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Abstract

As task-oriented dialog systems are becoming001
increasingly popular in our lives, more real-002
istic tasks have been proposed and explored.003
However, new practical challenges arise. For004
instance, current dialog systems cannot ef-005
fectively handle multiple search results when006
querying a database, due to the lack of such007
scenarios in existing public datasets. In this pa-008
per, we propose Database Search Result (DSR)009
Disambiguation, a novel task that focuses on010
disambiguating database search results, which011
enhances user experience by allowing them to012
choose from multiple options instead of just013
one. To study this task, we augment the pop-014
ular task-oriented dialog datasets (MultiWOZ015
and SGD) with turns that resolve ambiguities016
by (a) synthetically generating turns through a017
pre-defined grammar, and (b) collecting human018
paraphrases for a subset. We find that train-019
ing on our augmented dialog data improves the020
model’s ability to deal with ambiguous scenar-021
ios, without sacrificing performance on unmod-022
ified turns. Furthermore, pre-fine tuning and023
multi-task learning help our model to improve024
performance on DSR-disambiguation even in025
the absence of in-domain data, suggesting that026
it can be learned as a universal dialog skill. Our027
data and code will be made publicly available.028

1 Introduction029

Task-oriented dialog systems have been widely de-030

ployed for popular virtual assistants, like Siri and031

Google Assistant. They help people with tasks such032

as booking restaurants and looking for a hotel by033

searching databases with constraints provided by034

users. After retrieving a result from the database,035

a system may continue by conducting actions like036

making a reservation or providing more informa-037

tion about receiving the result. However, there can038

be multiple results from the database that match039

the same constraints. For example, as shown in040

Fig. 1, the system finds two available hotels at dif-041

ferent locations when the user is asking the system042

Figure 1: Examples of disambiguation turns over three
different domains.

to help book a hotel. This kind of ambiguity stops 043

system from proceeding until the system finds out 044

which result the user looks for. Therefore, we need 045

to enhance the system with the ability to resolve 046

such ambiguity brought out by multiple items re- 047

turned from database search. We call this type 048

of ambiguity as database search result ambiguity 049

(DSR-ambiguity). 050

Different from semantic ambiguous words (e.g. 051

“orange” can be referred as either color or fruit), 052

the DSR-ambiguity focuses on results from mul- 053

tiple database search results. Solving such disam- 054

biguation tasks consists of two steps: asking clar- 055

ification questions and understanding user’s cor- 056

responding answers. While there is a relatively 057

larger body of literature focusing on when and 058

how to give out the clarification question (Rao and 059

Daumé III, 2018; Rao and Daumé, 2019; Kumar 060

and Black, 2020), the focus on understanding user’s 061

answers/intents has been relatively sparse. Our 062

work mainly focuses on improving model’s abil- 063

ity of understanding the answers by augmenting 064

two existing task-oriented dialog datasets: Mul- 065

tiWOZ (Budzianowski et al., 2018) and Schema- 066

Guided Dataset (SGD) (Rastogi et al., 2019). 067

MultiWOZ and SGD are the most popular large- 068

scale task-oriented dialog datasets, based on which 069

most of the state-of-the-art dialog system models 070

are commonly trained and evaluated. According to 071

our analysis, there are around 66% dialogs of the 072

dataset contains multiple dataset-searching results, 073

which means the DSR-ambiguity exists. 074
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In this setting, ambiguities are skipped and the075

model trained based on these datasets can hardly076

handle the cases where users prefer to make their077

own choices among all the results satisfies the con-078

straints. Furthermore, users should be given more079

detailed information about search results. Ideally,080

dialog models should provide the information and081

assist users to make choices, rather than picking082

one from the result list and recommending it to083

users. It is not necessary to list all the results, but084

enumerating 2 or 3 options would help increase085

user’s engagement. To strengthen the model with086

the ability to handle the ambiguity, we propose087

to augment these two datasets with disambigua-088

tion turns, where the system provides all possible089

matched results and lets the user make their own090

decision based on the complete information.091

Specifically, we first extract templates from the092

SIMMC 2.0 dataset (Kottur et al., 2021), which093

is a multi-modal task-oriented dialog dataset con-094

taining disambiguation turns but only covering two095

domains. Based on the extracted templates and096

database from MultiWOZ and SGD, we synthesize097

a one-turn dialog dataset, containing only the dis-098

ambiguation turn, to check whether the model can099

learn the disambiguation from the data. To be ap-100

plicable in reality, we expect the model to learn the101

skill of disambiguation without compromising the102

performance on other dialog skills. So, we propose103

to augment the MultiWOZ and SGD with disam-104

biguation turns and train dialog models with the105

augmented dataset. To ensure naturalness and di-106

versity of the automatically augmented dataset, we107

additionally recruit crowd-workers to paraphrase108

the modified turns.109

In conclusion, our contribution includes:110

1. We propose Database Search Result Disam-111

biguation, a new dialog task focused on under-112

standing the user’s needs through clarification113

questions.114

2. We provide a generic framework for aug-115

menting disambiguation turns, and apply this116

framework to augment the two most popular117

task-oriented dialog datasets with disambigua-118

tion cases. We also conduct human paraphras-119

ing for the augmented utterances in test sets.120

3. We create a benchmark for the new task121

with pre-trained GPT2 model. The results122

show that our augmented dataset enhances the123

model’s disambiguation ability, while main-124

taining the performance on the original tasks.125

Figure 2: For this disambiguation task, we assume the
dialog context, system utterance including result list and
user’s answer are given. The goal is to extract the result
that the user select and continue the dialog.

2 Task Formulation 126

In this paper, we propose a new task called disam- 127

biguation in dialog database search. As shown in 128

Fig. 2, the task assumes that we are provided with 129

the dialog context c, the system response s which 130

includes all the optional results , and the user’s ut- 131

terance u that make a choice. To avoid redundant 132

option lists, we limit the number of options to less 133

than five. The target of the task is to extract the 134

entity of the result selected by the user. 135

3 Dataset 136

The most popular task-oriented dialog datasets 137

(MultiWOZ, SGD) do not contain many cases for 138

the disambiguation task. In order to enable the 139

dialog model to handle this task, we propose to 140

augment these two datasets in three steps described 141

in the following subsections. 142

3.1 Synthesizing Single-Turn Dialog 143

We first develop a single-turn dialog dataset. With 144

this single-turn dataset, the fine-tuned dialog model 145

can focus only on the disambiguation turns and 146

learn the skill to solve the ambiguity problem. 147

Fig. 3 shows an example of the dialog turn, which 148

we would use through this section to introduce the 149

dataset. In this dataset, each dialog turn consists of 150

only a system utterance and a user response. The 151

system utterance gives a list of options (marked in 152

blue) and the user response makes a choice from 153

the list (marked in red). The ground truth output is 154

the named entity of the chosen result. 155

To synthesize the system and user sentences, 156

we extracted templates from disambiguation turns 157

from the SIMMC 2.0 dataset. For example, the sys- 158

tem from SIMMC2.0 asks questions like “do you 159

mind being a bit more precise about which shoes 160

you’re curious about, the red one or the blue one” 161

to solve ambiguity. We delexicalize those utterance 162

by removing the all domain-related tokens such as 163
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Figure 3: An example of the synthesized single-turn
dialog. The utterance templates are generated based on
CFGs. The candidate entities (italicized) are sampled
from the database of MultiWOZ or SGD. The selected
entity (bolded) is sampled from the candidates.

