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Abstract
Exploring the intersection of language and cul-001
ture in Large Language Models (LLMs), this002
study critically examines their capability to en-003
capsulate cultural nuances across diverse lin-004
guistic landscapes. Central to our investigation005
are three research questions: the efficacy of006
language-specific instruction tuning, the impact007
of pretraining on native language data, and the008
identification of optimal approaches to elicit009
accurate cultural knowledge from LLMs. Uti-010
lizing the GeoMLaMA benchmark for multilin-011
gual commonsense knowledge and an adapted012
CAMeL dataset (english-only) for evaluation013
of nuanced cultural aspects, our experiments014
span six different languages and cultural con-015
texts, revealing the extent of LLMs’ cultural016
awareness. Our findings highlight a nuanced017
landscape: while language-specific tuning and018
bilingual pretraining enhance cultural under-019
standing in certain contexts, they also uncover020
inconsistencies and biases, particularly in non-021
Western cultures. This work not only expands022
our understanding of LLMs’ cultural compe-023
tence but also emphasizes the importance of024
integrating diverse cultural perspectives in their025
development, aiming for a more globally rep-026
resentative and equitable approach in language027
modeling.1028

1 Introduction029

Large language models (LLMs) are capable of per-030

forming well across a wide variety of tasks (Bom-031

masani et al., 2022; Srivastava et al., 2023) owing to032

their ability of generating coherent text that draws033

from a large corpus of pre-training data. How-034

ever, some tasks like performing open-ended social035

reasoning involve questions (Parrish et al., 2022)036

which due to being under-specified or requiring037

a certain level of critical thinking elicit an opin-038

ionated answer from the LLM that affects different039

social groups, sometimes in undesirable ways (Ben-040

der et al., 2021). The role of culture is undeniable041

1Our code and data are available at this link

Figure 1: We instruction-tune LLaMA 2 in 5 non-
English languages (Chinese, Hindi, Persian, Swahili,
Greek) and evaluate both general cultural awareness as
well as fine-grained cultural understanding in multilin-
gual settings.

when looking at factors that determine people’s 042

beliefs and behavior in social settings. Cultural dif- 043

ferences exist across countries and they interplay 044

with the language spoken by native speakers, in- 045

fluencing both individual traits and group behavior. 046

However, it is a well-known problem that multi- 047

lingual LLMs are trained on corpora that are not 048

equally representative of all parts of the world, but 049

are rather more “western aligned” (Weidinger et al., 050

2022). This leads to potential issues of misrepre- 051

sentation of culture and a lack of understanding 052

of cultural knowledge in text generated by LLMs. 053

Other work which studies this question brings out 054

the lack of precision in cultural representations 055

(Ramezani and Xu, 2023), problems of skewing dis- 056

tributions or amplifying biases existing in society 057

(Jakesch et al., 2023), erasing underrepresented nu- 058

ances (Hutchinson et al., 2020) and also the impact 059

of low resourced languages and cultures they are 060
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spoken in (Wibowo et al., 2023). While these stud-061

