Fast and Accurate Span-based Semantic Role Labeling as Graph Parsing

Anonymous ACL submission

Abstract

Currently, BIO-based and Tuple-based ap-
proaches perform quite well on the span-based
semantic role labeling (SRL) task. However,
the BIO-based approach usually needs to en-
code a sentence once for each predicate when
predicting its arguments, and the Tuple-based
approach has to deal with a huge search space
of O(n?), greatly reducing the training and in-
ference efficiency. Moreover, both BIO-based
and Tuple-based approaches usually consider
only local structural information when making
predictions. This paper proposes to cast end-
to-end span-based SRL as a graph parsing task.
Based on a novel graph representation schema,
we present a fast and accurate SRL parser on
the shoulder of recent works on high-order
semantic dependency graph parsing (SDGP).
Moreover, we propose a constrained Viterbi
procedure to ensure the legality of the output
graph. Experiments on CoNLLOS5, CoNLL12,
and Chinese Proposition Bank 1.0 (CPB1.0)
datasets show that our model achieves new
state-of-the-art results and can parse over 600
sentences per second.

1 Introduction

As a fundamental natural language processing
(NLP) task, semantic role labeling (SRL) aims to
represent the semantic meaning of an input sen-
tence as predicate-argument structures. SRL struc-
ture is shown to be helpful for many downstream
NLP tasks, such as machine translation (Liu and
Gildea, 2010; Marcheggiani et al., 2018) and ques-
tion answering (Wang et al., 2015a).

There exist two forms of concrete SRL for-
malism in the community, i.e., dependency-based
(or word-based) and span-based, depending on
whether an argument consists of a single word or
multiple words. This work focuses on the more
complex span-based SRL task. Figure 1 shows
an example sentence, consisting of two predicates.
The argument corresponds to a span containing one

want to do .

Figure 1: An example sentence for illustrating span-
based SRL, consisting of two predicates, i.e., “want”
and “do”.

or more words. Semantic roles of arguments are
distinguished with edge labels, such as agent “AQ”
and patient “A1”.

In recent years, the span-based SRL has achieved
significant progress thanks to the impressive capa-
bility of deep neural networks in context represen-
tation. The BIO-based approach of Zhou and Xu
(2015) and the Tuple-based approach of He et al.
(2018) are two most representative neural network
models. The BIO-based approach first predicts
the predicates and then finds arguments for each
predicate independently by labeling every word
with BIO tags, like “B-A0” or “I-A0". The major
weakness of the BIO-based approach is that a sen-
tence usually has to be encoded and decoded for
multiple times, each time for one predicate (Zhou
and Xu, 2015; Shi and Lin, 2019), thus proportion-
ally reducing the training and inference efficiency.

The Tuple-based approach (He et al., 2018; Li
et al., 2019) directly considers word spans as ar-
guments (Tuples) and links whole arguments to
predicates. However, the Tuple-based approach
also suffers from a severe inefficiency problem,
since the search space is as high as O(n?), which is
composed of O(n) potential predicates and O(n?)
possible arguments. Previous works usually have to
resort to pruning techniques to improve efficiency,
however with very limited effect and making the
model more complex as well.

Another common disadvantage of both the BIO-
based and Tuple-based approaches is that they

make use of quite local structural information when
making decisions. For instance, arguments and la-
bels are separately predicted for each predicate
without inter-predicate interaction.

Inspired by the resemblance between SRL and
semantic dependency graph parsing (SDGP, Oepen
et al. 2014), and motivated by the recent progress
in SDGP models, we cast end-to-end span-based
SRL as a SDGP task. In order to decompose argu-
ments into graph nodes, we propose a novel graph
representation schema to transform original span-
based SRL structure into a word-level graph. Based
on the schema, we build a fast and accurate end-
to-end model upon recently proposed high-order
graph parsing model (Wang et al., 2019), which
introduces three second-order sub-trees via mean
field variational inference (MFVI). This makes our
model consider inter-predicate interactions beyond
local edges. In addition, since the vanilla graph
parsing model cannot guarantee the legality of the
output graph in the sense of corresponding SRL
structure, we propose a simple post-processing
method based on constrained Viterbi to make sure
that the output graph can be recovered back to a
proper SRL structure. In summary, we make the
following contributions.

* We for the first time cast span-based SRL as
a SDGP task. Based on a new graph repre-
sentation schema, we present a fast and accu-
rate end-to-end span-based SRL parser on the
shoulder of recent successful SDGP models.

* We propose a simple constrained Viterbi pro-
cedure for post-processing illegal graphs.

» Experiments on CoNLL0O5, CoNLL12, and
CPB1.0 show that our approach achieves new
state-of-the-art performance under both set-
tings of w/o and w/ pre-trained language mod-
els (PLMs). Detailed analysis reveals clear
and interesting insights. Moreover, our parser
can naturally support the dependency-based
SRL and also achieves SOTA performance on
the CoNLLO09 dataset!.

* Our parser is more than one magnitude faster
than previous parsers and can analyze over
600 sentences per second.

We will release our code, configuration files, and
major models at github.