“shoes”, “the red one”, “the blue one”, and keep164

the rest as a template.165

We then extract a list of context-free grammars166

(CFGs) from those templates, and then generate167

natural sentences based on the CFGs. For exam-168

ple, from the previous template we can summarize169

a grammar:“SENT -> do you mind VERBING”,170

where “VERBING” is a non-terminal token for a171

verb phrase in an “ING” form. The CFG-based172

generator can potentially generate around 2 million173

different system questions and 30K+ different user174

utterances, which ensure the diversity of the gener-175

ated data. To cover multiple domains, we utilize the176

database from the MultiWOZ and SGD datasets,177

which in total covers 27 domains, each containing178

one named entity type. We randomly sample a cer-179

tain number of values from the database based on180

the domain and entity type, and insert them into the181

system response. The number of candidate values182

is also randomly sampled. To make the sentence183

more natural, we limit the candidate number to be184

between three and five. Then, we randomly sample185

one from the candidate list as the selected result.186

To make the task harder and more realistic, we187

also explore different entity addressing methods to188

generate the user utterance:189

• Positional Addressing. Instead of directly190

addressing the named entity (Fig. 3), users use191

entity’s list position, e.g., “the second one”.192

• Partial Addressing. User use part of the193

name for simplicity, e.g. “chiquito” instead of194

“chiquito restauraant bar”195

• Addressing with Typo. We add typos in the196

named entity to make the model more robust.197

• Multiple Addressing. User chooses more198

than one option at a single time and the model199

is expected to extract all their choices.200

• Addressing with Attributes. User describes201

the selected result with more attributes, e.g.202

Figure 4: The blue bar represents the number of dialogs
which contain multiple database-search results in each
service from the SGD dataset. While the red bar repre-
sents the total number of dialogs in each service.

“the restaurant in the north of the city”. 203

3.2 Automatic Augmentation 204

The single-turn dialog dataset helps enable mod- 205

els to solve the disambiguation task. However, the 206

single-turn is not an entire dialog and the model 207

barely trained with that can hardly conduct a com- 208

plete dialog. Our goal is to enhance a complete dia- 209

log model with the disambiguation skill while keep- 210

ing the performance of other tasks. Currently, most 211

of the state-of-the-art task-oriented dialog mod- 212

els are trained with MultiWOZ and SGD dataset. 213

Therefore, we propose to augment these two dataset 214

by adding disambiguation turns. 215

Fig. 4 shows the proportion of the dialogs in 216

each domain that contains multiple results. We find 217

that nearly 66.7% of dialogs involve multiple re- 218

sults, where ambiguity can occur. Though in both 219

SGD and MultiWOZ, system would always give 220

a suggestion after searching the database, e.g. “I 221

have 10 suitable results, how about ...” and the 222

user side would simply accept it or ask about some- 223

thing else. This avoids the ambiguity in the dataset. 224

However, the system in the reality would still face 225

the ambiguity problem when interacting with real 226

human beings, who would like to know more about 227

other options. Therefore, we want to augment these 228

two popular dataset with disambiguation turns to 229

improve the model’s ability. 230

First, we locate the turns to be modified. In those 231

turns, the system presents the database-searching 232

results, where the ambiguity takes place. We also 233

incorporate relevant annotation and sentence struc- 234

ture to filter out some inappropriate cases, e.g. the 235
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SGD MultiWOZ
train dev test train dev test

dialog 4.7k / 16k 0.9k / 2.5k 1.6k / 4.2k 2.7k / 8.4k 0.3k / 1k 0.3k /1k
turn 5.1k / 330k 1.0k / 48.7k 1.8k / 84.6k 3.2k / 105k 0.4k / 13.8k 0.4k / 13.7k

Table 1: The table presents the numbers of dialogs or turns that are modified for disambiguation cases, and the
numbers on the right side of slash are the total number of dialogs or turns in each dataset.

Figure 5: An example of the automatic disambiguation
augmentation and human paraphrasing. We first replace
the original system suggestion with a synthesized ut-
terance, listing all candidate entities and asking user to
select. Then, we generate user chosen answer and insert
it to the beginning of the original user utterance. For
human paraphrasing, we ask crowd-workers to rewrite
the user utterance to gain naturalness and diversity.

user does not make any choices in this turn. Then236

we generate a new system utterance to replace the237

original one. The generation is conducted based on238

the same toolkit and CFGs from Sec. 3.1, and the239

slot values are extracted from the corresponding240

database. As shown in Fig. 5 (highlighted in blue),241

the new system utterance provides a list of specific242

searching results without giving any suggestion.243

Following the system utterance, a user utterance is244

also generated to make the choice, which should245

be consistent with the original suggestion that the246

user accepts. If the user rejects the original system247

suggestion, we do not make any modification. In248

the end, we concatenate the generated user utter-249

ance with the original one. In this way, we ensure250

the other unchanged turns of the dialog (especially251

the following turns) will be coherent with the mod-252

ified turns, in order to eliminate the effects on the253

unchanged turns of the dialog as much as possible.254

We conduct the same progress on both SGD255

and MultiWOZ dataset. Note that the ambiguity256

problem occurs only when there is a specific tar-257

get entity, e.g. hotel name in the “hotel” domain258

and not every domain includes such an entity (e.g. 259

any car satisfying constraints is acceptable in the 260

“taxi” domain). Therefore, we only augment the 261

“restaurant”, “hotel”, and “attraction” domains in 262

the MultiWOZ dataset, and 24 out of 45 services 263

in the SGD dataset, which are listed in the Ap- 264

pendix A.1. The statistics of the augmentation is 265

listed in the Table. 1. More than 30% of dialogs 266

are involved and with disambiguation turns, and 267

around 2% of the turns are modified. 268

The newly generated user utterance is simply 269

the concatenation of the template utterance and 270

the original utterance that responds to the system 271

suggestion. Therefore, the connection between 272

them can be unnatural. In addition, the new user 273

utterance is generated by CFG, which means the 274

utterance itself can be unnatural. Therefore, we 275

conduct human paraphrasing to improve the quality 276

of the user utterance. 277

3.3 Human Paraphrasing 278

We recruit crowd-workers to paraphrase the disam- 279

biguation turns. Before starting the paraphrasing 280

job, each crowd-worker is required to read through 281

a guideline document to get a better understanding 282

of the task, the requirements and the workflow. A 283

screenshot of the paraphrasing interface is shown in 284

the Appendix Fig. 6. For each paraphrasing job, we 285

present a good example of paraphrasing in the same 286

page as the turn to be modified. To keep consis- 287

tent with task description in the Sec. 2, we provide 288

the crowd-workers with 1) the modified system ut- 289

terance, which includes a list of options and asks 290

the user to select, 2) the user utterance, which con- 291

catenates the template-generated sentence and the 292

original user utterance. In the interface, the user 293

utterance is highlighted in a different color (green) 294

and marked as “need paraphrase”. To avoid chang- 295

ing user’s original choice during paraphrasing, we 296

also show crowd-worker the result value that the 297

user should choose, keeping consistent with the 298

dialog state annotation. In addition, to ensure the 299

disambiguation turn is coherent with the dialog 300

context, we also present the previous user utterance 301

and the next system response. 302
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We conduct the paraphrasing job for the test303