ies have laid the groundwork, there remains a gap062

in understanding how language-specific instruction063

tuning might correlate with cultural knowledge.064

Our work aims to first test the hypothesis that065

instruction tuning on data in a specific language066

might improve the cultural awareness of the LLM067

for the related culture. We also look at the impact068

of continued pre-training in a bilingual setting and069

how that has an influence on multilingual cultural070

understanding. Specifically we design the follow-071

ing research questions for this purpose:072

RQ1 : Does instruction tuning on language-073

specific data enhance cultural knowledge?074

RQ2a : Does pretraining on language-specific075

data enhance cultural knowledge?076

RQ2b : What is the optimal approach for077

eliciting cultural information from LLMs?078

For this purpose, we translate the instructional data079

used for training the Alpaca model (Taori et al.,080

2023) to five languages (Chinese, Hindi, Persian,081

Swahili, Greek) other than English to cover the082

six distinct cultures. We then use this data to train083

low rank adapters (LoRA, Dettmers et al. (2023))084

followed by evaluation on a benchmark for mul-085

tilingual cultural knowledge in each language to086

measure the impact of instruction tuning.087

We also explore whether LLMs understand tangi-088

ble cultural nuances like food, beverages, clothing,089

etc by framing a dataset about different social sit-090

uations with cultural targets based on a previous091

study (Naous et al., 2023). We use this to ask:092

RQ3 : Do LLMs understand the nuances of093

culture and what disparities exist across tangi-094

ble cultural aspects?095

Overall, our findings show shortcomings in not096

only how culture is understood by LLMs, but also097

in current existing approaches at overcoming them.098

2 Data and Methods099

Our study explores the cultural understanding of100

large language models (LLMs) through two pri-101

mary strategies: enhancement of an existing bench-102

mark and the creation of a new, culturally-focused103

benchmark. Our methodology involves translating104

instructional data from the Alpaca dataset (which105

does not include culturally relevant information)106

into five additional languages and conducting super-107

vised fine-tuning on various LLaMA 2 model (Tou-108

vron et al., 2023) sizes using these translations109

(a sample of which is manually verified by na-110

tive speakers). With this approach we aim to test 111

whether SFT in itself might improve cultural pro- 112

cessing even though we are not explicitly training 113

on culture specific data. This enables a broad ex- 114

amination of how LLMs handle cultural nuances 115

across different linguistic contexts. 116

2.1 Data 117

We work with 2 different datasets to understand 118

cultural awareness at global and granular scales. 119

GeoMLaMA The GeoMLaMA benchmark (Yin 120

et al., 2022) is central to our study on the cultural 121

awareness of language models. Originally contain- 122

ing culturally diverse fill-in-the-blank sentences, 123

we have converted it into a question-answer (QA) 124

format. This adaptation makes it suitable for eval- 125

uating decoder-only models. Key features of this 126

benchmark include: 127

• Multilingual Scope: Covers five countries 128

(USA, China, India, Iran, Kenya), each with its 129

native language (English, Chinese, Hindi, Per- 130

sian, Swahili). We further expand our investiga- 131

tion by integrating a Greece/Greek variant of the 132

dataset. This addition provides a broader spec- 133

trum for analysis, especially for languages that 134

are lower resourced. 135

• QA Format: Consists of 900 multilingual ques- 136

tions with one gold correct and multiple incor- 137

rect answers, facilitating a clear assessment of 138

the model’s cultural understanding. 139

• Cultural Diversity: Questions cover a range of 140

17 broad cultural topics (eg. broom usage, cli- 141

mate, driver seat, measurement unit, etc) and are 142

presented in both the country’s native language 143

and other languages, allowing for a comprehen- 144

sive cross-cultural evaluation. 145

For RQ1, this dataset allows us to examine whether 146

instruction tuning in a language specific to a given 147

culture leads to better understanding and repre- 148

sentation of that culture in language models. For 149

RQ2a and RQ2b, the GeoMLaMA dataset’s multi- 150

lingual nature helps assess the impact of pretraining 151

language models on language-specific data. 152

CAMeL Our study also incorporates the CAMeL 153

dataset, initially introduced in the “Beer After 154

Prayer” paper (Naous et al., 2023), to conduct 155

a more detailed cultural analysis. Originally de- 156

signed to compare Arabic and Western cultural 157

norms, we have adapted the CAMeL dataset to 158

align with the countries featured in the GeoM- 159

LaMA benchmark. This adaptation involves col- 160
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lecting new data from native speakers and select-161

ing sentence templates that are broadly applicable162

across various cultures. Our modified version of163

the CAMeL dataset is tailored to specifically ad-164

dress RQ3, which focuses on the language models’165

granular understanding of cultural elements.166

Key aspects of our adapted CAMeL dataset are:167

• Cultural Adaptation: We have enriched168

CAMeL to reflect six cultures from the Ge-169

oMLaMA benchmark, involving data collection170

from native speakers and culturally diverse sen-171

tence templates.172

• Cultural Categories and Prompts: The dataset173

contains nine categories, such as gendered pairs,174

each with ten unique prompts and around fifty175

targets, covering a range of cultural elements like176

food, names, clothing, and literature.177

• QA Scenarios for Granular Analysis: We cre-178

ate five types of multiple-choice QA scenarios179

from CAMeL, designed to assess the models’180

depth of cultural understanding and their ability181

to distinguish between various cultural elements.182

In our experiments, we deploy various multiple-183

choice QA scenarios derived from both datasets,184

ensuring that choice order is randomized to mit-185

igate positional bias in large language models186

(Pezeshkpour and Hruschka, 2023). This approach187

allows us to comprehensively address each research188

question, ensuring that our findings are robust and189

well-supported by empirical evidence.190

2.2 Language-specific finetuning data191

To investigate the effect of language-specific in-192

struction tuning on cultural awareness, we begin193

with the 52k instruction-following demonstrations194

used for training the Alpaca model (Taori et al.,195

2023), referred to as the cleaned Alpaca dataset.196

These instructions, originally in English, are trans-197

lated into six languages (English, Chinese, Hindi,198

Persian, Swahili, and Greek) using an automatic199

translation system from the NLLB project (Team200

et al., 2022). These translations correspond to the201

native languages of six cultures (American, Chi-202

nese, Indian, Iranian, Kenyan, and Greek) under203

study, resulting in the Alpaca-X dataset, where ’X’204

denotes the respective language for eg., Alpaca-en205

is the original English Alpaca data, and Alpaca-hi206

is the translated Hindi version. It is important to207

note that all these datasets are content-equivalent,208

only differing in terms of language.209

2.3 Supervised Instruction Finetuning 210

We employ 4-bit QLoRA (Dettmers et al., 2023) to 211

train using supervised finetuning (SFT), low-rank 212

adapters (LoRA) for the base models using our 213

Alpaca-X data, with hyperparameters detailed in 214

the Appendix Table 12. These adapters, specific 215

to each language, can be integrated into the base 216

model in a plug-and-play manner. The base model 217

combined with a language-specific adapter trained 218

on Alpaca-X data is also referred to as an Alpaca-X 219

model, for simplicity of notation. For eg., Alpaca- 220

hi data is used to train an adapter for the Alpaca-hi 221

model. Note that SFT, supervised finetuning, and 222

instruction tuning is used interchangeably through- 223

out the rest of the document. 224

3 Experimental Settings 225

We divide our experiments into two distinct cat- 226

egories – first looking at how instruction tuning 227

and pretraining play a role in cultural understand- 228

ing, and then going deeper into different aspects of 229

cultural nuances. 230

3.1 Studying the effects of language specific 231

instruction tuning 232

Our experiments are designed to isolate the impact 233

of different components (base model, LoRA, eval- 234

uation prompt) on the cultural awareness of LLMs. 235

Experimental Setups To address our research 236

questions, we have devised the following experi- 237

mental setups: 238

1. For RQ1 (Language-Specific Instruction Tun- 239

ing): We compare the LLaMA 2 model with 240

an English-specific adapter (Alpaca-en) against 241

Alpaca-X models, where ‘X’ denotes other lan- 242

guages. This comparison helps determine the 243

effectiveness of language-specific instruction 244

tuning in enhancing cultural understanding. 245

2. For RQ2a (Language-Specific Pretraining): 246

We explore the performance of bilingual base 247

models for Chinese (Yi)2 and Swahili (Uliza)3, 248

each with its respective LoRA, to gauge the im- 249

pact of language-specific pretraining on cultural 250

knowledge. 251

3. For RQ2b (Quality of Fine-Tuning Data): An 252

ablation study contrasts a non-Alpaca-X adapter, 253

developed from high-quality bilingual data, with 254

our Swahili Alpaca adapter. This helps assess 255

2Huggingface link for Yi
3Huggingface link for Uliza (pre-trained model)
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the influence of fine-tuning data quality on cul-256

