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ABSTRACT

Image restoration aims to reconstruct the latent sharp image from its corrupted
counterpart. Besides dealing with this long-standing task in the spatial domain,
a few approaches seek solutions in the frequency domain in consideration of the
large discrepancy between spectra of sharp/degraded image pairs. However, these
works commonly utilize transformation tools, e.g., wavelet transform, to split
features into several frequency parts, which is not flexible enough to select the
most informative frequency component to recover. In this paper, we exploit a
multi-branch and content-aware module to decompose features into separate fre-
quency subbands dynamically and locally, and then accentuate the useful ones
via channel-wise attention weights. In addition, to handle large-scale degradation
blurs, we propose an extremely simple decoupling and modulation module to en-
large the receptive field via global and window-based average pooling. Integrating
two developed modules into a U-Net backbone, the proposed Selective Frequency
Network (SFNet) performs favorably against state-of-the-art algorithms on five
image restoration tasks, including single-image defocus deblurring, image dehaz-
ing, image motion deblurring, image desnowing, and image deraining 1.

1 INTRODUCTION

Image restoration aims to recover a high-quality image by removing degradations, e.g., noise, blur,
and snowflake. In view of its important role in surveillance, self-driving techniques, and remote
sensing, image restoration has gathered considerable attention from industrial and academic com-
munities. However, due to its ill-posed property, many conventional approaches address this prob-
lem based on various assumptions (Zhang et al., 2022; Yang et al., 2020b) or hand-crafted features
(Karaali & Jung, 2017), which are incapable of generating faithful results in real-world scenarios.

Recently, deep neural networks have witnessed the rapid development of image restoration and ob-
tained favorable performance compared to conventional methods. A flurry of convolutional neural
networks (CNN) based methods have been developed for diverse image restoration tasks by invent-
ing or borrowing advanced modules, including dilated convolution (Luo et al., 2022; Zou et al.,
2021), U-Net (Ronneberger et al., 2015), residual learning (Zhang et al., 2017), multi-stage pipeline
(Zhang et al., 2019b), and attention mechanisms (Liu et al., 2019). However, with convolution units,
these methods have limited receptive fields, and thus they are not capable of capturing long-range
dependencies. This requirement is essential for restoration tasks, since a single pixel needs infor-
mation from its surrounding region to be recovered. More recently, many researchers have tailored
Transformer (Vaswani et al., 2017) for image restoration tasks, such as motion deblurring (Tsai et al.,
2022), dehazing (Guo et al., 2022; Song et al., 2022) and desnowing (Chen et al., 2022b;c).

Nonetheless, the above-mentioned methods mainly conduct restoration in the spatial domain, which
do not sufficiently leverage frequency discrepancies between sharp/degraded image pairs. To this
end, a few works utilize the transformation tools, e.g., wavelet transform or Fourier transform, to
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decompose features into different frequency components and then treat separate parts individually
to reconstruct the corresponding feature (Selesnick et al., 2005; Yang & Fu, 2019; Zou et al., 2021;
Mao et al., 2021). Nevertheless, wavelet transform decouples the feature map into different subbands
in a fixed manner, and thus it is not capable of distinguishing the most informative or useless fre-
quency components to enhance or suppress. In addition, these methods need corresponding inverse
Fourier/wavelet transform, leading to additional computation overhead.

To overcome the above drawbacks and select the most informative frequency component to re-
construct, we propose a novel decoupling and recalibration module for image restoration tasks,
named Multi-branch Dynamic Selective Frequency module (MDSF). Specifically, we utilize the
multi-branch learnable filters to generate high- and low-frequency maps dynamically and locally,
and then leverage the channel-wise attention mechanism, modified from (Li et al., 2019), to empha-
size or suppress the resulting frequency components. Our module has two key advantages. Firstly,
according to the input and task, the decoupling step dynamically generates filters to decompose
feature maps. Secondly, our module does not introduce extra inverse transform.

