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Abstract: Learning tasks only from raw video demonstrations is the current state of
the art in robotics visual imitation learning research. The implicit assumption here
is that all video demonstrations show an optimal/sub-optimal way of performing
the task. What if that is not true? What if one or more videos show a wrong way of
executing the task? A task policy learned from such incorrect demonstrations can
be potentially unsafe for robots and humans. It is therefore important to analyze
the video demonstrations for correctness before handing them over to the policy
learning algorithm. This is a challenging task, especially due to the very large state
space. This paper proposes a framework to autonomously detect incorrect video
demonstrations of sequential tasks consisting of several sub-tasks. We analyze the
demonstration pool to identify video(s) for which task-features follow a ‘disruptive’
sequence. We analyze entropy to measure this disruption and – through solving
a minmax problem – assign poor weights to incorrect videos. We evaluated the
framework with two real-world video datasets: our custom-designed Tea-Making
with a YuMi robot and the publicly available 50-Salads. Experimental results
show the effectiveness of the proposed framework in detecting incorrect video
demonstrations even when they make up 40% of the demonstration set. We also
show that various state-of-the-art imitation learning algorithms learn a better policy
when incorrect demonstrations are discarded from the training pool.
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1 Introduction
Visual imitation learning (VIL) [1, 2, 3, 4] – where tasks are learned from raw video demonstrations– is
a promising way for lay users to teach robots new skills in natural settings. VIL however is challenging,
especially due to very high dimensional state space. VIL algorithms are generally evaluated in
controlled laboratory settings [4, 5, 6, 7, 8, 9] or simulated environments [10, 11, 12, 13, 14], where
the assumption that all video demonstrations are optimal/ sub-optimal is possible to maintain. In
reality, lay users will make inadvertent errors while demonstrating a task due to reasons including
fatigue, presence of distractions, and lack of knowledge on robot learning mechanism. For example,
it is not unusual to forget to turn-off the oven once or twice – e.g., because the phone rang – out
of the ten times a user was showing the robot how to make a cup of tea. Unless a robotics expert
carefully curates the videos, a policy learning algorithm can learn a potentially unsafe tea-making
policy – that it is ok to keep the oven on – from these video demonstrations. It is therefore important
to automatically analyze video demonstrations for correctness before policy learning takes place.
This paper proposes a framework for detecting incorrect video demonstrations 1. Many real-world
tasks that a service robot is expected to learn from humans sequential tasks consisting of several
sub-tasks, e.g. following a recipe for cooking, tea-making, preparing a dinner table, etc. The proposed
framework therefore deals only with videos of sequential tasks.

The state-of-the-art approaches for detecting incorrect demonstrations [15, 16, 17] – almost all of
which involve non-visual demonstrations – learn weights to assign importance to different demon-
strations. Existing algorithms however come with restrictive assumptions – such as, expert-labeling
of incorrect demonstrations [15, 18, 19], using a simulator to generate more data for training

1We define incorrect demonstrations as the ones that do not follow the standard task definition and are
structurally wrong. For example, in the context of a tea-making task, an incorrect demonstration would be the
one where the demonstrator did not add water or tea-bag to the cup.
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[16, 20, 17, 21] – which nullify the core appeal of VIL that a lay user’s only responsibility is
to show how to do the task, preferably a handful of times; the onus is on the algorithms to learn an
accurate policy without demanding more data. We bridge this gap by proposing a framework for
autonomous detection of incorrect video demonstration 1 without the need for prior labeling of the
videos or a simulation for data augmentation.