tural understanding.257

Distribution of token counts for pretraining and258

instruction tuning In the context of our experi-259

ments, the token counts for pre-training and instruc-260

tion tuning vary significantly. The Alpaca-X mod-261

els are the only components developed in-house,262

while the pretrained bilingual models and Swahili263

LoRA are sourced from open-source repositories.264

The LLaMA 2 model underwent pre-training265

with a substantial 2 trillion tokens. For the Swahili266

base model, a continued pre-training phase incor-267

porated 0.32 billion Swahili tokens. In contrast, the268

Chinese base model involved pre-training with a269

combined total of 3 trillion Chinese and English270

tokens. The Alpaca dataset used for instruction271

tuning is relatively small, consisting of 52,000 in-272

structions, which translates to approximately 5.817273

million tokens for the English Alpaca, or 0.005 bil-274

lion tokens. The token count for the non-Alpaca275

LoRA, used in one of our ablation studies, remains276

unknown because the open source repository it is277

adapted from does not specify details. This dis-278

parity in token counts highlights the differences279

in data scale between pre-training and instruction280

tuning phases which might have some effect on our281

results that we cannot control.282

Further, note that all these controlled experi-283

ments are performed using the first dataset (Ge-284

oMLaMA) without going into granular details, be-285

cause our focus was to study the effects of instruc-286

tion tuning instead of different cultural aspects.287

3.2 Granular Analysis of Cultural Aspects288

In this section, we outline a series of experiments289

utilizing the CAMeL dataset to conduct an in-depth290

analysis of cultural aspects. These experiments are291

designed to evaluate the model’s nuanced under-292

standing of cultural elements.293

Setting 1: A multiple-choice question is framed294

with one option representing the answer from the295

corresponding culture and five options from the296

other cultures (all other settings are restricted to297

four options). This setting aims to assess the298

model’s comprehension of individual cultural as-299

pects rather than a general overview.300

Setting 2: No options from the correct culture are301

provided in the multiple-choice questions, options302

are randomly sampled uniformly from incorrect303

cultures. This approach is intended to determine304

the model’s default cultural inclination when the305

Base Model LoRA Prompt

English {lang} Alpaca {lang}
English English Alpaca English
{lang} {lang} Alpaca {lang}
{lang} Non-Alpaca LoRA {lang}

Table 1: The four experimental combinations we test for
RQ1 and RQ2. lang refers to language-specific variants
of Alpaca or a language-specific prompt, translated from
English.

correct option is absent. 306

Setting 3: Three options from the correct culture 307

are provided alongside one option from a randomly 308

selected incorrect culture. A model with accurate 309

cultural understanding should consistently avoid 310

choosing the incorrect option. This setting tests 311

the model’s alignment with the findings from the 312

previous settings. 313

Setting 4: Each question includes four options 314

from the correct culture, but three of these are 315

from a different category than what the question ad- 316

dresses to test for precision of understanding. For 317

instance, in a question about names, three options 318

might be food items, with only one being a name. 319

The model’s ability to discern between categories 320

within the same culture is evaluated here. If the 321

model understands culture minutely enough to be 322

able to differentiate between the categories we are 323

asking about, then it would never pick an option 324

from the incorrect category. But if it only has a 325

fuzzy understanding of culture, then it might end 326

up choosing any of the given options as all of them 327

are “culturally correct” in a global sense. 328

Setting 5: Questions regarding gendered categories 329

are used, where half of the options are correct 330

for the gender but incorrect for the culture, and 331

the other half are correct for the culture but in- 332

correct for the gender. This setting tests whether 333

the model prioritizes cultural accuracy over gender 334

accuracy in its responses. For instance, in a ques- 335

tion about American female names with options 336

as Liam, David, Aisha and Divya, we expect the 337

model to choose one between Aisha and Divya over 338

the two male names. Ideally, the model response 339

should stick to the correct gender, because typically 340

female clothing is worn by females and male cloth- 341

ing by males, and similarly usually females have 342

female-associated names and vice versa. But if the 343

model responses stick to the correct culture and 344

ignore gender, then the model does not necessar- 345

ily understand the details of the gendered cultural 346

aspect even if it is broadly culturally correct. 347
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3.3 Evaluation technique348

Our evaluation method draws inspiration from349

existing approaches that aggregate token log-350

probabilities for prompt completion. Specifically,351

the techniques employed by Trinh and Le (2019)352

and Wang et al. (2023b) utilize variations of this353

concept. These studies use aggregated token log-354

probabilities in determining the most likely prompt355

completions.356

Further building on this approach, we utilize357

CAPPr (K. Dubey, 2023), a tool that implements358

the aforementioned idea by selecting the comple-359

tion most likely to follow a given prompt. CAPPr360

achieves this by calculating the log-probability of361

each token in a completion, considering both the362

prompt tokens and the preceding tokens within that363

completion. This process involves averaging the364

log-probabilities to derive the inverse perplexity365

of the completion. Subsequently, these averaged366

log-probabilities are exponentiated to obtain a com-367

pletion probability. This procedure is repeated for368

each potential completion to form a normalized369

probability distribution over the set of completions,370

which for our use case represents the different op-371

tions in a QA setting.372

4 Results373

Our findings show that LLMs do not understand374

the specific details that define culture even when375

we try different approaches like SFT, bilingual pre-376

training, and prompting in the native language.377

4.1 RQ1 : Does SFT on language specific data378

enhance cultural knowledge? (No)379

Our investigation into whether SFT on language-380

specific data enhances cultural knowledge involves381

a series of experiments, detailed in Appendix A, Ta-382

ble 6. This section focuses on key results pertinent383

to our hypotheses for the RQ.384

Better than BERT, but only in English Anal-385

ysis of the GeoMLaMA performance (Table 2)386

compares the English Base Model combined with387

Language-Specific Alpaca and Language-Specific388

prompts against the English Base Model with En-389

glish Alpaca and English prompts across three dif-390

ferent model sizes ranging from 7B to 70B. We391

restrict our analysis to non-USA countries where392

English is not the native language. Results indicate393

that instruction tuning in English slightly outper-394

forms encoder models like BERT and XLMR, a395

trend not always observed when SFT is applied396

  Beverage

Female Clothing

Female NamesFood

Literature

Location

Male Clothing

Male Names Religion

Overall

0.2 0.4 0.6 0.8

USA
China
India
Iran
Kenya
Greece

Figure 2: The 70B LLaMA 2 model shows strong per-
formances for China and Iran across cultural concepts
for different cultures.

