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Abstract

This paper investigates the fundamental regression task of learning k neurons1

(a.k.a. teachers) from Gaussian input, using two-layer ReLU neural networks2

with width m (a.k.a. students) and m, k = O(1), trained via gradient descent3

under proper initialization and a small step-size. Our analysis follows a three-4

phase structure: alignment after weak recovery, tangential growth, and local5

convergence, providing deeper insights into the learning dynamics of gradient6

descent (GD). We prove the global convergence at the rate of O(T−3) for the zero7

loss of excess risk. Additionally, our results show that GD automatically groups8

and balances student neurons, revealing an implicit bias toward achieving the9

minimum “balanced” ℓ2-norm in the solution. Our work extends beyond previous10

studies in exact-parameterization setting (m = k = 1, [Yehudai and Ohad, 2020])11

and single-neuron setting (m ≥ k = 1, [Xu and Du, 2023]). The key technical12

challenge lies in handling the interactions between multiple teachers and students13

during training, which we address by refining the alignment analysis in Phase 1 and14

introducing a new dynamic system analysis for tangential components in Phase 2.15

Our results pave the way for further research on optimizing neural network training16

dynamics and understanding implicit biases in more complex architectures.17

1 Introduction18

Learning a target function f⋆ : Rd → R via neural networks through gradient descent or flow has19

received significant attention in machine learning theory. Research in this area primarily focuses on20

understanding the learnability and dynamics, aiming to theoretically explain the advantage of feature21

learning in neural networks. This problem is often studied under various assumptions about f⋆. For22

instance, f⋆ is frequently (implicitly) assumed to be smooth in a kernel regime [Jacot et al., 2018,23

Allen-Zhu et al., 2019, Arora et al., 2019]. Additionally, f⋆ might possess further structures, such as24

being located on a low-dimensional subspace [Mousavi-Hosseini et al., 2023] or a manifold [Arora25

et al., 2022]. A typical example is assuming f⋆ is a sparse polynomial [Abbe et al., 2022]. In this26

setting, the separation between kernel methods and neural networks is well studied through metrics27

like the information exponent [Arous et al., 2021], leap complexity [Abbe et al., 2023], and generative28

exponent [Damian et al., 2024].29

In contrast to smooth functions, another research direction focuses on non-smooth target functions,30

such as ReLU. This non-smoothness naturally highlights the difference between kernel methods and31

neural networks in terms of approximation ability [Bach, 2017]. As a result, researchers have turned32

their attention to studying the learning dynamics to gain a deeper understanding of convergence. For33

instance, they investigate learning with a single ReLU neuron [Wu et al., 2023, Xu and Du, 2023] or34

multiple ReLU neurons [Zhou et al., 2021, Akiyama and Suzuki, 2023].35
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We consider the problem of learning one-hidden-layer ReLU networks under the Gaussian measure.36

The target function f⋆ is a sum of multiple ReLU neurons f⋆(x) :=
∑k

l=1 σ(⟨vl,x⟩) with the37

parameters {vl}kl=1, which can be learned from n i.i.d. samples {(xi, f
⋆(xi))}ni=1 via a two-layer38

neural network with m (student) neurons with random Gaussian initialization {wi}mi=1 ∼ N (0, σ2Id)39

under the expected squared loss:40

L(W ) =
1

2
Ex∼N (0,Id)

(
m∑
i=1

σ(w⊤
i x)− f⋆(x)

)2

, (1)

which aims to find a good approximation of f⋆ from the student network. To ensure learning41

performance, m ≥ k is needed.42

This problem is identified as an additive model in statistics [Stone, 1985, Hastie and Tibshirani, 1987],43

and it receives great attention in theoretical computer science [Chen et al., 2023] and machine learning44

theory, especially on sample/time complexity as well as training dynamics [Boursier and Flammarion,45

2024, Bietti et al., 2023]. However, understanding how gradient-based training algorithms recover46

the teacher network and analyzing the entire training dynamics are still challenging. Therefore, most47

current analyses are limited to non-gradient-based algorithms [Chen et al., 2023], or local analysis48

for gradient-based algorithms, which assumes that the loss has already been minimized below a49

very small threshold, or the angles between teacher neurons and their nearest student neurons are50

already small (called strong recovery), e.g., [Zhou et al., 2021]. If we go beyond the local analysis,51

previous result on GD training can only handle specific cases, such as [Yehudai and Ohad, 2020]52

for m = k = 1,[Wu et al., 2018] for m = k = 2, and[Xu and Du, 2023, Chistikov et al., 2023] for53

m ≥ k = 1. In fact, studying more general cases, such as m, k = O(1), remains unresolved, even in54

local analysis. Accordingly, we aim to address the following question:55

How can gradient-based algorithms recover teacher neurons and learn useful features beyond56

the local analysis?57

To better understand the learning dynamics in the above question, we follow the “align then fit”58

framework [Maennel et al., 2018, Boursier and Flammarion, 2024], which also helps to explain the59

implicit bias of the learned solution. In this study, we run the gradient descent (GD) over Eq. (1).60

Since analyzing the entire training dynamics is still challenging and is an open problem, so we assume61

the weak recovery, where for each student neuron, exactly one teacher neuron exists that is not nearly62

perpendicular to it. Note that the weak recovery condition is still much weaker than the condition63

with local analysis and strong recovery that will be proved in our analysis. An informal version of64

our theoretical results is given as below.65

Theorem 1 (Global Convergence after Weak Recovery: Informal). Under proper assumptions66

(e.g., teacher neurons are with same length ∥v∥, and orthogonal to each other), sufficiently small67

initialization with σ = o(poly(d−
1
2 )), and trained via gradient descent with sufficiently small step-size68

η = o(1) to minimize Eq. (1), after time T ⋆ = Ω( 1η ), for any T ∈ N, we have:69

L(W (T ⋆ + T )) ≤ O

(
∥v∥2

η3T 3

)
, and ∥wi(T

⋆ + T )∥ = Θ

(
k ∥v∥
m

)
∀i ∈ [m] , w.h.p .

Our result demonstrates that the Eq. (1) can be solved by GD in the polynomial time to find the70

global minima and achieves the global convergence rate at O(1/T 3). We admit that the derived71

sample/time complexity is not optimal, but to our knowledge, this is the first polynomial-time result72

of GD training beyond the local analysis for Eq. (1) with m, k = O(1). Besides, our results also73

indicate that the obtained solution will converge to a minimum “balanced” ℓ2 solution, where the74

“balanced” is determined by student neurons and their respective nearest teacher neurons.75

Technical challenges. We employ the similar proof framework of Xu and Du [2023] on m ≥ k = 1.76

The main challenge of this paper is how to address the coupling of different teacher neurons’ influences77

on the student neurons, even though the teacher neurons are orthogonal to each other. For instance:78

• In phase 1, single teacher neuron (k = 1) [Xu and Du, 2023] allows for monotonic convergence79

on the angular difference between the teacher and student neurons. However, this does not hold80

for k > 1. In this case, we use approximations of sine and cosine values for decoupling when the81
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angle is very small or near perpendicular. Hence we can simplify the training dynamics and prove82

that the sine of the minimum angle converges linearly to a tiny neighborhood.83

• In phase 2, during the analysis of neuron growth, the tangential components of the student neurons84

at each teacher neuron (and for more teacher neurons) are quite complex. Classical recursive85

relationship in [Xu and Du, 2023] can not handle this. Instead, we develop a new technical tool by86

building a dynamical system: we formulate the matrix iteration form, estimate the eigenvalues of87

the transition matrix, and establish the upper and lower bounds of such a dynamical system.88

2 Notations, problem setting, and assumptions89

In this section, we give notations that are needed in this paper and then introduce our problem setting90

as well as the required assumptions in our proof.91

2.1 Notations92

Basic notations: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We denote by93

a(n) ≳ b(n): the inequality a(n) ≥ cb(n) that hides a positive constant c that is independent of n.94

Vectors (matrices) are denoted by boldface, lower-case (upper-case) letters. The used norm ∥ · ∥ in95

this paper is ℓ2 norm if we do not specify. We follow the standard Bachmann–Landau notation in96

complexity theory e.g., O, o, Ω, and Θ for order notation.97

Notations on angle: The angle between any two non-zero vectors w and v is denoted as ∠(w,v) :=98

cos−1 ⟨w,v⟩
∥w∥∥v∥ . Then we use the following notations for any i, j ∈ [m], l ∈ [k]99

• θil ≜ ∠(wi,vl): the angle between a student neuron wi and a teacher neuron vl.100

• φij ≜ ∠(wi,wj): the angle between two neurons wi and wj for student model.101

• τi ≜ argminj ∠(wi(0),vj(0)): the index of the teacher neuron with the smallest angle to102

the wi at initialization, in which the smallest angle is denoted as θi⋆ ≜ θiτi = ∠(wi,vτi).103

• rj ≜
∑

i:τi=l wi − vl: the difference of the teacher neuron vl and the sum of the student104

neurons around vl.105

For notational simplicity, by denoting ā ≜ a
∥a∥ , we denote the tangential part hil ≜ ⟨wi, v̄l⟩ as the106

projection of wi along with the direction of vl; and a similar notation for hi⋆ ≜ ⟨wi, v̄τi⟩. Besides,107

we denote wi(t) as the vector wi at time t, which also adapts to θij(t), etc.108

Notations on loss: The standard Gaussian distribution is N (0, 1) with zero-mean and unit variance.109

We denote Ex∼N (0,1) by Ex for simplicity. By defining the residuals of the neural network as:110

R(x) :=

m∑
i=1

σ(⟨wi,x⟩)−
k∑

i=1

σ(⟨vi,x⟩) ,

then the loss can be written as L(W ) = 1
2ExR(x)2.111

2.2 Closed form expressions of gradient of loss: ∇L112

To make our paper self-contained, we present the closed-form expressions for ∇L when the input data113

follows a Gaussian distribution, as given by Safran and Shamir [2018], see the details in Appendix B.114

We denote ∇i ≜
∂L(W )
∂wi

as the gradient of loss to the wi, when wi ̸= 0. Then for any i ∈ [m], the115

loss function is differentiable with gradient given by:116

∇i =
1

2

m∑
j=1

wj−
1

2

k∑
l=1

vl+
1

2π

[
wi

∥wi∥
( m∑
j=1,j ̸=i

sinφij ∥wj∥−
k∑

l=1

sin θil ∥v∥
)
−

m∑
j=1,j ̸=i

φijwj+

k∑
l=1

θilvl

]
.

(2)
We use random Gaussian initialization for neural network training, i.e., ∀i ∈ [m],wi(0) ∼117

N (0, σ2Id) with the variance σ2. Then we can prove that ∥wi∥ has bounded norm with high118

probability if the dimension d is not small, see Lemma 1 in Appendix B.119
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2.3 Assumptions120

We state the used assumptions in this paper.121

Assumption 1 (Weak recovery). Regarding the angle θij(0) defined before for any i ∈ [m], j ∈ [k],122

at initialization, denote θi⋆(0) as the smallest angle between wi and its closet teacher neuron. The123

weak recovery assumes θi⋆(0) ≪ θij(0) with j ∈ [k] and j ̸= τi. We mathematically formulate this124

as below.125

• θi⋆(0) is acute: 0 < π
2 − θi⋆(0) ≜ ζi = Θ(1), and ζi ∈ (0, π

2 ].126

• θij(0) is close to orthogonal:
∣∣π
2 − θij(0)

∣∣ ≤ ζ = o(1) with j ∈ [k] and j ̸= τi.127

Remark: The weak recovery assumption requires that a student neuron is not orthogonal to its closet128

student neuron but is nearly orthogonal to the remaining teacher neurons [Dandi et al., 2024]. If129

we focus on the single ReLU case like Xu and Du [2023], this assumption can be directly removed130

because there is only one teacher neuron. With only one teacher neuron, there are no competing131

neurons for alignment, and thus the angle between the student and teacher neuron is naturally the132

smallest.133

Assumption 2 (Orthogonal and same norm for teacher neurons). The teacher neurons are given by134

{vi}ki=1, and are assumed to be orthogonal to each other with the same norm, i.e., ⟨vi,vj⟩ = 0 and135

∥vi∥ = ∥vj∥ = ∥v∥ , ∀i ̸= j, i, j ∈ [m]. Clearly, we have k ≤ d due to the orthogonality of k136

teacher neurons.137

Remark: This assumption requires all teacher neurons pointing to different (orthogonal) directions,138

which is important for identifiability or recovery. It aligns with practical considerations by allowing139

diverse tasks such that the target feature directions do not significantly overlap. This assumption140

as well as its variant (e.g., separation among teacher neurons) has been widely used in previous141

theoretical results,e.g., [Zhou et al., 2021, Oko et al., 2024, Simsek et al., 2023]. We can relax this142

assumption where the teacher neurons are nearly orthogonal and have similar norms. However, such143

relaxation would require additional computations in our analysis. To avoid unnecessary complexity144

and focus on the core analysis, we concentrate on the basic assumptions.145

Assumption 3 (Balance condition at initialization). At initialization, we record the number of student146

neurons wi with τi = l as ml. Then we assume m
3k ≤ ml ≤ 3m

k ,∀l ∈ [k].147

Remark: This is a balance condition such that the number of merged student neurons among each148

teacher neuron is not extremely small or large. It is motivated by Boursier et al. [2022, Assumption149

3] and [Wojtowytsch, 2020] that requires the student neurons to cover all directions of the teacher150

neurons. Our assumption requires student neurons coincide with teacher neurons in a balanced way.151

