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Abstract

Latent Structure Induction from task-oriented001
dialogs would be made more robust and data-002
efficient by injecting symbolic knowledge into003
a neural learning process. We introduce Neu-004
ral Probabilistic Soft Logic Dialogue Structure005
Induction (NEUPSL DSI), a general and princi-006
pled approach that injects the symbolic knowl-007
edge into the latent space of a neural genera-008
tive model via the Probablistic Soft Logic(PSL)009
formalism and allows for end-to-end gradient010
training. We conduct a thorough empirical011
investigation on the effect of NEUPSL DSI012
learning on the representation quality, few-shot013
learning, and out-of-domain generalization per-014
formance of the neural network. Over three015
simulated and real-world dialog structure in-016
duction benchmarks and across both unsuper-017
vised and semi-supervised settings for standard018
and cross-domain generalization, the injection019
of symbolic knowledge using NEUPSL DSI020
in unsupervised and semi-supervised settings021
provides a consistent boost in performance over022
the canonical baselines.023

1 Introduction024

The seamless integration of commonsense prior025

knowledge into the neural learning of language026

structure has been an open challenge in the machine027

learning and natural language processing communi-028

ties. In this work, we inject commonsense symbolic029

knowledge into the neural learning process of a two-030

party dialog structure induction (DSI) task (Zhai031

and Williams, 2014; Shi et al., 2019). This tasks032

aims to learn a graph, known as dialog structure,033

capturing the potential flow of states occurring in a034

dialog dataset for a specific task-oriented domain,035

e.g. Figure 1 represents a potential dialog struc-036

ture for the goal-oriented task of booking a hotel.037

Nodes in the dialog structure represent conversa-038

tional topics or dialog acts that abstract the intent039

of individual utterances and edges represent transi-040

tions between dialog acts over successive turns of041

Figure 1: Example dialog structure for the goal-oriented
task booking a hotel.
the dialog. 042

Traditionally, the dialog structure is hand-crafted 043

by human domain experts. This process is both 044

labor-intensive, and in most situations does not gen- 045

eralize easily to new domains. There has been pre- 046

vious work using supervised methods to learn this 047

dialog structure from labeled data, starting from 048

(Jurafsky, 1997). However, since structure anno- 049

tation is expensive and subject to low-rater agree- 050

ments, supervised methods are constrained by the 051

small size of training data and the low label quality 052

(Zhai and Williams, 2014). On the other hand, there 053

has been work that attempts to perform DSI in an 054

unsupervised fashion, e.g., hidden Markov models 055

(Chotimongkol, 2008; lan Ritter et al., 2010; Zhai 056

and Williams, 2014) and more recently Variational 057

Recurrent Neural Networks (VRNN) (Chung et al., 058

2015; Shi et al., 2019). However, these approaches 059

are purely data-driven, have difficulty when the 060

amount of data is limited or noisy, and cannot 061

easily exploit both domain-specific and domain- 062

independent dialog rules that are readily available 063

from human experts. 064

In this work, we propose Neural Probabilistic 065

Soft Logic Dialogue Structure Induction (NEUPSL 066

DSI), a practical neuro-symbolic approach that 067

improves the quality of learned dialog structure 068

by infusing commonsense dialog knowledge into 069

the end-to-end, gradient-based learning of a neu- 070

ral model. We leverage Probabilistic Soft Logic 071

(PSL), a well-studied soft logic formalism, to ex- 072

press common-sense dialog rules in succinct and 073

interpretable first-order logic statements that can 074

be incoroprated easily into differentiable learning 075
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(Bach et al., 2017; Pryor et al., 2022), leading to076