sets from both SGD and MultiWOZ, as well as304

the training set of SGD. To evaluate the quality305

of the human paraphrase process, we randomly306

sample 5% of the disambiguation turns and ask an-307

other group of crowd-workers to judge whether the308

modification is valid, which means satisfying all309

the requirements listed in the guideline document310

(maintaining all essential information, not similar311

to the original utterance, not natural, etc.). Each312

turn receives two judgements. In total, we have an313

88% of agreement rate between two judgements314

and 92% of the agreements are error free, which315

means our paraphrasing job is valid. We also ask316

annotators to point out if there is any ethical vio-317

lation in the utterance, which is discussed in more318

details in Sec. 8.319

4 Experiment320

We use GPT2 (Radford et al., 2019) as our back-321

bone model and fine-tune it with the augmented322

SGD and MultiWOZ datasets separately.323

MultiWOZ. MultiWOZ (Budzianowski et al.,324

2018) is a multi-task task-oriented dialog dataset.325

It covers seven domains and contains 10K+ di-326

alogs. Our augmentation focuses mainly on three327

domains:“attraction”, “hotel” and “restaurant”, in-328

volving more than 3K dialogs. We choose to con-329

duct our augmentation based on the MultiWOZ330

2.2 (Zang et al., 2020), which is the most widely-331

accepted version.332

Schema-Guided Dataset. SGD (Rastogi et al.,333

2019) is another popular multi-task dialog dataset.334

Since the DSR-ambiguity problem requires the ser-335

vice containing a target entity and not every ser-336

vice satisfies that requirement, our augmentation337

involved totally 10 domains and 24 services.338

We directly compute the accuracy on whether the339

model can successfully predict the correct named340

entity as evaluation metric. Since the generation341

is similar to the dialog state tracking task, we also342

compute the joint goal accuracy (details in Ap-343

pendix.C.2) to evaluate whether the augmentation344

maintain the model’s performance of other tasks.345

We train GPT2 with both the original and aug-346

mented data, and test the fine-tuned models on orig-347

inal/augmented/human paraphrased test sets. The348

same experiment is conducted for both datasets.349

In addition to original and augmented training350

data, we also explore the impact of the synthesized351

single-turn dialog. Learned from Table 1, the aug- 352

mented turns only take up 2% of the whole dataset. 353

In order to achieve a similar amount of augmenta- 354

tion compared to the automatic augmented data, we 355

sample 5k synthesized single-turn dialogs for SGD 356

and 3k for MultiWOZ, which is around 2% of each 357

training set. Then, we mix those dialogs with the 358

original (or augmented) training data and evaluate 359

on three test data settings. We also increase the 360

sampling amount of the synthesized dialog to be 361

comparable to the whole training set, represented 362

by “Syn100%” in the table, to explore whether the 363

model achieves a better learning of the entity disam- 364

biguation skill with access to more disambiguation 365

cases. 366

5 Results and Analysis 367

In this section, we present our experimental results 368

including key observations and ablation studies. 369

In addition, we also analyze how to leverage our 370

augmented dataset to deal with DSR-ambiguity in 371

new datasets. 372

5.1 Augmentation Helps Resolve Ambiguity 373

Table 2 shows the named entity prediction accuracy 374

evaluated only on the turns involved in augmenta- 375

tion, which is around 2% of the whole test set. The 376

first column states the different training data set- 377

tings that we use to fine-tune the GPT2 model, and 378

the first row presents three different test sets. 379

Comparing the “Origin” column and “AutoAug” 380

column, we find that the performance of the model 381

trained with original data drastically drops from 382

0.556 to 0.242 for SGD and from 0.676 to 0.488 383

for MultiWOZ. This verifies our hypothesis that the 384

original datasets contain few disambiguation cases. 385

Therefore, the model trained with the original data 386

cannot understand user’s answer towards the clarifi- 387

cation question and extract the corresponding entity 388

tokens. On the other hand, the models trained with 389

augmented data achieve better performance (from 390

0.242 to 0.496 for SGD and from 0.488 to 0.744 for 391

MultiWOZ) on the augmented data, which means 392

those models learn the skill to complete the dis- 393

ambiguation task. The results on the human para- 394

phrased test set, which is more diverse and natural, 395

support the same conclusion. We also combine 396

the synthesized single-turn dialog data with the 397

original training data (or the augmented training 398

data). The original data mixed with full-size synthe- 399

sized data setting achieves the best result on human 400
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Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 55.6±0.7 24.2±00.6 21.1±0.8 67.6±0.7 48.8±0.5 48.8±0.1

Origin+Syn2% 57.5±1.4 27.9±2.5 25.2±1.8 65.0±0.3 48.9±1.4 49.4±1.6

Origin+Syn100% 57.1±0.6 34.4±1.8 30.4±1.5 67.0±0.7 55.4±2.6 55.6±2.9

AutoAug 55.1±0.2 49.6±0.5 43.7±0.8 63.3±1.6 74.4±2.5 73.9±2.9

AutoAug+Syn2% 56.9±0.4 54.8±1.0 48.8±1.7 64.2±0.7 83.8±0.2 83.0±0.7

AutoAug+Syn100% 56.7±0.9 58.3±0.1 50.1±0.2 63.3±1.3 84.6±0.2 83.7±0.7

Table 2: The accuracy of the named entity prediction for only the augmented turns. Each number represents
the performance of a model trained with a certain training data setting and evaluated on a certain test set. “Ori-
gin”/“AutoAug”/“HumanAug” represents evaluation on the original/automatic augmented(Sec. 3.2)/human para-
phrased(Sec. 3.3) data. “+Syn” represents mixed with synthesized data and the percentage following “+Syn” means
the amount of synthesized data compare to the whole test set.