Receptive field is another critical factor for image restoration tasks due to the various sizes of degra-
dation blurs (Suin et al., 2020; Son et al., 2021). To complement the above dynamic module, MDSF,
that processes features locally, we further propose a simple yet effective module, dubbed Multi-
branch Compact Selective Frequency module (MCSF), to enhance the helpful frequency signals
based on multiple and relatively global receptive fields. Specifically, we utilize global and window-
based average pooling techniques to attain disparate frequency maps, and then use learnable pa-
rameters to modulate the resulting maps without resorting to any convolution layers. Compared
to MDSF, besides the enlarged receptive fields, MCSF is lightweight enough to be embedded in
multiple positions of the backbone. The main contributions of this study are summarized as follows:

• We propose a multi-branch dynamic selective frequency module (MDSF) that is capable of
decoupling feature maps into different frequency components dynamically via the theoret-
ically proved filters, and selecting the most informative components to recover.

• We develop a multi-branch compact selective frequency module (MCSF) that performs
frequency decoupling and recalibration using multi-scale average pooling operations to
pursue a large receptive field for large-scale degradation blurs.

• Incorporating MDSF and MCSF into a U-shaped backbone, the proposed selective fre-
quency network (SFNet) achieves state-of-the-art results on five image restoration tasks,
including image defocus/motion deblurring, dehazing, deraining, and desnowing.

2 RELATED WORK

Image Restoration. Prior to the deep learning era, a great number of methods have been proposed
for image restoration problems based on various assumptions and hand-crafted features (Sezan &
Tekalp, 1990; Kundur & Hatzinakos, 1996; Calvetti et al., 1999). In recent years, with the rapid
development of deep learning, a flurry of approaches have been investigated utilizing convolutional
neural networks for image motion deblurring (Zamir et al., 2021; Yuan et al., 2020; Cui et al., 2023;
Purohit et al., 2021), defocus deblurring (Ruan et al., 2022; Abuolaim & Brown, 2020; Son et al.,
2021), desnowing (Chen et al., 2021c; 2020a), dehazing (Dong et al., 2020; Liu et al., 2019; Ren
et al., 2016; Zhang et al., 2018), and deraining (Yang et al., 2020b; Wang et al., 2019).

More recently, to capture long-range dependencies, many works have borrowed Transformer
(Vaswani et al., 2017) from the natural language processing field into image restoration (Chen et al.,
2021a; Liang et al., 2021; Zamir et al., 2022; Wang et al., 2022) and specific tasks such as image
motion deblurring (Tsai et al., 2022), dehazing (Song et al., 2022), and desnowing (Chen et al.,
2022b). In this study, instead of exploiting a more advanced backbone for image restoration, we pay
more attention to the frequency selection mechanism based on efficient CNN.

Frequency Based Image Restoration. Many algorithms have been developed to address various
low-level vision problems from a frequency perspective. Specifically, Chen et al. (Chen et al.,
2021c) propose a hierarchical desnowing network based on dual-tree complex wavelet representa-
tion (Selesnick et al., 2005). Yang et al. (Yang & Fu, 2019) develop the wavelet based U-Net to
replace up-sampling and down-sampling. Zou et al. (Zou et al., 2021) utilize wavelet transform
based module to help recover texture details. Yang et al. (Yang et al., 2020a) devise a wavelet
structure similarity loss function for training. Mao et al. (Mao et al., 2021) use Fourier transform to
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Figure 1: (a) Overall architecture of the proposed SFNet. (b) Shallow layer extracts the shallow
feature for low-resolution images. (c) ResBlock contains the proposed modules: MDSF (Decoupler
(d) and Modulator (e)) and MCSF. MDSF is shown in the one-branch case for clarity. Invert depicts
the operation of subtracting the low-pass filter from the identity filter.

integrate both high- and low-frequency residual information. Yoo et al. (Yoo et al., 2018) complete
image restoration based on the estimation of the DCT coefficient distribution. In this work, we pur-
sue a dynamic and efficient manner to select the useful frequency part at multiple receptive fields.

3 METHODOLOGY

We first describe the overall architecture of SFNet (Fig. 1 (a)). Then we present the proposed
modules, MDSF (Fig. 1 (d,e)) and MCSF. The loss functions follow in the final part.