3 Main Results152

In this section, we will provide the main theoretical results. First, in Section 3.1, we provide the153

primary result on global convergence. Then, in the following subsections, we discuss the training154

dynamics of the three phases and provide proof sketches. In Section 3.2.1, we provide the main155

dynamics and final state results of the alignment process in the first phase. In Section 3.2.2, we156

provide the main dynamics and final state results of the tangential growth process in the second phase.157

In Section 3.2.3, we provide the results of the local convergence in the third phase and then achieve158

the final global convergence result.159

3.1 Main Theorem160

Theorem 2. Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), under Assumptions 1 2 and 3, let
σ = o(poly(m−k2

, d−
1
2 )) = o(poly(d−

1
2 )), and trained via gradient descent with step-size, η =

o(poly(m−k2

)) = o(poly(1)) to minimize Eq. (1), then there exists a T ⋆ = Ω(k log k logm
mη ) = Ω( 1η )

such that with probability at least 1− δ over the initialization, for any T ∈ N, we have:

L(W (T ⋆ + T )) ≤ O

(
k12 ∥v∥2

η3T 3

)
, and

∥v∥
4mτi

≤ ∥wi(T
⋆ + T )∥ ≤ 4 ∥v∥

mτi

∀i ∈ [m] .
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Remark: Theorem 2 provides a convergence rate of T−3, which is consistent with previous results161

[Xu and Du, 2023]. Moreover, it indicates that the more teacher neurons and the larger their norms,162

the slower the convergence rate. This aligns with our intuition that when the initialization is very163

small, a larger norm and more teacher neurons require student neurons to take more time to align164

and converge to the teacher neurons. Unlike [Xu and Du, 2023], we present a stronger bound that165

is independent of the number of student neurons and does not deteriorate as the number of student166

neurons increases. Furthermore, our results indicate that the student neurons will implicitly converge167

to a specific teacher neuron and maintain a balance among themselves.168

3.2 Proof overview169

In this section, we provide a sketch of the Theorem 2. The complete proof can be found in the170

appendix. Our proof is primarily divided into three phases: alignment (Section 3.2.1), tangential171

growth (Section 3.2.2), and global convergence (Section 3.2.3). Finally we can summarize the results172

in these three phases for the main result.173

3.2.1 Phase 1 - Alignment174

During this phase, each student neuron individually aligns with a specific teacher neuron. The175

outcomes of this section are divided into two main parts: i) the upper and lower bounds on the176

lengths of the student neurons, as well as the angle between student and teacher neurons during the177

time Theorem 3. ii) the upper bound on the angle between student and teacher neurons at the end of178

phase 1, as well as the balance of projection strength from different student neurons onto the teacher179

neuron Corollary 1. The detailed derivation can be found in Appendix D.180

Theorem 3 (Phase 1: Alignment Process). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), for any ϵ1 > 0,181

under Assumption 1 with ϵ21 = o(1) and Assumptions 2, 3 such that σ = o( poly(ϵ1)∥v∥√
d

) in our random182

Gaussian initialization, and the stepsize satisfies η = o(
σ
√
dϵ21

∥v∥ ), then there exist a T1 = Θ(
ϵ21
η ), for183

0 ≤ t ≤ T1, the following statements hold with probability at least 1− δ:184

s1 ≤ ∥wi(t)∥ ≤ s2 + 2kη ∥v∥ t , ∀i ∈ [m], with s1 :=
1

2
σ
√
d, s2 := 2σ

√
d , (3)

and185

sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(
θi⋆(0)

2

)
− ϵ21

)
, ∀i ∈ [m] . (4)

Remark: Our theorem implies that, during phase 1 of the training, the norm of each student186

neuron always has an immutable lower bound, while the upper bound increases linearly over time.187

Additionally, for each student neuron, the angle with its nearest teacher neuron converges linearly188

within an error range of ϵ21. Compared to the results of Xu and Du [2023], the upper bound of our189

neuron norm increases k times faster because we have k different teacher neurons, which naturally190

leads to this outcome. Taking k = 1, our convergence rate is faster by a constant factor compared to191

the results of Xu and Du [2023], and our condition for σ is weaker. When the same σ is selected, the192

total duration of phase 1, denoted as T1, they are the same.193

Then, we briefly introduce our proof technique, due to the presence of multiple teacher neurons, the194

gradient expression in Eq. (15) contains 2(k − 1) cross terms including θil with detailed interactions,195

which do not exist in Xu and Du [2023]. To handle this challenge, we provide additional analysis on196

alignment related to these cross terms in phase 1. Specifically, we prove these results by induction.197

Proof of Eq. (3): This formula provides the upper and lower bounds of ∥w∥ during the training. For198

the lower bound, based on the gradient expression ∇i in Eq. (2), we prove ⟨wi(t),∇i(t)⟩ ≤ 0, which199

ensures that the norm ∥w∥ increases monotonically such that ∥wi(t)∥ ≥ s1. For the upper bound,200

we need to bound the norm of gradient using Eq. (2). Then, applying the triangle inequality, we can201

obtain the desired result.202

Proof of Eq. (4): This formula illustrates the angle dynamics (i.e., the alignment process) between203

the student neuron and its closest teacher neuron during phase 1. For larger θi⋆ , it is easy to prove204

that the θi⋆ decreases monotonically. However, when θi⋆ is very small, we cannot guarantee the205

monotonic decreasing property of θi⋆ . To this end, we build the connection between sin2(θi⋆(t)/2)206
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and the following angle difference207

cos(θi⋆(t+1))− cos(θi⋆(t)) := I2+ I3 , the first-order term I2 and the second-order term I3 .

By estimating I2 and I3, we can track the dynamics of the angle difference and then prove that sin θi⋆208

converges linearly to a very small neighborhood (i.e., ϵ21).209

At the end of phase 1, we conclude the following result:210

Corollary 1 (Final State of Phase 1). Under the same conditions as Theorem 3, at time T1, the211

following statements hold with probability at least 1− δ:212

θi⋆(T1) ≤ 4ϵ1 , and hi⋆(T1) ≤ 2hj⋆(T1) , ∀i, j ∈ [m] . (5)

Remark: By the end of phase 1, each student neuron will align with its nearest teacher neuron with213

the residual angle at the order of O(ϵ1). Additionally, the projection lengths of these student neurons214

in the direction of their corresponding teacher neurons are relatively balanced, with a rough upper215

bound of 2.216

Proof of Eq. (5): For the first part, substituting the parameters from Theorem 3 into Eq. (4) will yield217

the result. For the second part, firstly, we derive the upper and lower bounds for hi⋆(t+ 1)− hi⋆(t)218

and then accumulate these bounds. Next, we prove that before a certain time (e.g., t := T1/50),219

the upper bound of hi⋆(t) is relatively small compared to this accumulated value. This allows us to220

establish the upper and lower bounds for all hi⋆(T1) and thereby determine the maximum ratio of221

hi⋆(T1) among different student neurons.222

3.2.2 Phase 2 - Tangential Growth223

In this section, we present the results of the second phase, in which each student neuron grows along224

the tangential direction of the teacher neuron aligned in phase 1 as below.The detailed derivation can225

be found in Appendix E.226

Theorem 4 (Phase 2: Tangential Growth Process). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1),227

for any ϵ1 > 0, ϵ2 > 0, under Assumption 1 with ϵ2 = o(1), ϵ21 = o(poly(ϵ2)), Assumptions 2, 3228

such that σ = o( poly(ϵ1)∥v∥√
d

) in our random Gaussian initialization, and the stepsize satisfies η =229

o(
σ
√
dϵ21

∥v∥ ), then by setting there exist a T2 = T1 + Θ( 1η ln
(

1
ϵ2

)
), then ∀T1 ≤ t ≤ T2, we define230

Hl(t) := ∥v∥ −
∑m

i=1 Iτi=lhi⋆(t) for l ∈ [k], the following statements hold with probability at least231

1− δ:232

hi⋆(t) ≤ 2hj⋆(t), and
2 ∥v∥
mτi

≥ hi⋆(t) ≥
s1
2
, ∀i, j ∈ [m] and τi = τj . (6)

233 (
1−ηm

9k

)t−T1

∥v∥+8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1−3ηm

2k

)t−T1

−8πϵ2 ∥v∥ ≥ 24πϵ2 ∥v∥ , ∀l ∈ [k] ,

(7)
and234

θi⋆(t) ≤ ϵ2,∀i ∈ [m] . (8)

Remark: This theorem tells us that during phase 2:235

1). The norm of student neurons close to the same teacher neuron remains relatively balanced, with236

each neuron having strict upper and lower bounds (Eq. (6)). It is worth noting that, unlike in phase237

one, see Eq. (5), this balance is not maintained for all neurons.238

2). The projections of the student neurons near each teacher neuron will gradually increase, and the239

difference from ∥v∥ will approach zero at a linear convergence rate (Eq. (7)). This result implies that240

as training progresses, the loss gradually decreases. We will further prove that by the end of phase 2,241

the loss has decreased to a sufficiently small value.242

3). The angle between each student neuron and its nearest teacher neuron stays within a small range243

(Eq. (8)). However, the angle is slightly larger than that of Phase 1 because additional cost/movement244

is required to handle the convergence for tangential difference and the decrease of loss. For example,245

we have ∥∇i(t)∥ ≤ 2k∥v∥ in Phase 1 but it changes to ∥∇i(t)∥ ≤ 15k∥v∥ in Phase 2.246
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4). Taking k = 1, our condition for ϵ2 is similar to that of Xu and Du [2023], but we have relaxed the247

learning rate condition by a factor of m. And the total duration of phase 2, is reduced by a constant248

factor of 1
2 .249

Then, we briefly introduce our proof technique. Compared to one teacher setting [Xu and Du,250

2023], the tangential analysis requires a new dynamical system analysis regarding the dynamics251

of {Hl(t)}kl=1 due to the coupling tangential components among student/teacher neurons. Besides,252

the loss function becomes more complex Eq. (14) and we have to control the loss below a certain253

threshold in the presence of these interactions, which requires additional quantities to estimate.254

Specifically, we prove these results by induction.255

Proof of Eq. (6): For the first part, we follow the proof of Eq. (5) to build the connection between256

hi⋆(t + 1) − hi⋆(t) and Hl in a weighted sum relationship, with an additional constant term Qi.257

For two different student neurons close to the same teacher neuron, these weights are the same. By258

studying the changes of θi⋆ and θil during this phase, |Qi(t)| will be bounded by a small quantity.259

Then we conclude the result by summing and combining the results with Eq. (5). For the second260

part, based on Eq. (7), we can derive Hl ≥ 0 and finish the upper bound by combining the results261

from the first part. For the lower bound, we derive hi⋆(t+ 1)− hi⋆(t) ≥ 0, which implies that hi⋆ is262

monotonic increasing. Combining this with Eqs. (3) and (5), the proof is complete.263

Proof of Eq. (7): Using the above analysis about hi⋆(t + 1) − hi⋆(t) ≥ 0 and the relationship264

between hi⋆ and Hτi , we can establish a recursive relationship between H(t+ 1) and H(t) as well.265

Note that there is a coupling between different H and interference from small quantities Qi, so we266

express the iterative formula in matrix form. To be specific, by denoting H := {Hl}kl=1 (we write it267

in a matrix formulation), it admits the following recursive relationship:268

H(t+ 1) = AH(t) +Q(t) for a certain transition matrix A and Q(t) depends on Qi(t) .

By analyzing the eigenvalues of the transition matrix A, we estimate the upper and lower bounds269

of such a dynamic system. For the small quantities Qi, we adopt the same approach used in270

proving Eq. (4). Finally, we prove that H converges to a small value at a linear convergence rate.271

Proof of Eq. (8): The proof here is similar to Eq. (4), as it also analyzes the dynamics of cos θi⋆ .272

However, the difficulty lies in that at this phase, the influence of w in the gradient is no longer273

negligible compared to v, making the iterative relationship between angles more complex. First, by274

proving275

∥wi(t)∥
∥wj(t)∥

= Θ(1) ,∀i, j ∈ [m], T1 ≤ t ≤ T2 ,

we are able to analyse the dynamics of cos θi⋆ (i.e., I2 and I3 in Eq. (4)) based on two cases276

τi = (̸=)τj . First, we use some properties of trigonometric functions to decouple this relationship so277

that it only involves the coupling between each student neuron and its nearest teacher neuron. Then,278

we estimate the difference sin2
(

θi⋆ (t+1)
2

)
− sin2

(
θi⋆ (t)

2

)
for the final sin θi⋆(t). Unlike in phase279

1, here we obtain an upper bound for the linear growth of the angle θi⋆ . However, we can still prove280

that within the range of T2, the angle remains small.281

At the end of phase 2, we can draw the following results:282

Corollary 2 (Final state of Phase 2). Under the same conditions as Theorem 4, at time T2, the283

following statements hold with probability at least 1− δ:284

∥v∥
3mτi

≤ ∥wi(T2)∥ ≤ 3 ∥v∥
mτi

, ∀i ∈ [m] , and L(W (T2)) ≤
1

2
k2ϵ0.052 ∥v∥2 . (9)

Remark: After phase 2, the norms of each student neuron have balanced, and the loss has decreased285

to a very small value. This provides the foundation for proving local convergence in phase three.286

Proof of first part of Eq. (9): We use the results in Theorem 4 to prove this result. For the lower287

bound, we first observe from Eq. (7) that Hl is very small at time T2, meaning the sum of h among288

student neurons near each teacher neuron is close to ∥v∥, i.e., Hl(T2) ≤ ∥v∥
3 . Using the balance289

of them in Eq. (6), we can then establish a lower bound for hi⋆(∥wi∥ cos θi⋆), which further allows290

us to derive a lower bound for ∥wi∥. Similarly, for the upper bound, we first observe from Eq. (7)291

that at time T2, the sum of h among student neurons near each teacher neuron is close to but still292
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Local
Convergence.
Theorem 5