paraphrased test set for SGD and the augmented401

data mixed with full-size synthesized data setting402

achieves the best one for MultiWOZ.403

Table 7 shows the overall named entity accuracy404

of the whole test set. Since the augmentation only405

modifies 2% turns of the whole test set, the differ-406

ence between the performance of on the original407

and augmented test set is not as apparent as Table 2.408

However, the model trained with augmented data409

still performs better than the model trained with410

original data on both augmented and human para-411

phrased test set. The model under “Aug+Syn100%”412

train setting achieves the best results on five out413

of six test sets, showing that the augmentation and414

synthesized data jointly enhance the model’s ability415

to extract named entity.416

In addition to named entity prediction, we also417

explore whether the augmentation helps the model418

to predict other slot types by computing the joint419

goal accuracy. Table 8 shows the results for only420

the augmented turns and Table 3 lists the results421

on the whole test set. In both tables, the setting422

“Aug+Syn100%” achieves the best or the second423

best performance for both augmented and human424

paraphrased test sets. Hence, our augmentation not425

only enables the model to solve the disambiguation426

task, but also improves its ability for dialog state427

tracking task. The improvement mainly results428

from the similarity of the disambiguation task and429

the dialog state tracking, and more augmented data430

points enhance the model’s understanding of the431

input sequence.432

5.2 Augmentation Brings No Harm433

Our ultimate goal is to expand end-to-end task ori-434

ented dialog systems with the disambiguation skill.435

Therefore, it is required not only to enable the di-436

alog model to resolve DSR-ambiguity, but also to437

maintain the model’s original ability for generating438

responses or dialog state tracking. To verify that, 439

we first analyze the performance on the original 440

test set (“Origin” columns in Table 2). The models 441

trained with original data (0.676 on MultiWOZ) or 442

the original one mixed with 5% synthesized data 443

(0.575 on SGD) commonly achieves the best per- 444

formance, which is reasonable since training data 445

and test data share almost the same distribution. 446

On the other hand, the performance on the original 447

test set of the models trained with the augmented 448

data is comparable with the original training data, 449

which means these models maintain the ability to 450

predict entity name. As for the results over the 451

whole test set in Table 7, the augmented model 452

even achieves better accuracy (0.877) than the orig- 453

inal one (0.871) on the SGD test set. Therefore, 454

the augmentation does not hurt the model’s ability 455

to predict named entities without disambiguation 456

cases. 457

Beyond named entitiesies, the augmentation 458

hardly affects the model’s ability to predict other 459

dialog slots for the non-disambiguation cases. The 460

results are listed in the “Origin” columns in the 461

Table 8 and Table 3 correspondingly. For both 462

test sets, the models trained with augmented data 463

achieve comparable results with the models trained 464

with original data, which means our augmentation 465

also maintains the distribution of other slot types 466

in the original data. In conclusion, our augmenta- 467

tion does not impede the model from learning the 468

original data distribution. And the model trained 469

with the augmented data perform well no matter 470

whether the disambiguation case exists. 471

5.3 Leveraging Augmented Turns 472

To find the most efficient method to leverage our 473

dataset, we explore the following experiment set- 474

tings. Since SGD and MultiWOZ are both task- 475

oriented dialog datasets and share some common 476
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Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 48.9±0.7 47.7±0.7 47.7±0.7 53.5±0.1 52.2±0.5 52.3±0.4

Origin+Syn2% 50.0±0.3 48.9±0.4 49.0±0.4 53.0±0.1 50.0±0.6 50.1±0.6

Origin+Syn100% 49.5±0.6 48.7±0.5 48.7±0.5 52.8±0.3 50.4±0.5 50.4±0.4

AutoAug 50.2±1.0 49.9±1.0 49.7±1.0 52.4±0.4 53.5±0.3 53.5±0.3

AutoAug+Syn2% 49.8±0.4 49.6±0.4 49.4±0.4 52.5±0.2 54.5±0.1 54.5±0.1

AutoAug+Syn100% 51.0±0.4 50.9±0.4 50.6±0.4 53.2±0.2 55.2±0.4 55.2±0.4

Table 3: Joint goal accuracy evaluated on the whole test set.

Name Entity Accuracy
Origin HumanAug

Origin 67.6±0.7 48.8±0.1

Origin+Syn 67.0±0.7 55.6±2.9

Aug 63.3±1.6 73.9±2.9

Aug+Syn 63.3±1.3 87.4±0.4

PreFineTuneOrigin 67.8±0.4 44.1±1.3

PreFineTuneAug 68.4±0.3 49.5±1.1

PreFineTuneAug+Syn 68.5±0.9 65.8±0.6

Upsample 63.5±1.0 83.7±3.2

Upsample+Syn 63.3±0.5 88.3±0.8

Table 4: Results for more training setting based on the
MultiWOZ dataset, in terms of the name entity accuracy
over only augmented turns. The amount of synthesized
data “+Syn” is the same as the amount of original test
test in this table. “PreFineTuneOrigin” means first pre-
finetuning model with original SGD training data and
then fine-tuning on MultiWOZ training data, while “Pre-
FineTuneAug” means first pre-finetuning model with
augmented SGD training data. The setting “Upsam-
ple” means up-sampling augmented turns to the same
amount of training data.