a simple method for common-sense knowledge in-077

jection with no change to the SGD-based training078

pipeline of an existing neural generative model.079

Our key contributions are: 1) we propose NE-080

UPSL DSI, a general and extendable latent dia-081

log structure learning framework leveraging the082

probabilistic soft logic (PSL) formalism. NEUPSL083

DSI comes with novel smooth relaxation of PSL084

tailored to ensure rich gradient signal during back-085

propagation, which is important for achieving good086

empirical performance under SGD-based neuro-087

symbolic learning; 2) we evaluate NEUPSL DSI088

over both synthetic and realistic dialog datasets and089

under three evaluation protocols: standard general-090

ization, domain generalization and domain adapta-091

tion, showing quantitatively that injecting common-092

sense reasoning provides a boost over unsupervised093

and few-shot methods, and 3) we comprehensively094

investigate the effect of soft logic-augmented learn-095

ing on different aspects of the learned neural model,096

by examining its quality in representation learning,097

and performances in few-shot learning and struc-098

ture induction.099

2 Related Work100

Dialog Structure Induction (DSI) refers to the101

task of inferring latent states of a dialog without102

complete supervision of the state labels. Earlier103

work focus on building advanced clustering meth-104

ods, e.g., topic models, HMM, GMM (Zhai and105

Williams, 2014), which are later combined with pre-106

trained or task-specific neural representations (Nath107

and Kubba, 2021; Lv et al., 2021; Qiu et al., 2022).108

Another stream of research focuses on infering la-109

tent states using neural generative models, most110

notably Direct-Discrete Variational Recurrent Neu-111

ral Networks (DD-VRNN) (Shi et al., 2019), with112

later improvements including BERT encoder (Chen113

et al., 2021), GNN-based latent-space model (Sun114

et al., 2021; Xu et al., 2021), structured-attention115

decoder(Qiu et al., 2020), and database query mod-116

eling (Hudeček and Dušek, 2022). Finally, Zhang117

et al. (2020); Wu et al. (2020) explored DSI in semi-118

supervised and few-shot learning context. No work119

to date have explored DSI with common-sense su-120

pervision, or conducts a comprehensive evaluation121

of model performance across different generaliza-122

tion settings (i.e., unsupervised, few-shot, domain123

generalization and domain adaptation).124

A related field of work, Neuro-Symbolic com-125

puting (NeSy), is an active area of research that 126

aims to incorporate logic-based reasoning with neu- 127

ral computation. This field contains a plethora of 128

different neural symbolic methods and techniques. 129

The methods that closely relate to our line of work 130

seek to enforce constraints on the output of a neural 131

network (Hu et al., 2016; Donadello et al., 2017; 132

Diligenti et al., 2017; Mehta et al., 2018; Xu et al., 133

2018; Nandwani et al., 2019). For a more in-depth 134

introduction, we refer the reader to these excellent 135

recent surveys: Besold et al. (2017) and De Raedt 136

et al. (2020). These methods although powerful 137

are either: specific to the domain they work in, do 138

not use the same soft logic formulation, have not 139

been designed for unsupervised systems, or have 140

not been used for dialog structure induction. 141

Finally, our method is most closely related to 142

the novel NeSy approaches of Neural Probabilistic 143

Soft Logic (NeuPSL) (Pryor et al., 2022), Deep- 144

ProbLog (DPL) (Manhaeve et al., 2021), and Logic 145

Tensor Networks (LTNs) (Badreddine et al., 2022). 146

LTNs instantiates a model which forwards neu- 147

ral network predictions into functions representing 148

symbolic relations with real-valued or fuzzy logic 149

semantics, while DeepProbLog uses the output of 150

a neural network to specify probabilities of events. 151

The mathematical formulation of LTNs and DPL 152

differ from our underlying soft logic distribution. 153

NeuPSL unites state-of-the-art symbolic reasoning 154

with the low-level perception of deep neural net- 155

works through a Probabilistic Soft Logic (PSL). 156

Our method uses a NeuPSL formulation, however, 157

we introduce a novel variation to the soft logic for- 158

mulation, develop theory for unsupervised tasks, 159

introduce the whole system in Tensorflow, and ap- 160

ply it to dialog structure induction. 161

3 Background 162

Our neuro-symbolic approach to dialog structure 163

induction combines the principled formulation of 164

probabilistic soft logic (PSL) rules with a neural 165

generative model. In this work, we take the widely- 166

used Direct-Discrete Variational Recurrent Neural 167

Network (DD-VRNN) as an case study (Shi et al., 168

2019). We here introduce the necessary syntax and 169

semantics for both the DD-VRNN and PSL. 170

3.1 Direct Discrete Variational Recurrent 171

Neural Networks 172

A Direct Discrete Variational Recurrent Neural 173

Networks (DD-VRNN) (Shi et al., 2019) is a pro- 174

posed expansion to the popular Variational Recur- 175

rent Neural Network (VRNN) (Chung et al., 2015), 176
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which constucts a sequence of VAEs and associates177

