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Abstract

Currently, BIO-based and Tuple-based ap-001
proaches perform quite well on the span-based002
semantic role labeling (SRL) task. However,003
the BIO-based approach usually needs to en-004
code a sentence once for each predicate when005
predicting its arguments, and the Tuple-based006
approach has to deal with a huge search space007
of O(n3), greatly reducing the training and in-008
ference efficiency. Moreover, both BIO-based009
and Tuple-based approaches usually consider010
only local structural information when making011
predictions. This paper proposes to cast end-012
to-end span-based SRL as a graph parsing task.013
Based on a novel graph representation schema,014
we present a fast and accurate SRL parser on015
the shoulder of recent works on high-order016
semantic dependency graph parsing (SDGP).017
Moreover, we propose a constrained Viterbi018
procedure to ensure the legality of the output019
graph. Experiments on CoNLL05, CoNLL12,020
and Chinese Proposition Bank 1.0 (CPB1.0)021
datasets show that our model achieves new022
state-of-the-art results and can parse over 600023
sentences per second.024

1 Introduction025

As a fundamental natural language processing026

(NLP) task, semantic role labeling (SRL) aims to027

represent the semantic meaning of an input sen-028

tence as predicate-argument structures. SRL struc-029

ture is shown to be helpful for many downstream030

NLP tasks, such as machine translation (Liu and031

Gildea, 2010; Marcheggiani et al., 2018) and ques-032

tion answering (Wang et al., 2015a).033

There exist two forms of concrete SRL for-034

malism in the community, i.e., dependency-based035

(or word-based) and span-based, depending on036

whether an argument consists of a single word or037

multiple words. This work focuses on the more038

complex span-based SRL task. Figure 1 shows039

an example sentence, consisting of two predicates.040

The argument corresponds to a span containing one041

They want to do more .

They want to do more .

A0 A1

A0 A1

Figure 1: An example sentence for illustrating span-
based SRL, consisting of two predicates, i.e., “want”
and “do”.

or more words. Semantic roles of arguments are 042

distinguished with edge labels, such as agent “A0” 043

and patient “A1”. 044

In recent years, the span-based SRL has achieved 045

significant progress thanks to the impressive capa- 046

bility of deep neural networks in context represen- 047

tation. The BIO-based approach of Zhou and Xu 048

(2015) and the Tuple-based approach of He et al. 049

(2018) are two most representative neural network 050

models. The BIO-based approach first predicts 051

the predicates and then finds arguments for each 052

predicate independently by labeling every word 053

with BIO tags, like “B-A0” or “I-A0”. The major 054

weakness of the BIO-based approach is that a sen- 055

tence usually has to be encoded and decoded for 056

multiple times, each time for one predicate (Zhou 057

and Xu, 2015; Shi and Lin, 2019), thus proportion- 058

ally reducing the training and inference efficiency. 059

The Tuple-based approach (He et al., 2018; Li 060

et al., 2019) directly considers word spans as ar- 061

guments (Tuples) and links whole arguments to 062

predicates. However, the Tuple-based approach 063

also suffers from a severe inefficiency problem, 064

since the search space is as high as O(n3), which is 065

composed of O(n) potential predicates and O(n2) 066

possible arguments. Previous works usually have to 067

resort to pruning techniques to improve efficiency, 068

however with very limited effect and making the 069

model more complex as well. 070

Another common disadvantage of both the BIO- 071

based and Tuple-based approaches is that they 072
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make use of quite local structural information when073

making decisions. For instance, arguments and la-074

bels are separately predicted for each predicate075

without inter-predicate interaction.076

Inspired by the resemblance between SRL and077

semantic dependency graph parsing (SDGP, Oepen078

et al. 2014), and motivated by the recent progress079

in SDGP models, we cast end-to-end span-based080

SRL as a SDGP task. In order to decompose argu-081

ments into graph nodes, we propose a novel graph082

representation schema to transform original span-083

based SRL structure into a word-level graph. Based084

on the schema, we build a fast and accurate end-085

to-end model upon recently proposed high-order086

graph parsing model (Wang et al., 2019), which087

introduces three second-order sub-trees via mean088

field variational inference (MFVI). This makes our089

model consider inter-predicate interactions beyond090

local edges. In addition, since the vanilla graph091

parsing model cannot guarantee the legality of the092

output graph in the sense of corresponding SRL093

structure, we propose a simple post-processing094

method based on constrained Viterbi to make sure095

that the output graph can be recovered back to a096

proper SRL structure. In summary, we make the097

following contributions.098

• We for the first time cast span-based SRL as099

a SDGP task. Based on a new graph repre-100

sentation schema, we present a fast and accu-101

rate end-to-end span-based SRL parser on the102

shoulder of recent successful SDGP models.103

• We propose a simple constrained Viterbi pro-104

cedure for post-processing illegal graphs.105

• Experiments on CoNLL05, CoNLL12, and106

CPB1.0 show that our approach achieves new107

state-of-the-art performance under both set-108

tings of w/o and w/ pre-trained language mod-109

els (PLMs). Detailed analysis reveals clear110

and interesting insights. Moreover, our parser111

can naturally support the dependency-based112

SRL and also achieves SOTA performance on113

the CoNLL09 dataset1.114

• Our parser is more than one magnitude faster115

than previous parsers and can analyze over116

600 sentences per second.117

We will release our code, configuration files, and118

major models at github.119

1The results are shown in § E

Root They want to do more .