The proposed framework leverages two simple facts: 1) spatio-temporal features are better repre-
sentatives of dynamic human activities than spatial-only visual features and 2) individual tasks of
a multi-step task – hereafter referred to as sub-tasks – typically maintain some internal structures
among themselves, violation of which is an indication of incorrect demonstration 1. Accordingly,
the intuition behind the proposed framework is to identify groups of spatio-temporal features as the
representatives of different sub-tasks (Sections 3.1 and 3.2) and analyze the internal consistency of
these features overall videos in the demonstration pool (Section 3.3). To achieve that we propose
to solve a minmax optimization problem where we choose the model with the maximum entropy
(the most uniform) and at the same time minimizing the demonstrations weight so we can achieve a
saddle point with the minimum number of demonstrations. Evaluation of the proposed framework
on two real-world datasets – publicly available 50-salad [22] and our custom-designed tea-making
with YuMi robot[23] – shows promising results on detecting incorrect demonstrations even when
they constitute 40% of the entire demonstration pool. We also show that various state-of-the-art IL
algorithms learn better policies when incorrect demonstrations are automatically removed using the
proposed framework than IL algorithms that learns from sub-optimal/incorrect demonstrations.
2 Related Work
The current imitation learning literature does not explicitly discuss the issue of incorrect demonstra-
tions and how they may affect the learned policy. However, there exists a handful of work that offers
mechanisms to differentiate optimal, sub-optimal, and noisy demonstrations during the learning
process. This section discusses these methods.

The 2IWIL framework [15] requires an expert to label a fraction of the demonstrations as optimal/non-
optimal using confidence score. A semi-supervised classifier is then trained to predict the confidence
score of any unlabeled demonstration. Finally, these scores are used by a weighted GAIL framework
while learning the task policy. To avoid error accumulation in such a two-step learning process,
IC-GAIL [15] trains a single framework for generating the confidence score and learning the policy
in an end-to-end fashion. The WGAIL [16] introduces a method of assigning weights to imperfect
demonstrations in GAIL [24] without imposing extensive prior information. The success of WGAIL
[16] however is limited to simulated environments.

The works that are conceptually closest to our proposed work are R-MaxEnt [25, 26], BCND [27],
and DEMO-DICE [28]. R-MaxEnt [25, 26] jointly learns weights for different demonstrations and a
task policy. The method however requires carefully-crafted task features, which are only achievable
through hand-picking, and therefore has been evaluated for tasks with small state space. BCND [27]
learns ensemble policies with a weighted BC objective function where the expert demonstrations are
sampled from a noisy expert policy. The weights are generated from the policy learned in a previous
internal iteration. DEMO-DICE [28] learns from different level of optimality in the demonstrations
but through a much robust convex optimization problem. None of these three approaches however
discuss how they can be scaled up for large state space, i.e. visual imitation learning.

Several IL algorithms are capable of detecting demonstrations corrupted by a limited amount of
random noise [18, 20, 28]. Demonstrations with artificially injected random noise are far more trivial
to process than incorrect demonstrations provided by humans in real world 1. Additionally, some of
these works [18, 20] require simulators to generate additional data.

A number of inverse reinforcement learning-based IL algorithms [19, 29] use “failed” demonstration,
along with optimal ones, for policy learning. However, they assume that these failed demonstrations
are labeled a priori by an expert. Although some recent works on offline reinforcement learning
achieve high accuracy in policy learning, they can’t handle incorrect demonstrations [30, 31, 32].

All algorithms discussed above are designed to work with non-visual demonstrations and can not
be scaled-up to deal with extremely large state space (of video demonstrations). None of these
methods can detect incorrect demonstrations without prior labeling of training data or access to more
data (through a simulator). Furthermore, all existing work on sub-optimal demonstrations deal with
continuous control tasks – e.g. Manipulation, Ant, HalfCheetah, etc. – Where a single incorrect
action (e.g. a wrong joint-angle ) may not cause the algorithm to eventually learn a completely
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Figure 1: The proposed framework has two steps: the first step (green shaded box, Sections 3.1 and 3.2) takes
as an input n raw videos and does sub-task segmentation, generating q segments each with T frames. A features
generator extracts f spatio-temporal visual features from each segment, creating a q × f matrix for each video.
The second step (red shaded box, Section 3.3) concatenates all these features and uses them to solve a minmax
problem which generates n weights, one for each input video.

incorrect policy. In case of multi-step sequential tasks, however, a single incorrect action can lead to
an incorrect policy – e.g. not turning off the oven or not adding a tea-bag while making a cup of tea.
Our proposed work fills up this void in visual imitation learning research.