Gradient Lower Bound Theorem 8 ⇐ Loss-related Structural result Lemmas 4 to 6
Classic analysis of gradient descent [Nesterov et al., 2018](Appendix F.4)
Local Conditional Smoothness of Loss Lemma 7
Bound of neural changes [Xu and Du, 2023, Lemma 24]

Figure 1: Proof framework of Phase 3 - Local convergence

less than ∥v∥. Using the balance of them in Eq. (6), we can then establish an upper bound for293

hi⋆(∥wi∥ cos θi⋆). Given that the angle between each student neuron and its nearest teacher neuron294

is very small (second part in Eq. (8)), we can further derive a lower bound for ∥wi∥.295

Proof of second part of Eq. (9): The key point of this proof involves introducing an auxiliary function296

g to help decompose the L. The loss L can be expressed in the summation of g, see Appendix B for297

details. First, based on the upper bound of the angle in phase 2 (second part in Eq. (8)), we know that298

there are two scenarios for the angle in the closed form of the loss: close to 0 and nearly orthogonal.299

We discuss the upper and lower bounds of auxiliary function g in these two cases. Then, according300

to Eq. (7), we find that at time T2, the sum of the norms of the student neurons near each teacher301

neuron close to the norm of teacher neurons, i.e.
∑m

i=1 Iτi=lhi⋆(T2) ≥
(
1− o(1)

)
∥v∥. Combining302

these two results, we can derive an upper bound for the loss L.303

3.2.3 Phase 3 - Local convergence304

In this section, we present the results of phase 3 - local convergence. Specifically, we show that when305

the loss is already small enough, the loss function converges to zero at a rate of O( 1
T 3 ) Theorem 5.306

Our results build upon the previous works of Xu and Du [2023], Zhou et al. [2021], Safran et al.307

[2021]. The detailed derivation can be found in Appendix F.308

Theorem 5 (Local convergence). Suppose the initial condition in Lemma 1 and Assumption 1 2 and 3309

holds. If we set ϵ2 = o(poly(1)) and η = o(1) in Theorem 4, then ∀T ∈ N, the following statements310

hold with probability at least 1− δ:311

L(W (T + T2)) ≤
1(

L(W (T2))−
1
3 +Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 , (10)

and312
∥v∥
4mτi

≤ ∥wi(T + T2)∥ ≤ 4 ∥v∥
mτi

∀i ∈ [m] . (11)

Remark: This theorem shows that, under the condition that the loss is less than a very small value and313

the neurons remain balanced at the end of phase two, GD training can achieve the global minimum314

with a convergence rate of 1
T 3 . This result is consistent with the previous result in Xu and Du [2023]315

and is superior to 1
T in Zhou et al. [2021]. Furthermore, this result also indicates that, without using316

regularization during training, every student neuron will implicitly converge to the directions of317

specific teacher neurons, and there is a balance among student neurons that converge to the direction318

of the same teacher neuron.319

Then, we briefly introduce our proof technique.320

Proof of Eq. (10): The proof framework of Theorem 5 is standard based on the local convergence321

analysis, e.g., [Zhou et al., 2021, Xu and Du, 2023], as illustrated in Fig. 1.322

The key point to prove Eq. (10) is utilizing the result of classic optimization in Appendix F.4 and323

the lower bound of the gradient to satisfy the conditions of [Xu and Du, 2023, Lemma 24]. First,324

we follow [Zhou et al., 2021] to derive several lemmas related to the properties of the loss function.325

Based on these lemmas, we can obtain the lower bound of the gradient in terms of the loss. Then,326

similar to Safran et al. [2021], we deduce that when the neurons maintain a certain balance, the loss is327

locally smooth. This allows us to directly apply the classic optimization theory conclusion regarding328

the relationship between adjacent iterations of gradient descent Appendix F.4. Finally, we build the329

final convergence result by Xu and Du [2023, Lemma 24]. Additionally, our proof requires that the330

balance condition of the neurons is consistently maintained Eq. (11), which can be proven using331

induction and convergence results alternately.332
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Finally, by combining results from Sections 3.2.1 to 3.2.3 with the hyper-parameter selection in Ap-333

pendix A, we obtain the global convergence result in Theorem 2.334

When k = 1, compared to the results of Xu and Du [2023], our paper needs stronger requirements on335

σ, η and time. This is due to the upper bound of the loss after phase 2 in Eq. (9) and its relationship336

with ϵ2. Due to multiple teacher neurons, the number of student neurons converging to each teacher337

neuron directions are different. This leads to different norms for the student neurons, which makes a338

looser upper bound. However, in the case of k = 1, such handling is not necessary. Therefore, our339

results can cover the results of Xu and Du [2023] with only minor modifications and have a better340

constant factor in phase 1 discussed before.341

4 Numerical Validation342

In this section, we empirically validate our theoretical results by plotting the convergence curves343

under the following setting: we set ∥v∥ = 5, data dimension d = 100, batch size of 512, and a344

total of 5000 batches. The total number of training samples (equivalent to the previously mentioned345

T ⋆ + T ) is 2.56× 106. Besides, we have added a 1/T 3 reference line in the log-log plot for better346

comparison.347

First, we selected four sets of parameters k and m: k = 2,m = 20, k = 4,m = 12, k = 4,m = 20,348

and k = 4,m = 40 with initialization variance σ = 10−6 and learning rate η = 5× 10−4. The plots349

in Fig. 2 show the cosine of the angle and norm convergence during training (top row) and the log-log350

plot of the loss during training (bottom row) for different values of k and m. The results show that351

larger k values lead to longer t1 and t2 and slower convergence rates, while larger m values result in352

shorter t1 and t2 but have little effect on the convergence rate. This matches our theoretical results353

such that using more (student) neurons decreases the time for alignment. We admit that learning more354

(teacher) neurons generally requires more time but this is given under the same initialization strategy.355

Instead, our initialization strategy depends on m and k, leading to different learning dynamics.356

In the second set of experiments, we selected four sets of parameters σ and η: σ = 10−4, η =357

5 × 10−4, σ = 10−5, η = 5 × 10−4, σ = 10−6, η = 5 × 10−4, and σ = 10−6, η = 10−3 with358

k = 4 and m = 20. The plots in Fig. 3 show the cosine of the angle and norm convergence during359

training (top row) and the log-log plot of the loss during training (bottom row) for different values of360

σ and η. The results show that smaller stepsizes and initialization variances are crucial for stable and361

predictable training dynamics. Specifically, we found that larger initialization variance and stepsize362

can reduce the period in the first two phases, but it slows down the convergence rate in the third phase.363

This also suggests that empirically, smaller learning rates and initialization variances are better under364

this setting.365

Regarding the timescale experiments, we divided the training dynamics into three phases for analysis.366

We can observe the clear “align then fit” phenomena where in phases 1 and 2, the angle aligns367

and the tangential grows until the norm of neurons’ weights is unchanged. In phase 3, the loss368

function decreases for fitting data. The phase transition from Phase 1 to 2 is not very clear in the369

experiments but can still be observed with a distinct difference in that Phase 2 finishes later than370

Phase 1. Nonetheless, we have marked the figure’s approximate endpoints of the first and second371

phases.372

5 Related work373

Dynamics of gradient descent in the teacher-student setting: Li and Yuan [2017] studied the374

exact-parameterized setting and proved convergence for SGD with initialization near identity. The375

separation between kernel methods and two-layer neural networks is further described in Li et al.376

[2020]. To further understand the convergence and generalization of regression tasks using non-linear377

networks, it is essential to thoroughly analyze the dynamics throughout gradient-based training,378

commonly described as "align then fit" [Maennel et al., 2018, Boursier and Flammarion, 2024] in a379

three-phase analysis framework. Xu and Du [2023] provide a global convergence of learning with a380

single ReLU neuron, where the proof for the local convergence (i.e., the third phase) is given by Zhou381

et al. [2021]. This analysis framework is also used in various settings, e.g., binary classification [Min382

et al., 2023] and matrix sensing [Xiong et al., 2024].383

Besides, our problem can be cast as a special case of learning with multi-index model [Bietti et al.,384

2023] where the link function (i.e., the activation function used in this work) is unknown. However,385

the techniques are different and our three-phase analysis framework allows for a better understanding386
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Figure 2: Convergence curves for different m and k.
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Figure 3: Convergence curves for different σ and η.

of global convergence. Some statistical physics studies work have explored related topics but differ387

from our work [Goldt et al., 2020, Arnaboldi et al., 2023] by focusing on generalization errors without388

providing convergence rates or detailed analyses of training dynamics and convergence phases.389

Implicit bias: Recent studies suggest that gradient descent is implicitly biased towards a low-rank390

hidden weight matrix or a sparse number of directions represented by the neurons [Safran et al.,391

2022, Shevchenko et al., 2022, Chizat and Bach, 2020]. This implicit bias is often characterized by392

the minimal norm interpolator, which is closely related to sparsely represented directions [Lyu and393

Li, 2020]. These findings indicate that the early alignment phase enforces the alignment of weights394

towards a small number of directions, even with omnidirectional initialization, leading to implicit395

regularization at convergence [Boursier and Flammarion, 2023].396

6 Conclusion397

Our three-phase analysis framework provides a comprehensive analysis on global convergence, i.e.,398

1) alignment: the angle decreases θi⋆(T1) ≤ O(ϵ1) satisfying the balance condition but the norm399

of student neuron gradually increases with T1; 2) tangential growth: the projection of the student400

neurons near teacher neurons gradually increases. The angle is still small but slightly larger than401

that of phase 1 due to the additional cost of handling the convergence of tangential difference; 3)402

local convergence: the loss is close to zero and the neurons are still well-balanced thus achieving the403

global convergence at the rate of O(T−3).404

One potential drawback of this work is the weak recovery which simplifies the analysis. However,405

without weak recovery, the analysis will be quite complex, remaining unsolved, and thus we leave it406

as future work.407
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Appendix introduction507

The Appendix is organized as follows:508

• In Appendix A, we discuss the selection of hyperparameters in this paper.509

• In Appendix B, we provide a detailed explanation of the closed-form expression for the loss510

and its gradient as mentioned in the main text.511

• In Appendix C, we provide a detailed analysis of Assumption 1.512

• In Appendix D, we present the main results of phase 1 along with detailed proofs.513

• In Appendix E, we present the main results of phase 2 along with detailed proofs.514

• In Appendix F, we present the main results of phase 3 along with detailed proofs.515

A Selection of hyper-parameters516

• We set ϵ2 = o(m−60k−100) = o(poly(1)) in Theorem 4 as required by Theorem 5.517

• We set ϵ21 = o(ϵ
Θ(k)
2 /m) = o(poly(ϵ2)) in Theorem 3 as required by Theorem 4.518

• We set σ ≤ ϵ16k+2
1 ∥v∥

10000m
√
d
= o(

poly(ϵ21)∥v∥√
d

) in Theorem 3 as required by Theorems 3 and 4.519

• We set η = o

(
mϵ21s

2
1

k2∥v∥2

)
≤ o

(
ϵ32k+6
1

mk

)
= o(poly(ϵ21)) in Theorem 3 as required by Theo-520

rem 4.521

• We set T1 :=
ϵ21

100ηkm = Θ(
ϵ21
η ) in Theorem 3.522

• We set T2 = T1 +
k

2ηm ln
(

1
48πϵ2

)
= Θ( 1η ln ϵ−1

2 ) = Ω( 1η ) in Theorem 4.523

B Expression of loss L and its gradient ∇L524

In this section, we provide a detailed explanation of the closed-form expression for the loss and525

its gradient as mentioned in the main text. The main content of this section follows [Safran and526

Shamir, 2018, Section 4.1.1]. Besides, the bounded norm of ∥wi∥ for any i ∈ [m] is also given in527

this subsection. We include these results here just for completeness.528

For notational simplicity, we introduce the following auxiliary function:529

g(a, b) := Ex[σ(a
⊤x)σ(b⊤x)] =

∥a∥ ∥b∥
2π

(
sin∠(a, b) + (π − ∠(a, b)) cos∠(a, b)

)
, (12)

which implies that530

• if a and b are orthogonal, i.e., ⟨a, b⟩ = 0, then g(a, b) = ∥a∥∥b∥
2π .531

• If a = b, then g(a, b) = 1
2 ∥a∥ ∥b∥ = 1

2 ∥a∥
2
= 1

2 ∥b∥
2.532

Then we can derive that the gradient for g(a, b) w.r.t a as follows:533

g′(a, b) =
∂g(a, b)

∂a
=

1

2π

(
∥b∥ sin∠(a, b) a

∥a∥
+ (π − ∠(a, b))b

)
. (13)

Using this auxiliary function, we can rewrite the loss function in Eq. (1) as the following form:534

L(W ) =
1

2
Ex∼N (0,1)

( m∑
i=1

σ(w⊤
i x)−

k∑
i=1

σ(v⊤
i x)

)2

=
1

2

m∑
i=1

m∑
j=1

g(wi,wj) +
1

2

k∑
i=1

k∑
j=1

g(vi,vj)−
m∑
i=1

k∑
j=1

g(wi,vj) .