PRD

B-A0 B-A1

E-A1

PRD

B-A0 B-A1

Figure 2: The graph representation corresponding to the
original predicate-argument structure of Figure 1.

2 Proposed Approach 120

This work proposes to cast end-to-end span-based 121

SRL as a word-level semantic dependency graph 122

parsing task. The key challenge is to design a suit- 123

able graphical representation to encode span-based 124

semantic role annotations for all predicates in a 125

sentence. 126

2.1 Graph Representation 127

SRL-to-Graph Transformation. We propose to 128

transform the original span-based SRL structure 129

into a word-level graph, as depicted in Figure 2. 130

First, we add a pseudo “Root” node at the begin- 131

ning of the sentence and link all the predicates 132

to it with “PRD” as the edge label. Please note 133

that a predicate always corresponds to a single 134

word in SRL datasets (He et al., 2018). Then, 135

we attach each semantic argument, denoted as 136

a = wi, ..., wj , (i ≤ j), to its corresponding pred- 137

icate (denoted as wk). Specifically, we add two 138

edges, one from wk to wi and the other from wk 139

to wj , with “B-r” and “E-r” as their labels. If 140

an argument contains one word, i.e., i = j, we 141

only add the “B-r” edge. r ∈ R is the original 142

semantic role label and R is the set of role labels. 143

We denote the new composite label as ℓ, and the 144

new label set as L. Except the “BE” schema, we 145

also tried another “BII” schema where every word 146

in argument are linked to the predicate with labels 147

“B-r I-r I-r ...”. However, our preliminary ex- 148

periments show that the performance of “BII” is 149

much inferior to “BE”, so we finally choose the 150

“BE” schema as our representation schema. 151

Graph-to-SRL Recovery. After generating the 152

word-level graph through our model, we need to re- 153

cover it to the corresponding SRL structure. Given 154

a graph that is legal in the sense of SRL structure, 155

we can obtain the corresponding SRL representa- 156

tion straightforwardly. Specifically, all children 157

nodes (words) of the pseudo “Root” are treated as 158

predicates. Then, for each predicate, we recover 159

all its argument based on the edge labels. An argu- 160
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. . . xi . . . xk . . . xj . . .

BiLSTM × 3

MLPh MLPm

Biaffine

MLPh′′
MLPg MLPm′′

Triaffines

hi hk hj

rhi rmj rh
′′

i rgk rm
′′

j

s(i, j) s_∗(i, k, j)

MFVI layers

QT
i,j

Figure 3: Illustration of our model. s_ ∗ (i, k, j)
corresponds to the second-order scores, where ∗ ∈
{sib, cop, grd}.

ment corresponds to either a paired labels, such as161

“B-A0” and “E-A0”, or a single beginning label,162

such as “B-A0”. Unfortunately, vanilla graph pars-163

ing cannot guarantee the legality of output graphs.164

To this end, in Section 2.5, we propose a simple yet165

effective constrained Viterbi decoding procedure166

to handle the issues.167

2.2 First-order Model (O1)168

Based on our designed graph representation, we169

can address span-based SRL as a graph parsing170

problem. In this work, we adopt the framework171

of Dozat and Manning (2018) which consists of172

two stages: 1) predicting all edges and 2) assigning173

labels for each edge.174

Encoder. In this work, we use a three-layer BiL-175

STM to get the contextualized hidden representa-176

tion hi for each input token wi. A more detailed177

description can be found in § A.178

hi = BiLSTM(wi) (1)179

Edge scoring and classification. We treat edge180

prediction as a binary 0/1 classification task, where181

1 means that there is an edge between the given182

word pair and 0 otherwise.183

Following Dozat and Manning (2018), we use184

two MLPs to get representation vectors of a word185

as a head or a modifier respectively, and then use186

BiAffine and Sigmoid to compute edge scores and187

probabilities.188

rhi ; r
m
i = MLPh (hi) ;MLPm (hi)

s(i, j) =

[
rmj
1

]⊤
Wrhi

p(i, j) = σ(s(i, j)) =
exp(s(i, j))

exp(s(i, j)) + 1

(2) 189

where W ∈ R(d+1)×d; s(i, j) represents the edge 190

score of i → j2, and p(i, j) is the probability of 191

the existence of the edge after Sigmoid function σ. 192

During inference, only edges that have p(i, j) > 193

0.5 are retained. 194

Label scoring and classification. The skeleton 195

of the graph is decided after the edge classification 196

step. Similar to edge scoring, we use two extra 197

MLPs and a set of Biaffines to compute the label 198

scores. 199

rh’i ; rm’i = MLPh′ (hi) ;MLPm′
(hi)

s(i, j, ℓ) =

[
rm

′
j

1

]⊤
Wlabel

ℓ

[
rh

′
i

1

]
p(ℓ|i, j) =

exp (s(i, j, ℓ))∑
ℓ′∈L exp (s(i, j, ℓ′))