domains, pre-training on one dataset might help477

learn the other one. Therefore, for MultiWOZ478

model, we first pre-finetune the model with the479

original SGD and then fine-tune it on the origin480

MultiWOZ. We also conduct the experiment that481

uses the augmented SGD training data for the first482

step of fine-tuning, with or without mixing syn-483

thesized single-turn dialogs. All these three ex-484

periment settings do not involve augmentation on485

the MultiWOZ dataset. In addition, Since the aug-486

mented turns only take up 2% of the whole train-487

ing data, the model rarely sees the disambiguation488

cases in each epoch. To emphasize those turns, we489

up-sample those disambiguation turns to the same490

amount as the original training data.491

Table 4 show results for these settings on Multi-492

WOZ dataset (The joint goal accuracy results can493

be found in Table 6). For the named entity accu-494

racy, the setting “Upsample+Syn” achieves the best495

result, because the more disambiguation turns the496

models see, the better the model learns the skill to497

solve the ambiguity. As for the joint goal accuracy,498

setting “Aug+Syn” performs better than “Upsam- 499

ple+Syn” because too much disambiguation turns 500

inevitably introduce bias and affect learning the 501

original task. Therefore, if we need to solve DSR- 502

ambiguity in a new dataset, the best option is to con- 503

duct augmentation with our framework and train 504

models together with synthesized single-turn data. 505

Although not as good as setting “Aug+Syn”, the set- 506

ting “PreFineTuneAug+Syn” performs better than 507

the model trained on original data in terms of both 508

JGA and named entity accuracy. Please note that 509

this setting does not require any augmentation on 510

MultiWOZ. Hence, to solve disambiguation cases 511

in a new dataset, the cheapest choice is to fine-tune 512

a model on our augmented dataset (MultiWOZ and 513

SGD) first, and then fine-tune it on the original data, 514

mixed with the synthesized single-turn dataset. The 515

above experiments are conducted and evaluated on 516

the MultiWOZ dataset. We also apply the same 517

settings on the SGD dataset and the results can be 518

found in the Table 5 and Table 6. 519

5.4 Impact of Entity Addressing Methods 520

To explore the impact of different addressing 521

methods, we conduct the ablation study by fine- 522

tuning GPT2 with the synthesized single-turn dia- 523

log datasets of each individual addressing method 524

(results shown in Table 9). For each addressing 525

method, we generate 100K/10K/10K single-turn 526

dialogs as the train/dev/test set, which is compa- 527

rable to the MultiWOZ or the SGD datasets. We 528

find that when focusing only on the disambiguation 529

task with a simple context structure like single- 530

turn dialog, the model can easily learn all kinds 531

of addressing methods, except for “Multiple Ad- 532

dressing”. The model accuracy drops by ≈ 33% in 533

that case. Even if we combine multiple addressing 534

methods together except “Multiple Addressing”, 535

the model can still understand the addressing target. 536

However, when the user chose multiple entities, it 537

is hard for models to accurately predict how many 538

entities the user selected. 539
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6 Related Work540

6.1 Task-Oriented Dialog Datasets541

MultiWOZ (Budzianowski et al., 2018) is one of542

the most popular task-oriented dialog dataset. It543

covers multiple domains, consists of a large amount544

of dialogs, and has been chosen as benchmark for545

many dialog tasks, e.g. dialog state tracking (Zhang546

et al., 2019, 2020a; Heck et al., 2020), dialog policy547

optimization (yang Wu et al., 2019; Wang et al.,548

2020a,b) and end-to-end dialog modeling (Zhang549

et al., 2020b; Hosseini-Asl et al., 2020; Peng et al.,550

2020; Huang et al., 2021). And to polish it up to551

be a better benchmark, many works pay effort to552

improve and correct dataset (Eric et al., 2020; Zang553

et al., 2020; Qian et al., 2021; Han et al., 2021; Ye554

et al., 2021). In this paper, we choose MultiWOZ555

2.2 version to conduct augmentation. Schema-556

Guided Dataset (SGD) (Rastogi et al., 2019) is the557

largest public task-oriented dialog dataset, contain-558

ing 18K+ dialogs. It covers in total 20 domains and559

45 services. The dataset is constructed by generat-560

ing dialog outlines from interactions between two561

dialog simulators, and then being paraphrased by562

crowd-workers. SIMMC 2.0 (Kottur et al., 2021)563

is a newly-released multi-modal task-oriented dia-564

log dataset around situated interactive multi-modal565

conversations (Moon et al., 2020). It focuses on566

dialogs with multi-modal context, which can be567

in the form of either co-observed image or virtual568

reality environment. The dataset contains 11K+569

dialogs and covers two shopping domains.570

As for the disambiguation problem, neither Mul-571

tiWOZ nor SGD has related cases or annotations.572

SIMMC 2.0 is well-annotated for disambiguation,573

but it only covers two domains, and addresses en-574

tity mostly with multi-modal knowledge. There-575

fore, we augment MultiWOZ and SGD with the576

disambiguation templates from the SIMMC 2.0.577

6.2 Ambiguity & Clarification Questions578

Ambiguity is a common phenomenon across many579

conversation-involved NLP tasks, e.g. conver-580

sational search (Rosset et al., 2020), Question-581

Answering (White et al., 2021), open-domain di-582

alog (Aliannejadi et al., 2021) and intent classifi-583

cation (Bihani and Rayz, 2021; Dhole, 2020). The584

problem mainly results from two aspects: 1. user’s585

ambiguous keyword (e.g. “orange” can be either586

color or fruit (Coden et al., 2015)) and 2. lack-587

ing of enough constraints for accurate searching,588

leading to multiple results (e.g.“I want to book a589

cheap hotel” where there might be multiple “cheap” 590

hotels). Previous work proposes to incorporate 591

clarification questions to solve the ambiguity prob- 592

lem (Purver et al., 2001; Schlangen, 2004; Radlin- 593

ski and Craswell, 2017), including both model- 594

wise (Li et al., 2017; Rao and Daumé III, 2019; 595

Yu et al., 2020) and dataset-wise (Aliannejadi et al., 596

2019; Xu et al., 2019; Min et al., 2020; Zamani 597

et al., 2020b). Our work it the first to point out the 598

ambiguity within the database-searching of task- 599

oriented dialog systems and introduce clarification 600

questions to help solve this problem. 601

In addition, most of the work focus on when 602

and how to generate clarification questions (Kumar 603

and Black, 2020). Typical clarification question 604

generation is based on the context with a Seq2Seq 605

model (Zamani et al., 2020a). Rao and Daumé III 606

(2019) propose to utilize the generative adversarial 607

network to learn generating relevant clarification 608

question based on corresponding answers. Sekulic 609

et al. (2021) takes user engagement into considera- 610

tion to generate high-quality clarification questions. 611

In this work, instead of focusing on question gen- 612

eration, we put our attention on understanding the 613

user’s answer to clarification questions. 614

7 Conclusion & Future Work 615

In this paper, we proposed a new task, dataset result 616

disambiguation, which is ignored in most popular 617

public task-oriented dialog datasets such as Mul- 618

tiWOZ and SGD. We showed that models trained 619

on these two datasets can not deal with entity am- 620

biguities. We proposed to address this issue by 621

augmenting existing datasets with relevant disam- 622

biguation turns. We extract templates of the dis- 623

ambiguation turns from the SIMMC2.0 dataset and 624

jointly generate new turns with the databases from 625

MultiWOZ and SGD for augmentation. To ensure 626

the quality and correctness of the augmentation, we 627

recruit crowd-workers to paraphrase the generated 628

sentences. We benchmark our augmented dataset 629

with the GPT2 model. We observe that the augmen- 630

tations empower dialog models with a new skill to 631

solve disambiguation tasks without performance 632

drop on the original task. In the future, we plan to 633

incorporate state-of-the-art and realistic entity ref- 634

erencing techniques cases to improve the datasets, 635

which further enhances the dialog system. We hope 636

that our work stimulates further research in identi- 637

fying and incorporating such universal dialog skills 638

in dialog systems avoiding exploding data-costs. 639
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8 Ethical Considerations640

To ensure that the dataset does not have any sen-641

sitive topics, we ask crowd-workers to make com-642

ments if the dialog content involves any of follow-643

ing: 1. offensive, racist, biased and non-tolerant644

behavior; 2. violence and self-harm; 3. sexual or645

flirtatious behavior; 4. controversial and polarizing646

topics. Since the database of both MultiWOZ and647

SGD are sampled from real world, annotators also648

comment if there are real names included in the649

slot values, which can be personally identifiable650

information (PII). Considering both of these two651

datasets are public dataset, we do not replace those652

named entities with placeholders. The detailed de-653

scription of sensitive topics is included in the Fig. 7654

in the appendix.655
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madan, and Milica Gašić. 2018. MultiWOZ - a large-675
scale multi-domain Wizard-of-Oz dataset for task-676
oriented dialogue modelling. In Proceedings of the677
2018 Conference on Empirical Methods in Natural678
Language Processing, pages 5016–5026, Brussels,679
Belgium. Association for Computational Linguistics.680