SFT lang China India Iran Kenya Greece

Results from GeoMLaMA benchmark

(mBERT) 0.30 0.41 0.21 0.30 -
(XLMR-L) 0.37 0.37 0.37 0.32 -

Prompt language: english

eng (7) 0.50 0.39 0.24 0.31 0.34
eng (13) 0.54 0.42 0.31 0.28 0.34
eng (70) 0.46 0.45 0.28 0.28 0.38

Prompt language: {lang}

{lang} (7) 0.25 0.39 0.31 0.31 0.28
{lang} (13) 0.32 0.36 0.28 0.34 0.28
{lang} (70) 0.39 0.33 0.14 0.34 0.34

Table 2: Instruction tuning on language specific data
does not consistently enhance cultural knowledge across
languages and cultures. The numbers 7, 13 and 70
correspond to the model sizes in billions of parameters.
The metric is the GeoMLaMA benchmark metric on a
scale of 0-1 with higher being better.

in other languages. This discrepancy may be at- 397

tributed to the predominance of English in the 398

LLaMA 2’s pretraining data, making it the lan- 399

guage that is most coherent for the model. We also 400

note that while some amount of cultural data is 401

definitely present in the pretraining data, our SFT 402

instructional data does not include cultural content. 403

Larger model does not necessarily mean better 404

cultural knowledge Contrary to expectations, 405

larger models (7B, 13B, 70B parameters) do not 406

consistently demonstrate enhanced cultural knowl- 407

edge. This suggests that factors such as pretraining 408

data composition or pre-training hyperparameters 409

or even translation of the instruction tuning data 410

from English, significantly influence the model’s 411

cultural understanding. 412
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USA China India Iran KenyaGreece

Prompt Country

0.0
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Countries
USA
China
India
Iran
Kenya
Greece

Figure 3: The distribution of countries chosen by the
70B LLaMA 2 model without the question explicitly
mentioning the chosen country shows a large percentage
favouring China and Iran.

No clear enhancement due to SFT, with a lot413

of variability across cultures The hypothesis414

that SFT with language-specific data substantially415

improves cultural knowledge is not conclusively416

supported by our findings. There is notable vari-417

ability across different cultures. For instance, in418

China and Iran, English-based fine-tuning seems to419

be more effective, while in India, Hindi fine-tuning420

competes closely. English emerges as the most ef-421

fective language for eliciting cultural knowledge422

across various cultures. However, the second-most423

effective language is not consistently the native one.424

For example, prompting in Chinese yields better425

results than Swahili for Kenyan cultural questions426

(Table 6). This observation might be influenced by427

the larger representation of Chinese compared to428

Swahili in the pretraining data set.429

4.2 RQ2a : Does pretraining on native430

language data enhance cultural431

knowledge? (Yes)432

Our study also probes the influence of pretrain-433

ing language distribution on cultural understanding.434

Specifically, we contrast the LLaMA 2 model, pri-435

marily pretrained on English data, with bilingual436

base models for Chinese (Yi) and Swahili (Uliza).437

The performance comparisons are in Table 3.438

Pretraining is useful in improving cultural un-439

derstanding along with the instruction tuning440

and language specific prompting In the con-441

text of English language queries, both Yi and442

Uliza models do not surpass the performance of443

LLaMA 2. However, for queries related to China,444

when prompted in Chinese, the Yi model demon-445

strates superior performance compared to LLaMA446

2 and also achieves parity with LLaMA 2’s En-447

Model Size China Kenya

Prompt language : English

LLaMA 2 + eng Alpaca
7 0.50 0.31
13 0.54 0.28
70 0.46 0.28

Yi + eng Alpaca 6 0.43 -
34 0.39 -

Uliza + eng Alpaca 7 - 0.25
Uliza + {swa, eng} LoRA 7 - 0.31

Prompt language : Chinese/Swahili

LLaMA 2 + zh/swa Alpaca
7 0.25 0.31
13 0.32 0.34
70 0.39 0.34

Yi + zh Alpaca 6 0.39 -
34 0.54 -

Uliza + swa Alpaca 7 - 0.31
Uliza + {swa, eng} LoRA 7 - 0.41

Table 3: Pretraining on language specific data helps
to improve cultural awareness. Bilingual non-alpaca
finetuning along with bilingual continually pretrained
model gives the most culturally appropriate responses
when prompted in the respective native language.

glish performance. Similarly, for Kenyan cul- 448

tural queries, the Uliza model, when prompted in 449

Swahili, matches LLaMA 2’s performance. 450

The quality of pretraining data matters for in- 451

creased awareness across cultures Notably, the 452

Yi model generally outperforms LLaMA 2 in En- 453

glish for cultures outside China (USA, Iran, Kenya, 454

Greece), as shown in Table 6. This suggests that 455

high-quality, filtered pretraining data, particularly 456

when used for continued pre-training, play a cru- 457

cial role in enhancing a model’s cultural awareness 458

across different cultures. 459

4.3 RQ2b: Optimal Approach for Eliciting 460

Cultural Knowledge 461

In an ablation study focusing on the quality of fine- 462

tuning data, we examine a non-Alpaca LoRA de- 463

rived from carefully curated Swahili data.4 This 464

is contrasted with the performance of our Swahili 465

Alpaca model. The results indicate a clear superior- 466

ity of the curated LoRA over Alpaca, as it not only 467

surpasses Alpaca but also outperforms the English 468

results from LLaMA 2. 469

This finding underscores that the most effec- 470

tive approach for eliciting accurate cultural knowl- 471

edge involves a bilingual base model pre-trained 472

on high-quality, language-specific data. Addi- 473

tionally, supplementing this model with a LoRA, 474

4Huggingface link for Uliza (finetuned model)
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instruction-tuned on curated instructional examples475