3 Proposed Framework
The proposed framework identifies incorrect demonstrations of a multi-step sequential task through
analyzing the sub-task-representative spatio-temporal features. We leverage the concept of feature
expectation matching [33, 34, 35] along with the principle of maximum entropy [36, 37] to learn a
stochastic model of the sub-task sequence and generate weights for different demonstrations. Entropy
analysis enables us to identify the most consistent group of demonstrations – in terms of sub-task
features sequences – and assign higher weights to this group. Note that, multi-step sequential tasks
can often be executed in multiple ways – such as making tea with or without milk/sugar – all of which
are considered as correct. The proposed model is capable of distinguishing such cases from the case
of incorrect demonstrations 1 through generating a distinct weight distribution.

Fig. 1 shows an overview of the proposed framework. The input is a set of n raw video demonstrations
and the output is a n-dimensional vector representing the weight of each demonstration. The
framework calculates these weights in a two-step process. At the first step (green shaded box in Fig.
1) each video is segmented into sub-tasks using any off-the-shelf video segmentation algorithm, e.g.
[38] (Section 3.1). Our custom-designed algorithm then extracts spatio-temporal visual features from
each sub-task video segments (Section 3.2). These features are representatives of various sub-tasks
and are passed to the second step of the framework. During the second step (red shaded box in Fig.
1) these representative features are used to learn a stochastic model of the sub-task sequence which
in-turn generates weights for different video demonstrations (Section 3.3).

3.1 Sub-task Segmentation

Figure 2: Top row: Sample frames from 50-salad
dataset representing the start of different sub-tasks.
Middle row: The ground truth (GT) time-line for
each sub-task in this video (colors representing
different sub-tasks). Bottom row: Segmentation
generated by MS-TCN++.

A video segmentation algorithm is used to segment
each video in the demonstration setD into q sub-tasks
and generate the start- and end-frame for each sub-
task. Here, q is a hyper-parameter for our approach.
We employed the semi-supervised MS-TCN++ [38]
for this purpose. MS-TCN++ leverages temporal
convolution for temporal action segmentation and re-
quires some labeled data for training. MS-TCN++
uses a multi-stage architecture for the temporal ac-
tion segmentation task. Each stage features a set of
dilated temporal convolutions to generate an initial
prediction that is refined by the next one. MS-TCN++
requires some training data with the ground truth
frame labels. Fig. 2 shows the segmentation of a video from the 50-salad dataset into q = 17
sub-tasks (each sub-task coded with different colors). Note that the only purpose of this segmentation
is assigning a consistent label to the set of task-relevant features that will be extracted from the
sub-task videos (Section 3.2). The proposed framework is tolerant to typical errors in the existing
video segmentation algorithms up to 83% accuracy.
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3.2 Learning Task-relevant Features
The hallmark of most multi-step sequential tasks is their high-level temporal structure. For example,
in the context of a tea-making task, stirring the cup happens after milk or sugar is added etc. We
employ our own feature generator [39] that can identify and rank a subset of visual features from a
video based on their temporal significance. We briefly discuss this feature identification process in
this section.

The feature generation happens in three steps: 1) a set of spatial features are extracted from the
training videos through any pre-trained convolutional neural networks (CNN) such as VGG-16 [40].
These features, by construction, are not sensitive to temporal content of the video. 2) Extracted
spatial features alongside with their automatically extracted time stamp (i.e. when a feature started
and stopped appearing in the video) are used to create a graph of temporal relationships among
spatial features. This graphical structure – that we name interval temporal relationship (ITR) graph –
is used to train a graph convolution network (GCN)[41] which learns the discriminatory temporal
features present in the ITR graph. c) These temporally sensitive features are ranked, based on
their contribution in classifying the activity in the video, using erasure ranking [42]. Only a set of
high-ranked features are used for further analysis. More details are in appendix B.