(3) 200

where s(i, j, ℓ) is the score of the label ℓ for the 201

edge (i, j); p(ℓ|i, j) is the probability after softmax 202

over all labels. Each label has its own Biaffine 203

parameters Wlabel
ℓ ∈ R(d+1)×(d+1). 204

2.3 Second-order Model (O2) 205

The difference between our second-order model 206

and first-order model lies in the edge classifica- 207

tion module. An obvious limitation of the first- 208

order model is its strong assumption that edges 209

are mutually independent and thus it only consid- 210

ers the information between the current two words 211

when scoring the edge. One natural extension is 212

to exploit scores of sub-trees consisting of multi- 213

ple edges when determining the unlabeled graph. 214

We consider three types of sub-trees, as shown in 215

Figure 4. Here, second-order means that scoring 216

sub-trees containing two edges. 217

Figure 4(a) shows a sibling sub-tree where two 218

words depend on the same head word. This cor- 219

responds to three cases: 1) two words are both 220

predicates, and depend on “Root”; 2) two words 221

are the beginning and ending words of an argument 222

2For convenience, we abbreviate the edge i → j as (i, j)
in the remaining part of the paper.
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h m1 m2

(a) sibling

h1 m h2

(b) co-parent

h m g

(c) grandchild

Figure 4: Three types of second-order sub-trees.

of some predicates; and 3) two words belong to223

two arguments of the same predicate.224

Figure 4(b) shows a co-parent sub-tree where225

two words govern the same word. This corresponds226

to two cases: 1) wh1 and wh2 are two predicates;227

2) one of wh1 and wh2 is “Root”, and the other is a228

predicate.229

Figure 4(c) shows a grandchild sub-tree in230

which three words form a head-modifier-grandchild231

chain. This also covers two cases: 1) wh is “Root”,232

wm is a predicate, and wg is the beginning or end-233

ing word of an argument which belongs to wm; 2)234

wh is a predicate, wm is not only the beginning235

or ending word in an argument but also another236

predicate, and wg is the beginning or ending word237

in an argument which belongs to predicate wm.238

We can see that the three types of sub-trees cap-239

ture a rich set of edge interaction cases, allowing240

the model to evaluate graphs from a more global241

view.242

Second-order scoring. First, we use three new243

MLPs to get representations of each word for play-244

ing different roles in second-order sub-trees, re-245

spectively.246

rh
′′

i ; rm
′′

i ; rgi = MLPh′′/m′′/g (hi) (4)247

where rh
′′

i ; rm
′′

i ; rgi denote the representation vec-248

tors of wi as head, modifier, and grandchild respec-249

tively. Then, a TriAffine scorer (Zhang et al., 2020)250

taking the three vectors as input is applied to com-251

pute the score of the corresponding second-order252

structure,253

TriAFF(v1,v2,v3) =

[
v3

1

]⊤
v1

⊤W′
[
v2

1

]
(5)254

where W′ ∈ R(d′+1)×d′×(d′+1) and vi ∈ Rd′ , i ∈255

{1, 2, 3}. Finally, scores of the three types of sub-256

trees can be computed as follows respectively.257

s_sib(i, j, k) = TriAFF1(rh
′′

i , rm
′′

j , rm
′′

k ) (6)258

s_cop(i, j, k) = TriAFF2(rh
′′

i , rm
′′

j , rh
′′

k ) (7)259

s_grd(i, j, k) = TriAFF3(rh
′′

i , rm
′′

j , rgk) (8)260

It should be noted that for symmetrical sibling sub- 261

trees and co-parent sub-trees, we compute their cor- 262

responding scores only once, i.e., s_sib(i, j, k) = 263

s_sib(i, k, j) and s_cop(i, j, k) = s_cop(k, j, i). 264

Approximate inference using MFVI. Given 265

scores of edges and second-order sub-trees, the 266

most straightforward choice is directly searching 267

for the optimal graph with the highest accumulated 268

score, which however is NP-hard, because there is 269

no efficient algorithm to compute the score of the 270

graph for all shapes. Therefore, we follow Wang 271

et al. (2019) and employ approximate inference 272

(MFVI) for both training and evaluation. 273

Concretely, we first define a confidence variable 274

Qij for each edge (i, j) to estimate the probability 275

of the edge being in the correct semantic graph. 276

MFVI approximates the true probability iteratively 277

as follows. 278

M(t−1)
ij =

∑
k ̸=i,j

Q
(t−1)
ik s_sib(i, j, k)

+Q
(t−1)
kj s_cop(i, j, k)

+Q
(t−1)
jk s_grd(i, j, k)

Q
(t)
ij = σ(s(i, j) +M(t−1)

ij )