"The results are shown in § E

PRD

B-A0
Root They want to do more
\ X B-A0 /]
PRD

Figure 2: The graph representation corresponding to the
original predicate-argument structure of Figure 1.

2 Proposed Approach

This work proposes to cast end-to-end span-based
SRL as a word-level semantic dependency graph
parsing task. The key challenge is to design a suit-
able graphical representation to encode span-based
semantic role annotations for all predicates in a
sentence.

2.1 Graph Representation

SRL-to-Graph Transformation. We propose to
transform the original span-based SRL structure
into a word-level graph, as depicted in Figure 2.
First, we add a pseudo “Root” node at the begin-
ning of the sentence and link all the predicates
to it with “PRD” as the edge label. Please note
that a predicate always corresponds to a single
word in SRL datasets (He et al., 2018). Then,
we attach each semantic argument, denoted as
a = wj,...,wj, (i < j), to its corresponding pred-
icate (denoted as wy). Specifically, we add two
edges, one from wy, to w; and the other from wy,
to w;, with “B-r"" and “E—-7"" as their labels. If
an argument contains one word, i.e., ¢ = j, we
only add the “B-r" edge. r € R is the original
semantic role label and ‘R is the set of role labels.
We denote the new composite label as ¢, and the
new label set as £. Except the “BE” schema, we
also tried another “BII” schema where every word
in argument are linked to the predicate with labels
“B-r I-r I-r..”. However, our preliminary ex-
periments show that the performance of “BII” is
much inferior to “BE”, so we finally choose the
“BE” schema as our representation schema.

Graph-to-SRL Recovery. After generating the
word-level graph through our model, we need to re-
cover it to the corresponding SRL structure. Given
a graph that is legal in the sense of SRL structure,
we can obtain the corresponding SRL representa-
tion straightforwardly. Specifically, all children
nodes (words) of the pseudo “Roor” are treated as
predicates. Then, for each predicate, we recover
all its argument based on the edge labels. An argu-

T
Qi

MEFVI layers |
/‘ 14

(.7 (i)

Biaffine Triaffines
h/\m ,,,,, (rkw
MLP" MLP’ MLPY MLP™’
””” BTT""""HJ’"""’Bﬁ"""’

BIiLSTM x 3
1
X X X

Figure 3: Illustration of our model. s_ * (i,k,7)
corresponds to the second-order scores, where * &€
{sib, cop, grd}.

ment corresponds to either a paired labels, such as
“B-A0” and “E-A0”, or a single beginning label,
such as “B—A0”. Unfortunately, vanilla graph pars-
ing cannot guarantee the legality of output graphs.
To this end, in Section 2.5, we propose a simple yet
effective constrained Viterbi decoding procedure
to handle the issues.

2.2 First-order Model (O1)

Based on our designed graph representation, we
can address span-based SRL as a graph parsing
problem. In this work, we adopt the framework
of Dozat and Manning (2018) which consists of
two stages: 1) predicting all edges and 2) assigning
labels for each edge.

Encoder. In this work, we use a three-layer Bil-
STM to get the contextualized hidden representa-
tion h; for each input token w;. A more detailed
description can be found in § A.

h; = BiLSTM (w;) (1)

Edge scoring and classification. We treat edge
prediction as a binary 0/1 classification task, where
1 means that there is an edge between the given
word pair and O otherwise.

Following Dozat and Manning (2018), we use
two MLPs to get representation vectors of a word
as a head or a modifier respectively, and then use
BiAffine and Sigmoid to compute edge scores and
probabilities.

rll; r® = MLP" (h;) ; MLP™ (h,)

T
h

exp(s(4, j))
exp(s(i,j)) +1

rm

i) = |]

p(i,j) = o(s(i,5)) =

where W € R(+1Dxd: 5) represents the edge
score of i — j2, and p(4,j) is the probability of
the existence of the edge after Sigmoid function o.
During inference, only edges that have p(i,j) >
0.5 are retained.

Label scoring and classification. The skeleton
of the graph is decided after the edge classification
step. Similar to edge scoring, we use two extra
MLPs and a set of Biaffines to compute the label
scores.

h’ . .m’
’L”L

r! = MLP" (h;) ; MLP™ (h;)
I‘m/ T I‘h/
.. _ j label 7
S(Z,j,ﬁ) |: 1 :| W, |: 1 :| (3)
exp (s(i, J, £))

>rerexp (s(i, 4, 0))

where s(i, 7,¢) is the score of the label ¢ for the
edge (4, 7); p(¢|i,) is the probability after softmax
over all labels. Each label has its own Biaffine
parameters W22t ¢ R(@+1)x(d+1),

p(£)i, j) =

2.3 Second-order Model (02)

The difference between our second-order model
and first-order model lies in the edge classifica-
tion module. An obvious limitation of the first-
order model is its strong assumption that edges
are mutually independent and thus it only consid-
ers the information between the current two words
when scoring the edge. One natural extension is
to exploit scores of sub-trees consisting of multi-
ple edges when determining the unlabeled graph.
We consider three types of sub-trees, as shown in
Figure 4. Here, second-order means that scoring
sub-trees containing two edges.