Anni Coden, Daniel F. Gruhl, Neal Lewis, and Pablo N.681
Mendes. 2015. Did you mean a or b? supporting clar-682
ification dialog for entity disambiguation. In SumPre-683
HSWI@ESWC.684

Kaustubh D. Dhole. 2020. Resolving intent ambigui-685
ties by retrieving discriminative clarifying questions.686
ArXiv, abs/2008.07559.687

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,688
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj689
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-690
tiWOZ 2.1: A consolidated multi-domain dialogue691

dataset with state corrections and state tracking base- 692
lines. In Proceedings of the 12th Language Re- 693
sources and Evaluation Conference, pages 422–428, 694
Marseille, France. European Language Resources 695
Association. 696

Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian, 697
Chongxuan Huang, Dazhen Wan, Wei Peng, and Min- 698
lie Huang. 2021. Multiwoz 2.3: A multi-domain task- 699
oriented dialogue dataset enhanced with annotation 700
corrections and co-reference annotation. In NLPCC. 701

M. Heck, Carel van Niekerk, Nurul Lubis, Christian 702
Geishauser, Hsien-Chin Lin, M. Moresi, and Milica 703
Gavsi’c. 2020. Trippy: A triple copy strategy for 704
value independent neural dialog state tracking. In 705
SIGdial. 706

Ehsan Hosseini-Asl, B. McCann, Chien-Sheng Wu, 707
Semih Yavuz, and R. Socher. 2020. A simple lan- 708
guage model for task-oriented dialogue. ArXiv, 709
abs/2005.00796. 710

Tianjian Huang, Shaunak Halbe, Chinnadhurai Sankar, 711
Pooyan Amini, Satwik Kottur, Alborz Geramifard, 712
Meisam Razaviyayn, and Ahmad Beirami. 2021. 713
Dair: Data augmented invariant regularization. arXiv 714
preprint arXiv:2110.11205. 715

Satwik Kottur, Seungwhan Moon, Alborz Geramifard, 716
and Babak Damavandi. 2021. Simmc 2.0: A task- 717
oriented dialog dataset for immersive multimodal 718
conversations. ArXiv, abs/2104.08667. 719

Vaibhav Kumar and Alan W Black. 2020. ClarQ: A 720
large-scale and diverse dataset for clarification ques- 721
tion generation. In Proceedings of the 58th Annual 722
Meeting of the Association for Computational Lin- 723
guistics, pages 7296–7301, Online. Association for 724
Computational Linguistics. 725

Jiwei Li, Alexander H. Miller, Sumit Chopra, 726
Marc’Aurelio Ranzato, and Jason Weston. 2017. 727
Learning through dialogue interactions by asking 728
questions. In ICLR. 729

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and 730
Luke Zettlemoyer. 2020. AmbigQA: Answering am- 731
biguous open-domain questions. In Proceedings of 732
the 2020 Conference on Empirical Methods in Nat- 733
ural Language Processing (EMNLP), pages 5783– 734
5797, Online. Association for Computational Lin- 735
guistics. 736

Seungwhan Moon, Satwik Kottur, Paul A Crook, Ankita 737
De, Shivani Poddar, Theodore Levin, David Whitney, 738
Daniel Difranco, Ahmad Beirami, Eunjoon Cho, et al. 739
2020. Situated and interactive multimodal conversa- 740
tions. arXiv preprint arXiv:2006.01460. 741

Baolin Peng, C. Li, Jin chao Li, Shahin Shayandeh, 742
L. Liden, and Jianfeng Gao. 2020. Soloist: Few- 743
shot task-oriented dialog with a single pre-trained 744
auto-regressive model. ArXiv, abs/2005.05298. 745

9

https://aclanthology.org/2021.emnlp-main.367
https://aclanthology.org/2021.emnlp-main.367
https://aclanthology.org/2021.emnlp-main.367
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://doi.org/10.18653/v1/2020.acl-main.651
https://doi.org/10.18653/v1/2020.acl-main.651
https://doi.org/10.18653/v1/2020.acl-main.651
https://doi.org/10.18653/v1/2020.acl-main.651
https://doi.org/10.18653/v1/2020.acl-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466


Matthew Purver, Jonathan Ginzburg, and Patrick Healey.746
2001. On the means for clarification in dialogue.747
In Proceedings of the Second SIGdial Workshop on748
Discourse and Dialogue.749

Kun Qian, Ahmad Beirami, Zhouhan Lin, Ankita De,750
Alborz Geramifard, Zhou Yu, and Chinnadhurai751
Sankar. 2021. Annotation inconsistency and entity752
bias in MultiWOZ. In Proceedings of the 22nd An-753
nual Meeting of the Special Interest Group on Dis-754
course and Dialogue, pages 326–337, Singapore and755
Online. Association for Computational Linguistics.756

Alec Radford, Jeff Wu, Rewon Child, David Luan,757
Dario Amodei, and Ilya Sutskever. 2019. Language758
models are unsupervised multitask learners.759

Filip Radlinski and Nick Craswell. 2017. A theoretical760
framework for conversational search. Proceedings of761
the 2017 Conference on Conference Human Informa-762
tion Interaction and Retrieval.763

Sudha Rao and Hal Daumé. 2019. Answer-based adver-764
sarial training for generating clarification questions.765
ArXiv, abs/1904.02281.766

Sudha Rao and Hal Daumé III. 2018. Learning to ask767
good questions: Ranking clarification questions us-768
ing neural expected value of perfect information. In769
Proceedings of the 56th Annual Meeting of the As-770
sociation for Computational Linguistics (Volume 1:771
Long Papers), pages 2737–2746, Melbourne, Aus-772
tralia. Association for Computational Linguistics.773

Sudha Rao and Hal Daumé III. 2019. Answer-based Ad-774
versarial Training for Generating Clarification Ques-775
tions. In Proceedings of the 2019 Conference of776
the North American Chapter of the Association for777
Computational Linguistics: Human Language Tech-778
nologies, Volume 1 (Long and Short Papers), pages779
143–155, Minneapolis, Minnesota. Association for780
Computational Linguistics.781

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,782
Raghav Gupta, and Pranav Khaitan. 2019. Towards783
scalable multi-domain conversational agents: The784
schema-guided dialogue dataset. arXiv preprint785
arXiv:1909.05855.786