(14)
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Accordingly, when wi ̸= 0. for ∀i ∈ [n], the loss function is differentiable with gradient given by:535

∇i :=
∂L(W )

∂wi

=

m∑
j=1,j ̸=i

∂g(wi,wj)

∂wi
+

1

2

∂g(wi,wi)

∂wi
−

k∑
l=1

∂g(wi,vl)

∂wi

=
wi

2
+

1

2π

m∑
j=1,j ̸=i

(
∥wj∥ sinφij

wi

∥wi∥
+ (π − φij)wj

)
− 1

2π

k∑
l=1

(
∥v∥ sin θil

wi

∥wi∥
+ (π − θil)vl

)

=
1

2

m∑
j=1

wj −
1

2

k∑
l=1

vl +
1

2π

[
wi

∥wi∥
( m∑
j=1,j ̸=i

sinφij ∥wj∥ −
k∑

l=1

sin θil ∥v∥
)
−

m∑
j=1,j ̸=i

φijwj +

k∑
l=1

θilvl

]
.

(15)

The bounded norm ∥wi∥ at initialization can be given as below.536

Lemma 1 (Adapted from Lemma 3 in [Xu and Du, 2023]). Let s1 := 1
2σ

√
d. s2 := 2σ

√
d, if537

d = Ω(log(m/δ)), with probability at least 1− δ, the following properties hold at the initialization:538

s1 ≤ ∥wi(0)∥ ≤ s2 , ∀i ∈ [m] .

Remark: This is a standard fact in high-dimensional statistics, and on this basis, our result only539

involves this randomness. In the rest of the analysis in this paper is deterministic.540

C Detailed analysis for Assumption 1541

Here we prove the following lemma:542

Lemma 2. When d = Ω( log(mk/δ))
ζ2 with ζ = o(poly(m−k2

, k−k2

)), then with probability at least543

1− δ, the following property hold at the initialization:544

π

2
− ζ ≤ θij(0) ≤

π

2
+ ζ . ∀i ∈ [m], j ∈ [k] .

Proof. According to Lemma 1, we have for ∀i ∈ [m], j ∈ [k], we have:545

|⟨wi(0), v̄j⟩| ≤
ζ

4
σ
√
d ∧ ∥wi(0)∥ ≥ 1

2
σ
√
d ⇒ |cos θij(0)| ≤

ζ

2
⇒ π

2
− ζ ≤ θij(0) ≤

π

2
+ ζ .

By concentration inequality of Gaussian, we have:546

P
(
|⟨wi(0), v̄j⟩| ≥

ζ

4
σ
√
d

)
≤ 2 exp

(
−

( ζ4σ
√
d)2

2σ2

)
≤ δ

3mk
.

Then:547

P
(
θij(0) ≥

π

2
+ ζ ∨ θij(0) ≤

π

2
− ζ∀j ∈ [k]

)
≤ δ

3mk
∗ k +

δ

3m
=

2δ

3m
.

Applying the union bound for ∀i ∈ [m], which finishes the proof.548

D Global Convergence: Phase 1 (Alignment)549

In Phase 1, we are interested in the dynamics of θi⋆ as well as the angle difference between the student550

neuron and its closest teacher neuron. The theorem we prove below is a combination of Theorem 3551

and Corollary 1 from the main text.552
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Theorem 6 (Phase 1: Alignment). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), for any ϵ1 > 0, under553

Assumption 1 with 10kζ ≤ ϵ21 = o(ζ3i ) and Assumptions 2, 3 such that σ ≤ ϵ16k+2
1 ∥v∥

10000m
√
d

in our random554

Gaussian initialization, and the stepsize satisfies η ≤ σ
√
dϵ21

100k2∥v∥ , then by setting T1 :=
ϵ21

100ηkm , for555

0 ≤ t ≤ T1, the following statements hold with probability at least 1− δ:556

s1 ≤ ∥wi(t)∥ ≤ s2 + 2kη ∥v∥ t , ∀i ∈ [m], with s1 :=
1

2
σ
√
d, s2 := 2σ

√
d , (16)

and557

sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(
θi⋆(0)

2

)
− ϵ21

)
, ∀i ∈ [m] . (17)

After Phase 1, we have:558

θi⋆(T1) ≤ 4ϵ1 , ∀i ∈ [m] . (18)

and559

hi⋆(T1) ≤ 2hj⋆(T1) , ∀i, j ∈ [m] . (19)

Proof. The proof is given by induction. We firstly prove Eqs. (16) and (17) and then Eqs. (18)560

and (19).561

At the initialization time t = 0, Eq. (16) and Eq. (17) directly hold according to Lemma 1. Note562

that the probability in this work only relates to the random initialization as given by Lemma 1. For563

description simplicity, we do not include this probability during the derivation but just mention it in564

our theorem.565

Before proving Eqs. (16) and (17), we first analyse the learning dynamics of θi⋆ . For any ∀i ∈ [m]566

and 0 < t < T1, according to the inductive hypothesis, we have:567

sin2
(
θi⋆(t)

2

)
≤ max

{
sin2

(
θi⋆(0)

2

)
, ϵ21

}
= sin2

(
θi⋆(0)

2

)
= sin2

(
π

4
− ζi

2

)
,

where the right part of the above inequality is given by the following fact with Assumption 1:568

sin2
(
θi⋆(0)

2

)
= sin2

(
π

4
− ζi

2

)
=

1

2
+

1

2
sin(ζi) = Θ(1) ≥ ϵ21 = o(ζ3i ) = o(1) ,

which means:569

θi⋆(t) ≤
π

2
− ζi . (20)

Then we assume Eqs. (16) and (17) hold for any 0 < t < T1 to prove Eqs. (16) and (17) for t+ 1.570

Proof of right part of Eq. (16):571

According to the inductive hypothesis and s2 := 2σ
√
d in Lemma 1, we have:572

∥wi(t)∥ ≤ s2 + 2kη ∥v∥T1 ≤ ϵ16k+2
1 ∥v∥
50m

+
ϵ21 ∥v∥
50m

≤ ϵ21 ∥v∥
48m

= o

(
∥v∥
m

)
≤ ∥v∥

3m
, ∀i ∈ [m] .

(21)
That means the teacher neuron’s norm controls all of the student neurons’ norm at t ∈ [0, T1]. Then573

by triangle inequality and Eq. (21), the gradient norm can be upper bounded by574
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∥∇i(t)∥

≤

∥∥∥∥∥∥12
m∑
j=1

wj(t)

∥∥∥∥∥∥+
∥∥∥∥∥12

k∑
l=1

vl

∥∥∥∥∥
+

∥∥∥∥∥∥ 1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl(t)

]∥∥∥∥∥∥
≤m

2
× ∥v∥

3m
+

k

2
∥v∥+ 1

2π

(
m× ∥v∥

3m
+ k ∥v∥+mπ × ∥v∥

3m
+ kπ ∥v∥

)
<2k ∥v∥ , ∀i ∈ [m] .

(22)

One can see that, the gradient norm is upper bounded by all of the teacher neuron’s norm. Accordingly,575

based on the gradient iteration, by the above results, we have:576

∥wi(t+ 1)∥ = ∥wi(t)− η∇i(t)∥ ≤ ∥wi(t)∥+ ∥η∇i(t)∥ ≤ s2 + 2kη ∥v∥ (t+ 1), ∀i ∈ [m] ,
(23)

which concludes the proof.577

Proof of left part of Eq. (16):578

Here we need to prove the lower bound, we have:579

∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1 , ∀i ∈ [m] .

According to the gradient iteration:580

∥wi(t+ 1)∥2−∥wi(t)∥2 = ∥wi(t)− η∇i(t)∥2−∥wi(t)∥2 = −2η ⟨wi(t),∇i(t)⟩+η2 ∥∇i(t)∥2 , ∀i ∈ [m] ,

we only need to prove ∀i ∈ [m], ⟨wi(t),∇i(t)⟩ ≤ 0. To be specific, we split ⟨wi(t),∇i(t)⟩ into two581

parts:582
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⟨wi(t),∇i(t)⟩

=

〈
wi(t),

1

2

m∑
j=1

wj(t)−
1

2

k∑
l=1

vl

〉

+

〈
wi(t),

1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl

]〉

=
1

2

m∑
j=1

⟨wi(t),wj(t)⟩ −
1

2

k∑
l=1

⟨wi(t),vl⟩

+
1

2π
∥wi(t)∥

m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
1

2π
∥wi(t)∥

k∑
l=1

sin θil(t) ∥v∥

− 1

2π

m∑
j=1,j ̸=i

φij(t) ⟨wi(t),wj(t)⟩+
1

2π

k∑
l=1

θil(t) ⟨wi(t),vl⟩

=
1

2
∥wi(t)∥

( m∑
j=1

∥wj(t)∥ cosφij(t)−
k∑

l=1

∥v∥ cos θil(t)

+
1

π

m∑
j=1,j ̸=i

∥wj(t)∥ sinφij(t)−
1

π

k∑
l=1

∥v∥ sin θil(t)

− 1

π

m∑
j=1,j ̸=i

∥wj(t)∥ cosφij(t)φij(t) +
1

π

k∑
l=1

∥v∥ cos θil(t)θil(t)
)

=
1

2π
∥wi(t)∥ ∥v∥

k∑
l=1

(
−π cos θil(t)− sin θil(t) + cos θil(t)θil(t)︸ ︷︷ ︸

I1

)

+
1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥
(
π cosφij(t) + sinφij(t)− cosφij(t)φij(t)︸ ︷︷ ︸

Ĩ1

)
,

where the last equality holds by including the additional term related to φii = 0 for any i ∈ [m].583

One hand, for I1, by Eq. (17), I1 is a monotonically increase function of θil(t) on the interval [0, π].584

Then by Eq. (20), we have θil(t) ≤ θi⋆(t) +
π
2 ≤ π − ζi, which implies that:585

I1 = −π cos θil(t)− sin θil(t) + cos θil(t)θil(t)

≤ −π cos(π − ζi)− sin(π − ζi) + cos(π − ζi)(π − ζi)

= ζi cos(ζi)− sin(ζi)

≤ −ζ3i
4

,

where the last inequality holds by the fact that ζi cos(ζi) − sin(ζi) ≤ − ζ3
i

4 is always true on the586

interval [0, π
2 ].587

On the other hand, to estimate Ĩ1, recall ∥wi(t)∥ ≤ ϵ21∥v∥
48m = o(1) in Eq. (21) and the fact |Ĩ1| ≤ π,588

we have:589

1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥ Ĩ1 ≤ 1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥ |Ĩ1| ≤
1

96
∥wi(t)∥∥v∥ϵ21 .
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Accordingly, combining the above derivation over I1 and Ĩ1, we have:590

⟨wi(t),∇i(t)⟩ ≤
1

2π
∥wi(t)∥ ∥v∥

(
− kζ3i

4
+ Θ(ϵ21)

)
≤ 0 ,

due to ϵ21 = o(ζ3i ), we conclude that ∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1 and finish the proof for Eq. (16).591

Proof of Eq. (17):592

We analyze the learning dynamics of cos θi⋆ by splitting it into two parts (first-order term and the593

second-order term) as follows:594

cos θi⋆(t+ 1)− cos θi⋆(t)

=
⟨wi(t+ 1),vτi⟩
∥wi(t+ 1)∥ ∥v∥

− ⟨wi(t),vτi⟩
∥wi(t)∥ ∥v∥

=
∥wi(t)∥ ⟨wi(t+ 1),vτi⟩ − ∥wi(t+ 1)∥ ⟨wi(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
∥wi(t)∥ ⟨wi(t)− η∇i(t),vτi⟩ − ∥wi(t+ 1)∥ ⟨wi(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
(∥wi(t)∥ − ∥wi(t+ 1)∥) ⟨wi(t),vτi⟩ − ∥wi(t)∥ ⟨η∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=

(∥wi(t)∥2−∥wi(t+1)∥2

∥wi(t)∥+∥wi(t+1)∥
)
⟨wi(t),vτi⟩ − ∥wi(t)∥ ⟨η∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=

( 2η⟨wi(t),∇i(t)⟩−η2∥∇i(t)∥2

∥wi(t)∥+∥wi(t+1)∥
)
⟨wi(t),vτi⟩ − η ∥wi(t)∥ ⟨∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩︸ ︷︷ ︸

I2

+
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
︸ ︷︷ ︸

I3

.

(24)

One can see that we need to estimate the respective two parts I2 and I3. For term I2, note that595

⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,wi(t)⟩ = 0, then we have:596
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I2 =
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩

=
η

∥wi(t+ 1)∥

(〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

1

2

m∑
j=1

wj(t)−
1

2

k∑
l=1

vl

〉

+

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

1

2π

[
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl

]〉)

=
η

∥wi(t+ 1)∥

(
1

2

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

m∑
j=1

wj(t)

〉
− 1

2

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

k∑
l=1

vl

〉

− 1

2π

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

m∑
j=1,j ̸=i

φij(t)wj(t)

〉
+

1

2π

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

k∑
l=1

θij(t)vl

〉)

=
η

2π ∥wi(t+ 1)∥

(〈
cos θi⋆(t)w̄i(t)− v̄τi ,

m∑
j=1

(π − φij(t))wj(t)

〉
−

〈
cos θi⋆(t)w̄i(t)− v̄τi ,

k∑
l=1

(π − θil(t))vl

〉)

=
η

2π ∥wi(t+ 1)∥

(〈
cos θi⋆(t)w̄i(t),

m∑
j=1

(π − φij(t))wj(t)

〉
−

〈
v̄τi ,

m∑
j=1

(π − φij(t))wj(t)

〉

−

〈
cos θi⋆(t)w̄i(t),

k∑
l=1

(π − θil(t))vl

〉
+

〈
v̄τi ,

k∑
l=1

(π − θil(t))vl

〉)

=
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t)) cos θi⋆(t) cosφij(t)

)
−

m∑
j=1

(
∥wj(t)∥ (π − φij(t)) cos θjτi(t)

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)

≥ η ∥v∥
2π ∥wi(t+ 1)∥

(
sin2 θi⋆(t)(π − θi⋆(t))−

k∑
l=1,l ̸=τi

(
(π − θil(t)) cos θi⋆(t) cos θil(t)

)
− π

12
ϵ21

)
[Eq. (21)]

≥ η ∥v∥
2π ∥wi(t+ 1)∥

(
π

2
sin2 θi⋆(t)− 2kπζ − π

12
ϵ21

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

17

30
ϵ21

)
,

(25)

which builds the connection between I2 and sin2 θi⋆(t). For term I3:597

I3 =
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
[using Eq. (23)]

≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

2s1

)
[using Eq. (16)]

= − η2 ∥∇i(t)∥2

s1 ∥wi(t+ 1)∥

≥ − 4k2η2 ∥v∥2

s1 ∥wi(t+ 1)∥
. [using Eq. (22)]

(26)
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Take Eq. (25) and Eq. (26) into Eq. (24), we have:598

cos θi⋆(t+ 1)− cos θi⋆(t) = I2 + I3

≥ η ∥v∥
4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

17

30
ϵ21 −

16k2η ∥v∥
s1

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

133

150
ϵ21

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)− ϵ21

)
.