In summary, each video in the demonstration set D is automatically segmented into q sub-task
segments. For each video segment, a set of ranked features {sj}qj=1 is extracted, s = {fn}Nn=1, N :
the number of features from each segment. These sets, along with the sub-task labels {tj}qj=1, are
passed to the next step.

3.3 Incorrect Demonstration Detection
We aim to learn a stochastic model p(t|s) that can infer the next sub-task t ∈ T given the current state
s ∈ S and leverage this model to determine a weight w ∈ [0, 1]D for each video in the demonstration
set D.

To derive the model p(t|s) and the weights w we leverage the principle of maximum entropy (ME)
[36, 37] which is proven to choose the most uniform model among a set of constrained models. We
use the concept of feature expectation matching (FEM) [33, 34, 35] – a widely popular approach in
IL [33, 34, 35] – to define a set of constraints to be observed by p(t|s). In the context of incorrect
demonstration detection, the goal is to match the expected value of each feature Ep̃[fi] that we
identify from the demonstration videos through the feature generator (discussed in Section 3.2) with
the calculated expected value Ep[fi] generated by the learned model p(t|s). This model p(t|s) will
represent the sub-task sequences in the demonstration videos in the most unbiased manner [37].

Along with the model p(t|s), we want to generate a weight w that indicates how well a specific video
conform with the learned model. We achieve this by adding to the model-objective the requirement
of calculating the minimum weights w that give us the model with the maximum entropy. Using this
objective we are forcing the system to generate weights that indicate how consistent a video is with
the majority of the videos in the training pool. Poor consistency (lower values of w) is an indication
of incorrect demonstration. We start with the expected feature definition to formally derive p(t|s):

Ep[fi] =
∑
s∈S

∑
t∈T

p̃(s)p(t|s)fi(s, t) Ep̃[fi] =
∑
s∈S

∑
t∈T

p̃(s)p̃(t|s)fi(s, t) (1)

Here p̃(s) is the empirical distribution of the states inD, p̃(t|s) is the empirical conditional distribution
of predicting sub-task t given the state s, fi(s, t) is a feature function whose values are state features
corresponding to predicted sub-tasks (Section 3.2). The optimization constraint, according to FEM,
is Ep[fi]− Ep̃[fi] = 0. This formalism considers the training set D as one monolithic whole. Our
goal however is to consider each video-demonstration separately and generate a weight w ∈ [0, 1] for
each of them. We therefore redefine the distributions terms and parameterized them by demonstration
d and weight w as follows:

p̃w(t|s) =
1

M

D∑
d=1

wd · p̃(t|s, d) , p̃w(s) =
1

M

D∑
d=1

wd · p̃(s, d)

Here D is the total number of demonstrations and M , which should be
∑D
d=1 wd = M , is the

minimum number of demonstrations that we can trust in a given set. Through the experimental results,
we can see that the algorithm is not sensitive to the value of M . Usually, we can set this number to be
M = D/2 since a dataset where more than half of the videos have incorrect demonstrations is not
suitable for learning.
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min
w∈RD

max
p(t|s)∈RS×T

−
∑
s∈S

∑
t∈T

p(t|s) log p(t|s)
D∑
d=1

wd · p̃(s, d)︸ ︷︷ ︸
H(p(t|s))

s. t.