and prompted in the respective language, further476

enhances its cultural understanding. Such a com-477

bination of high-quality pretraining, targeted in-478

struction tuning, and language-specific prompting479

emerges as the optimal strategy for achieving deep480

cultural insight.481

4.4 RQ3 : Do LLMs understand granular482

tangible cultural aspects? (somewhat)483

This part of our study, centered on English, aims484

to delve into the nuanced cultural understanding485

of models, using the CAMeL dataset. We chose486

English for several reasons: the complexity of trans-487

lating proper nouns, the redundancy of translated488

nouns representing the same concept, and previous489

findings indicating superior English performance490

unless a language-specific pretrained model is avail-491

able.492

Prior distributions of cultural aspects of coun-493

tries affect cultural understanding at the gran-494

ular level Our analysis reveals that the model495

displays a pronounced preference for certain cul-496

tures, particularly China and Iran, when no correct497

options are present (Setting 2, Figure 3). This in-498

herent bias significantly affects performance for499

other cultures when correct options are included.500

As illustrated in Figure 2, LLaMA 2 generally501

exhibits the highest performance across various502

cultural aspects for China (Setting 1), with some503

exceptions where Iran leads. However, despite pre-504

vious research indicating alignment with American505

values, the model shows a relatively superficial506

understanding of American culture, as evidenced507

by its lower performance. A possible explanation508

could be that the other options provided for the509

question have higher prior distributions, but there510

are possibly multiple factors at play here.511

In another test (Setting 3), we present a scenario512

where three options are from the correct culture,513

along with one option from a randomly selected,514

incorrect culture. This setup is intended to eval-515

uate the model’s ability to discern cultural appro-516

priateness accurately. Our findings reveal a stark517

contrast in performance based on the cultural con-518

text. For questions pertaining to China, the model519

demonstrates a high degree of accuracy, rarely se-520

lecting the incorrect cultural option. In contrast,521

when presented with questions about male names522

in the US, the model’s performance significantly523

declines, choosing the incorrect option nearly 70%524

Category USA China India Iran Kenya Greece

Beverage 0.56 0.31 0.67 0.40 0.50 0.63

Female Clothing 0.60 0.69 0.58 0.81 0.79 0.69

Female Names 0.89 0.87 0.97 0.82 0.92 0.85

Food 0.32 0.40 0.76 0.32 0.69 0.28

Literature 0.21 0.33 0.45 0.20 0.34 0.65

Location 0.81 0.88 0.76 0.72 0.84 0.81

Male Clothing 0.58 0.54 0.85 0.86 0.75 0.74

Male Names 0.94 0.85 0.97 0.85 0.93 0.87

Religion 0.51 0.55 0.81 0.72 0.53 0.66

Overall 0.60 0.61 0.76 0.65 0.70 0.69

Table 4: We measure the percentage of times that
LLaMA 2 70B prefers an option from an incorrect cate-
gory when provided with a single choice from the cor-
rect category paired with 3 incorrect ones. Ideally, this
should be close to 0 if the model has true understanding.

of the time. This disparity highlights the model’s 525

uneven capability in distinguishing between cultur- 526

ally relevant and irrelevant options across different 527

cultural settings. An alternate plausible explanation 528

could be that model has learned that the US is a 529

largely multi-cultural society, which our evaluation 530

approach isn’t designed to consider. 531

Such biases could be attributed to the mixed cul- 532

tural perspectives inherent in the pretraining data, 533

which might emphasize certain cultures over oth- 534

ers. Detailed results across all culture dimensions 535

and model sizes are provided in the Appendix, Ta- 536

bles 7, 8, and 9. 537

Complex cultural understanding is lacking even 538

for countries for which the model understands 539

culture broadly Our investigation further ex- 540

plores the model’s depth of cultural understand- 541

ing through a specific testing approach. In this 542

setup, each question offers four culturally appropri- 543

ate options, but only one option is relevant to the 544

question’s category, while the other three belong 545

to different categories. The assessment focuses 546

on the frequency with which the model selects an 547

option from an incorrect category. Notably, even 548

for countries like China and Iran, where the model 549

generally shows a good grasp of broader cultural 550

aspects, the selection of incorrect category options 551

is alarmingly high, as detailed in Table 4. Ideally, 552

the model should have a near-zero selection rate 553

of incorrect categories for countries with strong 554

cultural representation. However, this nuanced un- 555

derstanding appears to be lacking. 556

A striking example involves the 13B model’s in- 557
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terpretation of Chinese female names. In an array558

of approximately 3K questions, the model consis-559

tently showed a preference for beverage names over560

actual female names. For instance, it judged ‘Goji561

Berry tea’ as a more probable name than ‘Chen’562

in the given context of ‘I met a girl named [fill563

in] at the park’. While it’s conceivable that the564

model might not always err when presented with565

non-beverage incorrect options, the fundamental566

issue remains that it should not select such incon-567

gruent options at all. Comprehensive results of this568

testing are available in the Appendix, Table 10, un-569

derscoring the model’s limitations in distinguishing570

between specific cultural categories.571

Being culturally accurate is preferred by572

LLaMA 2 over being gender accurate, even573

though it should be the opposite In a nuanced574

test, we presented options that juxtapose cultural575

accuracy against gender accuracy: two options cor-576

rect in culture but incorrect in gender, and two oth-577

ers correct in gender but incorrect in culture. The578

results reveal a marked preference for cultural accu-579

racy over gender accuracy, particularly in contexts580

where the cultural representation in the model’s581

training data is more pronounced (see Table 5 and582

Appendix 11).583

This tendency is more evident in countries with a584

higher cultural prominence in the model’s training585

data. For instance, in questions related to China,586

the model predominantly selects culturally accu-587

rate responses, regardless of gender correctness.588

Conversely, for countries like the USA, the model589

shows a greater propensity to choose options that590

are correct in terms of gender. This pattern suggests591

that the prominence of certain cultural or gender592

concepts in the pretraining corpus along with gram-593

matical gender signals in language significantly594

influences the model’s decision-making process,595

underscoring the impact of training data compo-596

sition on the model’s understanding of nuanced597

cultural and gender-related aspects.598

5 Related Work599

In the context of understanding cultural biases in600

Large Language Models (LLMs), several studies601

have made significant contributions, each address-602

ing different aspects of this multifaceted issue. Tao603

et al. (2023) employ the World Values Survey to604

map GPT models on the Inglehart-Welzel Cul-605

tural Map, highlighting the effectiveness of cul-606

tural prompting as a mitigation strategy. Durmus607

Category USA China India Iran Kenya Greece

Female Clothing 0.40 0.83 0.59 0.31 0.44 0.54
Male Clothing 0.51 0.66 0.77 0.42 0.48 0.68