(9) 279

where t ∈ [1, T ] is the iteration number. Mij is an 280

intermediate variable that stores information from 281

second-order sub-tree scores. Q
(0)
ij is initialized 282

with the p(i, j) in equation 2. We define the score 283

of edge not being in the graph as 0 and normalize 284

Q
(t)
ij via Sigmoid operation σ at each iteration. Fol- 285

lowing Wang et al. (2019), we stop computation 286

after T = 3 iterations. During inference, QT
ij is 287

directly used as p(i, j). 288

The intuitive explanation is that the probability 289

of edge’s existence is affected by both local infor- 290

mation, i.e., the first-order score and non-local in- 291

formation, i.e., the higher-order score. And through 292

T = 3 times of iteration, MFVI collects rich histor- 293

ical decision information which is helpful for the 294

model to make more accurate final decision. 295

2.4 Training 296

The loss of our system comes from both edge and 297

label classification modules. Given one sentence 298

X and its gold graph G, the fully connected graph 299
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of X is denoted as C.300

Le(θ) = −
∑

(i,j)∈G

log p′(i, j)−
∑

(i,j)∈C\G

log (1− p′(i, j))

Ll(θ) = −
∑

(i,j)∈G

log p(ℓ̂|i, j)
301

where θ denotes model’s parameters; C\G is the302

set of incorrect edges; ℓ̂ is the gold label of edge303

(i, j). In our first-order model, p′(i, j) equals the304

probability of the edge’s existence p(i, j) com-305

puted in equation 2. In the second-order model,306

it equals to the final posterior distribution, i.e., QT
ij .307

The final loss of our system is the weighted sum of308

the two losses:309

L(θ) = λLl(θ) + (1− λ)Le(θ)310

where 0 < λ < 1 is set to 0.06.311

2.5 Inference312

During inference, we first use the edge classifica-313

tion module to build the graph skeleton, and then314

use the label classification module to assign la-315

bels to predicted edges. If the generated graph is316

legal, we can directly recover the corresponding317

SRL structure through Graph-to-SRL procedure318

described in 2.1.319

However, since the label classification module320

handles each edge independently, the resulting321

graph may contain conflicts, as shown in the upper322

part of Figure 5(a). First, if two consecutive edges323

are both labeled as “E-∗”, then it is impossible to324

recover the corresponding arguments. Another con-325

flicting scene is when there exists a single outlier326

edge labeled as “E-∗”.327

Conflict resolution via constrained Viterbi. We328

propose to employ constrained decoding to handle329

conflicts shown in Figure 5(a). Concretely, when330

conflicts occur during recovering arguments for a331

predicate in the output graph, we re-label all words332

in the sentence for the predicate.3 The output la-333

bels are shown in the second row starting with334

“Vtb”, where the two new labels “O/I” mean out-335

side/inside an argument respectively. The idea of336

constrained Viterbi is to control the transition ma-337

trix to make sure that the resulting label sequence338

is always correct. For example, as shown in Figure339

5(b), we only allow transitions from “B-∗” and “I”340

3We have also tried to directly perform constrained Viterbi
on the edges, instead of all words in the sentence. However,
the performance is much inferior.

Root Some students want to do more .

Vtb: B-A0 E-A0 O B-A1 I E-A1 O

PRD
E-A0

E-A0
E-A1

(a) A conflicting example. Edges in red cause conflicts,
and the label sequence below is the corrected sequence
via our constrained Viterbi.

B-∗

E-∗

I

O

B-∗ E-∗ I O

(b) Transition matrix.

Figure 5: A conflicting example and our transition ma-
trix. B-∗ and E-∗ represent all the composite beginning
and ending labels. Cells with fence denote the prohib-
ited transitions.

to “E-∗”, and disallow transitions from “E-∗” and 341

“O” to “E-∗”. 342

In fact, constrained Viterbi is a widely used tech- 343

nique in BIO-based SRL models. However, it is not 344

trivial to apply constrained Viterbi to our SDGP 345

framework as a post-processing step. The main 346

challenge is how to make use of the probabilities 347

computed by our SDGP model. We propose to 348

combine the probabilities of the edge classification 349

and label classification modules as follows: 350

p′′(ℓ|i, j) = p(i, j) · p(ℓ|i, j)
p′′(O|i, j) = p′′(I|i, j) = 1− p(i, j)

351

where p′′(ℓ|i, j) is the probability for the normal 352

label such as “B-A0”. p′′(O|i, j) and p′′(I|i, j) 353

share the same value because they both mean that 354

the word is neither the beginning nor the ending 355

word of an argument, but “I” has an extra indi- 356

cation that there is an unpaired “B-∗” in the left 357

side. 358

3 Experiments 359

Data. We conduct experiments on CoNLL05 360

(Palmer et al., 2005) and larger-scale CoNLL12 361

(Pradhan et al., 2012), which are two widely used 362

English SRL datasets. For Chinese, we use Chinese 363

Proposition Bank 1.0 (CPB1.0) (Xue, 2008) as our 364

dataset. Following previous works on span-based 365

SRL, we omit predicate sense prediction (Zhou and 366

Xu, 2015; He et al., 2017). 367
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Model Type Sents/sec
He et al. (2018) Tuple-based 44
Strubell et al. (2018) BIO-based 45
Li et al. (2019) Tuple-based 19
Our O1 726
Our O2 611
Our O1 +BERT 252
Our O2 +BERT 228

Table 1: Speed comparison on the CoNLL05-dev.