Accordingly, we transform the dynamics analysis on θi⋆ from cos to sin, which allows for estimat-599

ing Eq. (17) as below. Recall cos 2x = 1− 2 sin2 x, the above inequality implies:600

sin2
(
θi⋆(t)

2

)
− sin2

(
θi⋆(t+ 1)

2

)
=
cos θi⋆(t+ 1)− cos θi⋆(t)

2

≥ η ∥v∥
8 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)− ϵ21

)
=

η ∥v∥
8 ∥wi(t+ 1)∥

(
4 sin2

(θi⋆(t)
2

)
cos2

(θi⋆(t)
2

)
− ϵ21

)
≥ η ∥v∥
4 ∥wi(t+ 1)∥

(
sin2

(θi⋆(t)
2

)
− ϵ21

)
,

(27)

which implies:601

sin2
(
θi⋆(t+ 1)

2

)
− ϵ21 ≤

(
1− η ∥v∥

4 ∥wi(t+ 1)∥

)(
sin2

(θi⋆(t)
2

)
− ϵ21

)
≤
(
1− η ∥v∥

4(s2 + 2ηk ∥v∥ (t+ 1))

)(
sin2

(θi⋆(t)
2

)
− ϵ21

)
[using Eq. (16)]

≤
t+1∏
u=1

(
1− η ∥v∥

4(s2 + 2ηk ∥v∥u)

)(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤ exp

(∫ t+2

u=1

− η ∥v∥
4(s2 + 2ηk ∥v∥u)

du

)(
sin2

(θi⋆(0)
2

)
− ϵ21

)
[using 1− x ≤ e−x]

= exp

(
− 1

8k
ln

(
s2 + 2ηk ∥v∥ (t+ 2)

s2 + 2ηk ∥v∥

))(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤
(
1 +

ηk ∥v∥ (t+ 1)

s2

)− 1
8k
(
sin2

(θi⋆(0)
2

)
− ϵ21

)
.

Accordingly, we finish the proof of Eq. (17).602

Proof of Eq. (18):603

Let t0 := T
50 ∈ N, for any t ∈ [t0, T1], using Eq. (17) and definitions of s2, σ, we have:604
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sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤
(
1 +

ηk ∥v∥ t
s2

)− 1
8k

≤
(
ηk ∥v∥ t0

s2

)− 1
8k

=

(
ηk ∥v∥T1

100σ
√
d

)− 1
8k

≤
(

∥v∥ ϵ21
10000mσ

√
d

)− 1
8k

≤ ϵ21 .

That means: sin2
(

θi⋆ (t))
2

)
≤ 2ϵ21. So ∀t ∈ [T1

50 , T1] and ∀i ∈ [m], we have θi⋆(t) ≤ 4ϵ1.605

Consequently, each student neuron has aligned to a teacher neuron by the end of phase 1.606

Proof of Eq. (19): For any t ∈ [T1/50, T1], we study the dynamics of hi⋆ (i.e., the inner product607

between the projection of gradient and teacher neuron) admitting the following formulation:608

hi⋆(t+ 1)− hi⋆(t)

= ⟨wi(t+ 1), v̄τi⟩ − ⟨wi(t), v̄τi⟩
=− η ⟨∇i(t), v̄τi⟩

=− η

2

〈
m∑
j=1

wj(t)− vτi , v̄τi

〉

− η

2π

〈
wi(t)

∥wi(t)∥
( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) + θi⋆(t)vτi , v̄τi

〉

=
η

2

(
∥v∥ −

m∑
j=1

hjτi(t)

)

− η

2π

(
cos θi⋆(t)

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)
.

(28)

To analyse this dynamics, we need to study the sin θil(t) at first. According to Assumption 2, we609

have:610

π

2
− θi⋆(t) ≤ θil(t) ≤

π

2
+ θi⋆(t) , ∀i ∈ [m], τi ̸= l ∈ [k] .

So we have:611

−θi⋆(t) ≤
π

2
− θil(t) ≤ θi⋆(t) , ∀i ∈ [m], τi ̸= l ∈ [k] .

That is:612

1 ≥ sin θil(t) = cos

(
π

2
− θil(t)

)
≥ cos θi⋆(t) ≥ cos(4ϵ1) ≥ 1− 8ϵ21 , ∀i ∈ [m], τi ̸= l ∈ [k] .
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Then taking it back to Eq. (28), we have:613

hi⋆(t+ 1)− hi⋆(t) ≤
η

2
∥v∥ − η

2π

(
cos θi⋆(t)

(
−

k∑
l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t)

)

≤η

2
∥v∥+ η

2π

( k∑
l=1

sin θil(t) ∥v∥+
m∑

j=1,j ̸=i

φij(t) ∥wj(t)∥
)
[using cos θi⋆(t) ≤ 1]

≤η

2
∥v∥+ η

2π

(
k ∥v∥+ (m− 1)π

ϵ21 ∥v∥
48m

)
[using Eq. (21) and φij < π]

≤k + π − 0.5

2π
η ∥v∥ , ∀i ∈ [m] .

Similarly, we can derive that:614

hi⋆(t+ 1)− hi⋆(t) ≥
k + π − 1.5

2π
η ∥v∥ , ∀i ∈ [m] .

Then, we accumulate over the time:615

49(k + π − 1.5)

100π
ηT1 ∥v∥ ≤ hi⋆(T1)− hi⋆

(T1

50

)
≤ 49(k + π − 0.5)

100π
ηT1 ∥v∥ , ∀i ∈ [m] . (29)

The remaining thing left is to bound hi⋆(
T1

50 ):616 ∣∣∣∣hi⋆
(T1

50

)∣∣∣∣ ≤ ∥∥∥∥wi

(T1

50

)∥∥∥∥ ≤ s2 + 2kη ∥v∥ T1

50
≤ k

20
ηT1 ∥v∥ , ∀i ∈ [m] . (30)

Combine Eqs. (29) and (30), we have:617

49k + 49π − 5πk − 73.5

100π
ηT1 ∥v∥ ≤ hi⋆(T1) ≤

49k + 49π + 5πk − 24.5

100π
ηT1 ∥v∥ , ∀i ∈ [m] .

(31)
Hence we finish the proof of Eq. (19).618

E Global Convergence: Phase 2 (Behaviors on the tangential growth)619

In Phase 2, we are interested in the dynamics of h⋆
i as well as the tangential difference between the620

student neuron and its closest teacher neuron.621

E.1 Global Convergence: Phase 2 (Tangential growth process)622

In this section, we will restate and prove Theorem 4.623

Theorem 7 (Phase 2: Tangential Growth, restate version of Theorem 4). Assume d = Ω(log(m/δ))624

with δ ∈ (0, 1), for any ϵ1 > 0, ϵ2 > 0, under Assumption 1 with 10kζ ≤ ϵ21 = o(ζ3i ) =625

o(ϵ
Θ(k)
2 /m), ϵ2 = o(1), Assumptions 2, 3 such that σ ≤ ϵ16k+2

1 ∥v∥
10000m

√
d

in our random Gaussian initial-626

ization, and the stepsize satisfies η = o

(
mϵ21s

2
1

k2∥v∥2

)
≤ σ

√
dϵ21

100k2∥v∥ , then by setting T1 :=
ϵ21

100ηkm and627

T2 = T1 +
k

2ηm ln
(

1
48πϵ2

)
, then ∀T1 ≤ t ≤ T2, we define Hl(t) := ∥v∥ −

∑m
i=1 Iτi=lhi⋆(t) for628

l ∈ [k], the following statements hold with probability at least 1− δ:629

hi⋆(t) ≤ 2hj⋆(t),∀i, j ∈ [m] and τi = τj . (32)
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(
1−ηm

9k

)t−T1

∥v∥+8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1−3ηm

2k

)t−T1

−8πϵ2 ∥v∥ ≥ 24πϵ2 ∥v∥ , ∀l ∈ [k] .

(33)

2 ∥v∥
mτi

≥ hi⋆(t) ≥
s1
2
,∀i ∈ [m] , (34)

and630

θi⋆(t) ≤ ϵ2,∀i ∈ [m] . (35)

Proof. We use induction to prove this theorem.631

First, for t = T1, according to Eq. (19) and Eq. (18), we have Eq. (32) and Eq. (35) hold directly.632

For Eq. (33), by Eq. (21), we have:633

∥v∥ ≥ Hl(T1) = ∥v∥ −
m∑
i=1

Iτi=lhi⋆(t) ≥
2

3
∥v∥ , ∀l ∈ [k] . (36)

For Eq. (34), for the left part, by Eq. (21) we have:634

hi⋆(T1) ≤ ∥wi(T1)∥ ≤ 2 ∥v∥
m

≤ 2 ∥v∥
mj

,∀i ∈ [m] ,

and for the right part, by Eq. (18) and Lemma 1, we have:635

hi⋆(T1) = ∥wi(T1)∥ cos θi⋆(T1) ≥ (1− 8ϵ21) ∥wi(T1)∥ ≥ s1
2
,∀i ∈ [m] .

Next step, we assume Eqs. (32) to (35) hold for T1, T1 + 1, . . . , t for any T1 < t < T2, and then636

prove Eqs. (32) to (35) for t+ 1.637

Proof of Eq. (32):638

By Eq. (28), for any i ∈ [m], we decompose the tangential difference hi⋆(t+ 1)− hi⋆(t) as below:639
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hi⋆(t+ 1)− hi⋆(t)

=
η

2

(
∥v∥ −

m∑
j=1

hjτi(t)

)

− η

2π

(
cos θi⋆(t)

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2

(
Hτi(t)−

m∑
j=1

Iτj ̸=τihjτi(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l sinφij(t) ∥wj(t)∥ − sin θil(t) ∥v∥
)

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2

(
Hτi(t)−

m∑
j=1

Iτj ̸=τihjτi(t)

)
+

η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

(
sin θil(t)Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t)

−η

2

m∑
j=1

Iτj ̸=τihjτi(t) +
η

2π

k∑
l=1,l ̸=τi

([
cos θi⋆(t) sin θil(t)− 1

]
Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1

Iτi ̸=τjφij(t)hjτi(t) +

m∑
j=1

Iτi=τjφij(t)hjτi(t) + θi⋆(t) ∥v∥
)

:=
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t) ,

(37)

where the Qi(t) is defined as:640
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Qi(t) := −η

2

m∑
j=1

Iτj ̸=τihjτi(t) +
η

2π

k∑
l=1,l ̸=τi

([
cos θi⋆(t) sin θil(t)− 1

]
Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1

Iτi ̸=τjφij(t)hjτi(t) +

m∑
j=1

Iτi=τjφij(t)hjτi(t) + θi⋆(t) ∥v∥
)
.

To bound Qi, we need to estimate φij and θil at first. By Eq. (35) and Assumption 2, we have that641

for τj = l and τi ̸= l:642

π

2
− 2ϵ2 ≤ π

2
− θi⋆(t)− θj⋆(t) ≤ φij(t) ≤

π

2
+ θi⋆(t) + θj⋆(t) ≤

π

2
+ 2ϵ2 .

And for a similar reason, we have:643

π

2
− ϵ2 ≤ θil(t) ≤

π

2
+ ϵ2, and − ϵ2 ≤ θjl(t) ≤ ϵ2 ,

which implies that for a sufficient small ϵ2:644

sinφij(t)− cos θjl(t) sin θil(t) ≤ |sinφij(t)− 1|+ |1− cos θjl(t) sin θil(t)|

=

(
1− cos

(
π

2
− φij(t)

))
+

(
1− cos θjl(t) cos

(
π

2
− θil(t)

))
∼= (1− cos 2ϵ2) + (1− cos2 ϵ2)

≤ 2ϵ22 + ϵ22

= 3ϵ22 .