Female Names 0.14 0.90 0.58 0.61 0.66 0.58
Male Names 0.23 0.93 0.57 0.65 0.68 0.65

Overall 0.32 0.89 0.63 0.51 0.56 0.61

Table 5: LLaMA 2 70B prefers being culturally correct
than being gender correct across cultures.

et al. (2023) combine datasets from the World Val- 608

ues Survey and the Pew Research Center’s Global 609

Attitudes surveys to explore models’ alignment 610

with Western values, using various prompting tech- 611

niques. The SeaEval benchmark (Wang et al., 612

2023a) demonstrates the challenges multilingual 613

LLMs face in multicultural reasoning, affected by 614

factors like positional bias and language nuances. 615

COPAL-ID (Wibowo et al., 2023) finds that LLMs 616

have a lower understanding of culture-related ques- 617

tions compared to non-culture related ones, espe- 618

cially in multilingual settings. Additionally, Cao 619

et al. (2023) pioneered examining cultural align- 620

ment from a chatbot perspective, revealing Chat- 621

GPT’s American-centric alignment. 622

However, these studies collectively highlight 623

some gaps: a predominant focus on Western- 624

centric perspectives, limited exploration of non- 625

Western cultures, and the need for more compre- 626

hensive strategies to incorporate a global spectrum 627

of cultural nuances in LLMs. Our work aims to 628

build upon these findings, addressing these short- 629

comings by examining LLMs’ cultural awareness 630

more holistically and inclusively. 631

6 Conclusion 632

This study on the cultural understanding of Large 633

Language Models (LLMs) reveals significant vari- 634

ations in their ability to encapsulate diverse cul- 635

tural nuances. Our investigations, leveraging the 636

GeoMLaMA benchmark and the adapted CAMeL 637

dataset, demonstrate that while language-specific 638

instruction tuning and bilingual pretraining offer 639

some improvements, they fall short of ensuring 640

comprehensive cultural competence, particularly in 641

non-Western contexts. The findings underscore the 642

need for incorporating a wider range of cultural per- 643

spectives in LLM training and development, high- 644

lighting the importance of creating models that are 645

not only linguistically adept but also culturally sen- 646

sitive and globally inclusive. 647
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7 Limitations648

This study, while extensive, is subject to certain649

limitations which are important to acknowledge:650

1. The current methodology conceptualizes culture651

as a singular entity within a nation-state. This652

perspective, while useful for structured analy-653

sis, might not fully capture the rich diversity654

and complexity of modern societies, where mul-655

tiple cultures and languages coexist within a656

single country. Future research could benefit657

from exploring more granular approaches that658

can effectively address this multifaceted nature659

of cultural identity.660

2. The pretraining process lacks control over token661

distribution, contrasting with the controlled in-662

structional data used in fine-tuning experiments.663

This could affect result interpretation. Future664

work should investigate the effects of smaller,665

high-quality datasets for controlled pre-training666

across languages.667

3. Our experiments use 4-bit QLoRA for instruc-668

tion tuning, and it’s uncertain if results would669

differ with higher-bit configurations. Further670

research is needed to explore the impact of vary-671

ing bit settings.672

4. Evaluating large language models is an ongoing673

challenge within the field, and the methodology674

chosen for this study, while grounded in estab-675

lished research, has its strengths and limitations.676

This approach needs to be considered alongside677

alternative evaluation methods, each with their678

respective advantages and drawbacks, to suit679

specific use cases and research objectives.680
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Şenel, Maarten Bosma, Maarten Sap, Maartje ter 852
Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas 853
Mazeika, Marco Baturan, Marco Marelli, Marco 854
Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, 855
Mario Giulianelli, Martha Lewis, Martin Potthast, 856
Matthew L. Leavitt, Matthias Hagen, Mátyás Schu- 857
bert, Medina Orduna Baitemirova, Melody Arnaud, 858
Melvin McElrath, Michael A. Yee, Michael Co- 859
hen, Michael Gu, Michael Ivanitskiy, Michael Star- 860
ritt, Michael Strube, Michał Swędrowski, Michele 861
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A Appendix999

Prompt Model Size US China India Iran Kenya Greece Overall

English

LLaMA 2 + English Alpaca
7B 0.28 0.50 0.39 0.24 0.31 0.34 0.34
13B 0.31 0.54 0.42 0.31 0.28 0.34 0.37
70B 0.31 0.46 0.45 0.28 0.28 0.38 0.36

Yi + English Alpaca 6B 0.52 0.43 0.33 0.48 0.50 0.34 0.43
34B 0.62 0.39 0.42 0.45 0.50 0.44 0.47

Uliza + English Alpaca 7B 0.21 0.50 0.39 0.17 0.25 0.31 0.31

Uliza + {Swahili, English} LoRA 7B 0.45 0.39 0.39 0.34 0.31 0.25 0.36

Hindi LLaMA 2 + Hindi Alpaca
7B 0.28 0.46 0.39 0.34 0.25 0.41 0.36
13B 0.24 0.36 0.36 0.28 0.31 0.38 0.32
70B 0.24 0.46 0.33 0.28 0.34 0.38 0.34

Chinese
LLaMA 2 + Chinese Alpaca

7B 0.34 0.25 0.39 0.41 0.41 0.34 0.36
13B 0.38 0.32 0.39 0.48 0.47 0.38 0.40
70B 0.38 0.39 0.42 0.48 0.53 0.34 0.43

Yi + Chinese alpaca 6B 0.38 0.39 0.45 0.34 0.25 0.31 0.36
34B 0.55 0.54 0.55 0.45 0.44 0.53 0.51