D∑
d=1

wd
∑
s∈S

∑
t∈T

fi(s, t)p̃(s, d)
(
p(t|s)− p̃(t|s, d)

)
= 0

∑
t∈T

p(t|s)− 1 = 0, ∀s ∈ S,
D∑
d=1

wd = M, wd ≥ 0, ∀d ∈ D, wd ≤ 1

(2)

We define the optimization problem as shown in equation 2. Here the objective function maximizes
the model entropy H(p(t|s)) while minimizing the demonstrations weights w. The first constraint
is the FEM between the empirical expected feature values and the generated feature value after the
modification with the wight parameter. The second constraint is to make sure we generate a correct
probability distribution of the sub-task prediction p(t|s). The last constraint is to ensure that there are
at least M optimal demonstration in the dataset. We use Lagrange multiplier approach to derive the
dual problem – as shown in (3) – that we solve to to find the weights w. The weights assigned to
incorrect demonstrations are significantly lower than the correct ones. A complete derivation and
implementation details can be found in the appendix A.

min
w∈RD,λ∈RN

Λ(λ,w) ≡ − 1

M

D∑
d=1

wd

(
−
∑
s∈S

p̃(s, d) log zλ(s) +

N∑
i=1

λi
∑
s∈S

∑
t∈T

p̃(t|s, d)f(s, t)
)

s. t.

D∑
d=1

wd = M, wd ≥ 0 ∀d ∈ D, wd ≤ 1

(3)
Here zλ(s) =

∑
t∈T exp

(∑N
i=1 λifi(s, t)

)
is a normalization constant, and λ is the Lagrange

multiplier. A full pseudo code for the approach and how to solve the optimization problem can be
found in appendix D.

4 Experiment and Results
We conducted experiments to investigate the following: (1) can a video segmentation algorithm be
used to detect incorrect video demonstrations? (Section 4.1) (2) how well the weights generated by
the proposed framework can differential among optimal, sub-optimal and incorrect demonstrations
(Sections 4.2 and 4.3), and (3) what generates a better policy?: learning while leveraging incorrect
demonstrations vs discarding incorrect demonstrations from the training pool (Section 4.4). We used
two video datasets for experiments: our custom-designed imitation learning dataset Tea-Making with
a YuMi Robot and publicly available activity recognition dataset 50-salads [22].
4.1 Video Segmentation Vs Incorrect Demonstration Detection

Accuracy Tolerance

0% 5%
30% 10%
50% 20%
70% 30%

Table 1: Sub-task ac-
curacy

Since the proposed framework used a video segmentation algorithm which
performed sub-task segmentation and thereby generated a sequence of sub-task
for each video, a natural confusion may arise: can we use a clustering algorithm
to analyze the sequence of sub-tasks from a demonstration pool and identify the
incorrect demonstrations? We performed a series of experiments to resolve this.
All video segmentation algorithms make non-zero segmentation errors and the
consequence of inaccurate segmentation is detrimental in identifying incorrect
demonstrations. For example, the highest reported per-frame accuracy of
video-segmentation algorithm is 83% on the publicly available 50-salads dataset [38]. The sub-task
segmentation accuracy – which is relevant for detecting incorrect demonstration – reduces to 70%
with 30% tolerance in per-frame accuracy (i.e. we allow 30% of the frames from a sub-task to be
incorrectly classified). This accuracy decreases significantly with reduced tolerance in per-frame
accuracy. Table 1 summarizes the results. As an example, Fig. 2 shows the segmentation of a video
from the 50-salad dataset into 17 sub-tasks (each sub-task coded with different colors) using the
best-performing segmentation algorithm reported in [38]. The algorithm has generated more than
four sub-tasks with false labels. There is no known way to directly use such an output sequence to
distinguish between correct vs incorrect demonstration.
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4.2 Analysis of Demonstration Weights: Tea-Making with YuMi Robot