them with the states of an RNN. The main dif-178

ference between the DD-VRNN and a traditional179

VRNN is the priors of the latent states zt. Here, the180

prior zt depends on the previous prior zt−1, which181

models the transitions between different latent (i.e.182

dialog) states. Formally, zt is modeled as:183

zt ∼ softmax(ϕpriorτ (zt−1)) (1)184

To fit the prior into the variational inference185

framework, an approximation of p(zt|x<t, z<t) is186

made that changes the distribution to p(zt|zt−1)187

and thus:188

p(x≤T , z≤T ) ≈
T∏
t=1

p(xt|z≤t, x<t)p(zt|zt−1)189

Lastly, the objective function used in the DD-190

VRNN is a timestep-wise variational lower bound191

(Chung et al., 2015) augmented with a bag-of-word192

(BOW) loss and Batch Prior Regularization (BPR)193

(Zhao et al., 2017, 2018), i.e.:194

LV RNN = Eq(z≤T |x≤T )[log p(xt|z≤t, x<t)+195

T∑
t=1

−KL(q(zt|xx≤t, z<t)||p(zt|x<t, z<t))],196

so that the full objective function is197

LDD−V RNN = LV RNN + λ ∗ Lbow (2)198

where λ is a tunable weight and Lbow is the BOW199

loss. For further details on Lbow see Section 4.3200

and Shi et al. (2019). Additionally, to expand this201

to a semi-supervised domain, the objective function202

is augmented as:203

LDD−V RNN =204

LV RNN + λ ∗ Lbow + Lsupervised205

where Lsupervised is the loss between the labels and206

predictions, e.g., cross-entropy.207

3.2 Probabilistic Soft Logic208

In this work we introduce soft constraints in a209

declarative fashion, similar to that of Probabilis-210

tic Soft Logic (PSL). PSL is a declarative statistical211

relational learning (SRL) framework for defining212

a particular graphical model, known as a hinge-213

loss Markov random field (HL-MRF) (Bach et al.,214

2017). More formally, PSL models relational de-215

pendencies and structural constraints using first-216

order logical rules, referred to as templates with217

arguments known as atoms. For example, the state- 218

ment of “first utterance in a dialog is likely to be- 219

long to the greet state" can be expressed as: 220

FIRSTUTT(U) → STATE(U, greet) (3) 221

where (FIRSTUTT(U), STATE(U, greet)) are the 222

atoms (i.e., atomic boolean statements) indicating, 223

respectively, whether an utterance U is the first 224

utterance of the dialog, or if it belongs to the state 225

greet. 226

The Probabilistic Soft Logic (PSL) formalism 227

(Bach et al., 2017) allows model to learn with 228

soft logic constraints by allowing the originally 229

Boolean-valued atoms to take continuous truth val- 230

ues that lie in the interval [0, 1]. Using this relax- 231

ation, PSL replaces logical operations with a form 232

of soft logic termed Lukasiewicz logic (Klir and 233

Yuan, 1995): 234

A ∧B = max(0.0, A+B − 1.0) 235

A ∨B = min(1.0, A+B) 236

¬A = 1.0−A 237

where A and B are either ground atoms or logi- 238

cal expressions over atoms. In either case, they 239

have values between [0,1]. For example, PSL will 240

convert the statement from Equation 3, into the 241

following: 242

min{1.0, (1.0− FIRSTUTT(U)) + 243

STATE(U, greet))} (4) 244

since A → B ≡ ¬A ∨ B. In this way, we can 245

create a collection of functions {ℓi}mi=1 that maps 246

data to [0, 1], known as templates. Note, this clas- 247

sic Lukasiewicz relaxation in fact leads to issues in 248

gradient-based neural learning, due to its subopti- 249

mal gradient behavior. In Section 4.2, we discuss 250

this in detail and propose a novel relaxation that is 251

more suitable for gradient-based neural learning. 252

Using the templates, PSL defines a conditional 253

probability density function over the unobserved 254

random variables y given the observed data x 255

known as the Hinge-Loss Markov Random Field 256

(HL-MRF): 257

P (y|x) ∝ exp(−
m∑
i=1

wi ∗ ϕi(y,x)) (5) 258

Here wi a non-negative weight and ϕi a potential 259

function based on the templates: 260

ϕi(y,x) = max{0, ℓi(y,x)} (6) 261
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Figure 2: High-level pipeline of the NEUPSL DSI learning procedure.