Swahili
LLaMA 2 + Swahili Alpaca

7B 0.34 0.32 0.39 0.17 0.31 0.34 0.31
13B 0.34 0.29 0.39 0.24 0.34 0.34 0.33
70B 0.31 0.36 0.39 0.21 0.34 0.38 0.33

Uliza + Swahili Alpaca 7B 0.31 0.46 0.45 0.28 0.31 0.38 0.37

Uliza + {Swahili, English} LoRA 7B 0.38 0.32 0.36 0.48 0.41 0.34 0.38

Persian LLaMA 2 + Persian Alpaca
7B 0.31 0.25 0.27 0.31 0.38 0.38 0.32
13B 0.31 0.25 0.33 0.28 0.34 0.34 0.31
70B 0.28 0.36 0.33 0.14 0.25 0.38 0.29

Greek LLaMA 2 + Greek Alpaca
7B 0.17 0.21 0.27 0.10 0.25 0.28 0.22
13B 0.21 0.21 0.30 0.17 0.28 0.28 0.24
70B 0.28 0.21 0.33 0.14 0.22 0.34 0.25

Table 6: RQ1, RQ2: Cultural performance scores of various models on the GeoMLaMA benchmark. Values are
between 0 and 1, higher is better.

Data collection from native speakers for adapted CAMeL dataset We provided native speakers with1000

a list of words that we procured from different sources on the internet and from large language models as1001

a base collection for each category that they are then asked to verify and correct with more appropriate1002

targets for each category based on their lived experiences.1003

For the prompts, we follow a similar process, but this time we don’t require country specific prompts,1004

only category specific. The final set of prompts is decided by agreement between the authors.1005

We note that this process has inherent biases for the group of people who perform the tasks, which might1006

implicitly show up in the data in unobserved ways. Also, because two of the categories are about names1007

of people, this may include information about someone’s real name, but that would only be so, because it1008

is a common name in some part of their country.1009

All annotators are demographically located in the USA and are between 25-40 years old. Other than the1010

Hindi annotator who is female, all others identify as male. Also, we note that all annotators are either1011

authors or close friends of authors who did not require any form of compensation.1012
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Category Size USA China India Iran Kenya Greece

Beverage
7 0.03 0.44 0.16 0.34 0.10 0.09
13 0.04 0.49 0.16 0.35 0.11 0.09
70 0.04 0.57 0.23 0.38 0.15 0.15

Female Clothing
7 0.09 0.24 0.42 0.08 0.12 0.13
13 0.11 0.30 0.46 0.09 0.15 0.14
70 0.10 0.39 0.47 0.11 0.12 0.26

Female Names
7 0.05 0.50 0.21 0.28 0.19 0.18
13 0.05 0.52 0.32 0.38 0.24 0.33
70 0.07 0.71 0.33 0.39 0.30 0.37

Food
7 0.06 0.28 0.06 0.47 0.04 0.23
13 0.07 0.33 0.08 0.49 0.06 0.21
70 0.18 0.43 0.12 0.53 0.08 0.35

Literature
7 0.10 0.29 0.10 0.34 0.17 0.07
13 0.12 0.27 0.12 0.39 0.19 0.06
70 0.16 0.28 0.14 0.65 0.27 0.08

Location
7 0.09 0.28 0.27 0.39 0.13 0.17
13 0.07 0.35 0.36 0.43 0.18 0.23
70 0.13 0.39 0.43 0.49 0.19 0.26

Male Clothing
7 0.08 0.62 0.11 0.06 0.17 0.11
13 0.09 0.68 0.18 0.10 0.19 0.12
70 0.15 0.73 0.20 0.06 0.16 0.19

Male Names
7 0.02 0.53 0.22 0.26 0.30 0.20
13 0.04 0.58 0.30 0.33 0.38 0.30
70 0.04 0.76 0.30 0.35 0.42 0.34

Religion
7 0.16 0.41 0.09 0.11 0.24 0.11
13 0.15 0.51 0.14 0.14 0.23 0.14
70 0.17 0.50 0.18 0.16 0.22 0.19

Overall
7 0.08 0.39 0.18 0.26 0.16 0.14
13 0.08 0.39 0.18 0.26 0.16 0.14
70 0.08 0.39 0.18 0.26 0.16 0.14

Table 7: RQ3: Setting1 Results (Default MCQ setting, single correct country choice provided) from the CAMeL
benchmark.

Prompt Size USA China India Iran Kenya Greece

USA
7 0.0 0.36 0.17 0.22 0.14 0.12
13 0.0 0.33 0.18 0.22 0.15 0.12
70 0.0 0.36 0.16 0.23 0.13 0.12

China
7 0.1 0.0 0.24 0.27 0.22 0.17
13 0.09 0.0 0.25 0.29 0.21 0.16
70 0.08 0.0 0.23 0.32 0.18 0.18

India
7 0.07 0.37 0.0 0.24 0.18 0.14
13 0.07 0.33 0.0 0.27 0.19 0.13
70 0.06 0.35 0.0 0.29 0.17 0.13

Iran
7 0.09 0.40 0.21 0.0 0.16 0.14
13 0.08 0.37 0.24 0.0 0.17 0.14
70 0.07 0.40 0.22 0.0 0.15 0.16

Kenya
7 0.08 0.37 0.19 0.23 0.0 0.13
13 0.08 0.34 0.21 0.25 0.0 0.13
70 0.07 0.34 0.20 0.27 0.0 0.13

Greece
7 0.08 0.37 0.18 0.22 0.15 0.0
13 0.07 0.33 0.20 0.23 0.16 0.0
70 0.06 0.36 0.18 0.26 0.14 0.0

Table 8: RQ3: Setting2 Results (Distribution of Countries chosen when correct country is not provided) from the
CAMeL benchmark
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Category Size USA China India Iran Kenya Greece

Beverage
7 0.48 0.05 0.22 0.09 0.34 0.37
13 0.47 0.06 0.24 0.1 0.29 0.32
70 0.5 0.05 0.19 0.08 0.25 0.27

Female Clothing
7 0.35 0.12 0.04 0.4 0.27 0.29
13 0.37 0.12 0.04 0.35 0.25 0.28
70 0.36 0.1 0.06 0.36 0.3 0.19

Female Names
7 0.48 0.07 0.19 0.16 0.21 0.2
13 0.46 0.11 0.14 0.15 0.21 0.19
70 0.44 0.04 0.2 0.17 0.19 0.17