Figure 4(a) shows a sibling sub-tree where two
words depend on the same head word. This cor-
responds to three cases: 1) two words are both
predicates, and depend on “Roof”; 2) two words
are the beginning and ending words of an argument

%For convenience, we abbreviate the edge i — 5 as (%, 5)
in the remaining part of the paper.

mmmm

ma h1

(a) sibling (b) co-parent (c) grandchild

Figure 4: Three types of second-order sub-trees.

of some predicates; and 3) two words belong to
two arguments of the same predicate.

Figure 4(b) shows a co-parent sub-tree where
two words govern the same word. This corresponds
to two cases: 1) wy, and wy, are two predicates;
2) one of wy,, and wy, is “Root”, and the other is a
predicate.

Figure 4(c) shows a grandchild sub-tree in
which three words form a head-modifier-grandchild
chain. This also covers two cases: 1) wy, is “Root”,
wp, 1s a predicate, and wy is the beginning or end-
ing word of an argument which belongs to w,; 2)
wy, 1s a predicate, w,, is not only the beginning
or ending word in an argument but also another
predicate, and wy is the beginning or ending word
in an argument which belongs to predicate w;,.

We can see that the three types of sub-trees cap-
ture a rich set of edge interaction cases, allowing
the model to evaluate graphs from a more global
view.

Second-order scoring. First, we use three new
MLPs to get representations of each word for play-
ing different roles in second-order sub-trees, re-
spectively.

rh// . rm//; rg _ 1\/[]_113}1///rn///g (hl) (4)

T T

Wopm” oy r! denote the representation vec-

where r}’ ;1]

tors of w; as head, modlﬁer and grandchild respec-
tively. Then, a TriAffine scorer (Zhang et al., 2020)
taking the three vectors as input is applied to com-
pute the score of the corresponding second-order

structure,

T
T‘riAFF(Vl,VQ,V?)) = |: Vlg :| V1TW/ |: Vl2 :|

®)
where W/ € RU@+Dxd'x(d'+1) gnq v, € RY j €
{1,2, 3}. Finally, scores of the three types of sub-
trees can be computed as follows respectively.

s_sib(i, j, k) = THAFF1(r?", ;“”) (6)
s_cop(i, j, k) = THAFF2(el 22" £l") (7)
s_grd(i, j, k) = THAFF3(rl" v 1§) (8

It should be noted that for symmetrical sibling sub-
trees and co-parent sub-trees, we compute their cor-
responding scores only once, i.e., s_sib(i, j, k) =
s_sib(i, k, j) and s_cop(i, j, k) = s_cop(k, j,1).

Approximate inference using MFVI. Given
scores of edges and second-order sub-trees, the
most straightforward choice is directly searching
for the optimal graph with the highest accumulated
score, which however is NP-hard, because there is
no efficient algorithm to compute the score of the
graph for all shapes. Therefore, we follow Wang
et al. (2019) and employ approximate inference
(MFVI) for both training and evaluation.

Concretely, we first define a confidence variable
Qi for each edge (4, j) to estimate the probability
of the edge being in the correct semantic graph.
MFVI approximates the true probability iteratively
as follows.

V=3 Q4 Vs sib(i, 4, k)

e
+ Q;S}fl)s_cop(iaja k))

+ QY Vs_grd(i, j, k)

QY = o(s(i,5) + MLV

where ¢ € [1, T is the iteration number. M;; is an
intermediate variable that stores information from
second-order sub-tree scores. Qg-)) is initialized
with the p(i, j) in equation 2. We define the score
of edge not being in the graph as 0 and normalize
Q(J) via Sigmoid operation ¢ at each iteration. Fol-
lowing Wang et al. (2019), we stop computation
after T = 3 iterations. During inference, Q7 is
directly used as p(i, j).

The intuitive explanation is that the probability
of edge’s existence is affected by both local infor-
mation, i.e., the first-order score and non-local in-
formation, i.e., the higher-order score. And through
T = 3 times of iteration, MFVI collects rich histor-
ical decision information which is helpful for the
model to make more accurate final decision.

2.4 Training

The loss of our system comes from both edge and
label classification modules. Given one sentence
X and its gold graph G, the fully connected graph

of X is denoted as C.

— Zlogp’(i,j) — Zlog (1-1'(4,4))

(4,9)€G (4,7)€C\G
(4,7)€G

where 6 denotes model’s parameters; C\G is the
set of incorrect edges; / is the gold label of edge
(i,7). In our first-order model, p’ (4, j) equals the
probability of the edge’s existence p(i,j) com-
puted in equation 2. In the second-order model,
it equals to the final posterior distribution, i.e., QZ;
The final loss of our system is the weighted sum of
the two losses:

L(6) = ALi(6) + (1 — A)Lo(9)

where 0 < X\ < 1 1is set to 0.06.

2.5 Inference

During inference, we first use the edge classifica-
tion module to build the graph skeleton, and then
use the label classification module to assign la-
bels to predicted edges. If the generated graph is
legal, we can directly recover the corresponding
SRL structure through Graph-to-SRL procedure
described in 2.1.