3.1 OVERALL ARCHITECTURE

Our network adopts the encoder-decoder architecture to learn hierarchical representations. Specifi-
cally, SFNet consists of a three-scale decoder and a three-scale encoder. Each scale is comprised of
a ResBlock (Fig. 1 (c)). MDSF is only deployed in the last residual block of each ResBlock while
MCSF exists in all blocks. Following previous methods (Cho et al., 2021; Mao et al., 2021; Tu
et al., 2022), multi-input and multi-output mechanisms are used to ease training difficulty. Specifi-
cally, input images of reduced sizes are merged into the main path via the shallow layer (Fig. 1 (b)),
and the predicted images are produced by 3 × 3 convolutional layers after each scale of decoder.
In addition, we adopt feature-level and image-level skip connections to assist training. In Fig. 1,
we only show the top-level image skip connection for clarity. The up-sampling and down-sampling
layers are implemented by transposed and strided convolutions, respectively.

3.2 MULTI-BRANCH DYNAMIC SELECTIVE FREQUENCY MODULE (MDSF)

To select the informative frequency component to reconstruct, MDSF mainly contains two elements:
frequency decoupler (Fig. 1 (d)) and modulator (Fig. 1 (e)). Decoupler decomposes features into
separate frequency parts dynamically based on learned filters, and then modulator utilizes channel-
wise attention to accentuate the useful frequency. Additionally, to provide various local receptive
fields, MDSF splits features among the channel dimension, and then applies different filter sizes to
separate parts. We only show the one-branch case in Fig. 1 (d) for simplicity.

To dynamically decompose feature maps, we utilize the learnable and theoretically proven low-pass
filter (refer to Appendix B for the proof) and the corresponding high-pass filter to generate low- and
high-frequency maps. The learned filters are shared across the group dimension to strike a balance
between complexity and feature diversity. Specifically, given any feature map X ∈ RC×H×W ,
where C is the number of channels and H × W denotes the spatial dimension, we firstly leverage
the filter-generating layer to produce the low-pass filter for each group of the input, formulated as

F l = Softmax((B(W (GAP(X))))) (1)
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where F l ∈ Rk2g×1×1, k × k is the kernel size of low-pass filter; g denotes the number of groups;
B,W , and GAP are Batch Normalization (Ioffe & Szegedy, 2015), the parameters of convolution
and global average pooling, respectively. The group-based operation has fewer parameters and lower
complexity than generating filters for each pixel. The number of groups is discussed in Sec 4.3.

To attain the high-pass filter, we subtract the resulting low-pass filter from the identity kernel with
central value as one and everywhere else as zero. Next, for each group feature Xi ∈ RCi×H×W ,
where i is the group index and Ci =

C
g , its low- and high-frequency components can be obtained by

using the corresponding reshaped filter FL and FH (∈ Rg×k×k), which is expressed as:

X l
i,c,h,w =

∑
p,q

FL
i,p,qXi,c,h+p,w+q; Xh

i,c,h,w =
∑
p,q

FH
i,p,qXi,c,h+p,w+q (2)

where c is the index of a channel; h and w denote spatial coordinates; and p, q ∈ {−1, 0, 1}.

After decoupling the feature map into different frequency components, we leverage the frequency
modulator to emphasize the genuinely useful part for reconstruction, as illustrated in Fig. 1 (e).
The modulator works among the channel dimension based on the modified SKNet (Li et al., 2020).
Formally, given two frequency maps, X l and Xh, we first generate the fused feature by,

Z = Wfc(GAP(X l +Xh)) (3)
where Wfc is the parameters of a fully connected layer. To attain channel-wise weights, we use two
other fully connected layers followed by concatenation and Softmax function, formulated as:

[W l,Wh]c =
e[Wl(Z),Wh(Z)]c∑2C
j e[Wl(Z),Wh(Z)]j

(4)

where W l and Wh are channel-wise attention weights for two frequency parts; Wl and Wh are
parameters of fully connected layers; [·, ·] denotes concatenation; and c is the channel index of con-
catenated features. Compared to SKNet (Li et al., 2020), which performs Softmax on each channel
as W l

c = eWl(Z)c

eWl(Z)c+eWh(Z)c
, we consider all channels into consideration to facilitate interactions

between different channels of two maps. Then, the final weights can be obtained by split operation.