4.2.1 The dataset
This custom-designed dataset has 36 videos showing three different human participants making a
cup of tea – each participant performing 12 trials. The dataset was created through an IRB-approved
user study. There are seven ground-truth sub-tasks in tea-making: Turn on the oven, Add water, Add
sugar, Add milk, Add tea bag, Stir, Turn off the oven. Participants were asked to make tea while
following any sequence of their choice but they must use both ingredients (i.e. milk and sugar). In
majority of the resultant videos participants observed the following sequence: Turn on the oven, Add
tea bag, Add sugar, Add milk, Turn off the oven, Add water, Stir. We consider these videos as optimal
demonstrations and use the term Seq 1 to denote them. Only a subset of videos show participants
using the following sequence: Turn on the oven, Add sugar, Add milk, Add tea bag, Turn off oven,
Add water, Stir. We consider these videos as sub-optimal demonstrations and use the term Seq 2
to denote them. In a small subset of videos, the participants – based on our instructions – skipped
one or two of the three critical sub-tasks namely, Add tea-bag, Add hot water, Turn off the oven.
These videos are considered as incorrect demonstrations since they show a wrong or unsafe way
of performing the tea-making task. We use the term Seq 3 to denote them. Finally, to facilitate IL
policy learning by real robots – which requires the joint angles of the robot for training – another 12
demonstrations were added to the dataset where the YuMi robot, instead of a human demonstrator, is
remotely controlled to do the same tea-making task while following the same sub-task sequence as
human demonstrators. All 48 videos are used for training and evaluations. A set of representative
frames from three different types of video demonstrations are shown in appendix C
4.2.2 Sub-task segmentation and feature generation

Figure 3: Top row: Sample frames from tea-
making task representing the different sub-tasks.
Middle row: The ground truth sub-task segmen-
tation (each color represents a sub-task). Bottom
row: sub-task segmentation by MS-TCN++ [38].
Incorrectly added sub-tasks are in purple, green,
and black).

Using MS-TCN++ [38] we segmented the videos into
q = 7 sub-task segments with a per-frame accuracy
of 80%. Fig. 3 shows the segmentation of a video
from the tea-making dataset . From each segment,
64 frames were uniformly sampled. Frames were re-
duced to 224 × 224 pixels and went through back-
ground subtraction before being fed to the feature
generator (Section 3.2). The dimension of the gen-
erated features was 64 × 32 which was further re-
duced to 1 × 32 through a max function over the
64 frames. Appendix B shows a visual representa-
tion of some of the features generated by the model.

4.2.3 Demonstration weights

(a) The first set. (b) The second set.

Figure 4: Weights for two sets of videos from the
Tea-Making with a YuMi Robot dataset. It is trivial
to pick up two thresholds to differentiate optimal
(‘blue’), sub-optimal (‘green’), and incorrect videos
(‘red’).

The proposed framework, through equation (3), gen-
erates weights for different videos. This section
discusses how these weights are used to identify
optimal, sub-optimal, and incorrect demonstrations.
For this, we create two demonstration sets: the first
one has 6 optimal videos (seq 1: d1 to d6), 4 sub-
optimal (seq 2: d7 to d10) and 2 incorrect ones
(d11 to d 12) while the second set has 8 optimal
(seq 1: d1 to d8) and 4 incorrect videos (d9 to d12).
Fig. 4 shows the weights for different demonstra-
tions for these two sets after normalizing them to
have values between [0, 1]. The weights are dis-
tributed in such a way that it is trivial to pick up two
thresholds to differentiate optimal, sub-optimal, and
incorrect videos. For example, we used k-means algorithm [43] to cluster the weights while choosing
the middle point between the cluster means as the threshold. The number of clusters is preset to 2
or 3, depending on the number of ground truth clusters. We experimented with two other clustering
algorithms – Gaussian mixture model [43] and Mini-Batch K-Means [44] – both of which generated
the same results. Detailed results are reported in appendix E.

Note, there is one false positive (FP) in each of these two sets, d3 and d4. Further analysis on these
two FP videos indicates two possible sources of errors: 1) the solver that solves the non-convex,
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non-linear optimization problem in (3) did not converge to the global minimum or (2) the feature
generator (Section 3.2) failed to identify a good set of features. Section 4.2.4 discusses the implication
of generating erroneous weights.