Evaluation metrics. We mainly focus on end-368

to-end setting, and jointly predict both predicates,369

arguments, and the corresponding roles. We use370

the official evaluation scripts4. We choose seeds371

randomly to run our model for 3 times and report372

the average results. For significance test, we follow373

Xia et al. (2019b) and use their released scripts of374

Dan Bikel’s randomized parsing evaluation com-375

parator. We adopt most of the hyper-parameters376

settings used in Wang et al. (2019). The difference377

is detailed in § B. We denote our first-order model378

and second-order model as O1 and O2. Please379

kindly notice that this work is a pure modeling380

study. So we do not compare with syntax-aware381

works (Roth and Lapata, 2016; Xia et al., 2019b;382

Zhou et al., 2020).383

3.1 Efficiency Comparison384

Table 1 compares different models in terms of de-385

coding speed. For fair comparison, we re-run all386

previous models on the same GPU environment387

(Nvidia GeForce 1080 Ti 11G).388

We can see that our models improve the effi-389

ciency of previous span-based SRL models by at390

least one order of magnitude. Compared with the391

Tuple-based approach (He et al., 2018; Li et al.,392

2019), our graph-based parser only has a O(n2)393

search space. As for the BIO-based model of394

Strubell et al. (2018), the encoder contains 12 self-395

attention layers, and they adopts a pipeline frame-396

work by first predicting all predicates via sequence397

labeling and then recognizing arguments, leading398

to its low parsing speed.399

Our second-order model is only 15% slower than400

the first-order model, showing that the computing401

of second-order sub-tree scores and the MFVI in-402

ference procedure are both very fast via large tensor403

computation on GPUs. And when augmented with404

BERT, our methods can still parse over 200 sen-405

tences per second.406

4http://www.cs.upc.edu/~srlconll/st05/
st05.html

3.2 Main Performance Results 407

Table 2 shows performance comparison on both 408

CoNLL05 and CoNLL12 test datasets. For the 409

sake of fair comparison, we split the table into 410

three major rows, i.e., without PLMs, with ELMo, 411

and with BERT. Due to space constraints, we leave 412

the experiments on CPB1.0 to § C. 413

First, we can see that our proposed second- 414

order model surpass previous BIO-based and Tuple- 415

based methods, achieving new SOTA F1 scores on 416

all three test datasets and under all three settings. 417

The Tuple-based model of He et al. (2018) is very 418

competitive in its performance. Our second-order 419

parser outperforms it by relatively large margin in 420

F1 only on CoNLL05-WSJ w/o PLMs (1.26) and 421

on CoNLL05-Brown w/ ELMo (0.93). On other 422

datasets and settings, the performance gap is in 423

[0.2, 0.3]. 424

Second, we can see that the second-order model 425

outperforms the first-order model in both preci- 426

sion and recall on almost all datasets and settings, 427

showing that high-order structural information is al- 428

ways helpful. More concretely, under the setting of 429

w/o PLMs, improvements in F1 on CoNLL05-WSJ 430

(0.7), on CoNLL05-Brown (0.4), and on CoNLL12 431

(0.7) are all significant at a confidence level of 432

p < 0.05. Under the settings of w/ BERT, the 433

improvement is 0.5 in F1 on CoNLL12 at a more 434

significant level of p < 0.001. And we find an in- 435

teresting phenomenon that our model consistently 436

achieves much higher precision scores but lower 437

recall scores than that of He et al. (2018). We give 438

the detailed analysis in Section 3.3. 439

3.3 Performance Regarding Argument Width 440

and Argument Type 441

In order to explore the differences between our 442

method and previous methods, and the advantages 443

of high-order model over first-order model, we 444

make an+ in-depth analysis from the perspectives 445

of argument width and argument type. 446

Performance Regarding Argument Width. As 447

shown in Figure 6, we divide arguments into four 448

categories according to their width, i.e., the number 449

of words included, and report F1 scores, precision 450

and recall for each category. The proportion of each 451

category in the gold-standard data is also reported. 452

We obtain results of He et al. (2018) by re-running 453

evaluation with their released model. We draw 454

three clear and important findings. 455
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Model CoNLL05-WSJ CoNLL05-Brown CoNLL12

