were performed on a laptop CPU (Intel Core Ultra 9 185H) for our experiments, and
could be significantly reduced by offloading these operations to a GPU.

Limitations and future work Our study has several limitations that open directions for future
research. First, we relied on parameterized geometries, which may not always be available for
more complex or realistic geometries encountered in real-world applications. Thus, extending latent
PDE mapping to alternative shape representations is a critical future direction. One possibility is to
employ principal component analysis modes as inputs to the PINN, rather than affine parameters,
which has shown promise for representing cardiac geometries (Yin et al., 2024; Mauger et al., 2019).
While our preliminary experiments (Table 10 in Appendix E.1) suggest that such extensions are
feasible, a comprehensive exploration is beyond the scope of this paper. Second, the current study
focuses exclusively on the Aliev–Panfilov model. Although the latent PDE mapping technique is, in
principle, applicable to a broad class of architectures and physical systems, its use in alternative PDE
settings remains an open direction for future work. Finally, our validation of the advantage of latent
PDE mapping was limited to rotation transformations and simple geometries. The effectiveness
of latent PDE mapping in more complex geometries remains to be determined. This will be an
essential next step for proving the applicability of latent PDE mapping in realistic industrial and
medical scenarios.
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REPRODUCIBILITY STATEMENT

Synthetic datasets can be created by following the description given in Section 4 and Appendix D
with parameter ranges as presented in Table 5 in Appendix B.1 for 2D and Table 6 in Appendix B.2
for 3D. Implementation details regarding developed PINNs are presented in Section 5 and Appendix
C, where the selected hyperparameters for each PINN are presented in Table 7. The source code and
datasets used to reproduce results in Section 6 will be shared in the camera-ready submission, if
accepted, to preserve anonymity during the double-blind review process.
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A DERIVATION OF LATENT PDE MAPPING APPLIED TO THE
ALIEV-PANFILOV PDE

In the following section, we give a detailed derivation of how the Aliev-Panfilov PDE in equation 7
is mapped from a physical geometry Ω(s) to a latent geometry Ω0. For convenience, we restate the
equations over Ω(s) here as

∂V
∂τ = ∇ · (D∇V )− kV (V − a)(V − 1)− VW in Ω(s),
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω(s),

D∇V · n = 0 on ∂Ω(s).

(19)

The mapping is achieved by applying the deformation gradient F(X, t, s) and the deformation Ja-
cobian J(X, t, s) to quantities in equation 19, as well as performing a variable substitution x → X
where x ∈ Ω(s) and X ∈ Ω0. The deformation gradient F is given as

F(X, t, s) = I +∇U(X, t, s) (20)

where U(X, t, s) = x(X, t, s) − X , while the deformation Jacobian is given as J(X, t, s) =
det(F).

We start by introducing how quantities in equation 19 are mapped when applying principles from
nonlinear solid mechanics (Holzaphel, 2000). Quantities that do not involve any divergences or
gradients are mapped directly through a volume change defined as

dv = JdV (21)

where dv and dV are infinitesimally small volume elements in Ω(s) and Ω0, respectively. Gradients
of a scalar field ϕ are mapped as

∇ϕ(x, t) = F−T∇ϕ(X, t) (22)

which is obtained by applying the chain rule to ∇ϕ(x, t). Finally, Nanson’s formula is used to map
vector elements from Ω(s) to Ω0. The formula yields

dsn = JF−T dSN (23)

where dsn and dSN give the vector elements of infinitesimally small surface areas defined on Ω(s)
and Ω0.

Next, we rewrite the divergence term in equation 19 in integral form as∫
Ω(s)

∇ · (D∇V )dΩ

By applying Gauss’s divergence theorem, we have that∫
Ω(s)

∇ · (D∇V )dΩ =

∫
∂Ω(s)

D∇V · dsn (24)

where ∂Ω(s) is the surface of Ω(s) and n is the vector normal to the surface. We utilize the rela-
tionship of gradients in equation 22 and Nanson’s formula in equation 23, such that the divergence
term in equation 24 can be expressed over Ω0 as∫

∂Ω(s)

D∇V · dsn =

∫
∂Ω0

DF−T∇V · JF−T dSN (25)

In the 2D case, we have that

D ∈ R2x2, F ∈ R2x2, ∇V ∈ R2x1.