4.2.4 Robustness of performance
We investigated the robustness of the proposed method in detecting sub-optimal and incorrect
demonstrations. For this, we made a demonstration pool with 10 optimal demonstrations (seq 1)
and one sub-optimal or incorrect demonstration (seq 2 or seq 3). Keeping the number of op-
timal demonstrations fixed at 10, we increased the incorrect (or sub-optimal) demonstrations
in the dataset until they become 44% of the dataset (i.e., 10 optimal and 8 incorrect or sub-
optimal). Tables 2 and 3 show accuracy, recall, and precision in different cases. Here, a
false positive (FP) indicates an optimal video demonstration inaccurately detected as incorrect
(or sub-optimal) while a false negative (FN) is an incorrect (or sub-optimal) video incorrectly
identified as optimal. True positive (TP) and true negative (TN) are also defined accordingly.

#Seq 1 #Seq 2 Accuracy Recall Precision

10 1 90 100 67
10 2 92 100 80
10 4 85 100 80
10 6 81 100 80
10 8 83 100 84

Average 86% 100 78

Table 2: Robustness with Seq 2

The proposed framework can detect sub-optimal and incor-
rect video demonstrations with an average accuracy of 86%
and 90%, respectively. However, when detecting incorrect
demonstration, the metric that carries most significance is Re-
call ( TP

TP+FN ). The proposed framework shows 100% recall,
both for Seq 2 and Seq 3. In other words, the framework can
correctly identify every incorrect/sub-optimal demonstration in
the dataset. The implication of this is significant: the framework
can pass to the policy learning algorithm a training set consist-
ing of purely optimal demonstrations and thereby learning a highly accurate policy [15, 16, 20, 45]
(more discussion in Section 4.4). While the framework generates some false positive results (as
shown by Precision values 78% and 83%, respectively ), they do not directly jeopardize the quality
of the learned policy. However, too many false positive may cause many demonstrations to be thrown
away, resulting in a rapid shrinking of the demonstration pool which is undesirable for realistic
applications where collecting demonstration is costly.

We performed one other experiment where we used video segmentation algorithms with various
accuracy and investigated the robustness of performance of the proposed framework. The detection
accuracy of the proposed framework remains the same even with a video segmentation accuracy
of 100% (achieved through manual segmentation). Results from this experiment are in appendix E.

#Seq 1 #Seq 3 Accuracy Recall Precision

10 1 90 100 67
10 2 92 100 80
10 4 93 100 89
10 6 88 100 86
10 8 89 100 89

Average 90% 100 83

Table 3: Robustness with Seq 3

4.3 Analysis of Demonstration Weights: The 50-salads
4.3.1 The dataset
The 50-Salads is a public dataset containing 50 videos of 25
actors preparing two different types of salads. The videos are
recorded from an overhead camera and the average video dura-
tion is 6.4 minutes. There are 17 unique sub-tasks involved with
preparing the dressing and mixing different ingredients (Cheese,
cucumber, lettuce, tomato, dressing). However, the average num-
ber of sub-tasks in different videos is 20 as different actors follow different sub-task sequences to
prepare the salad. Since it is not a custom-designed datasets, we had to devise a strategy to create
incorrect demonstrations. Being an activity recognition dataset, 50-salads is a balanced dataset
where half of the videos starts with sub-tasks related to preparing dressing and the other half with
that related to cutting and mixing different ingredients. We used the first half of the dataset to
create the incorrect demonstrations by removing all frames related to preparing dressing. Thus the
optimal demonstrations are those videos where actors cut and mix ingredients and then prepare
the dressing while incorrect demonstrations are the ones where actors miss the sub-tasks related
to preparing dressing. Because of the limitation of the dataset, we focused only on detecting the
incorrect demonstration, not the sub-optimal demonstrations. Fig. 2 shows example frames from the
50-salads dataset.