Then using this result as well as Eqs. (34) and (35) to bound |Qi(t)|, for ∀i ∈ [m], we have:645
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|Qi(t)| ≤
η

2

m∑
j=1

Iτj ̸=τi

2 ∥v∥ sin θj⋆(t)
mτj cos θj⋆(t)

+
η

2π
(k − 1) sin2 θi⋆(t) ∥v∥

+
η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l
2 ∥v∥

mτj cos θj⋆(t)
3ϵ22

)

+
η

2π
cos θi⋆(t)

m∑
j=1

Iτj=τi

2 ∥v∥ sinφij(t)

mτi cos θj⋆(t)
+

η

2π

sin 2θi⋆(t)

2
∥v∥

+
η

2π

m∑
j=1

Iτi ̸=τj (
π

2
+ 2ϵ2)

2 ∥v∥ sin θj⋆(t)
mτj cos θj⋆(t)

+
η

2π

m∑
j=1

Iτj=τi2ϵ2
2 ∥v∥
mτj

+
η

2π
θi⋆(t) ∥v∥

≤η

m∑
j=1

Iτj ̸=τi

∥v∥ ϵ2(1 + ϵ22)

mτj

+
η

2π
kϵ22 ∥v∥

+
η

2π

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l
2 ∥v∥ (1 + ϵ22)

mτj

3ϵ22

)

+
η

2π

m∑
j=1

Iτj=τi

2 ∥v∥ 2ϵ2(1 + ϵ22)

mτi

+
η

2π

2ϵ2
2

∥v∥

+
η

2π

m∑
j=1

Iτi ̸=τj (
π

2
+ 2ϵ2)

2 ∥v∥ ϵ2(1 + ϵ22)

mτj

+
η

2π

m∑
j=1

Iτj=τi2ϵ2
2 ∥v∥
mτj

+
η

2π
ϵ2 ∥v∥

≤1.1ηkϵ2 ∥v∥+ ηkϵ22 ∥v∥+ 2ηkϵ22 ∥v∥+ 0.7ηϵ2 ∥v∥+ 0.2ηϵ2 ∥v∥+ 0.6ηkϵ2 ∥v∥+ 0.7ηϵ2 ∥v∥+ 0.2ηϵ2 ∥v∥
≤4ηkϵ2 ∥v∥

≤1

3

(
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t)

)
,

(38)

where the last inequality use Eq. (33).646

Then ∀i, j ∈ [m] and τi = τj , we have:647

hi⋆(t+ 1) =hi⋆(t) +
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t)

≤2hj⋆(t) + 2

(
η

2
Hτj (t) +

η

2π

k∑
l=1,l ̸=τj

Hl(t) +Qj(t)

)
≤2hj⋆(t+ 1) ,

which finishes the proof of Eq. (32).648

Proof of Eq. (33):649

Then we derive the dynamics of Hl(t), for any l ∈ [k], we have:650
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Hl(t+ 1) = Hl(t)−
m∑
i=1

Iτi=l

(
hi⋆(t+ 1)− hi⋆(t)

)

= Hl(t)−
m∑
i=1

Iτi=l

(
η

2
Hτi(t) +

η

2π

k∑
j=1,j ̸=l

Hj(t) +Qi(t)

)

=

(
1− mlη

2

)
Hl(t)−

mlη

2π

k∑
j=1,j ̸=τi

Hj(t) +

m∑
i=1

Iτi=lQi(t) .

For ease of description, we write the recursive iteration in a matrix form651

H(t+ 1) =

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))
H(t) +Q(t) .

by defining the following quantities652

H(t) := [H1(t), H2(t), . . . ,Hk(t)]
⊤ ∈ Rk,

Diag(m) := Diag(m1,m2, . . . ,mk) ∈ Rk×k,

Q(t) := [
∑m

i=1 Iτi=1Qi(t),
∑m

i=1 Iτi=2Qi(t), . . . ,
∑m

i=1 Iτi=kQi(t)]
⊤ ∈ Rk .

In the next, we aim to derive the upper and lower bound of H(t + 1). Denote A :=653

[ 8πkϵ2∥v∥π+k−1 , 8πkϵ2∥v∥
π+k−1 , . . . , 8πkϵ2∥v∥

π+k−1 ]⊤ ∈ Rk, according to Eq. (38) and Assumption 3, we have:654

H(t+ 1)−A ≼

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))
H(t) + 4ηkϵ2 ∥v∥Diag(m)1−A .

=

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))(
H(t)−A

)
≼

(
I − η

2π

m

3k
(π − 1)I

)
H(t)

≼

(
1− ηm(π − 1)

6πk

)
H(t) .

Here ≼ means that all elements of the previous vector are smaller than the following vector. Then for655

l ∈ [k], we have:656

Hl(t+ 1) ≤
(
1− ηm(π − 1)

6πk

)t+1−T1

Hl(T1) +
8πkϵ2 ∥v∥
π + k − 1

≤
(
1− ηm(π − 1)

6πk

)t+1−T1

∥v∥+ 8πkϵ2 ∥v∥
π + k − 1

≤
(
1− ηm

9k

)t+1−T1

∥v∥+ 8πϵ2 ∥v∥ .

Similarly, we have657

H(t+ 1) +A ≽

(
I − η

2π

3m

k

(
11⊤ + (π − 1)I

))(
H(t) +A

)
≽

(
I − 3ηm

2πk

(
11⊤ + (π − 1)I

))
H(t) .
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Here ≽ means that all elements of the previous vector are greater than the following vector. The658

eigenvalues of matrix I − 3ηm
2πk

(
11⊤ + (π − 1)I

)
is calculated to be one 1− 3ηm(k+π−1)

2πk and the659

rest k − 1 are 1− 3ηm(π−1)
2πk . Then according to Eq. (36),for l ∈ [k], we have:660

Hl(t+ 1) ≥ 2

3
∥v∥

(
1− 3ηm(k + π − 1 + (k − 1)(π − 1))

2πk2

)t+1−T1

− 8πϵ2 ∥v∥

=
2

3
∥v∥

(
1− 3ηm

2k

)t+1−T1

− 8πϵ2 ∥v∥ .

Based on the above results, for l ∈ [k], we have:661

(
1− ηm

9k

)t+1−T1

∥v∥+ 8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1− 3ηm

2k

)t+1−T1

− 8πϵ2 ∥v∥ . (39)

Due to ηm ≪ 1, we have (1− x) ≥ exp(−1.5x) with x := ηm. Using this fact, for any t ≤ T2, the662

last inequality can be further lower bounded by:663

2

3
∥v∥

(
1− 3ηm

2k

)t−T1

− 8πϵ2

≥2

3
∥v∥ exp

(
− 2ηm

k

k

2ηm
ln
( 1

48πϵ2

))
− 8πϵ2 ∥v∥

=24πϵ2 ∥v∥ .

Proof of Eq. (34):664

To prove the left part, by Eq. (33), we have: Hl(t+ 1) = ∥v∥ −
∑m

i=1 Iτi=lhi⋆(t+ 1) ≥ 0. Then665

we have:666

∥v∥ ≥
m∑
i=1

Iτi=lhi⋆(t+ 1) ≥ mτi

2
hi⋆(t+ 1), ∀i ∈ [m] .

For the right part, we have:667

hi⋆(t+ 1)− hi⋆(t) =
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t) ≥
ηk

2π
24πϵ2 ∥v∥ − 4ηkϵ2 ∥v∥ ≥ 0 .

So we have hi⋆(t+ 1) ≥ hi⋆(t) ≥ hi⋆(T1) ≥ s1
2 .668

Proof of Eq. (35):669

First, we prove that for ∀i, j ∈ [m], T1 ≤ t ≤ T2, we have ∥wi(t)∥
∥wj(t)∥ = Θ(1).670

When t = T1, according to Eq. (31) we have:671

1

2
≤ hi⋆(T1)

hj⋆(T1)
≤ 2 , ∀i, j ∈ [m] ,

which implies:672

∥wi(T1)∥
∥wj(T1)∥

=
hi⋆(t) cos θi⋆(T1)

hj⋆(t) cos θj⋆(T1)
= Θ(1) , ∀i, j ∈ [m] . (40)

Then by defining ts = 9k ln(2)
ηm + T1, when T1 ≤ t ≤ ts, according to Eq. (33), for any l ∈ [k], we673

have:674
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Hl(t) ≥
2

3
∥v∥

(
1− 3ηm

2k

)t−T1

− 8πϵ2 ∥v∥

≥ 2

3
∥v∥ exp

(
− 2ηm

k

9k ln(2)

ηm

)
− 8πϵ2 ∥v∥

≥ 2

3

(
1

2

)18

∥v∥ − 8πϵ2 ∥v∥ .

So for ∀l1, l2 ∈ [k], we have Hl1
(t)

Hl2
(t) = Θ(1).675

Then for ∀i, j ∈ [m], according to Eq. (37), for T1 ≤ t0 < t, we have hi⋆ (t0+1)−hi⋆ (t0)
hj⋆ (t0+1)−hj⋆ (t0)

= Θ(1).676

Then consider Eq. (31), we have hi⋆ (t)
hj⋆ (t)

= Θ(1).677

That means for ∀i, j ∈ [m], when T1 ≤ t ≤ ts, we have:678

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (41)

When ts ≤ t ≤ T2, according to Eq. (33), for ∀l ∈ [k], we have:679

Hl(t) ≤
(
1− ηm

9k

)t−T1

∥v∥+ 8πϵ2 ∥v∥

≤ exp

(
− ηm

9k

9k ln(2)

ηm

)
∥v∥+ 8πϵ2 ∥v∥ [using (1− x) ≤ exp(−x),∀x ≥ 0]

=
1

2
∥v∥+ 8πϵ2 ∥v∥ .

Then we have:680

m∑
i=1

Iτi=lhi⋆(t) = ∥v∥ −Hl(t) ≥
1

2
∥v∥ − 8πϵ2 ∥v∥ ≥ 1

3
∥v∥ .

Then for ∀i, j ∈ [m], we have:681

hi⋆(t) ≥
∑m

l=i Iτi=τlhl⋆(t)

2mτi

≥ ∥v∥
6mτi

≥
∑m

l=i Iτj=τlhl⋆(t)

6mτi

≥
mτjhj⋆(t)

12mτi

≥ hj⋆(t)

108
.

That means for ∀i, j ∈ [m], when ts ≤ t ≤ T2, we have:682

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (42)
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So combine Eqs. (40) to (42), for ∀i, j ∈ [m], when T1 ≤ t ≤ T2, we have:683

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (43)

Then, we analyze the change in angle, recall the dynamics of cos θi⋆ in Eq. (24) is given by:684

cos θi⋆(t+ 1)− cos θi⋆(t) =: I2 + I3 .

For I2, we have:685

I2 =
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩

=
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t))(cos θi⋆(t) cosφij(t)− cos θjτi(t))

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)
.

To bound I2, we need handle cos θi⋆(t) cosφij(t)− cos θjτi(t) at first. For τi ̸= τj , without loss of686

generality, we assume that: v̄τi = [1, 0, 0, . . . , 0]⊤ ∈ Rd and v̄τj = [0, 1, 0, 0, . . . , 0]⊤ ∈ Rd. Let687

w̄i = [wi1, wi2, . . . , wid]
⊤ ∈ Rd and w̄j = [wj1, wj2, . . . , wjd]

⊤ ∈ Rd, then we have:688

cos θi⋆(t) cosφij(t)− cos θjτi(t)

= ⟨w̄i, v̄τi⟩ ⟨w̄i, w̄j⟩ − ⟨w̄j , v̄τi⟩

=wi1(t)

d∑
l=1

wil(t)wjl(t)− wj1(t)

=wi1(t)

(
wi1(t)wj1(t) + wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

)
− wj1(t)

=wi1(t)

(
wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

)
− sin2 θi⋆(t)wj1(t)

≥−

∣∣∣∣∣wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)|

≥ − |wi2(t)wj2(t)| −

∣∣∣∣∣
d∑

l=3

wil(t)wjl(t)

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)|

≥ − |wi2(t)wj2(t)| −

∣∣∣∣∣
( d∑

l=3

wil(t)
2

) 1
2
( d∑

l=3

wjl(t)
2

) 1
2

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)| [Cauchy–Schwarz inequality]

≥− |wi2(t)wj2(t)| − sin θi⋆(t) sin θj⋆(t)− sin2 θi⋆(t) |wj1(t)|
≥ − sin θi⋆(t) sin θj⋆(t)− 2ζ .

For τi = τj , without loss of generality, we assume that: v̄τi = v̄τj = [1, 0, 0, . . . , 0]⊤ ∈ Rd. Then,689

we let w̄i = [wi1, wi2, . . . , wid]
⊤ ∈ Rd and w̄j = [wj1, wj2, . . . , wjd]

⊤ ∈ Rd. Then we have:690

31



cos θi⋆(t) cosφij(t)− cos θjτi(t)

= ⟨w̄i, v̄τi⟩ ⟨w̄i, w̄j⟩ − ⟨w̄j , v̄τi⟩

=wi1(t)

d∑
l=1

wil(t)wjl(t)− wj1(t)

=wi1(t)

(
wi1(t)wj1(t) +

d∑
l=2

wil(t)wjl(t)

)
− wj1(t)

=wi1(t)

( d∑
l=2

wil(t)wjl(t)

)
− sin2 θi⋆(t)wj1(t)

= cos θi⋆(t)

( d∑
l=2

wil(t)wjl(t)

)
− sin2 θi⋆(t) cos θjτi(t)

≥−
( d∑

l=2

wil(t)
2

) 1
2
( d∑

l=2

wjl(t)
2

) 1
2

− sin2 θi⋆(t) [Cauchy–Schwarz inequality]

=− sin θi⋆(t) sin θj⋆(t)− sin2 θi⋆(t) .