Based on the above one-branch case, the multiple branches with varied filter sizes can be express as:

X̂ = [M1(D1(X1)), ...,Mm(Dm(Xm))] (5)
where D and M denote decoupler and modulator, respectively, and Xm is the equally split feature.

3.3 MULTI-BRANCH COMPACT SELECTIVE FREQUENCY MODULE (MCSF)

Since receptive field plays a critical role in image restoration, where degradation blurs always differ
in size (Son et al., 2021; Mao et al., 2021), we develop MCSF to efficiently enlarge the receptive
field of SFNet. MCSF has two branches with different receptive fields, i.e., the global branch and
window-based branch. Considering these branches share a similar paradigm, we only detail the
window-based one, which is inspired by the idea of window-based attention (Liu et al., 2021).

Specifically, given the split feature X ∈ RC
2 ×H×W , it is partitioned into four windows, each with the

size of 2C × H
2 × W

2 . To get the low-frequency part, global average pooling is applied to the result-
ing windows (refer to Appendix C for analyses of this option). The corresponding high-frequency
part can be obtained by subtracting the low-frequency map from the partitioned feature. To select
the useful frequency subbands, we rescale these two maps by learnable weights, which are directly
optimized by backpropagation. Finally, the updated frequency maps are reversed to the original
resolution. The global branch has a similar pipeline, yet with a global receptive field.

Compared to MDSF, besides the enlarged receptive field, MCSF does not accomplish frequency
decoupling and modulating with the aid of convolution layers, resulting in fewer parameters and
lower complexity (see Tab. 9 for details). Hence, MCSF can be embedded in multiple positions.

3.4 LOSS FUNCTION

To facilitate the frequency selection process, we adopt L1 loss in both spatial and frequency domains:

Lspatial =

3∑
r=1

1

Sr
∥X̂r − Yr∥1; Lfrequency =

3∑
r=1

1

Sr
∥F(X̂r)−F(Yr)∥1 (6)
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Table 1: Quantitative comparisons with previous leading single-image defocus deblurring methods
on DPDD testset (Abuolaim & Brown, 2020), which contains 39 outdoor and 37 indoor scenes.

Indoor Scenes Outdoor Scenes Combined

Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
EBDB 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNet 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DRBNet - 25.72 0.791 - 0.183
Restormer 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178

SFNet 29.16 0.878 0.023 0.168 23.45 0.747 0.049 0.244 26.23 0.811 0.037 0.207

PSNR
Reference

Blurry Image 23.15 dB
Input

25.84 dB
DeepRFT+

26.50 dB
DRBNet

25.68 dB
Uformer

25.60 dB
Restormer

23.04 dB
KPAC

27.77 dB
SFNet

Figure 2: Single-image defocus deblurring results on the DPDD dataset (Abuolaim & Brown, 2020).

where r denotes the index of input/output images of different resolutions; F represents fast Fourier
transform; Sr is the number of elements for normalization; and X̂r, Yr are output and target images,
respectively. The final loss function is given by L = Lspatial + λLfrequency, where λ is set as 0.1.

4 EXPERIMENTAL RESULTS

4.1 SETTINGS

We evaluate the proposed SFNet on five restoration tasks: image motion/defocus deblurring, image
deraining, image dehazing, and image desnowing. More details of the used datasets and training
settings for each task are provided in Appendix A. FLOPs are computed on patch size of 256× 256.

We train separate models for different tasks. Unless mentioned otherwise, the following parameters
are adopted. The batch size is set as 4 with patch size of 256× 256. Each patch is randomly flipped
horizontally for data augmentation. The initial learning rate is 1e−4 and gradually reduced to 1e−6

with the cosine annealing (Loshchilov & Hutter, 2016). Adam (β1 = 0.9, β2 = 0.999) is used for
training. N is set to 15 in Fig. 1 (c). MDSF has two branches with filter kernel sizes of 3 × 3 and
5× 5, respectively, and the number of groups is 8. We use PyTorch to implement our models on an
NVIDIA Tesla V100 GPU.