Howeyver, since the label classification module
handles each edge independently, the resulting
graph may contain conflicts, as shown in the upper
part of Figure 5(a). First, if two consecutive edges
are both labeled as “E—x", then it is impossible to
recover the corresponding arguments. Another con-
flicting scene is when there exists a single outlier
edge labeled as “E—x".

Conflict resolution via constrained Viterbi. We
propose to employ constrained decoding to handle
conflicts shown in Figure 5(a). Concretely, when
conflicts occur during recovering arguments for a
predicate in the output graph, we re-label all words
in the sentence for the predicate.> The output la-
bels are shown in the second row starting with
“Vtb”, where the two new labels “O/I” mean out-
side/inside an argument respectively. The idea of
constrained Viterbi is to control the transition ma-
trix to make sure that the resulting label sequence
is always correct. For example, as shown in Figure
5(b), we only allow transitions from “B—x"" and “I”

3We have also tried to directly perform constrained Viterbi
on the edges, instead of all words in the sentence. However,
the performance is much inferior.

Root Some students want to more
Vtb: B-2A0 E-AQ (¢}

B-A1 I E-Al O

(a) A conflicting example. Edges in red cause conflicts,
and the label sequence below is the corrected sequence
via our constrained Viterbi.

B—* E—x*

0000
=~ D)
D)2
D2

(b) Transition matrix.

Figure 5: A conflicting example and our transition ma-
trix. B—x and E—x* represent all the composite beginning
and ending labels. Cells with fence denote the prohib-
ited transitions.

to “E—x", and disallow transitions from “E-x" and
“0” to “E—x"".

In fact, constrained Viterbi is a widely used tech-
nique in BIO-based SRL models. However, it is not
trivial to apply constrained Viterbi to our SDGP
framework as a post-processing step. The main
challenge is how to make use of the probabilities
computed by our SDGP model. We propose to
combine the probabilities of the edge classification
and label classification modules as follows:

p//(g‘ihj) = p(ivj) ’ p(€|7’7])
p”(0li,) = p"(1li,j) = 1 - p(i,)

where p”(¢|i, j) is the probability for the normal
label such as “B-A0”. p”(0li,7) and p”(1|i,)
share the same value because they both mean that
the word is neither the beginning nor the ending
word of an argument, but “I” has an extra indi-
cation that there is an unpaired “B-+" in the left
side.

3 Experiments

Data. We conduct experiments on CoNLLO05
(Palmer et al., 2005) and larger-scale CoNLL12
(Pradhan et al., 2012), which are two widely used
English SRL datasets. For Chinese, we use Chinese
Proposition Bank 1.0 (CPB1.0) (Xue, 2008) as our
dataset. Following previous works on span-based
SRL, we omit predicate sense prediction (Zhou and
Xu, 2015; He et al., 2017).

Model Type Sents/sec
He et al. (2018) Tuple-based 44
Strubell et al. (2018) BIO-based 45
Liet al. (2019) Tuple-based 19
Our O1 726
Our 02 611
Our O1 +BERT 252
Our O2 +BERT 228

Table 1: Speed comparison on the CoNLLO05-dev.

Evaluation metrics. We mainly focus on end-
to-end setting, and jointly predict both predicates,
arguments, and the corresponding roles. We use
the official evaluation scripts*. We choose seeds
randomly to run our model for 3 times and report
the average results. For significance test, we follow
Xia et al. (2019b) and use their released scripts of
Dan Bikel’s randomized parsing evaluation com-
parator. We adopt most of the hyper-parameters
settings used in Wang et al. (2019). The difference
is detailed in § B. We denote our first-order model
and second-order model as Ol and O2. Please
kindly notice that this work is a pure modeling
study. So we do not compare with syntax-aware
works (Roth and Lapata, 2016; Xia et al., 2019b;
Zhou et al., 2020).

3.1 Efficiency Comparison

Table 1 compares different models in terms of de-
coding speed. For fair comparison, we re-run all
previous models on the same GPU environment
(Nvidia GeForce 1080 Ti 11G).

We can see that our models improve the effi-
ciency of previous span-based SRL models by at
least one order of magnitude. Compared with the
Tuple-based approach (He et al., 2018; Li et al.,
2019), our graph-based parser only has a O(n?)
search space. As for the BIO-based model of
Strubell et al. (2018), the encoder contains 12 self-
attention layers, and they adopts a pipeline frame-
work by first predicting all predicates via sequence
labeling and then recognizing arguments, leading
to its low parsing speed.

Our second-order model is only 15% slower than
the first-order model, showing that the computing
of second-order sub-tree scores and the MFVI in-
ference procedure are both very fast via large tensor
computation on GPUs. And when augmented with
BERT, our methods can still parse over 200 sen-
tences per second.

*http://www.cs.upc.edu/~srlconll/st05/
st05.html

3.2 Main Performance Results

Table 2 shows performance comparison on both
CoNLLOS5 and CoNLLI12 test datasets. For the
sake of fair comparison, we split the table into
three major rows, i.e., without PLMs, with ELMo,
and with BERT. Due to space constraints, we leave
the experiments on CPB1.0 to § C.