Then we have:691

I2 =
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t))(cos θi⋆(t) cosφij(t)− cos θjτi(t))

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)

≥ − η

∥wi(t+ 1)∥

( m∑
j=1

[
∥wj(t)∥

(
2ζ + sin θi⋆(t) sin θj⋆(t)

)]
+

m∑
j=1

Iτj=τi

(
∥wj(t)∥ sin2 θi⋆(t)

)
+ (k − 1) ∥v∥πζ − (π − θi⋆(t)) ∥v∥ sin2 θi⋆(t)

)
≥ −C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
6kηζ ∥v∥

∥wi(t+ 1)∥
[Eq. (43)]

≥ −C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
12kηζ ∥v∥

s1
[Eq. (34)] .

(44)

In the next, we aim to bound I3, which requires the estimation of the gradient. Similar to Eq. (22),692

we have:693
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∥∇i(t)∥

≤

∥∥∥∥∥∥12
m∑
j=1

wj(t)

∥∥∥∥∥∥+
∥∥∥∥∥12

k∑
l=1

vl

∥∥∥∥∥
+

∥∥∥∥∥∥ 1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl(t)

]∥∥∥∥∥∥
≤m

2
× 9k ∥v∥

m
+

k

2
∥v∥+ 1

2π

(
m× 9k ∥v∥

m
+ k ∥v∥+mπ × 9k ∥v∥

m
+ kπ ∥v∥

)
<15k ∥v∥ .

(45)
Combining with this result, we can derive the lower bound for I3:694

I3 =
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

s1

)
= −4η2 ∥∇i(t)∥2

s21

≥ −900k2η2 ∥v∥2

s21
.

(46)

Subsequently, we need to estimate the difference sin2
(

θi⋆ (t+1)
2

)
− sin2

(
θi⋆ (t)

2

)
for our final695

estimation for sin θi⋆ . Hence, similar to Eq. (27), combining Eq. (44), for ∀i ∈ [m], we have:696

sin2
(
θi⋆(t+ 1)

2

)
− sin2

(
θi⋆(t)

2

)
=− 1

2

(
cos θi⋆(t+ 1)− cos θi⋆(t)

)
≤− 1

2

(
− C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
12kηζ ∥v∥

s1
− 900k2η2 ∥v∥2

s21

)
[using Eq. (44) and Eq. (46)]

≤2C⋆η sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kηζ ∥v∥
s1

+
450k2η2 ∥v∥2

s21
.

Summing over all student neurons yields:697

m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)
−

m∑
i=1

sin2
(
θi⋆(t)

2

)

≤
m∑
i=1

[
2C⋆η sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kζη ∥v∥
s1

+
450k2η2 ∥v∥2

s21

]

=2C⋆η

m∑
i=1

sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kmζη ∥v∥
s1

+
450k2mη2 ∥v∥2

s21

≤2C⋆ηm

m∑
i=1

sin2
(
θi⋆(t)

2

)
+

6kmζη ∥v∥
s1

+
450k2mη2 ∥v∥2

s21
. [using AM-GM ineuqality]

(47)
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Then we have:698

m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)

≤
m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

≤(1 + 2C⋆ηm)

( m∑
i=1

sin2
(
θi⋆(t)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

)
[Eq. (47)]

≤(1 + 2C⋆ηm)t+1−T1

( m∑
i=1

sin2
(
θi⋆(T1)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

)
≤(1 + 2C⋆ηm)t+1−T14mϵ21 [by Assumption 1, choosing ζ = o

(
mϵ21s1
k ∥v∥

)
]

≤ exp

(
2C⋆ηm

k

2ηm
ln
( 1

48πϵ2

))
4mϵ21 [using 1 + x ≤ exp(x)]

≤ 4mϵ21
(48πϵ2)C

⋆k

≤ ϵ22
16

,

where the last inequality needs ϵ21 ≤ (48πϵ2)
C⋆kϵ22

64m .699

Finally we finish the proof for Eq. (35), i.e.,700

θi⋆(t+ 1) ≤ ϵ2 , ∀i ∈ [m] .

which finishes the proof.701

702

E.2 Global Convergence: Phase 2 (Final state)703

Here we prove the bounds on the student neurons and the loss function at the end of phase 2.704

Lemma 3 (Final state of Phase 2, restate version of Corollary 2). Under the same conditions705

as Theorem 7, at time T2, we have the following statements hold with probability at least 1− δ:706

∥v∥
3mτi

≤ ∥wi(T2)∥ ≤ 3 ∥v∥
mτi

, ∀i ∈ [m] ,

and707

L(W (T2)) ≤
1

2
k2ϵ0.052 ∥v∥2 .

Proof. Firstly we derive the bound for the ∥wi(T2)∥. By Eq. (33) in Theorem 7, for any l ∈ [k], we708

have:709
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Hl(T2) ≤
(
1− ηm

9k

)T2−T1

∥v∥+ 8πϵ2 ∥v∥

≤ exp

(
− ηm

9k
(T2 − T1)

)
∥v∥+ 8πϵ2 ∥v∥

= (48πϵ2)
1
18 ∥v∥+ 8πϵ2 ∥v∥

≤ (49πϵ2)
1
18 ∥v∥

≤ 1

3
∥v∥ ,

which implies710

2

3
∥v∥ ≤ ∥v∥ −Hτi(T2) =

m∑
j=1

Iτj=τihj⋆(T2) ≤ 2mτihi⋆(T2) , ∀i ∈ [m] .

So we have the lower bound ∥wi(T2)∥ ≥ hi⋆(T2) ≥ ∥v∥
3mτi

. For the upper bound, for any i ∈ [m],711

we have Hτi(T2) ≥ 0:712

∥v∥ ≥
m∑
j=1

Iτj=τihj⋆(T2) ≥
1

2
mτihi⋆(T2) =

1

2
mτi ∥wi(T2)∥ cos θi⋆(T2) ≥

1

3
mτi ∥wi(T2)∥ ,

which implies ∥wi(T2)∥ ≤ 3∥v∥
mτi

and the following estimation which is used for estimating the loss.713

To be specific, for any l ∈ [k], we have:714

m∑
i=1

Iτi=l ∥wi(T2)∥ =

m∑
i=1

Iτi=l
hi⋆(T2)

cos θi⋆(T2)
≤ (1 + ϵ22)

m∑
i=1

Iτi=lhi⋆(T2) ≤ (1 + ϵ22) ∥v∥ ,

and715

m∑
i=1

Iτi=l ∥wi(T2)∥ ≥
m∑
i=1

Iτi=lhi⋆(T2) ≥
(
1− (49πϵ2)

1
18

)
∥v∥ ≥

(
1− ϵ0.052

)
∥v∥ .

Combine the lower and upper bound, we have:716

(
1− ϵ0.052

)
∥v∥ ≤

m∑
i=1

Iτi=l ∥wi(T2)∥ ≤ (1 + ϵ22) ∥v∥ . (48)

Before we bound the loss, we need to analyze g(a, b) defined in Eq. (12). If ∠(a, b) ≤ 2ϵ2 we have:717

π − 2ϵ2
2π

∥a∥ ∥b∥ ≤ g(a, b) =
∥a∥ ∥b∥

2π

(
sin∠(a, b)+ (π−∠(a, b)) cos∠(a, b)

)
≤ 1

2
∥a∥ ∥b∥ ,

(49)
Besides, if −2ϵ2 ≤ π

2 − ∠(a, b) ≤ 2ϵ2, we have:718

1− 4ϵ2
2π

∥a∥ ∥b∥ ≤ g(a, b) ≤ 1 + 4ϵ2
2π

∥a∥ ∥b∥ . (50)

According to Eq. (35) in Theorem 7, then when τi = τj , we have φij ≤ 2ϵ2 and when τi ̸= τj , we719

have −2ϵ2 ≤ π
2 − φij ≤ 2ϵ2.720

Then, according to Eqs. (48) to (50), we have:721
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L(W (T2)) =
1

2

m∑
i=1

m∑
j=1

g(wi(T2),wj(T2)) +
1

2

k∑
i=1

k∑
j=1

g(vi,vj)−
m∑
i=1

k∑
j=1

g(wi(T2),vj)

≤ 1

2

k∑
l=1

m∑
i=1

Iτi=l

m∑
j=1

Iτj=l
1

2
∥wi(T2)∥ ∥wj(T2)∥+

1

2

m∑
i=1

m∑
j=1

Iτi ̸=τl

1 + 4ϵ2
2π

∥wi(T2)∥ ∥wj(T2)∥

+
k

2

∥v∥2

2
+

k(k − 1)

2

∥v∥2

2π

−
k∑

l=1

m∑
i=1

Iτi=l
π − 2ϵ2

2π
∥wi(T2)∥ ∥vl∥ −

k∑
l=1

Iτi ̸=l
1− 4ϵ2
2π

∥wi(T2)∥ ∥vl∥

=
1

2

k∑
l=1

m∑
i=1

Iτi=l

m∑
j=1

Iτj=l
1

2
∥wi(T2)∥ ∥wj(T2)∥+

1

2

m∑
i=1

m∑
j=1

Iτi ̸=τj

1

2π
∥wi(T2)∥ ∥wj(T2)∥

+
k ∥v∥2

4
+

k(k − 1) ∥v∥2

4π
−

k∑
l=1

m∑
i=1

Iτi=l
1

2
∥wi(T2)∥ ∥vl∥ −

k∑
l=1

m∑
i=1

Iτi ̸=l
1

2π
∥wi(T2)∥ ∥vl∥

+

m∑
i=1

m∑
j=1

Iτi ̸=τj

ϵ2
π

∥wi(T2)∥ ∥wj(T2)∥+
k∑

l=1

m∑
i=1

Iτi=l
ϵ2
π

∥wi(T2)∥ ∥vl∥

+

k∑
l=1

m∑
i=1

Iτi ̸=l
2ϵ2
π

∥wi(T2)∥ ∥vl∥ [ Eqs. (49) and (50)]

≤ k(1 + ϵ22)
2 ∥v∥2

4
+

k(k − 1)(1 + ϵ22)
2 ∥v∥2

4π
+

k ∥v∥2

4
+

k(k − 1) ∥v∥2

4π

− k(1− ϵ0.052 ) ∥v∥2

2
− k(k − 1)(1− ϵ0.052 ) ∥v∥2

2π

+
k(k − 1)(1 + ϵ22)

2ϵ2 ∥v∥2

π
+

k(1 + ϵ22)ϵ2 ∥v∥
2

π
+

2k(k − 1)(1 + ϵ22)ϵ2 ∥v∥
2

π
[ Eq. (48)]

≤ 1

2
k2ϵ0.052 ∥v∥2 ,

(51)

which concludes the proof.722

F Global Convergence: Phase 3 (local convergence)723

In phase 3, we focus on the local convergence of the network when the loss function has an upper724

bound. First, we introduce some structural lemmas related to the loss function of neural network.725

F.1 Structural Lemmas726

Lemma 4. We define that w⋆
i := hi⋆∑m

j=1 Iτj=τi
hj⋆

vτi , and θmax := maxi∈[m] θi⋆ , then we have:727

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥) .

Proof. First, we decomposes the residual function R(x) into two terms:728
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R(x) :=

m∑
i=1

σ(w⊤
i x)−

k∑
l=1

σ(v⊤
l x)

=

m∑
i=1

(w⊤
i x)σ

′(w⊤
i x)−

k∑
l=1

(v⊤
l x)σ

′(v⊤
l x) [using ReLU property: σ(x) = xσ′(x)]

=

m∑
i=1

(w⊤
i x)σ

′(w⊤
i x)−

k∑
l=1

((

m∑
i=1

Iτi=lwi − rl)
⊤x)σ′(v⊤

l x) [using definition of rl]

=

m∑
i=1

(w⊤
i x)σ

′(w⊤
i x)−

k∑
l=1

((

m∑
i=1

Iτi=lwi)
⊤x)σ′(v⊤

l x) +

k∑
l=1

(r⊤l x)σ
′(v⊤

l x)

:=

k∑
l=1

m∑
i=1

Iτi=l(w
⊤
i x)

(
σ′(w⊤

i x)− σ′(v⊤
l x)

)
︸ ︷︷ ︸

R1(x)

+

k∑
l=1

(r⊤l x)σ
′(v⊤

l x)︸ ︷︷ ︸
R2(x)

.

Then we can derive the lower bound for
∑m

i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
that:729

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉

=

m∑
i=1

Ex

(
R(x)σ′(w⊤

i x)x
⊤(wi −w⋆

i )

)

=Ex

[
R(x)

m∑
i=1

(
σ(w⊤

i x)− σ′(w⊤
i x)x

⊤w⋆
i

)]

=2L(W ) + Ex

[
R(x)

( m∑
i=1

(
σ(w⊤

i x)− σ′(w⊤
i x)x

⊤w⋆
i

)
−R(x)

)]
[using L(W ) =

1

2
ExR(x)2]

=2L(W ) + Ex

[
R(x)

( k∑
l=1

σ(v⊤
l x)−

m∑
i=1

(
σ′(w⊤

i x)x
⊤w⋆

i

))]
[using definition of R(x)]

=2L(W ) + Ex

[
R(x)

( m∑
i=1

(
σ′(x⊤w⋆

i )x
⊤w⋆

i

)
−

m∑
i=1

(
σ′(w⊤

i x)x
⊤w⋆

i

))]
[using definition of R(w⋆

i )]

=2L(W ) + Ex

[
R(x)

m∑
i=1

(x⊤w⋆
i )

(
σ′(x⊤w⋆

i )− σ′(w⊤
i x)

)]

:=2L(W ) + Ex

[
R1(x)

m∑
i=1

(x⊤w⋆
i )

(
σ′(x⊤w⋆

i )− σ′(w⊤
i x)

)]
︸ ︷︷ ︸

I4

+Ex

[
R2(x)

m∑
i=1

(x⊤w⋆
i )

(
σ′(x⊤w⋆

i )− σ′(w⊤
i x)

)]
︸ ︷︷ ︸

I5

.