4.2 MAIN RESULTS

Single-image defocus deblurring results. Tab. 1 shows comparisons of defocus deblurring meth-
ods on DPDD (Abuolaim & Brown, 2020). Our SFNet surpasses other state-of-the-art methods on
most metrics. Particularly on the combined scene, SFNet obtains 0.25 dB PSNR improvement com-
pared to the strong Transformer method Restormer (Zamir et al., 2022). In addition, our method
provides a significant gain of 0.51 dB PSNR over the pre-trained network DRBNet (Ruan et al.,
2022). The visual results in Fig. 2 show that our method recovers more details than other algorithms.
Due to space limitations, experimental results of the dual-pixel setting are provided in Appendix E.

PSNR
Reference

11.04 dB
Input

29.86 dB
GridDehazeNet

33.77 dB
FFA-Net

29.18 dB
MAXIM

33.88 dB
DeHamer

38.95 dB
SFNet

Figure 3: Image dehazing results on the SOTS-Indoor dataset (Li et al., 2018).
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Table 2: Image dehazing comparisons on the
synthetic dehazing datasets: SOTS-Outdoor
and SOTS-Indoor (Li et al., 2018).

SOTS-Indoor SOTS-Outdoor

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑
DehazeNet 19.82 0.821 24.75 0.927
AOD-Net 20.51 0.816 24.14 0.920
GridDehazeNet 32.16 0.984 30.86 0.982
MSBDN 33.67 0.985 33.48 0.982
FFA-Net 36.39 0.989 33.57 0.984
ACER-Net 37.17 0.990 -
DeHamer 36.63 0.988 35.18 0.986
MAXIM-2S 38.11 0.991 34.19 0.985
PMNet 38.41 0.990 34.74 0.985
DehazeFormer-L 40.05 0.996 -

SFNet 41.24 0.996 40.05 0.996

Table 3: Image motion deblurring results on
GoPro (Nah et al., 2017) and HIDE (Shen
et al., 2020) datasets.

GoPro HIDE

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑
DeblurGAN-v2 29.55 0.934 26.61 0.875
DBGAN 31.10 0.942 28.94 0.915
DMPHN 31.20 0.940 29.09 0.924
SPAIR 32.06 0.953 30.29 0.931
MIMO-UNet+ 32.45 0.957 29.99 0.930
IPT 32.52 - -
MPRNet 32.66 0.959 30.96 0.939
HINet 32.71 0.959 30.32 0.932
Restormer 32.92 0.961 31.22 0.942
Stripformer 33.08 0.962 31.03 0.940

SFNet 33.27 0.963 31.10 0.941

Table 4: Image dehazing re-
sults on Dense-Haze dataset
(Ancuti et al., 2019).
Method PSNR↑ SSIM↑
DehazeNet 9.48 0.438
GridDehazeNet 14.96 0.533
FFA-Net 12.22 0.444
MSBDN 15.13 0.555
DeHamer 16.62 0.560

SFNet 17.46 0.578

Table 5: Image motion deblur-
ring results on RSBlur dataset
(Rim et al., 2022).
Method PSNR↑ SSIM↑
SRN-DeblurNet 32.53 0.840
MIMO-UNet+ 33.37 0.856
MPRNet 33.61 0.861
Restormer 33.69 0.863
Uformer-B 33.98 0.866

SFNet 34.35 0.872

Table 6: Image desnowing re-
sults on CSD (2000) dataset
(Chen et al., 2021b).
Method PSNR↑ SSIM↑
DesnowNet 20.13 0.81
JSTASR 27.96 0.88
HDCW-Net 29.06 0.91
TransWeather 31.76 0.93
MSP-Former 33.75 0.96

SFNet 38.41 0.99

Image dehazing results. We perform dehazing experiments on the synthetic benchmark RESIDE
(Li et al., 2018) and real hazy dataset Dense-Haze (Ancuti et al., 2019). For RESIDE, we train
our models for the indoor and outdoor scenarios separately, and then evaluate on the corresponding
SOTS-Indoor and SOTS-Outdoor testsets. The quantitative results are shown in Tab. 2. Our method
obtains the highest scores on all metrics. Particularly on the outdoor scene, our network generates
a substantial gain of 4.87 dB PSNR over DeHamer (Guo et al., 2022). Compared to the recent
works, DehazeFormer-L (Song et al., 2022) and PMNet (Ye et al., 2022), our method receives 0.19
dB and 2.83 dB higher PSNR on SOTS-Indoor testset, respectively. Additionally, we validate the
performance of our approach on the real hazy dataset Dense-Haze (Ancuti et al., 2019). The results
are shown in Tab. 4. As we can see, SFNet exhibits the superior ability of dealing with the real-
world dehazing problem, receiving a gain of 0.84 dB over DeHamer (Guo et al., 2022). The dehazed
results in Fig. 3 illustrate that SFNet is more effective in removing haze than other methods.