Then the inference for the model predictions y262

coventionally proceeds by maximum a posterior263

(MAP) estimation, i.e., by maximizing the objec-264

tive function P (y|x) (eq. 5) with respect to y.265

4 Neural Probabilistic Soft Logic266

Dialogue Structure Induction267

In this section, we describe our approach for268

integrating common sense reasoning and neural269

network-based dialog structure induction. Our ap-270

proach integrates an unsupervised neural generative271

model with commonsense dialog rules using soft272

constraints. We refer to our approach as Neural273

Probabilistic Soft Logic Dialogue Structure Induc-274

tion (NEUPSL DSI). In the following, we first275

define the dialog structure learning problem, de-276

scribe how to integrate the neural and symbolic277

losses, and then highlight important model com-278

ponents that are key to address optimization and279

representation-learning challenges under gradient-280

based neuro-symbolic learning.281

Problem Formulation Given a goal-oriented di-282

alog corpus U = {Di}Ni=1, we consider the DSI283

problem of learning a graph G underlying the cor-284

pus. More formally, dialog structure is defined285

as a directed graph G = (S, P ), where S =286

{s1, . . . , sm} encodes a set of dialog states, and287

P a probability distribution p(st|s<t) representing288

the likelihood of transition between states (see Fig-289

ure 1 for an example). Given the underlying dialog290

structure G, a dialog di = {x1, . . . , xT } ∈ D is a291

temporally-ordered set of utterances xt. Here, xt’s292

are generated according to an utterance distribution293

conditional on past history p(xt|s≤t, x<t), and the294

state st is generated according to p(st|s<t). Given295

a dialog corpus D = {di}ni=1, the task of DSI is296

to learn a directed graphical model G = (S, P ) as297

close to the underlying graph as possible. 298

4.1 Integrating Neural and Symbolic 299

Learning under NEUPSL DSI 300

We now introduce how the NEUPSL DSI approach 301

formally integrates the DD-VRNN with the soft 302

symbolic constraints to allow for end-to-end gra- 303

dient training. To begin, we define the relaxation 304

of the symbolic constraints to be the same as de- 305

scribed in Section 3.2. With this relaxation, we 306

can build upon the foundations developed by Pryor 307

et al. (2022) on Neural Probabilistic Soft Logic (Ne- 308

uPSL), by augmenting the standard unsupervised 309

DD-VRNN loss with a constraint loss. Figure 2 310

provides a graphical representation of this integra- 311

tion of the DD-VRNN and the symbolic constraints. 312

Intuitively, NEUPSL DSI can be described in three 313

parts: instantiation, inference, and learning. 314

In the instantiation process of the NEUPSL DSI 315

model, a set of first-order templates, combined with 316

a set of random variables creates a set of potentials 317

that define a loss used for learning and evaluation. 318

Let pw be the DD-VRNN’s predictive function of 319

latent states with hidden parameters w and input 320

utterances x. The output of this function, defined 321

as pw(x), will be the probability distribution rep- 322

resenting the likelihood of each latent class for a 323

given utterance (Equation 1). Given a first-order 324

symbolic rule ℓi(y,x) where the decision variable 325

y = pw(x) is the latent state prediction from the 326

neural model pw(x), we can instantiate a set of 327

deep hinge-loss potentials of the form: 328

ϕw,i(x) = max(0, ℓi(pw(x),x)) 329

330
For example, in reference to the example in 331

Equation 4, the decision variable y = pw(x) is 332

associated with the STATE(x, greet) random vari- 333

ables, leading to 334

4



ℓi(pw(x),x) =335

min{1.0, (1.0− FIRSTUTT(x)) + pw(x)}.336

337 With the instantiated model described above, the338

NEUPSL DSI inference objective is broken into339

a neural inference objective and a symbolic infer-340

ence objective. The neural inference objective is341

computed by evaluating the the DD-VRNN model342

predictions with respect to the standard loss func-343

tion for DSI. Given the deep hinge-loss potentials344

{ϕw,i}mi=1, the symbolic inference objective is the345

HL-MRF likelihood (Equation 5) evaluated at the346

decision variables y = pw(x):347

Pw(y|x) = exp
(
−

m∑
i=1

wi ∗ ϕw,i(x)
)

(7)348

Under the NEUPSL DSI, the decision variables349

y = pw(x) are implicitly controlled by neural net-350

work weights w, therefore the conventional MAP351

inference in symbolic learning for decision vari-352

ables y∗ = argminy P (y|x) can be done simply353

via neural weight minimization argminw Pw(y|x).354

As a result, NEUPSL DSI learning minimizes a355

constrained optimization objective:356

w∗ = argmin
w

[
LDD−V RNN + λ ∗ Lconstraint

]
357

where we define the constraint loss to be the log358

likelihood of the HL-MRF distribution (7):359

LConstraint = −logPw(y|x).360

4.2 Improving soft logic constraints for361

gradient learning362

The straightforward linear soft constraints used by363

the classic Lukasiewicz relaxation fails to pass back364

gradients with a magnitude and instead passes back365

a direction (e.g. ±1). Formally, the gradient of366

a potential ϕw(x) = max(0, ℓ(pw(x),x)) with re-367

spect to w is:368

∂

∂w
ϕw =

∂

∂w
ℓ(pw, x) · 1ϕw>0369

=
[ ∂

∂pw
ℓ(pw,x)