First, we can see that our proposed second-
order model surpass previous BIO-based and Tuple-
based methods, achieving new SOTA F scores on
all three test datasets and under all three settings.
The Tuple-based model of He et al. (2018) is very
competitive in its performance. Our second-order
parser outperforms it by relatively large margin in
F; only on CoNLLO5-WSJ w/o PLMs (1.26) and
on CoNLLO05-Brown w/ ELMo (0.93). On other
datasets and settings, the performance gap is in
[0.2,0.3].

Second, we can see that the second-order model
outperforms the first-order model in both preci-
sion and recall on almost all datasets and settings,
showing that high-order structural information is al-
ways helpful. More concretely, under the setting of
w/o PLMs, improvements in F'; on CoNLLO05-WSJ
(0.7), on CoNLLO5-Brown (0.4), and on CoNLL12
(0.7) are all significant at a confidence level of
p < 0.05. Under the settings of w/ BERT, the
improvement is 0.5 in F'; on CoNLL12 at a more
significant level of p < 0.001. And we find an in-
teresting phenomenon that our model consistently
achieves much higher precision scores but lower
recall scores than that of He et al. (2018). We give
the detailed analysis in Section 3.3.

3.3 Performance Regarding Argument Width
and Argument Type

In order to explore the differences between our
method and previous methods, and the advantages
of high-order model over first-order model, we
make an+ in-depth analysis from the perspectives
of argument width and argument type.

Performance Regarding Argument Width. As
shown in Figure 6, we divide arguments into four
categories according to their width, i.e., the number
of words included, and report F; scores, precision
and recall for each category. The proportion of each
category in the gold-standard data is also reported.
We obtain results of He et al. (2018) by re-running
evaluation with their released model. We draw
three clear and important findings.

http://www.cs.upc.edu/~srlconll/st05/st05.html
http://www.cs.upc.edu/~srlconll/st05/st05.html

Model CONLL05-WSJ CoNLLO05-Brown CoNLL12
Dev.F, p R F P R F; Dev.F P R Fy
He et al. (2017)7 803 802 823 812 676 696 685 755 786 751 76.8
Strubell et al. (2018)T * 81.72 81.77 83.28 8251 6858 70.10 69.33 - - - -
He et al. (2018)* 81.6 812 839 85 697 719 708 794 794 801 79.8
Li et al. (2019)* - - - 83.0 - - - - - - -
Our Ol 81.68 83.08 83.05 83.06 7142 69.77 7059 79.33 80.71 78.13 79.40
Our 02 8247 8397 8356 8376 71.82 70.19 7099 80.00 80.75 79.46 80.10
+ELMo
Strubell et al. (2018)" * 8473 83.86 85.98 8491 73.01 75.61 7431 - - - -
He et al. (2018)* 853 848 872 8.0 739 784 76.1 83.0 819 840 829
Li et al. (2019)* - 852 875 863 747 7181 764 - 849 814 83.1
Our Ol 8526 8574 86.69 8621 7570 78.00 76.83 83.04 8251 8348 82.99
Our 02 8551 8580 86.80 8630 7644 77.63 77.03 83.18 8279 83.45 83.12
+BERT
Our Ol 86.14 8628 8771 86.99 77.92 79.49 7870 84.08 83.00 8455 83.77
Our 02 86.14 8637 87.93 87.14 78.18 7991 79.04 84.28 8330 8526 84.27

Table 2: Results on CONLLO5 and CoNLL12 datasets. We mark BIO-based models by T and tuple-based ones by 1.
Moreover, we mark the results of Strubell et al. (2018) by * to indicate that we report corrected evaluation results
after re-testing their released syntax-agnostic models, since they incidentally used a wrong evaluation procedure in
their original paper, leading to much higher precision scores.

our02
ouro1

—&— He etal.(2018)

88 88

90

86 \ 86
8 AN 8] oA \
82 \ 821 o

80 e b 80

78 - 78

our 02 . our 02
ouro1 iy = ouro1
—a— He etal.(2018) e —a— He etal.(2018)

1(30.5%) 2(17.4%) [3,6] (27.9%)

width (proportion)

[7.1(24.2%) 1(30.5%) 2 (17.4%)

(a) Fy score

[3,6] (27.9%)
width (proportion)

(b) P (precision)

[7.1(24.2%) 1(30.5%) 2(17.4%) [3.6] (27.9%)

width (proportion)

(c) R (recall)

[7.1(24.2%)

Figure 6: Analysis of the arguments with different width. The horizontal axis denotes the width of arguments and
the proportion of arguments of the same width in the data set. The vertical axis denotes the corresponding metrics,

i.e., Fl, P, R.

First, both our first-order and second-order mod-
els perform better on multi-word arguments than
He et al. (2018). This is kind of surprising, consid-
ering that the Tuple-based approach can explicitly
represent whole arguments, whereas our graph pars-
ing approach only models argument beginning and
ending positions.

Second, compared with He et al. (2018), our
second-order model achieves much higher preci-
sion scores on all multi-word arguments, while the
drop in recall scores are relatively slight, 1.92 on
two-word arguments, 0.6 on arguments containing
[3, 6] words. This directly explains why our mod-
els perform better in precision and worse in recall.
Obviously, the reason is that our models predict
less multi-word arguments with higher precision
than He et al. (2018).