Image motion deblurring results. We evaluate our method on both the synthetic and real-world
datasets. The numerical comparisons on the synthetic GoPro (Nah et al., 2017) and HIDE (Shen
et al., 2020) datasets are reported in Tab. 3. On GoPro, SFNet shows 0.35 dB PSNR performance
improvement over Restormer (Zamir et al., 2022) with ∼3× faster inference speed (Tab. 8). More-
over, our method receives a performance gain of 0.19 dB compared to the recent algorithm Strip-
former (Tsai et al., 2022) with 34% fewer parameters and 26% fewer FLOPs. Notably, our SFNet

PSNR
Reference

20.42 dB
Input

Blurry Image

23.53 dB
DBGAN

24.01 dB
DMPHN

23.15 dB
MPRNet

21.41 dB
Suin et al.

21.92 dB
Stripformer

21.17 dB
Restormer

25.75 dB
SFNet

23.58 dB
MAXIM

Figure 4: Image motion deblurring results on the GoPro dataset (Nah et al., 2017).
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Table 7: Deraining comparisons with previous methods on five deraining datasets: Rain100H (Yang
et al., 2017), Rain100L (Yang et al., 2017), Test100 (Zhang et al., 2019a), Test1200 (Zhang & Patel,
2018) and Test2800 (Fu et al., 2017).

Test100 Rain100H Rain100L Test2800 Test1200 Average

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 0.796
SEMI 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744
DIDMDN 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 24.58 0.770
UMRL 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880
RESCAN 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.857
PreNet 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 0.897
MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
MAXIM-2S 31.17 0.922 30.81 0.903 38.06 0.977 33.80 0.943 32.37 0.922 33.24 0.933

SFNet 31.47 0.919 31.90 0.908 38.21 0.974 33.69 0.937 32.55 0.911 33.56 0.929

PSNR
Reference

13.30 dB
Input

21.01 dB
JSTASR

14.30 dB
DesnowNet

27.59 dB
HDCW-Net

32.21 dB
SnowFormer

33.24dB
SFNet

Figure 5: Image desnowing results on the CSD dataset (Chen et al., 2021c).

demonstrates stronger generalization capability to HIDE dataset than Stripformer on all metrics. In
addition to the synthetic datasets, we further evaluate the effectiveness of our network on the real-
world dataset. Tab. 5 shows quantitative comparisons on the newly proposed RSBlur (Rim et al.,
2022) dataset. SFNet sets new state-of-the-art on this dataset, providing a substantial gain of 0.37 dB
PSNR over the previous best method Uformer-B (Wang et al., 2022). Fig. 4 illustrates that SFNet
produces more visually pleasant result than competing algorithms.

Image desnowing results. We compare our method on the CSD (Chen et al., 2021b) dataset with
existing state-of-the-art methods (Chen et al., 2022a; Valanarasu et al., 2022; Chen et al., 2022c).
As shown in Tab. 6, our framework yields a 4.66 dB PSNR improvement over the Transformer
model MSP-Former (Chen et al., 2022c). The visual results in Fig. 5 show that our method is more
effective in removing spatially varying snowflakes than competitors. More results on SRRS (Chen
et al., 2020a) and Snow100K (Liu et al., 2018) are provided in Appendix E.

Image deraining results. Following recent works (Jiang et al., 2020; Purohit et al., 2021; Tu et al.,
2022), we compare PSNR/SSIM scores on the Y channel in YCbCr color space. Tab. 7 shows that
our method achieves the best performance on the average PSNR category compared to competing
approaches. Moreover, on the Test100 dataset (Zhang et al., 2019a), the proposed SFNet obtains a
performance boost of 0.30 dB PSNR over MLP model MAXIM-2S (Tu et al., 2022). Visual results
shown in Fig. 6 illustrate that our model recovers more fine details without artifacts.