Hence, by assuming that F is invertible, the terms in equation 25 can be reorganized as∫
∂Ω(s)

D∇V · dsn =

∫
∂Ω0

JF−1DF−T∇V · dSN (26)

13
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Finally, by applying Gauss’s divergence theorem again, the divergence term in Ω(s) and Ω0 can be
expressed as ∫

Ω(s)

∇ · (D∇V )dΩ =

∫
Ω0

∇ ·
(
JF−1DF−T∇V

)
dΩ0 (27)

By following the same procedure, the boundary condition in equation 19 can be rewritten as∫
Ω(s)

(D∇V · n)dΩ =

∫
Ω0

(JF−1DF−T∇V ·N)dΩ0 (28)

The remaining parts of equation 19 do not include any divergences or gradients, and are mapped
directly through a volume change as defined in equation 21. Consequently, equation 19 can be
expressed over Ω0 as

∂
∂τ (JV ) = ∇ · (JF−1DF−T∇V )− JkV (V − a)(V − 1)− JVW in Ω0,
∂
∂τ (JW ) = J

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(29)

For time-independent mappings, we finally arrive at
∂V
∂τ = 1

J∇ · (JF−1DF−T∇V )− kV (V − a)(V − 1)− VW in Ω0,
∂W
∂τ =

(
ϵ0 +

µ1W
V+µ2

)
(−W − kV (V − a− 1)) in Ω0,

JF−1DF−T∇V ·N = 0 on ∂Ω0,

(30)

B ADDITIONAL DETAILS ON DATASET GENERATION

B.1 2D GEOMETRIES

Table 5 presents the data ranges used when creating the first three internal (Gk) and external (G∗
k)

families in 2D. Additionally, the rotational family (Grot and G∗
rot) was created by defining A as a

rotational matrix

Grot and G∗
rot : A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(31)

with θ ∈ [−π
2 ,

π
2 ] for Grot and θ /∈ [−π

2 ,
π
2 ] for G∗

rot. All values were sampled uniformly from the
given ranges.

Table 5: Parameter ranges for the first three internal (Gk) and external (G∗
k) families in 2D. Values

were sampled uniformly from the given ranges.

a1, a4 a2, a3 m1,m4

Gexp [1.0, 1.4] 0.0 0.0
G∗
exp [1.4, 1.8] 0.0 0.0

Gshear 1.0 [−0.2, 0.2] 0.0
G∗
shear 1.0 [−0.5,−0.2] ∪ [0.2, 0.5] 0.0

Gnonlin 1.0 0.0 [−0.015, 0.015]
G∗
nonlin 1.0 0.0 [−0.025,−0.015] ∪ [0.015, 0.025]

B.2 3D GEOMETRIES

In 3D, we constructed seven families by applying linear affine transformations to a 10 × 10 × 10
mm cube. The linear transformations were defined as

x = AX (32)
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Table 6: Parameter ranges for the internal (Hk) and external (H∗
k) expansion/shearing families in

3D. All values were sampled uniformly from the given ranges.

a1, a5, a9 a2, a4 a3, a7 a6, a8
Hexp [1.0, 1.4] 0.0 0.0 0.0
H∗

exp [1.4, 1.8] 0.0 0.0 0.0
Hxy

shear 1.0 [−0.2, 0.2] 0.0 0.0
Hxy∗

shear 1.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0 0.0
Hxz

shear 1.0 0.0 [−0.2, 0.2] 0.0
Hxz∗

shear 1.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2] 0.0
Hyz

shear 1.0 0.0 0.0 [−0.2, 0.2]
Hyz∗

shear 1.0 0.0 0.0 [−0.5,−0.2] ∪ [0.5, 0.2]

with

A =

[
a1 a2 a3
a4 a5 a6
a7 a8 a9

]
. (33)

Similarly to the 2D scenario, each family was constructed using a distinct deformation type: expan-
sion (Hexp), shearing (Hshear), and rotation (Hrot). The parameter ranges used for the expansion
and shearing families are presented in Table 6. Additionally, for the rotational families, A was
defined as