Third, we can see that the second-order model is

always superior to the first-order model, except for
precision over two-word arguments, indicating the
high-order structural information is stably helpful.

Performance Regarding Argument Type. Fig-
ure 7 shows the performance of our models and He
et al. (2018) on several different types of arguments
with the highest frequency. First, by comparing our
first-order and second-order models, we can see
that second-order model is better than first-order
in all kinds of arguments. Second, compared with
He et al. (2018), we find another interesting phe-
nomenon. Our model has a higher improvement
on major arguments such as A0 and A1, especially
on A2 (3.27 in F;) . However, the advantage of
our model in adjunct arguments such as AM-TMP,
AM-MOD, and AM-ADV are not obvious. We
think that this may be caused by the difference in

the width of different arguments. Considering the
above analysis of arguments with different widths,
which revealed that our model is better at dealing
with long arguments. We compare the width of
different arguments and find that the average width
of major arguments and adjunct arguments are re-
spectively 5.82 and 3.27. In particular, most A2
arguments have a width of 2, and most AM-ADV
arguments have a width of 1. As shown in the Fig-
ure 6(a), our model performs better on arguments
with width 2 and slightly worse on arguments with
width 1.

4 Related Works

Span-based SRL models. As two mainstream
neural models, the BIO-based and Tuple-based
approaches handle SRL in different ways. The
BIO-based approach first recognizes predicates and
then determines arguments for each predicate via
sequence labeling. Zhou and Xu (2015) employ
multi-layer BiLSTMs as the encoder and apply a
CRF layer to find the best label sequence for each
predicate. He et al. (2017) propose to use high-
way BiLSTMs (Srivastava et al., 2015) to alleviate
the vanishing gradient problem, and use recurrent
dropout (Gal and Ghahramani, 2016) to reduce
over-fitting. Shi and Lin (2019) concatenate each
predicate word after the original sentence to form
the new input and use BERT(Devlin et al., 2019)
and BiLSTM as the encoder.

He et al. (2018) propose the Tuple-based ap-
proach. The idea is directly predicting relations
between candidate predicates (words) and argu-
ments (word spans). Compared with the BIO-based
approaches, the Tuple-based approach has the ad-
vantage of being able to flexibly represent whole
argument. Li et al. (2019) extend the Tuple-based
model to support both span-based and dependency-
based SRL tasks. Zhou et al. (2020) propose a
multi-task learning framework that does the SRL,
dependency parsing, and constituent parsing simul-
taneously, and prove that semantic and syntax can
benefit from each other.

SDGP models. SDGP (Oepen et al., 2014, 2015)
uses graph to represent the semantic information
of a sentence. Nodes correspond to single words,
whereas edges and their labels denote semantic re-
lationships. As a mainstream approach, the graph-
based model finds the best graph from the fully con-
nected graph. Dozat and Manning (2018) propose
a simple and efficient SDGP parser. Wang et al.

I

F1
S o
3 8
[T T T [
[[T T I

I I ¢<>
-- e
\>
.
—
4)
i

N

A0 Al AMTMP A2 AM-MOD AM-ADV AM-LOC

Figure 7: F score of different types of arguments.

(2019) extend the model of Dozat and Manning
(2018) by introducing second-order information.
They compare two approximate high-order infer-
ence methods, i.e., mean filed variational inference
and loopy belief propagation and find similar per-
formance. In this work, we build our parser on the
shoulder of these SDGP works.

The dependency-based SRL model of Li et al.
(2020) is also related to our work. They directly
apply the SDGP model of Wang et al. (2019) to the
simpler dependency-based SRL. Please note that
they adopt a pipeline (not end-to-end) framework
by first predicting predicates with an independently
trained sequence labeling model, and then recogniz-
ing arguments of all predicates via graph parsing.
We give more discussion and performance compar-
ison in the § D and § E.

5 Conclusions

This paper proposes a new graph representation
schema for transforming raw span-based SRL struc-
tures to word-level graphs. Based on the schema,
we cast the span-based SRL as a SDGP task and
present a fast and accurate end-to-end parser. More-
over, we propose a simple post-processing method
based on constrained Viterbi to handle conflicts
in the output graphs. Experiments show that our
parser 1) is much more efficient than previous
parsers, and can parse over 600 sentences per sec-
ond; 2) reaches new state-of-the-art performance
on CoNLLO05, CoNLL12, and CPB1.0 datasets.
The in-depth analysis shows that compared with
the representative and competitive Tuple-based ap-
proach of He et al. (2018), our graph parsing model
is superior in recognizing multi-word arguments
and able to recall fewer arguments with much
higher precision. This clear finding may lead to
some interesting future works, e.g., combining the
power of the two different approaches.

References

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
ACL, pages 2753-2765.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171-
4186.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of ACL, pages 484—-490.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Proceedings of NeuralPS, pages
1019-1027.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Padog, Jan §tépa’mek, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of CoNLL,
pages 1-18.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of ACL, pages 364-369.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of ACL, pages
473-483.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
Proceedings of NAACL-HLT, pages 260-270.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De-
pendency or span, end-to-end uniform semantic role
labeling. In Proceedings of AAAI pages 6730-6737.