Table 8: Overall comparisons between motion deblurring
methods on the GoPro (Nah et al., 2017) test set.
Method NAFNet MPRNet DeepRFT+ Restormer SFNet

PSNR 33.63 32.66 33.23 32.92 33.27
Time/s 0.833 1.148 0.806 1.218 0.408
Params/M 67.8 20.1 23.0 26.13 13.27
FLOPs/B 63.33 777.01 187.04 140.99 125.43

Computational overhead compar-
isons. In Tab. 8, we evaluate the com-
putational costs of five motion deblur-
ring methods on the GoPro testset (Nah
et al., 2017). Evaluated on the full-
resolution image, our method achieves
fastest speed than other state-of-the-art
algorithms while achieving comparable
performance with fewer parameters.

PSNR
Reference

8.39 dB
Input

24.29 dB
MAXIM

26.48 dB
SFNet

20.79 dB
UMRL

21.33 dB
PreNet

19.41 dB
RESCAN

Figure 6: Image deraining results on the Rain100H dataset (Yang et al., 2017).
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Table 9: Ablation studies for individual
proposed modules.
Method PSNR Params (M) FLOPs (G)

Baseline 31.20 6.90 66.32
MDSF 31.42 7.04 66.55
MCSF 31.45 6.92 66.38
Full 31.68 7.05 66.61

Table 10: Ablation study for the
number of MCSF.
Number PSNR Params FLOPs

2 31.22 6.91 66.34
4 31.33 6.91 66.35
6 31.42 6.92 66.37
8 31.45 6.92 66.38

Table 11: Ablation
studies for MDSF.

Group PSNR

2 31.40
4 31.40
8 31.42
16 31.30

4.3 ABLATION STUDIES

In this section, we first demonstrate the effectiveness of the proposed modules, and then investigate
the effects of different designs for each module. Finally, we delve into the mechanism of MDCF to
demonstrate its validity. Following the recent method (Tu et al., 2022), all models are trained on the
GoPro (Nah et al., 2017) dataset for 1000 epochs, and N is set to 7 in Fig. 1.

Figure 7: Variance (Left) and Mean (Right) differ-
ence between the ground truth and input/results of
three methods on SOTS-Outdoor testset. Models
are trained on OTS dataset (Li et al., 2018).

Influence of each module. Tab. 9 shows that
MDSF and MCSF yield performance gains
of 0.22 and 0.25 dB over the baseline model
with few introduced computing burdens. De-
ployed only in a single position in each scale,
MDSF produces the similar performance with
MCSF, demonstrating the effectiveness of dy-
namic frequency selection mechanism. Fur-
thermore, in Fig. 7, we plot the statistic dif-
ferences between the ground truth and results
of three methods on dehazing. With the fre-
quency selection mechanism, the statistics of
our results are closer to that of ground truth.

Design choices for MCDF. We study the influence of the number of MCDF in Tab. 10, where 2
MCSF means that we employ the proposed MCSF in last two residual blocks of each ResBlock. As
can be seen, using more MCSF leads to the consistently increasing performance from 31.22 to 31.45
dB PSNR while only introducing 0.01 M parameters and 0.04 G FLOPs. Due to its few introduced
parameters and low complexity, we insert MCSF in each residual block for frequency learning.

Design choices for MDSF. To understand the impact of the number of groups in MDSF, we test
various configurations in Tab. 11. Generally, the increasing number of groups leads to higher PSNR,
demonstrating the effectiveness of the filter diversity. However, the accuracy saturates at group 16,
which is probably caused by overfitting. We finally pick 8 groups for better performance.