Hx
rot and Hx∗

rot : A =

[
1.0 0.0 0.0
0.0 cos(θ) − sin(θ)
0.0 sin(θ) cos(θ)

]
,

Hy
rot and Hy∗

rot : A =

[
cos(θ) 0.0 sin(θ)
0.0 1.0 0.0

− sin(θ) 0.0 cos(θ)

]
,

Hz
rot and Hz∗

rot : A =

[
cos(θ) − sin(θ) 0.0
sin(θ) cos(θ) 0.0
0.0 0.0 1.0

]
,

with θ ∈ [−π
2 ,

π
2 ] for internal families and θ /∈ [−π

2 ,
π
2 ] for external families. All values were

sampled uniformly from the given ranges.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Table 7 presents the hyperparameters used in each PINN. The PINNs were implemented with Py-
Torch, and experiments were run on NVIDIA HGX H200 GPUs.

D ADDITIONAL DETAILS ON SYNTHETIC DATA GENERATION

We generated the synthetic data using openCARP (Plank* et al., 2021; openCARP consortium et al.,
2024) with parameters as listed in Table 8 and 9. The diffusion tensor D was defined as

D =

 σilσel

σil+σel
0 0

0 σitσet

σit+σet
0

0 0 σinσen

σin+σen

 (34)

in 3D, while in 2D the diffusion tensor was defined as a 2x2 tensor with entries corresponding
to longitudinal and transverse directions. Before running the simulation, we meshed the physical
geometry using triangular elements in 2D and tetrahedral elements in 3D. The maximum element
size was set to 0.05 and 0.4 in 2D and 3D, respectively.
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Table 7: Overview of PINN configurations.

LPM-PINN Affine-PINN Basic-PINN

Input dim 2D 9 9 3
3D 16 16 4

Hidden layers isotropic 10 10 10
anisotropic 8 8 8

Hidden dim isotropic 25 25 25
anisotropic 64 64 64

Output dim 2 2 2
Epochs 5000 5000 5000
Batch size 264 264 264
Optimizer Adam Adam Adam

Learning rate < 100 epochs 10−3 10−3 10−3

> 100 epochs 10−4 10−4 10−4

Activation tanh tanh tanh
Ndata 14 14 14
Nphys (resampled) 700 700 700
Nbc (resampled) 80 80 80
Nic (resampled) 30 30 30

Table 8: Parameter values used to create synthetic data. PDE parameters were selected in accordance
with Aliev & Panfilov, 1996.

Parameter Description Value
Cm membrane capacitance 1 µFcm−2

β surface area to volume ratio 0.14 µm−1

fx, fy, fz fiber orientation 1, 0, 0
∆t time resolution 1ms
Iapp applied stimuli 5000 µAcm−2 for 0.2ms (planar wave)
k PDE parameter 8.0
a PDE parameter 0.15
ε0 PDE parameter 0.002
µ1 PDE parameter 0.2
µ2 PDE parameter 0.3

Table 9: Conductivities used to create isotropic and anisotropic synthetic data.

Parameter Description Isotropic case Anisotropic case
σil intracellular longitudinal conductivity 0.2 Sm−1 0.17 Sm−1

σit intracellular transversal conductivity 0.2 Sm−1 0.019 Sm−1

σin intracellular normal conductivity 0.2 Sm−1 0.019 Sm−1

σel extracellular longitudinal conductivity 1.0 Sm−1 0.62 Sm−1

σet extracellular transversal conductivity 1.0 Sm−1 0.24 Sm−1

σen extracellular normal conductivity 1.0 Sm−1 0.24 Sm−1
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Figure 5: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (G∗

exp, G∗
shear, G∗

nonlin, G∗
rot) in the isotropic

scenario. The left column shows the FEM ground truth approximation.

E SUPPLEMENTARY RESULTS

E.1 2D RESULTS

Figure 5 presents snapshots of predicted transmembrane potential (V ) for selected geometries when
the PINNs were trained on single 2D families, while Figure 6 illustrates snapshots when trained on
a combination of two families. Both figures represent isotropic PDE dynamics.