Dev.F1 P R F1 P R F1 Dev.F1 P R F1

He et al. (2017)† 80.30 80.20 82.30 81.20 67.60 69.60 68.50 75.50 78.60 75.10 76.80
Strubell et al. (2018)† ∗ 81.72 81.77 83.28 82.51 68.58 70.10 69.33 - - - -
He et al. (2018)‡ 81.60 81.20 83.90 82.50 69.70 71.90 70.80 79.40 79.40 80.10 79.80
Li et al. (2019)‡ - - - 83.00 - - - - - - -
Our O1 81.68 83.08 83.05 83.06 71.42 69.77 70.59 79.33 80.71 78.13 79.40
Our O2 82.47 83.97 83.56 83.76 71.82 70.19 70.99 80.00 80.75 79.46 80.10
+ELMo
Strubell et al. (2018)† ∗ 84.73 83.86 85.98 84.91 73.01 75.61 74.31 - - - -
He et al. (2018)‡ 85.30 84.80 87.20 86.00 73.90 78.40 76.10 83.00 81.90 84.00 82.90
Li et al. (2019)‡ - 85.20 87.50 86.30 74.70 78.10 76.40 - 84.90 81.40 83.10
Our O1 85.26 85.74 86.69 86.21 75.70 78.00 76.83 83.04 82.51 83.48 82.99
Our O2 85.51 85.80 86.80 86.30 76.44 77.63 77.03 83.18 82.79 83.45 83.12
+BERT
Our O1 86.14 86.28 87.71 86.99 77.92 79.49 78.70 84.08 83.00 84.55 83.77
Our O2 86.14 86.37 87.93 87.14 78.18 79.91 79.04 84.28 83.30 85.26 84.27

Table 2: Results on CoNLL05 and CoNLL12 datasets. We mark BIO-based models by † and tuple-based ones by ‡.
Moreover, we mark the results of Strubell et al. (2018) by ∗ to indicate that we report corrected evaluation results
after re-testing their released syntax-agnostic models, since they incidentally used a wrong evaluation procedure in
their original paper, leading to much higher precision scores.

(a) F1 score (b) P (precision) (c) R (recall)

Figure 6: Analysis of the arguments with different width. The horizontal axis denotes the width of arguments and
the proportion of arguments of the same width in the data set. The vertical axis denotes the corresponding metrics,
i.e., F1, P, R.

First, both our first-order and second-order mod-456

els perform better on multi-word arguments than457

He et al. (2018). This is kind of surprising, consid-458

ering that the Tuple-based approach can explicitly459

represent whole arguments, whereas our graph pars-460

ing approach only models argument beginning and461

ending positions.462

Second, compared with He et al. (2018), our463

second-order model achieves much higher preci-464

sion scores on all multi-word arguments, while the465

drop in recall scores are relatively slight, 1.92 on466

two-word arguments, 0.6 on arguments containing467

[3, 6] words. This directly explains why our mod-468

els perform better in precision and worse in recall.469

Obviously, the reason is that our models predict470

less multi-word arguments with higher precision471

than He et al. (2018).472

Third, we can see that the second-order model is473

always superior to the first-order model, except for 474

precision over two-word arguments, indicating the 475

high-order structural information is stably helpful. 476

Performance Regarding Argument Type. Fig- 477

ure 7 shows the performance of our models and He 478

et al. (2018) on several different types of arguments 479

with the highest frequency. First, by comparing our 480

first-order and second-order models, we can see 481

that second-order model is better than first-order 482

in all kinds of arguments. Second, compared with 483

He et al. (2018), we find another interesting phe- 484

nomenon. Our model has a higher improvement 485

on major arguments such as A0 and A1, especially 486

on A2 (3.27 in F1) . However, the advantage of 487

our model in adjunct arguments such as AM-TMP, 488

AM-MOD, and AM-ADV are not obvious. We 489

think that this may be caused by the difference in 490

7



the width of different arguments. Considering the491

above analysis of arguments with different widths,492

which revealed that our model is better at dealing493

with long arguments. We compare the width of494

different arguments and find that the average width495

of major arguments and adjunct arguments are re-496

spectively 5.82 and 3.27. In particular, most A2497

arguments have a width of 2, and most AM-ADV498

arguments have a width of 1. As shown in the Fig-499

ure 6(a), our model performs better on arguments500

with width 2 and slightly worse on arguments with501

width 1.502

4 Related Works503

Span-based SRL models. As two mainstream504

neural models, the BIO-based and Tuple-based505

approaches handle SRL in different ways. The506

BIO-based approach first recognizes predicates and507

then determines arguments for each predicate via508

sequence labeling. Zhou and Xu (2015) employ509

multi-layer BiLSTMs as the encoder and apply a510

CRF layer to find the best label sequence for each511

predicate. He et al. (2017) propose to use high-512

way BiLSTMs (Srivastava et al., 2015) to alleviate513

the vanishing gradient problem, and use recurrent514

dropout (Gal and Ghahramani, 2016) to reduce515

over-fitting. Shi and Lin (2019) concatenate each516

predicate word after the original sentence to form517

the new input and use BERT(Devlin et al., 2019)518

and BiLSTM as the encoder.519

He et al. (2018) propose the Tuple-based ap-520

proach. The idea is directly predicting relations521

between candidate predicates (words) and argu-522

ments (word spans). Compared with the BIO-based523

approaches, the Tuple-based approach has the ad-524

vantage of being able to flexibly represent whole525

argument. Li et al. (2019) extend the Tuple-based526

model to support both span-based and dependency-527

based SRL tasks. Zhou et al. (2020) propose a528

multi-task learning framework that does the SRL,529

dependency parsing, and constituent parsing simul-530

taneously, and prove that semantic and syntax can531

benefit from each other.532

SDGP models. SDGP (Oepen et al., 2014, 2015)533

uses graph to represent the semantic information534

of a sentence. Nodes correspond to single words,535

whereas edges and their labels denote semantic re-536

lationships. As a mainstream approach, the graph-537

based model finds the best graph from the fully con-538

nected graph. Dozat and Manning (2018) propose539

a simple and efficient SDGP parser. Wang et al.540

Figure 7: F1 score of different types of arguments.