Table 12: Alternatives for MDSF.
Method PSNR Params (M) FLOPs (B)

(a) Conv 31.11 8.65 79.35
(b) OctConv 31.07 6.99 66.86
(c) Gaussian 30.98 7.02 66.81
(d) Wavelet 30.97 7.06 66.33

(e) Window 31.22 6.98 66.73
(f ) Local 31.23 7.00 66.34
(g) MDSF 31.42 7.04 66.55

Alternatives for MDSF. To examine the advan-
tage of our design, we compare our decoupler
with several alternatives in Tab. 12. We first
substitute the learning-based and fixed frequency
separation methods for our decoupler. We form
Conv method (Tab. 12a) by using strided convo-
lution to generate different frequency parts with
reduced resolution (Pang et al., 2020). The Oct-
conv (Tab. 12b) version (Chen et al., 2020b)
shares the similar idea with Conv, which utilizes
down-sampling to reduce network redundancy.
These variants only introduce extra low-frequency signal to the network. We further utilize fixed
separation methods to replace the proposed decoupler. Gaussian (Tab. 12c) and Wavelet (Tab. 12d)
produce the similar results, much lower than our MDSF. Additionally, Wavelet needs more parame-
ters to deal with its multiple branches.

Since our filter kernel is generated by learning, we further compare our MDSF with two attention
approaches to verify the validity of the proposed selection mechanism. Specifically, we utilize the
widely used window-based self-attention (Wang et al., 2022) (Tab. 12e) and dynamic convolution
(Han et al., 2021; Wu et al., 2019) (Tab. 12f) to conduct comparisons. As we can see from the table,
our method has huge advantages over these methods, demonstrating the effectiveness of MDSF.
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Iteration=0
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Figure 8: The variance and discrete Fourier transform of the resulting images as we iteratively
impose the produced filters on the image. Left: The low-pass filter. Right: The high-pass filter.
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Figure 9: Discrete Fourier transform results of group-wise features generated by our MDSF decou-
pler. The results are sampled from the last decoder. Top: High-frequency. Bottom: Low-frequency.

4.4 QUALITATIVE ANALYSES OF MDSF

We provide qualitative analyses of MDSF based on discrete Fourier transform. Results are obtained
from the branch of 3× 3 filter. The input image is sampled from GoPro (Nah et al., 2017), shown in
Fig. 10. The features are obtained from the last residual block in the last ResBlock of decoder.

We first verify the properties of the alleged low-/high-pass filters in MDSF. To this end, we iteratively
apply the produced filters to the image. The variance and corresponding spectral features of inter-
mediate images are provided in Fig. 8. Taking the low-pass filter as an example, with the increasing
of iteration times, the variance of the image decreases constantly, and the high-frequency signals in
spectral features are reduced drastically. The high-pass filter exhibits the opposite properties. These
results demonstrate the effectiveness of our filters. It is remarkable that the high-pass filter produces
large variance with fewer iterations, hence it is more effective than the low-pass filter. As a result, it
is easy for MDSF to introduce more high-frequency signals into the network for reconstruction.

In MDSF, we generate different filters for each group to enhance the diversity of frequency features.
To delve into this mechanism, we visualize the group-wise spectral features in Fig. 9. As expected,
different groups focus on the learning of disparate low-/high-frequency signals, enriching the di-
versity of frequency representations for selection. We further compare the feature maps before and
after our MDSF in Fig. 10. Using the attained filters, the decoupler of MDSF produces different
frequency components. The high-frequency feature contains much edge information. The resulting
feature after modulator recovers more details of the number plate that is blurry in the initial feature.

5 CONCLUSION

We present an image restoration framework, SFNet, which is built on frequency selection mecha-
nism. We develop two key modules, MDSF and MCSF, to conduct frequency decomposition and
recalibration with different receptive fields. Specifically, our multi-branch dynamic selective fre-
quency module (MDSF) builds a dynamic filter to decompose feature maps into various frequency
parts and utilizes channel attention to perform accentuation, thus effectively selecting the most infor-
mative frequency to recover. Furthermore, the proposed multi-branch compact selective frequency
module (MCSF) introduces a simple yet effective manner to enlarge the receptive field and conduct
frequency selection. With both designed modules, SFNet achieves state-of-the-art results on five
image restoration tasks, demonstrating the validity of our frequency selection mechanism.

Blurry Image High-frequency Freature MDSFLow-frequency FeatureInitial Feature Sharp Image

Figure 10: The internal features of MDSF. With our frequency selection mechanism, MDSF pro-
duces more fine details than the initial feature, e.g., the number plate. Zoom in for the best view.
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