E.1.1 PCA AS GEOMETRIC DESCRIPTOR

Table 10 presents the results obtained on 2D isotropic PDE dynamics when replacing affine pa-
rameters with the two PCA modes that capture more than 90% of the geometric variability in each
family. A slight increase in error is observed when using PCA modes instead of affine parameters
as the geometric descriptor, particularly for the external families. Nonetheless, the overall results
indicate that both LPM-PINN and Affine-PINN remain capable of producing accurate predictions
when supplied with alternative geometric descriptors. This demonstrates the potential of extending
the methods to non-parametric geometries.

E.2 3D RESULTS

Figure 7 visualizes snapshots of the predicted transmembrane potential (V ) for selected geometries,
while Figures 8 and 9 show the numerical approximation of missing shape gradients at the bound-
aries for expansion, shearing, and rotational families.
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Figure 6: Snapshot of predicted transmembrane voltages (V ) at t = 50 ms for a geometry taken
from G∗

exp, G∗
shear, and G∗

nonlin in the isotropic scenario. The PINNs were trained on a combination
of geometries from the given families. The left column shows the FEM ground truth approximation.

Table 10: Mean relative L2 PINN-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries of each geometry family in 2D isotropic scenarios. In this case, the
two first PCA modes for the corresponding family were used as additional inputs to describe the
geometrical variability.

LPM-PINN Affine-PINN Basic-PINN
Gexp 0.020 ± 0.003 0.020 ± 0.003 0.057 ± 0.032
G∗
exp 0.153 ± 0.047 0.113 ± 0.042 0.196 ± 0.050

Gshear 0.033 ± 0.009 0.033 ± 0.009 0.087 ± 0.023
G∗
shear 0.089 ± 0.037 0.088 ± 0.030 0.204 ± 0.034

Gnonlin 0.023 ± 0.003 0.023 ± 0.002 0.062 ± 0.023
G∗
nonlin 0.139 ± 0.095 0.138 ± 0.096 0.128 ± 0.041

Grot 0.019 ± 0.002 0.040 ± 0.018 1.876 ± 0.370
G∗
rot 0.026 ± 0.007 0.524 ± 0.128 1.934 ± 0.252

F COMPUTATIONAL DETAILS OF MISSING BOUNDARY INFORMATION

In the following section, we present details on how equation 11 was discretized and numerically
approximated. For convenience, we restate the equation here as

∂Lphys

∂s
=

∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ+

∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (35)

and define

I(s) ≡
∫
Ω(s)

∂

∂s
R(x, t, u, s)2dΩ (36)

B(s) ≡
∫
∂Ω(s)

R(x, t, u, s)2
∂x

∂s
· ndS (37)
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Figure 7: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented external family (H∗

exp, Hxy∗
shear, Hxz∗

shear, Hyz∗
shear) in isotropic

scenarios. The left column shows the FEM ground truth approximation.
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Figure 8: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hexp, Hxy

shear, Hxz
shear, and Hyz

shear.
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Figure 9: Numerical approximations of the missing shape gradients at the boundary and shape
gradients used in Lconv

phys when training the Affine-PINN. The figure shows the mean magnitude
across training geometries in Hx

rot, H
y
rot, and Hz

rot.

such that
∂Lphys

∂s
= I(s) +B(s). (38)

Next, we discretize the terms and make a numerical approximation using Monte Carlo for integrals
and central finite differences for derivatives. We assume that the spatial positions are uniformly
distributed and normalize with respect to the area/boundary, such that

I(sk) ≈
1

NI(s)

NI(s)∑
i

T∑
j

R(xi, tj , uij , sk +∆s)2 −R(xi, tj , uij , sk −∆s)2

2∆s
(39)

and

B(sk) ≈
1

NB(s)

NB(s)∑
i

T∑
j

R(xi, tj , uij , sk)
2 xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s)︸ ︷︷ ︸

boundary movement

(40)

where sk is the k-th value in a set of shape parameters given as s = {s1, s2, ..., sK}. Moreover,
NI(s) and NB(s) gives the number of spatial positions used to evaluate the two terms and T is the
total number of time steps. Thus, our discretized version for the k-th shape value is given as

∆Lphys

∆sk
= I(sk) +B(sk) (41)

The magnitude of the overall change for the shape parameters (∆Lphys

∆s ) was computed by applying
the L2 norm to equation 41. Finally, we computed ∆Lphys

∆s for each geometry in a family, and
represented the numerical approximation of I and B as the mean across the given geometries. Here,
I represents the numerical computation of Lconv

phys and B represents the missing boundary information
when latent PDE mapping is not applied (see Figures 4, 8, and 9). We used ∆s = 10−6 in all
computations.