Food
7 0.38 0.13 0.37 0.04 0.47 0.13
13 0.37 0.12 0.34 0.04 0.45 0.17
70 0.31 0.11 0.32 0.05 0.43 0.14

Literature
7 0.3 0.14 0.34 0.1 0.22 0.44
13 0.28 0.14 0.29 0.07 0.22 0.45
70 0.32 0.14 0.32 0.05 0.19 0.43

Location
7 0.42 0.13 0.14 0.11 0.28 0.26
13 0.48 0.11 0.12 0.12 0.25 0.24
70 0.45 0.13 0.13 0.08 0.29 0.24

Male Clothing
7 0.3 0.02 0.3 0.39 0.28 0.32
13 0.32 0.02 0.24 0.31 0.25 0.25
70 0.28 0.02 0.23 0.35 0.29 0.22

Male Names
7 0.65 0.06 0.19 0.21 0.16 0.18
13 0.67 0.09 0.15 0.2 0.14 0.2
70 0.67 0.02 0.17 0.2 0.17 0.17

Religion
7 0.27 0.08 0.32 0.36 0.2 0.28
13 0.27 0.04 0.28 0.3 0.18 0.29
70 0.27 0.06 0.28 0.28 0.17 0.23

Overall
7 0.4 0.09 0.23 0.21 0.27 0.28
13 0.41 0.09 0.2 0.18 0.25 0.27
70 0.4 0.08 0.21 0.18 0.25 0.23

Table 9: RQ3: Setting3 Results from the CAMeL benchmark (How many times did Llama choose the single
incorrect option ignoring the other correct options. This number should ideally be 0 for everything.)
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Category Llama_Size USA China India Iran Kenya Greece

Overall
7 0.68 0.72 0.52 0.67 0.79 0.75
13 0.73 0.71 0.72 0.72 0.78 0.62
70 0.6 0.61 0.76 0.65 0.7 0.69

beverage
7 0.61 0.47 0.34 0.44 0.76 0.74
13 0.66 0.43 0.53 0.64 0.68 0.58
70 0.56 0.31 0.67 0.4 0.5 0.63

female_clothing
7 0.65 0.83 0.37 0.83 0.85 0.77
13 0.68 0.81 0.62 0.83 0.78 0.57
70 0.6 0.69 0.58 0.81 0.79 0.69

female_names
7 0.92 0.98 0.8 0.78 0.96 0.93
13 0.98 0.99 0.93 0.94 0.97 0.77
70 0.89 0.87 0.97 0.82 0.92 0.85

food
7 0.52 0.58 0.3 0.34 0.8 0.35
13 0.47 0.46 0.63 0.33 0.8 0.22
70 0.32 0.4 0.76 0.32 0.69 0.28

literature
7 0.26 0.37 0.23 0.52 0.41 0.6
13 0.4 0.49 0.38 0.39 0.42 0.56
70 0.21 0.33 0.45 0.2 0.34 0.65

location
7 0.8 0.94 0.6 0.66 0.94 0.93
13 0.94 0.93 0.83 0.75 0.97 0.74
70 0.81 0.88 0.76 0.72 0.84 0.81

male_clothing
7 0.74 0.65 0.59 0.81 0.8 0.81
13 0.78 0.55 0.82 0.83 0.78 0.6
70 0.58 0.54 0.85 0.86 0.75 0.74

male_names
7 0.95 0.94 0.78 0.85 0.93 0.91
13 0.99 0.99 0.93 0.88 0.93 0.87
70 0.94 0.85 0.97 0.85 0.93 0.87

religion
7 0.69 0.71 0.63 0.76 0.63 0.71
13 0.63 0.65 0.78 0.78 0.67 0.62
70 0.51 0.55 0.81 0.72 0.53 0.66

Table 10: RQ3: Setting4 Results from the CAMeL benchmark (How many times did Llama choose an option
from the incorrect category) (it was given 3 incorrect categories, 1 correct category) - Ideally this should be 0 for
everything if llama understands what category we are asking about.
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Category Size USA China India Iran Kenya Greece

Female Clothing
7 0.37 0.73 0.53 0.26 0.44 0.43
13 0.38 0.85 0.59 0.34 0.49 0.41
70 0.4 0.83 0.59 0.31 0.44 0.54

Female Names
7 0.12 0.85 0.53 0.52 0.65 0.46
13 0.14 0.8 0.64 0.59 0.69 0.51
70 0.14 0.9 0.58 0.61 0.66 0.58

Male Clothing
7 0.51 0.64 0.79 0.36 0.54 0.59
13 0.48 0.68 0.8 0.45 0.52 0.56
70 0.51 0.66 0.77 0.42 0.48 0.68

Male Names
7 0.21 0.85 0.59 0.55 0.6 0.56
13 0.22 0.82 0.61 0.62 0.57 0.56
70 0.23 0.93 0.57 0.65 0.68 0.65

Overall
7 0.3 0.82 0.61 0.44 0.55 0.51
13 0.3 0.8 0.66 0.52 0.57 0.51
70 0.32 0.89 0.63 0.51 0.56 0.61

Table 11: RQ3: Setting5 Results for the CAMeL benchmark(How many times did Llama choose correct culture
but incorrect gender?) (2 options were from correct culture but opposite gender, and 2 options were from incorrect
culture but correct gender)

Parameter Value

Random Seed 42
Number of Epochs 1 (for 34B or 70B models),

3 (for 6B, 7B, 13B models)

Bits and Bytes Config

Load 4 bit
Quantization Type nf4
DataType bfloat16

Lora Config

Lora Alpha 16
Lora Dropout 0.1
R 64
Bias none

Training Arguments

Per Device Train Batch Size 6 (1 A100 80GB GPU)
Gradient Accumulation Steps 2
Learning Rate 3e-4
Max Gradient Norm 0.3
Warmup Ratio 0.03
Learning Rate Scheduler constant
Optimizer 32bit paged AdamW
Max Sequence Length 2048

Table 12: Hyperparameters used for Instruction tuning of the LLaMA 2 models
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