(2019) extend the model of Dozat and Manning 541

(2018) by introducing second-order information. 542

They compare two approximate high-order infer- 543

ence methods, i.e., mean filed variational inference 544

and loopy belief propagation and find similar per- 545

formance. In this work, we build our parser on the 546

shoulder of these SDGP works. 547

The dependency-based SRL model of Li et al. 548

(2020) is also related to our work. They directly 549

apply the SDGP model of Wang et al. (2019) to the 550

simpler dependency-based SRL. Please note that 551

they adopt a pipeline (not end-to-end) framework 552

by first predicting predicates with an independently 553

trained sequence labeling model, and then recogniz- 554

ing arguments of all predicates via graph parsing. 555

We give more discussion and performance compar- 556

ison in the § D and § E. 557

5 Conclusions 558

This paper proposes a new graph representation 559

schema for transforming raw span-based SRL struc- 560

tures to word-level graphs. Based on the schema, 561

we cast the span-based SRL as a SDGP task and 562

present a fast and accurate end-to-end parser. More- 563

over, we propose a simple post-processing method 564

based on constrained Viterbi to handle conflicts 565

in the output graphs. Experiments show that our 566

parser 1) is much more efficient than previous 567

parsers, and can parse over 600 sentences per sec- 568

ond; 2) reaches new state-of-the-art performance 569

on CoNLL05, CoNLL12, and CPB1.0 datasets. 570

The in-depth analysis shows that compared with 571

the representative and competitive Tuple-based ap- 572

proach of He et al. (2018), our graph parsing model 573

is superior in recognizing multi-word arguments 574

and able to recall fewer arguments with much 575

higher precision. This clear finding may lead to 576

some interesting future works, e.g., combining the 577

power of the two different approaches. 578
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A Encoder719

Input vectors. Following standard practice for720

SRL, the input of the i-th word is the concatena-721

tion of word embedding eword
i , lemma embedding722

elemma
i , and charLSTM representation vector:723

xi = eword
i ⊕ elemma

i ⊕ echari (10)724

where echari is the output vector of a one-layer BiL-725

STM that encodes the character sequence (Lample726

et al., 2016).727

BiLSTM encoder. Then, a three-layer BiLSTM728

encoder produces a context-aware vector represen-729

tation for each word.730

hi = fi ⊕ bi (11)731

where fi and bi respectively denote the output vec-732

tors of top-layer forward and backward LSTMs for733

wi.734

Model F1

end2end
Xia et al. (2019a) 79.29
Our O1 79.36
Our O2 80.42
w/ pre-identified predicate
Sun et al. (2009) 74.12
Wang et al. (2015b) 77.59
Sha et al. (2016) 77.69
Xia et al. (2017) 79.67
Xia et al. (2019a) 80.48
Our O1 80.06
Our O2 81.30

Table 3: F1 scores on CPB1.0 test set.

B Hyper-parameter settings 735

We employ 300-dimension English word embed- 736

dings from GloVe (Pennington et al., 2014) for En- 737

glish experiments. For Chinese, we train the word 738

embeddings on Chinese Gigaword dataset5 with 739

word2vec (Mikolov et al., 2013). We directly adopt 740

most hyper-parameters of the SDGP work of Wang 741

et al. (2019), except that we reduce the dimension 742

of Char-LSTM from 400 to 100 to save the memory, 743

which only slightly influence performance. And 744

under the setting of w/o PLMs, the number of pa- 745

rameters of the first-order model and second-order 746

model is 189M and 200M respectively. For ex- 747

periments with PLMS, we adopt ELMo6 (Peters 748

et al., 2018) and BERT7 (Devlin et al., 2019) to 749

get contextual word representation to boost the per- 750

formance of our model. Following most of previ- 751

ous works (He et al., 2018; Xia et al., 2019b), for 752

ELMo, we froze its parameters and concatenate 753

its output with xi to form the new input for the 754

BiLSTM encoder. For BERT, we directly use it 755

as our encoder and fine tune its parameters during 756

training. 757

C Experiments on CPB1.0 758

Table 3 shows the comparison between our work 759

and previous works on CPB1.0 test set. Because 760

most of the previous work carried out experiments 761

with given predicates, in order to compare with 762

them, we also report the results of given predicates. 763

Under the setting of given pre-identified predicate, 764

we directly mask the output of our models with 765

given predicates. Concretely, we use the given pred- 766

icates as the predicted predicates. Then, we delete 767

5https://catalog.ldc.upenn.edu/LDC2003T09
6https://allennlp.org/elmo
7https://huggingface.co/bert-large-uncased
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They want to do more .