Zuchao Li, Hai Zhao, Rui Wang, and Kevin Parnow.
2020. High-order semantic role labeling. In Findings
of EMNLP, pages 1134—-1151.

Ding Liu and Daniel Gildea. 2010. Semantic role fea-
tures for machine translation. In Proceedings of COL-
ING, pages 716-724.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of NAACL-HLT, pages 486—492.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NeuralPS, pages 3111-3119.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkov4a, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015 task
18: Broad-coverage semantic dependency parsing. In
Proceedings of SemEval, pages 915-926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Haji¢, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of SemEval, pages 63-72.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71-
106.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532-1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227-2237.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings of
EMNLP-CoNLL, pages 1-40.

Michael Roth and Mirella Lapata. 2016. Neural seman-
tic role labeling with dependency path embeddings.
In Proceedings of ACL, pages 1192—1202.

Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui, and
Tingsong Jiang. 2016. Capturing argument relation-
ship for Chinese semantic role labeling. In Proceed-
ings of EMNLP, pages 2011-2016.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

Rupesh K Srivastava, Klaus Greff, and Jiirgen Schmid-
huber. 2015. Training very deep networks. In Pro-
ceedings of NeuralPS, pages 2377—-2385.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In
Proceedings of EMNLP, pages 5027-5038.

Weiwei Sun, Zhifang Sui, Meng Wang, and Xin Wang.
2009. Chinese semantic role labeling with shallow
parsing. In Proceedings of EMNLP, pages 1475—
1483.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David
McAllester. 2015a. Machine comprehension with

syntax, frames, and semantics. In Proceedings of
ACL-1JCNLP, pages 700-706.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of ACL,
pages 4609-4618.

Zhen Wang, Tingsong Jiang, Baobao Chang, and Zhi-
fang Sui. 2015b. Chinese semantic role labeling with
bidirectional recurrent neural networks. In Proceed-
ings of EMNLP, pages 1626-1631.

Qiaolin Xia, Lei Sha, Baobao Chang, and Zhifang Sui.
2017. A progressive learning approach to Chinese
SRL using heterogeneous data. In Proceedings of
ACL, pages 2069-2077.

Qingrong Xia, Zhenghua Li, and Min Zhang. 2019a.
A syntax-aware multi-task learning framework for
Chinese semantic role labeling. In Proceedings of
EMNLP-1JCNLP, pages 5382-5392.

Qingrong Xia, Zhenghua Li, Min Zhang, Meishan
Zhang, Guohong Fu, Rui Wang, and Luo Si. 2019b.
Syntax-aware neural semantic role labeling. In Pro-
ceedings of AAAI, pages 7305-7313.

Nianwen Xue. 2008.
with semantic roles.
34(2):225-255.

Labeling Chinese predicates
Computational Linguistics,

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of ACL, pages 3295-3305.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of ACL-IJCNLP, pages 1127-1137.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Parsing
all: Syntax and semantics, dependencies and spans.
In Findings of EMNLP, pages 4438-4449.

A Encoder

Input vectors. Following standard practice for
SRL, the input of the i-th word is the concatena-
tion of word embedding e?°"?¢, lemma embedding
eéemma, and charLSTM representation vector:

;uord @ eliemma @ e;:har

(10)

X; =€

where efh‘“" is the output vector of a one-layer BiL.-

STM that encodes the character sequence (Lample
et al., 2016).

BiLSTM encoder. Then, a three-layer BILSTM
encoder produces a context-aware vector represen-
tation for each word.

h, =f; ® b; (1D

where f; and b; respectively denote the output vec-
tors of top-layer forward and backward LSTMs for
w;.

10

Model Fy
end2end

Xia et al. (2019a) 79.29
Our O1 79.36
Our O2 80.42
w/ pre-identified predicate

Sun et al. (2009) 74.12
Wang et al. (2015b) 77.59
Sha et al. (2016) 77.69
Xia et al. (2017) 79.67
Xia et al. (2019a) 80.48
Our O1 80.06
Our 02 81.30

Table 3: F; scores on CPB1.0 test set.

B Hyper-parameter settings

We employ 300-dimension English word embed-
dings from GloVe (Pennington et al., 2014) for En-
glish experiments. For Chinese, we train the word
embeddings on Chinese Gigaword dataset® with
word2vec (Mikolov et al., 2013). We directly adopt
most hyper-parameters of the SDGP work of Wang
et al. (2019), except that we reduce the dimension
of Char-LSTM from 400 to 100 to save the memory,
which only slightly influence performance. And
under the setting of w/o PLMs, the number of pa-
rameters of the first-order model and second-order
model is 189M and 200M respectively. For ex-
periments with PLMS, we adopt ELMo® (Peters
et al., 2018) and BERT’ (Devlin et al., 2019) to
get contextual word representation to boost the per-
formance of our model. Following most of previ-
ous works (He et al., 2018; Xia et al., 2019b), for
ELMo, we froze its parameters and concatenate
its output with x; to form the new input for the
BiLSTM encoder. For BERT, we directly use it
as our encoder and fine tune its parameters during
training.