For term I4, note that for ∀i ∈ [m], when w⊤
i x ≥ 0, we have σ′(w⊤

i x) = 1, which means730

σ′(w⊤
i x)−σ′(v⊤

l x) ≥ 0. Then we have R1(x) ≥ 0. Similar, we have
∑m

i=1(x
⊤w⋆

i )

(
σ′(x⊤w⋆

i )−731

σ′(w⊤
i x)

)
≥ 0. So we have I4 ≥ 0.732
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For term I5, we have:733

I5 = Ex

k∑
l=1

(r⊤l x)σ
′(v⊤

l x)

m∑
i=1

(x⊤w⋆
i )

(
σ′(x⊤w⋆

i )− σ′(w⊤
i x)

)

=

k∑
l=1

m∑
i=1

Ex(r
⊤
l x)σ

′(v⊤
l x)(x

⊤w⋆
i )

(
σ′(x⊤w⋆

i )− σ′(w⊤
i x)

)

≥ −
k∑

l=1

m∑
i=1

O(∥rl∥ θ2i⋆ ∥w⋆
i ∥) ,

where the last inequality is from the proof of Xu and Du [2023, Lemma 8].734

Thus we have:735

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
= 2L(W ) + I4 + I5

≥ 2L(W )−
k∑

l=1

m∑
i=1

O(∥rl∥ θ2i⋆ ∥w⋆
i ∥)

≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥) ,

which finishes the proof.736

Lemma 5 (Bounds of θi⋆ and ∥r∥). Given that ∥v∥
3mτi

≤ ∥wi∥ ≤ 3∥v∥
mτi

and L(W ) = o(∥v∥2 k10),737

then we have:738

∥rl∥ ≤ O(k
11
4 ∥v∥

1
4 L

3
8 (W )) , ∀l ∈ [l] . (52)

∥v∥2 θ3i⋆ = Θ(k3L(W )) , ∀i ∈ [m] . (53)

Proof. The proof technique here heavily depends on [Zhou et al., 2021], so we simplify our proof739

here. To be specific, using the same proof method as [Zhou et al., 2021, Lemma C.6], we have:740

m∑
i=1

∥wi∥2 θ2i⋆ = O(L
1
2 (W )) .

Similarly, following [Zhou et al., 2021, Lemma 12], we have:741

ExR1(x)
2 = O

(
k

5
2 ∥v∥

1
2 L

3
4 (W )

)
Based on Zhou et al. [2021, Lemma 11], we can derive that:742

ExR2(x)
2 = Ω

(
∥rl∥2

k3

)
, ∀l ∈ [k] .

Combine the previous results, for any l ∈ [k], the upper bound of ∥rl∥ is:743

38



∥rl∥
k

3
2

= O(ExR2(x))

≤ O(ExR(x) + ExR1(x))

= O
(
L

1
2 (W ) + k

5
4 ∥v∥

1
4 L

3
8 (W )

)
≤ O

(
k

5
4 ∥v∥

1
4 L

3
8 (W )

)
[using L(W ) = O(k10 ∥v∥2)] .

Accordingly, we finish the proof of Eq. (52). Based on this, using the same proof method as Zhou744

et al. [2021, Lemma 9], we can directly obtain Eq. (53).745

Lemma 6 (Bound of ∥wi −w⋆
i ∥). Given that ∥v∥

3mτi
≤ ∥wi∥ ≤ 3∥v∥

mτi
and L(W ) = o(∥v∥

2

k
22
3
), then746

for ∀i ∈ [m], we have:747

∥wi −w⋆
i ∥ ≤ O

(
k

2
3m

2
3L

1
3 (W )

∥v∥
2
3

)
∥wi∥ .

Proof. By Lemma 5, we have θi⋆ = O
(

kL
1
3 (W )

∥v∥
2
3

)
and |Hl| = |⟨rl, v̄l⟩| = ∥rl∥ ≤748

O(k
11
4 ∥v∥

1
4 L

3
8 (W )) = o(∥v∥). Then we have:749

∥wi −w⋆
i ∥ ≤ ∥wi − hi⋆ v̄τi∥+ ∥hi⋆ v̄τi −w⋆

i ∥

= ∥wi − hi⋆ v̄τi∥+

∣∣∣∣∣hi⋆

(
1− ∥v∥∑m

j=1 Iτj=τihi⋆

)∣∣∣∣∣
= ∥wi∥ sin θi⋆ +

hi⋆ |Hl|
∥v∥ − |Hl|

[using definition of Hl]

≤ ∥wi∥O
(
kL

1
3 (W )

∥v∥
2
3

)
+

∥wi∥O(k
11
4 ∥v∥

1
4 L

3
8 (W ))

)
∥v∥

≤ O
(
kL

1
3W )

∥v∥
2
3

)
∥wi∥+O

(
k

11
4 L

3
8 (W )

∥v∥
3
4

)
∥wi∥

≤ O
(
kL

1
3 (W )

∥v∥
2
3

)
∥wi∥ [using L(W ) = O(

∥v∥2

k
7
2

)] .

750

F.2 Gradient Lower Bound751

In this subsection, we use the structural lemmas in Appendix F.1 to derive the local gradient lower752

bound.753

Theorem 8. Given that ∥v∥
3mτi

≤ ∥wi∥ ≤ 3∥v∥
mτi

for ∀i ∈ [m] and L(W ) = o(∥v∥
2

k162 ), then we have:754

∥∥∥∥∂L(W )

∂W

∥∥∥∥ ≥ Ω

(
L

2
3 (W )

k2 ∥v∥
1
3

)
.

755

Proof. According to Lemmas 4 and 5, we have:756
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m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥)

≥ 2L(W )−O
((

kL
1
3 (W )

∥v∥
2
3

)2

k2(k
11
4 ∥v∥

1
4 L

3
8 (W )) ∥v∥

)

≥ 2L(W )−O
(
L

25
24 (W )k

27
4

∥v∥
1
12

)

≥ L(W ) [using L(W ) = O(
∥v∥2

k162
)] .

Then according to Lemma 6, we have:757

L(W ) ≤
m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉

≤
m∑
i=1

∥∥∥∥ ∂

∂wi
L(W )

∥∥∥∥ ∥wi −w⋆
i ∥

≤
∥∥∥∥ ∂

∂W
L(W )

∥∥∥∥O(kL
1
3 (W )

∥v∥
2
3

) m∑
i=1

∥wi∥

= O
(
k2L

1
3 (W ) ∥v∥

1
3

)∥∥∥∥∂L(W )

∂W

∥∥∥∥ ,

which concludes the proof.758

759

F.3 Local Conditional Smoothness of Loss760

In this subsection, we deal with the non-smoothness of L. We will prove the smoothness of L when761

the student neuron has upper and lower bounds762

Lemma 7 (Local Conditional Smoothness of L). Given that ∥v∥
5mτi

≤ ∥wi∥ ≤ 5∥v∥
mτi

for any i ∈ [m],763

define the Hessian matrix of L as Λ = ∂2L(W )
∂W 2 , then we have ∥Λ∥2 ≤ O(m2).764

Proof. According to Safran et al. [2021], we have that L is twice differentiable and the closed-form765

expression of Hessian Λ = ∂2L(W )
∂W 2 ∈ Rmd×md can be write as:766

Λ =

Λ1,1 · · · Λ1,m

...
. . .

...
Λm,1 · · · Λ1,m

 ,

where Λi,j ∈ Rd×d,∀i, j ∈ [m], we will discuss below.767

For diagonal elements:768

Λi,i =
1

2
I +

m∑
j=1,j ̸=i

Λ1(wi,wj)−
k∑

l=1

Λ1(wi,vl), ∀i ∈ [m] ,

and by defining nw,v = v̄ − cos∠(w,v)w̄, Λ1 can be rewritten as:769

Λ1(w,v) =
sin∠(w,v) ∥v∥

2π ∥w∥

(
I − w̄w̄⊤ + n̄w,vn̄

⊤
w,v

)
.
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We can bound that770

∥Λ1(w,v)∥ ≤ ∥v∥
∥w∥

.

Then we have:771

∥Λi,i∥ ≤
∥∥∥∥12I

∥∥∥∥+ m∑
j=1,j ̸=i

∥Λ1(wi,wj)∥+
k∑

l=1

∥Λ1(wi,vl)∥

= O(1) +mO(1) + kO
(
m

k

)
= O(m), ∀i ∈ [m] .

And non−diagonal elements satisfy that:772

Λi,j =
1

2π

(
(π − ∠(wi,wj))I + n̄wi,wj

w̄⊤
j + n̄wj ,wi

w̄⊤
i

)
, ∀i, j ∈ [m], and i ̸= j .

So we have:773

∥Λi,j∥ ≤ 1

2π
(π + 1 + 1) ≤ 1, ∀i, j ∈ [m], and i ̸= j .

Combining the above results, we have:774

∥Λ∥ ≤
m∑
i=1

m∑
j=1

∥Λi,j∥ ≤ m(m− 1) +mO(m) = O(m2) .

775

F.4 Generalization Error Bound776

In this subsection, we prove the final convergence result, which is also the generalization error bound.777

Theorem 9. Suppose the initial condition in Lemma 1 and Assumption 1 2 and 3 holds. If we set778

ϵ2 = o(m−60k−100) and η = o( 1
m ) in Theorem 7, then ∀T ∈ N, we have the following statements779

hold with probability at least 1− δ:780

L(W (T + T2)) ≤
1(

L(W (T2))−
1
3 +Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 , (54)

and781

∥v∥
4mτi

≤ ∥wi(T + T2)∥ ≤ 4 ∥v∥
mτi

∀i ∈ [m] . (55)

Proof. We prove Eqs. (54) and (55) together inductively.782

For T = 0,Eq. (54) directly hold and by Lemma 3 we have Eq. (55) holds.783

Then we assume Eqs. (54) and (55) hold for 0, 1, . . . , t for any 0 < t < T1 to prove Eqs. (54) and (55)784

for t+ 1.785

Proof of Eq. (54):786

For ∀i ∈ [m], similar to Eq. (45), we have ∥∇i(t)∥ = O(k ∥v∥). Then for ∀ι ∈ [0, 1], we have:787
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∥wi(t)− ιη∇i(t)∥ ≥ ∥wi(t)∥ − η ∥∇i(t)∥ ≥ ∥v∥
4mτi

− ηO(k ∥v∥) ≥ ∥v∥
5mτi

,

and788

∥wi(t)− ιη∇i(t)∥ ≤ ∥wi(t)∥+ η ∥∇i(t)∥ ≤ 4 ∥v∥
mτi

+ ηO(k ∥v∥) ≤ 5 ∥v∥
mτi

.

Then, we can use Lemma 7 for W (t)− ιη∇W (t) in the following proof.789

For T2 ≤ t ≤ T + T2 − 1, according to the classic analysis of gradient descent in Nesterov et al.790

[2018], we have:791

L(W (t+ 1)) = L(W (t)) + ⟨∇W (t),−η∇W (t)⟩

+

∫ 1

ι=0

(1− ι)(−η∇W (t))⊤
∂2L

∂W 2
(W (t)− ιη∇W (t))(−η∇W (t))dι

≤ L(W (t))− η ∥∇W (t)∥2 +
∫ 1

ι=0

(1− ι)η2 ∥∇W (t)∥2 O(m2)dι [Lemma 7] .

Then we have:792

L(W (t))− L(W (t+ 1)) ≥ η ∥∇W (t)∥2 −
∫ 1

ι=0

(1− ι)η2 ∥∇W (t)∥2 O(m2)dι

= η ∥∇W (t)∥2 − 1

2
η2 ∥∇W (t)∥2 O(m2)

≥ 1

2
η ∥∇W (t)∥2

≥ Ω

(
ηL

4
3 (W (t))

k4 ∥v∥
2
3

)
.

According to Xu and Du [2023, Lemma 24], let Cs = Ω

(
k−4 ∥v∥−

2
3

)
, then we have:793

L(W (T + T2)) ≤
1(

L− 1
3 (W (T2)) + Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 .

Proof of Eq. (55): According to Lemma 3, we have L(W (T2)) ≤ 1
2k

2ϵ0.052 ∥v∥2 = o( ∥v∥2

m3k3 ).794

Then for ∀i ∈ [m], according to [Xu and Du, 2023, Lemma 24], we have:795

∥wi(T + T2)∥ ≥ ∥wi(T2)∥ −
T−1∑
t=0

η ∥∇W (t+ T2)∥

≥ ∥v∥
3mτi

− 8C
− 1

2
s o

(
∥v∥2

m3k3

) 1
3

≥ ∥v∥
3mτi

− 8O
(
k−4 ∥v∥−

2
3

)− 1
2

o

(
∥v∥2

m3k3

) 1
3

≥ ∥v∥
3mτi

− o

(
k ∥v∥
m

)
≥ ∥v∥

4mτi

,
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and796

∥wi(T + T2)∥ ≤ ∥wi(T2)∥+
T−1∑
t=0

η ∥∇W (t+ T2)∥

≤ 3 ∥v∥
mτi

+ 8C
− 1

2
s o

(
∥v∥2

m3k3

) 1
3

≤ 3 ∥v∥
mτi

+ 8O
(
k−4 ∥v∥−

2
3

)− 1
2

o

(
∥v∥2

m3k3

) 1
3

≤ 3 ∥v∥
mτi

+ o

(
k ∥v∥
m

)
≤ 4 ∥v∥

mτi

,

which finishes the proof.797

798
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