They want to do more .

A0 A1

A0 A1

(a) The original dependency-based SRL structure
of the example sentence. “want” with sense label
“01” and “do” with sense label “02” are two predi-
cates.

Root They want to do more .

01

A0 A1

A0 A1
02

(b) The graph representation in our model.

They want to do more .

A0 A1

A0 A1

(c) The graph representation in Li et al. (2020). Li
et al. (2020) only use it to predict arguments, and
the predicates are predicted by another sequence
labeling model.

Figure 8: The original SRL structure and its corre-
sponding graph representation in our model and Li et al.
(2020).

the arguments which belong to the wrongly pre-768

dicted predicates. From the table, we can see that769

our second-order model has made important im-770

provements compared with previous models both771

under the end-to-end and w/ pre-identified predi-772

cate setting. Specifically, 1.13 under end-to-end773

setting and 0.82 under w/ pre-identified predicate774

setting. In addition, consistent with the results on775

CoNLL05 and CoNLL12, the performance of our776

second-order model is also better than that of first-777

order model.778

D Graph Representation of779

Dependency-based SRL780

Figure 8(a) shows the original predicate-argument781

structure of the dependency-based SRL. Dif-782

ferent from the span-based SRL, arguments in783

dependency-based SRL are only single words.784

Consistent with our practice in span-based SRL,785

we also cast the dependency-based SRL task as a786

Model WSJ Brown

P R F1 P R F1

Cai et al. (2018) 84.70 85.20 85.00 - - 72.50
Li et al. (2019) - - 85.10 - - -
Li et al. (2020) 86.26 86.06 86.16 74.76 73.65 74.20
Our O1 86.85 85.70 86.27 76.02 74.14 75.07
Our O2 86.74 86.21 86.48 75.83 74.60 75.21
+ELMo
Li et al. (2019) 84.50 86.10 85.30 74.60 73.80 74.20
Li et al. (2020) - - 87.12 - - 76.65
Our O1 87.54 88.41 87.97 78.01 78.65 78.33
Our O2 87.70 88.73 88.21 77.97 79.31 78.63
+BERT
Li et al. (2020) 88.77 88.62 88.70 80.01 79.80 79.90
Our O1 87.01 90.22 88.59 78.62 82.59 80.55
Our O2 87.61 90.20 88.89 78.99 82.18 80.55

Table 4: Results on CoNLL09-en.

SDGP task. As shown in the Figure 8(b), we add 787

a pseudo node “Root” and link all the predicates 788

to it with their senses as edge labels. Then the 789

argument words are linked to their corresponding 790

predicate words with their semantic roles as edge 791

labels. Since arguments contain only one word, 792

and there exist no conflicts that are mentioned in 793

span-based SRL, so we can directly recover the 794

generated graph to the corresponding SRL structure 795

with similar strategy used in span-based SRL. 796

Li et al. (2020) also form the dependency-based 797

SRL task as a graph parsing task and introduce 798

high-order information to their model too. But 799

they only focus on dependency-based SRL. Figure 800

8(c) shows the graph representation in their model. 801

First, unlike we predict predicates and arguments si- 802

multaneously by adding pseudo “Root” nodes, they 803

need to predict predicates with another sequence la- 804

beling model in advance. The graph parsing model 805

is only used to predict arguments in their approach. 806

Second, the high-order information in their model 807

is not as rich as that in our model since the lacking 808

of the second-order structures regarding “Root”, 809

such as the grandchildren structure grd(Root, want, 810

They) and the sibling structure sib(Root, want, do). 811

E Experiments on Dependency-based 812

SRL 813

Experiments are conducted on the widely used 814

CoNLL09 English dataset (Hajič et al., 2009) 815

to verify the effectiveness of our approach on 816

dependency-based SRL. We focus on end-to-end 817

setting jointly predicting both predicates, the sense 818

of predicates, arguments, and semantic roles of ar- 819

guments. The hyper-parameters are the same as 820
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that in the span-based SRL.821

Table 4 shows the comparison between our mod-822

els and previous state-of-the-art models. We can823

see that both our first-order model and second-824

order model outperform previous best models and825

achieve new state-of-art results on all datasets un-826

der all settings. Besides, as in the span-based SRL,827

our second-order always performs better than the828

first-order model except on Brown under the BERT829

setting, verifying the effectiveness of high-order830

information.831

Compared with Li et al. (2020) which also intro-832

duces high-order information, our model performs833

better. We attribute it to the fact that their model834

is not a complete end-to-end model, i.e., they use835

another independently trained sequence labeling836

model to predict the predicates. So the high-order837

information cannot be used to help predicate pre-838

diction, and errors happen in predicate prediction839

will affect the subsequent argument prediction pro-840

cedure, namely error propagation. However, in our841

model we conduct the predicate prediction and the842

argument prediction simultaneously and the pred-843

icate prediction procedure can also benefit from844

high-order information. In addition, there are no845

second-order structures that contain the node “Root”846

in their model, which leads to the high-order infor-847

mation their model can use is not as rich as ours.848
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