F.1 BOUNDARY MOVEMENTS

The magnitude of the numerically approximated boundary movements when making small changes
to the shape parameters s for each family in 2D and 3D are presented in Figure 10a and 10b, re-
spectively. The boundary movements were approximated by applying central finite differences, as
shown in equation 40, yielding
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(b) 3D families.

Figure 10: Numerical approximations of boundary movements when making small changes to the
shape parameters s for each family in 2D and 3D.

∆x

∆sk
=

1

NB(s)

NB(s)∑
i

xi(sk +∆s)− xi(sk −∆s)

2∆s
· ni(s) (42)

where NB(s) gives the number of boundary points. Again, the overall magnitude of the boundary
movement was computed using the L2 norm and mean across the given geometries with ∆s = 10−6.

G COMPUTATIONAL OVERHEAD

Table 11 reports mean per-epoch training times for each PINN across 2D and 3D geometries.
A slight increase in computational time per epoch is observed when using LPM-PINN. Further-
more, Table 12 presents mean inference times for geometries in 2D and 3D. The results show that
LPM-PINN and Affine-PINN have approximately the same inference times, while Basic-PINN is
marginally faster in 2D and substantially faster in 3D. This is likely due to the reduced number of
input features for Basic-PINN, which does not require the affine parameters used by LPM-PINN
and Affine-PINN in addition to the spatiotemporal inputs. Additionally, the jump in inference time
when moving from 2D to 3D is most likely caused by the increased number of spatial locations as
well as an increased number of affine parameters in the inputs.

Finally, the additional computational cost associated with computing the deformation gradient and
mapping to the reference geometry was estimated to an average time of 4.59 ± 1.06 seconds per
geometry in 2D and 35.01± 2.33 seconds per geometry in 3D. As expected, the overhead increases
in higher dimensions (3D) and for larger geometries. However, this cost is incurred only once during
data preparation. Moreover, the reported times were obtained using a single laptop CPU (Intel Core
Ultra 9 185H), indicating that substantial reductions in preprocessing time could be achieved through
parallelized CPU execution or by offloading these computations to a GPU.

Table 11: Mean per-epoch training times for 2D and 3D geometries, given as mean ± std in seconds.
The training was performed on a GPU (NVIDIA HGX H200).

LPM-PINN Affine-PINN Basic-PINN
2D geometries 1.633 ± 0.634 1.380 ± 0.489 1.598 ± 0.649
3D geometries 1.645 ± 0.042 1.580 ± 0.047 1.470 ± 0.076
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Table 12: Mean inference times per geometry for 2D and 3D geometries, given as mean ± std in
seconds. A GPU (NVIDIA HGX H200) was used during inference.

LPM-PINN Affine-PINN Basic-PINN
2D geometries 0.017 ± 0.009 0.017 ± 0.009 0.016 ± 0.009
3D geometries 0.335 ± 0.047 0.351 ± 0.055 0.132 ± 0.029
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(a) Training example from Gexp
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(b) Test example from Gexp
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(c) Test example from G∗
exp

Figure 11: Illustration of V at t = 30 ms at the fixed sensor points (squares) in the reference
geometry used during training and testing of the DeepONet on the Gexp family. V was computed
using an interpolation scheme at the fixed sensor points.

H DEEPONET EXPERIMENTS

In the following section, we introduce our implementation of a DeepONet as proposed by Lu et al.,
2021, as well as the results when running the DeepONet on 2D isotropic experiments using sparse
data observations.