Corby Rosset, Chenyan Xiong, Xia Song, Daniel Fer-787
nando Campos, Nick Craswell, Saurabh Tiwary,788
and Paul N. Bennett. 2020. Leading conversational789
search by suggesting useful questions. Proceedings790
of The Web Conference 2020.791

David Schlangen. 2004. Causes and strategies for re-792
questing clarification in dialogue. In Proceedings of793
the 5th SIGdial Workshop on Discourse and Dialogue794
at HLT-NAACL 2004, pages 136–143, Cambridge,795
Massachusetts, USA. Association for Computational796
Linguistics.797

Ivan Sekulic, Mohammad Aliannejadi, and Fabio A.798
Crestani. 2021. User engagement prediction for clar-799
ification in search. In ECIR.800

Jianhong Wang, Yeliang Zhang, Tae-Kyun Kim, and 801
Yunjie Gu. 2020a. Modelling hierarchical structure 802
between dialogue policy and natural language genera- 803
tor with option framework for task-oriented dialogue 804
system. ArXiv, abs/2006.06814. 805

Kai Wang, Jun-Feng Tian, Rui Wang, Xiaojun Quan, 806
and J. Yu. 2020b. Multi-domain dialogue acts and 807
response co-generation. ACL 2020. 808

Julia White, Gabriel Poesia, Robert Hawkins, Dorsa 809
Sadigh, and Noah Goodman. 2021. Open-domain 810
clarification question generation without question ex- 811
amples. In Proceedings of the 2021 Conference on 812
Empirical Methods in Natural Language Processing, 813
pages 563–570, Online and Punta Cana, Dominican 814
Republic. Association for Computational Linguistics. 815

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, 816
Pengcheng Yang, Qi Zeng, Ming Zhou, and Xu Sun. 817
2019. Asking clarification questions in knowledge- 818
based question answering. In Proceedings of the 819
2019 Conference on Empirical Methods in Natu- 820
ral Language Processing and the 9th International 821
Joint Conference on Natural Language Processing 822
(EMNLP-IJCNLP), pages 1618–1629, Hong Kong, 823
China. Association for Computational Linguistics. 824

Qing yang Wu, Yichi Zhang, Yu Li, and Z. Yu. 2019. Al- 825
ternating recurrent dialog model with large-scale pre- 826
trained language models. ArXiv, abs/1910.03756. 827

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz. 828
2021. Multiwoz 2.4: A multi-domain task-oriented 829
dialogue dataset with essential annotation correc- 830
tions to improve state tracking evaluation. ArXiv, 831
abs/2104.00773. 832

Lili Yu, Howard Chen, Sida I. Wang, Tao Lei, and Yoav 833
Artzi. 2020. Interactive classification by asking infor- 834
mative questions. In Proceedings of the 58th Annual 835
Meeting of the Association for Computational Lin- 836
guistics, pages 2664–2680, Online. Association for 837
Computational Linguistics. 838

Hamed Zamani, Susan T. Dumais, Nick Craswell, 839
Paul N. Bennett, and Gord Lueck. 2020a. Gener- 840
ating clarifying questions for information retrieval. 841
Proceedings of The Web Conference 2020. 842

Hamed Zamani, Gord Lueck, Everest Chen, Rodolfo 843
Quispe, Flint Luu, and Nick Craswell. 2020b. Mim- 844
ics: A large-scale data collection for search clarifi- 845
cation. Proceedings of the 29th ACM International 846
Conference on Information & Knowledge Manage- 847
ment. 848

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, 849
Raghav Gupta, Jianguo Zhang, and Jindong Chen. 850
2020. MultiWOZ 2.2 : A dialogue dataset with 851
additional annotation corrections and state tracking 852
baselines. In Proceedings of the 2nd Workshop on 853
Natural Language Processing for Conversational AI, 854
pages 109–117, Online. Association for Computa- 855
tional Linguistics. 856

10

https://aclanthology.org/W01-1616
https://aclanthology.org/2021.sigdial-1.35
https://aclanthology.org/2021.sigdial-1.35
https://aclanthology.org/2021.sigdial-1.35
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/N19-1013
https://doi.org/10.18653/v1/N19-1013
https://doi.org/10.18653/v1/N19-1013
https://doi.org/10.18653/v1/N19-1013
https://doi.org/10.18653/v1/N19-1013
https://aclanthology.org/W04-2325
https://aclanthology.org/W04-2325
https://aclanthology.org/W04-2325
https://aclanthology.org/2021.emnlp-main.44
https://aclanthology.org/2021.emnlp-main.44
https://aclanthology.org/2021.emnlp-main.44
https://aclanthology.org/2021.emnlp-main.44
https://aclanthology.org/2021.emnlp-main.44
https://doi.org/10.18653/v1/D19-1172
https://doi.org/10.18653/v1/D19-1172
https://doi.org/10.18653/v1/D19-1172
https://doi.org/10.18653/v1/2020.acl-main.237
https://doi.org/10.18653/v1/2020.acl-main.237
https://doi.org/10.18653/v1/2020.acl-main.237
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13


Jian’guo Zhang, Kazuma Hashimoto, Chien-Sheng Wu,857
Yao Wan, Philip S. Yu, R. Socher, and Caiming858
Xiong. 2019. Find or classify? dual strategy for859
slot-value predictions on multi-domain dialog state860
tracking. ArXiv, abs/1910.03544.861

Yichi Zhang, Zhijian Ou, Huixin Wang, and Jun-862
lan Feng. 2020a. A probabilistic end-to-end863
task-oriented dialog model with latent belief864
states towards semi-supervised learning. ArXiv,865
abs/2009.08115.866

Yichi Zhang, Zhijian Ou, and Z. Yu. 2020b. Task-867
oriented dialog systems that consider multiple ap-868
propriate responses under the same context. ArXiv,869
abs/1911.10484.870

11



A Supplementary Details for Augmentation871

A.1 Involving Domains872

• MultiWOZ: “restaurant”, “hotel”, and “attraction”873

• Google SGD: ”events_3”, ”homes_2”, ”hotels_4”, ”media_3” , ”messaging_1” , ”movies_1”,874

”movies_3”, ”music_3”, ”restaurants_2”, ”services_1”, ”services_4”, ”travel_1”, ”events_1”,875

”homes_1”, ”hotels_1”, ”media_2”, ”movies_2”, ”music_1”, ”hotels_3”, ”media_1”, ”music_2”,876

”restaurants_1”, ”services_2”, ”services_3”,877

A.2 Human Paraphrasing878

The whole paraphrasing job involved 37 annotators and cost around $26,000 in total. We employed the879

Appen crowdsourcing platform to collect the data. We plan to release the geographic characteristics of the880

annotator population along with the data.881

B Licenses for Relevant Artifacts882

• MultiWOZ: Apache License 2.0883

• Google Sechma-Guided Dataset: CC BY-NC-SA 4.0884

• SIMMC 2.0: CC BY-NC-SA 4.0885

• GPT2: Modified MIT License886

C Supplementary Details for Experiments887

C.1 Hyper-Parameters888

We do a hyper-parameter search for the training on both original dataset and augmented dataset and find889

the following setting: a batch size of 4 and learning rate of 5e-6 is the best one for both. We run at most890