C Experiments on CPB1.0

Table 3 shows the comparison between our work
and previous works on CPB1.0 test set. Because
most of the previous work carried out experiments
with given predicates, in order to compare with
them, we also report the results of given predicates.
Under the setting of given pre-identified predicate,
we directly mask the output of our models with
given predicates. Concretely, we use the given pred-
icates as the predicted predicates. Then, we delete

Shttps://catalog.ldc.upenn.edu/LDC2003T09
®https://allennlp.org/elmo
"https://huggingface.co/bert-large-uncased

more
They want to do
&)

(a) The original dependency-based SRL structure
of the example sentence. “want” with sense label
“01” and “do” with sense label “02” are two predi-

cates.
m

Root They want to more

(b) The graph representation in our model.

They want more

I

(c) The graph representation in Li et al. (2020). Li
et al. (2020) only use it to predict arguments, and
the predicates are predicted by another sequence
labeling model.

A0

Figure 8: The original SRL structure and its corre-
sponding graph representation in our model and Li et al.
(2020).

the arguments which belong to the wrongly pre-
dicted predicates. From the table, we can see that
our second-order model has made important im-
provements compared with previous models both
under the end-to-end and w/ pre-identified predi-
cate setting. Specifically, 1.13 under end-to-end
setting and 0.82 under w/ pre-identified predicate
setting. In addition, consistent with the results on
CoNLLO5 and CoNLL12, the performance of our
second-order model is also better than that of first-
order model.

D Graph Representation of
Dependency-based SRL

Figure 8(a) shows the original predicate-argument
structure of the dependency-based SRL. Dif-
ferent from the span-based SRL, arguments in
dependency-based SRL are only single words.
Consistent with our practice in span-based SRL,
we also cast the dependency-based SRL task as a

11

Model WSJ Brown
P R F1 P R F
Cai et al. (2018) 84.70 85.20 85.00 - - 7250

Li et al. (2019) - - 8510 - -
Lietal. (2020) 86.26 86.06 86.16 74.76 73.65 74 20

Our Ol 86.85 85.70 86.27 76.02 74.14 75.07
Our 02 86.74 86.21 86.48 75.83 74.60 75.21
+ELMo

Lietal. (2019) 84.5 86.1
Lietal (2020) - -

853 746 738 742
87.12 - - 76.65

Our O1 87.54 88.41 87.97 78.01 78.65 78.33
Our 02 87.70 88.73 88.21 77.97 79.31 78.63
+BERT

Liet al. (2020) 88.77 88.62 88.70 80.01 79.80 79.90
Our O1 87.01 90.22 88.59 78.62 82.59 80.55
Our 02 87.61 90.20 88.89 78.99 82.18 80.55

Table 4: Results on CoNLL09-en.

SDGP task. As shown in the Figure 8(b), we add
a pseudo node “Root” and link all the predicates
to it with their senses as edge labels. Then the
argument words are linked to their corresponding
predicate words with their semantic roles as edge
labels. Since arguments contain only one word,
and there exist no conflicts that are mentioned in
span-based SRL, so we can directly recover the
generated graph to the corresponding SRL structure
with similar strategy used in span-based SRL.

Li et al. (2020) also form the dependency-based
SRL task as a graph parsing task and introduce
high-order information to their model too. But
they only focus on dependency-based SRL. Figure
8(c) shows the graph representation in their model.
First, unlike we predict predicates and arguments si-
multaneously by adding pseudo “Root” nodes, they
need to predict predicates with another sequence la-
beling model in advance. The graph parsing model
is only used to predict arguments in their approach.
Second, the high-order information in their model
is not as rich as that in our model since the lacking
of the second-order structures regarding “Root”,
such as the grandchildren structure grd(Root, want,
They) and the sibling structure sib(Root, want, do).

E Experiments on Dependency-based
SRL

Experiments are conducted on the widely used
CoNLLO09 English dataset (Haji¢ et al., 2009)
to verify the effectiveness of our approach on
dependency-based SRL. We focus on end-to-end
setting jointly predicting both predicates, the sense
of predicates, arguments, and semantic roles of ar-
guments. The hyper-parameters are the same as

that in the span-based SRL.

Table 4 shows the comparison between our mod-
els and previous state-of-the-art models. We can
see that both our first-order model and second-
order model outperform previous best models and
achieve new state-of-art results on all datasets un-
der all settings. Besides, as in the span-based SRL,
our second-order always performs better than the
first-order model except on Brown under the BERT
setting, verifying the effectiveness of high-order
information.

Compared with Li et al. (2020) which also intro-
duces high-order information, our model performs
better. We attribute it to the fact that their model
is not a complete end-to-end model, i.e., they use
another independently trained sequence labeling
model to predict the predicates. So the high-order
information cannot be used to help predicate pre-
diction, and errors happen in predicate prediction
will affect the subsequent argument prediction pro-
cedure, namely error propagation. However, in our
model we conduct the predicate prediction and the
argument prediction simultaneously and the pred-
icate prediction procedure can also benefit from
high-order information. In addition, there are no
second-order structures that contain the node “Root”
in their model, which leads to the high-order infor-
mation their model can use is not as rich as ours.

12