4.3.2 Sub-task segmentation and feature generation
Using MS-TCN++ [38] we segmented each videos into q = 17 sub-task segments with a per-frame
accuracy of 77% which is very close to the accuracy reported in the original paper [38]. Fig. 2 shows
the segmentation of a video from the dataset. Feature generation followed the same strategy we
adopted for the Tea-making with YuMi Robot dataset.
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4.3.3 Demonstration weights
To analyze the weights of optimal vs incorrect demonstrations we created a demon-
stration set with 10 correct demonstrations (d1 to d10) and 2 incorrect ones
d11 to d12. Fig. 5 shows the normalized weights for different demonstrations.

Figure 5: Weights for the
50-Salads dataset.

4.3.4 Robustness of performance
We evaluated the robustness of the proposed method in detecting only
the incorrect demonstrations in the 50-Salads dataset. We made a demon-
stration pool with 10 optimal demonstrations and 1 incorrect one, and
gradually increased the number of incorrect demonstrations in the pool.
Table 4 shows accuracy, precision, and recall for different settings. From
Table 4, the average accuracy is 85% which is lower than that with the
Tea-making with YuMi Robot dataset. This is because Salad-preparation
is much more complex task than Tea-making with more than a double
number of sub-tasks. However, the recall performance remains 100% – which means we never missed
an incorrect demonstration (FN = 0) – a desirable property for eventually learning an accurate
policy. However, unlike the Tea-making with YuMi Robot dataset, we could not empirically investigate
the policy accuracy for this dataset due to lack of robot joint angle data.

4.4 Leveraging Vs Discarding Incorrect Demonstrations: Which Gives the Better Policy?

# Seq 1 # Seq 3 Accuracy Recall Precision

10 1 90 100 67
10 2 83 100 67
10 4 85 100 80
10 6 81 100 77

Average 85% 100 73

Table 4: Robustness with Seq 3 for the
50-Salads

For the tea-making task, we created a demonstration set con-
taining varying number of incorrect demonstrations and in-
vestigated the effect of having incorrect demonstrations on
the accuracy of the learned policy. We studied three differ-
ent strategies for policy learning: i) we use the proposed
framework to detect incorrect demonstrations and discard them
from the training set before learning a policy using BC/BC-
RNN [46, 2], ii) we use BC/BC-RNN to learn a policy with-
out discarding the incorrect demonstrations iii) we use two
contemporary IL approaches – DEMO-DICE [28] and R-MaxEnt [25, 26] – that leverage incor-
rect demonstrations for policy learning but assign poor weights to them in the learning process.
Fig. 6 shows the policy accuracy in different settings where policy-accuracy is defined as (Number of
correctly chosen actions / Total number of executed actions until the goal is reached) ×100. When
incorrect demonstrations are present in the training set, Demo-Dice and R-MaxEnt learned a better
policy than BC/BC-RNN by assigning poor weights to incorrect videos. However, BC/BC-RNN
learned far better policy than Demo-Dice and R-MaxEnt when the incorrect videos were removed by
the proposed framework based on their poor weights. Implementation details and code links for the
policy learning algorithms can be found in appendix D.

5 Conclusion

Figure 6: Accuracy of the tea-making
task policy learning.

We presented a novel approach for detecting incorrect video
demonstrations of any multi-stage sequential task. The pro-
posed method leverages entropy analysis to identify video(s) in
the demonstration pool that follow a ‘disruptive’ task-sequence
and assign poor weights to them. Using two different datasets
we demonstrated the effectiveness of our approach. The pro-
posed framework can be used as a pre-processing step for any
visual IL algorithm to improve the accuracy of the learned
policy.

6 Limitations and Future Work
The proposed framework requires a value for q (the number
of sub-tasks) at the beginning of the pipeline. Techniques for
sub-goal identification from video – an active research area in
computer vision – can be employed for automatically generating a value for q. The proposed work is
also limited in detecting missing sub-tasks without providing any information about the importance
of these sub-tasks. Introducing risk parameter for each sub-tasks and learning those parameters from
the dataset is a possible solution.
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