20 epochs for each experiment and do validation for every epoch, with an early stop step of 3. For each891

experiment, we run for three times with different random seeds and report the average value, along with892

the standard deviation. We run experiments with NVIDIA RTX A4000 GPU for totally 1440 hours.893

C.2 Metric894

Joint Goal Accuracy evaluates the performance of predicting dialog states. It counts one for each turn if895

the model successfully generate all slot values, otherwise count zero.896

C.3 Supplementary Experiment Results897

Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 55.6±0.7 24.2±00.6 21.1±0.8 67.6±0.7 48.8±0.5 48.8±0.1

Origin+Syn2% 57.5±1.4 27.9±2.5 25.2±1.8 65.0±0.3 48.9±1.4 49.4±1.6

Origin+Syn100% 57.1±0.6 34.4±1.8 30.4±1.5 67.0±0.7 55.4±2.6 55.6±2.9

AutoAug 55.1±0.2 49.6±0.5 43.7±0.8 63.3±1.6 74.4±2.5 73.9±2.9

AutoAug+Syn2% 56.9±0.4 54.8±1.0 48.8±1.7 64.2±0.7 83.8±0.2 83.0±0.7

AutoAug+Syn100% 56.7±0.9 58.3±0.1 50.1±0.2 63.3±1.3 84.6±0.2 83.7±0.7

Upsample 55.8±0.7 25.5±0.7 22.1±0.2 63.5±1.0 84.6±3.0 83.7±3.2

Upsample+Syn100% 58.6±0.4 35.3±0.8 32.0±0.9 63.3±0.5 88.4±0.7 88.3±0.8

PreFinetuneOrigin 55.8±0.6 23.8±0.2 21.5±0.5 67.8±0.4 44.1±1.2 0.441±1.3

PreFinetuneAug 56.3±0.4 27.4±0.4 24.3±0.5 68.4±0.3 50.5±1.2 0.495±1.1

PreFinetuneAug+Syn100% 57.4±0.8 35.7±1.6 32.8±0.6 68.5±0.9 65.0±0.9 65.8±0.6

HumanAug 55.9±0.8 50.6±2.7 51.4±2.3 - - -

Table 5: The complete results in terms of the named entity accuracy for only the augmented turns.
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Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 48.9±0.7 47.7±0.7 47.7±0.7 53.5±0.1 52.2±0.5 52.3±0.4

Origin+Syn2% 50.0±0.3 48.9±0.4 49.0±0.4 53.0±0.1 50.0±0.6 50.1±0.6

Origin+Syn100% 49.5±0.6 48.7±0.5 48.7±0.5 52.8±0.3 50.4±0.5 50.4±0.4

AutoAug 50.2±1.0 49.9±1.0 49.7±1.0 52.4±0.4 53.5±0.3 53.5±0.3

AutoAug+Syn2% 49.8±0.4 49.6±0.4 49.4±0.4 52.5±0.2 54.5±0.1 54.5±0.1

AutoAug+Syn100% 51.0±0.4 50.9±0.4 50.6±0.4 53.2±0.2 55.2±0.4 55.2±0.4

Upsample 49.1±0.5 48.1±0.5 48.0±0.5 52.8±0.2 54.4±0.2 54.3±0.2

Upsample+Syn100% 49.4±0.4 48.6±0.4 48.6±0.4 52.6±0.2 54.3±0.1 54.2±0.1

PreFinetuneOrigin 48.9±0.9 47.7±0.9 47.7±0.8 53.7±0.2 51.7±0.1 51.8±0.2

PreFineAug 48.9±0.2 47.7±0.3 47.8±0.2 53.4±0.6 52.2±0.6 52.2±0.7

PreFineAug+Syn100% 49.7±0.1 48.9±0.1 48.9±0.0 54.0±0.3 52.9±0.5 52.9±0.5

HumanAug 50.1±0.9 49.7±0.8 49.7±0.8 - - -

Table 6: Complete Results in terms of the joint goal accuracy evaluated on the whole test set.

Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 87.1±0.4 85.7±0.4 85.7±0.4 83.9±0.1 81.0±0.3 81.0±0.3

Origin+Syn2% 87.9±0.1 86.6±0.1 86.6±0.1 83.3±0.1 79.9±0.4 79.9±0.4

Origin+Syn100% 87.6±0.1 86.6±0.1 86.6±0.1 83.5±0.2 80.3±0.3 80.3±0.3

AutoAug 87.7±0.6 87.4±0.5 87.2±0.5 82.8±0.5 84.5±0.6 84.4±0.7

AutoAug+Syn2% 87.9±0.3 87.8±0.2 87.6±0.2 82.6±0.1 86.0±0.2 85.9±0.2

AutoAug+Syn100% 88.5±0.4 88.6±0.4 88.2±0.4 83.0±0.4 87.0±0.5 87.0±0.5

Table 7: The accuracy of the named entity prediction for the whole test set.

Train Data
Test Data SGD MultiWOZ

Origin AutoAug HumanAug Origin AutoAug HumanAug
Origin 36.9±0.4 13.1±0.4 10.1±0.8 36.5±0.9 26.4±1.5 26.9±1.1

Origin+Syn2% 38.3±0.8 15.0±1.5 12.6±1.1 35.2±0.7 13.8±3.3 14.2±3.9

Origin+Syn100% 37.2±0.8 19.0±1.2 16.0±1.0 36.5±0.6 19.7±4.0 19.2±3.5

AutoAug 35.8±0.4 30.3±0.5 23.8±0.5 33.8±0.5 41.9±0.1 41.5±0.7

AutoAug+Syn2% 37.7±0.5 33.1±0.8 26.8±1.7 33.8±1.5 47.9±0.5 46.9±1.1

AutoAug+Syn100% 37.9±1.5 35.1±0.1 28.6±0.9 34.9±2.0 47.9±0.8 48.1±1.1

Table 8: Joint goal accuracy evaluated on only the augmented turns.

Addressing Method Acc

Direct 1
Positional 1
Direct+Positional 0.9996
Attributes 0.9970
Direct+Posi+Attr 0.9993
Direct+Posi+Attr+Multiple 0.6695
Direct+Posi+Attr+Typo 1
Direct+Posi+Attrs+Multiple+Typo 0.6794

Table 9: Impact of different addressing methods. We adopt different addressing methods to synthesize single-turn
dialog data, based on which we train and evaluate models. “Posi” refers to the positional addressing and “Attr”
represents the addressing with attributes.
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Figure 6: Interface to collect human paraphrasing data.
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Figure 7: Description of sensitive topics.
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