H.1 IMPLEMENTATION DETAILS

We sampled 14 uniformly fixed sensor points in the reference geometry to train the DeepONet, as
illustrated in Figure 11. The number of sensor points in the DeepONet was chosen based on the
number of supervised data locations (Ndata = 14) used in the PINNs. Thus, the DeepONet was
trained using full time-trajectories of the transmembrane potential V at 14 fixed sensor locations.
We employed an interpolation scheme to compute the transmembrane potential V at the fixed sensor
locations. It should be noted that the PINNs received Nic = 30 resampled data points at τ = 0 to
enforce the initial condition as part of their physics loss during training. These points were not
included during training of the DeepONet due to the need for fixed sensor locations.

The DeepONet consisted of a branch network and a trunk network where each network had four
hidden layers with 50 neurons in each layer. We gave the full time-trajectories of the transmembrane
potential V at the fixed sensor locations as input to the branch network. The trunk network received
the spatiotemporal data from the corresponding sensors, and the affine parameters describing the
overall physical geometry, as input. We used the tanh as activation function, and Adam as optimizer
with a learning rate of 0.001. We trained the DeepONet for 5000 epochs and used the validation data
to find the best model obtained during training in a similar manner as for the PINNs. We used the
same datasets for training and testing as used for the PINNs. Hence, the DeepONet was trained on
the same 10 geometries, validated on the same 5 geometries, and tested on the same 35 geometries
in the single family experiments. The same geometries were also used for the combined families as
during training and testing of the PINNs.

At inference, the DeepONet received the full time-trajectory of V at the fixed sensor location for
each test geometry. Additionally, during inference, the trunk network received spatiotemporal inputs
from the entire reference geometry as input. In this way, the DeepONet made predictions of V over
the entire geometry, not just at the fixed sensor points, in accordance with the PINNs.
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Figure 12: Visualization of training and validation losses during training of the DeepONet on su-
pervised data from Gexp. The decrease in training loss (blue) in combination with the stagnant
validation loss (orange) indicates that there is not enough observed data available for the DeepONet
to generalize.

H.2 RESULTS

Table 13 and 14 report the mean relative L2 error of the DeepONet predictions when trained on indi-
vidual and combined 2D geometry families, respectively. The results indicate moderate L2 errors on
the internal families and an increase in errors on the external families. This suggests that the Deep-
ONet can leverage the fixed sensor locations to make predictions at new spatial positions. Although
the L2 errors in Table 13 and 14 may appear acceptable at first glance, Figure 13 shows that the
corresponding solutions are not necessarily physically consistent, exhibiting degraded wavefronts.
Hence, even though the DeepONet can learn from fixed sensor locations and generalize to new ones,
its predictions do not necessarily respect the governing physics, as previously noted by Wang et al.,
2021. This limitation underscores the motivation for incorporating physics-informed learning in the
first place.

Table 13: Mean relative L2 DeepONet-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries of each geometry family in 2D.

DeepONet
Gexp 0.048 ± 0.007
G∗
exp 0.074 ± 0.013

Gshear 0.055 ± 0.002
G∗
shear 0.068 ± 0.015

Gnonlin 0.039 ± 0.004
G∗
nonlin 0.053 ± 0.010

Grot 0.025 ± 0.002
G∗
rot 0.030 ± 0.002
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Figure 13: Snapshots of predicted transmembrane voltages (V ) at t = 50 ms. Each row corresponds
to a geometry taken from the presented internal family (Gexp, Gshear, Gnonlin, Grot). The left
column shows the FEM ground truth approximation.
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Table 14: Mean relative L2 DeepONet-FEM discrepancy ± std evaluated over the internal (Gk) and
external (G∗

k) test geometries from a combination of families in 2D. In this setting, the DeepONet
was trained on 20 geometries, validated on 10 geometries, and tested on 70 geometries sampled
from the corresponding families.

DeepONet
Gexp+ Grot 0.062 ± 0.005
G∗
exp+ G∗

rot 0.072 ± 0.017
Gshear+ Grot 0.059 ± 0.001
G∗
shear+ G∗

rot 0.063 ± 0.009
Gnonlin+ Grot 0.046 ± 0.004
G∗
nonlin+ G∗

rot 0.060 ± 0.018
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