]
· ∂

∂w
pw · 1ϕw>0370

Here ℓ(pw(x),x) = a · pw(x) + b where a, b ∈371

R and pw(x) ∈ [0, 1], which leads to the gra-372

dient ∂
∂pw

ℓ(pw,x) = a. Observing the three373

Lukasiewicz operations described in Section 3.2 it374

is clear that a will always result in ±1, unless there375

are multiple pw(x) per constraint.376

As a result, this classic soft relaxation leads to a 377

naive, non-smooth gradient: 378

∂

∂w
ϕw =

[
a1ϕw>0

]
· ∂

∂w
pw (8) 379

that is mostly consists of the predictive probabil- 380

ity gradient ∂
∂wpw. It barely informs the model of 381

the degree to which pw satisfies the symbolic con- 382

straint ϕw (other than the non-smooth step function 383

1ϕw>0), thereby creating challenges in gradient- 384

based learning. 385

In this work, we propose a novel log-based relax- 386

ation that provides smoother and more informative 387

gradient information for the symbolic constraints: 388

ψw(x) = log
(
ϕw(x)

)
= log

(
max(0, ℓ(pw(x),x))

)
. 389

This seemingly simple transformation brings a non- 390

trivial change to the gradient behavior: 391

∂

∂w
ψw =

1

ϕw(x)
· ∂

∂w
ϕw =

[ a
ϕw

1ϕw>0

]
· ∂

∂w
pw, 392

As shown, the gradient from the symbolic con- 393

straint now contains a new term 1
ϕw(x) . It informs 394

the model of the degree to which the model predic- 395

tion satisfies the symbolic constraint ℓ, so that it 396

is no longer a discrete step function with respect 397

to ϕw. As a result, when the satisfaction of a rule 398

ϕw is non-negative but low (i.e., uncertain), the 399

gradient magnitude will be high, and when the 400

satisfaction of the rule is high, the gradient mag- 401

nitude will be low. In this way, the gradient of 402

the symbolic constraint terms ϕi now guides the 403

neural model to more efficiently focus on learning 404

the challenging examples that don’t strongly obey 405

the existing symbolic rules. This leads to a more 406

effective collaboration between the neural and the 407

symbolic components during model learning, and 408

empirically leads to improved generalization per- 409

formance (Section 5). 410

4.3 Stronger control of posterior collapse via 411

weighted bag of words 412

It is important to avoid a collapsed VRNN solution, 413

where the model puts all of its predictions in just a 414

handful of states. This problem has been referred 415

to as the vanishing latent variable problem (Zhao 416

et al., 2017). Zhao et al. (2017) address this by 417

introducing a bag-of-word (BOW) loss to VRNN 418

modeling which requires the decoder network to 419

predict the bag-of-words in response x. They sepa- 420

rate x into two variables: xo (word order) and xbow 421
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(no word order), with the assumption that they are422

conditionally independent given z and c:423

p(x, z|c) = p(xo|z, c)p(xbow|z, c)p(z|c).424

Let f be the output of a multilayer perception with425

parameters z, x, where f ∈ RV with V the vocab-426

ulary size. Then the BOW probability is defined as427

log p(xbow|z, c) = log
∏|x|

t=1

efxt∑V
j e

fj
, where |x| is428

the length of x and xt is the word index of the tth429

word in x.430

To impose stronger regularization against the431

posterior collapse, we make use of a tf-idf-based432

re-weighting scheme using the tf-idf weights com-433

puted from the training corpus. Intuitively, this434

reweighting scheme helps the model to focus on re-435

constructing the non-generic terms that are unique436

to each dialog states, which encourages the model437

to “pull" the sentences from different dialog states438

further apart in its representations space in order to439

better minimize the weighted BOW loss. In com-440

parison, a model under the uniformly-weighted441

BOW loss may be distracted by reconstructing the442

high-prevalence common terms (e.g., "what is",443

"can I", "when") that are shared by all dialog states,444

and thus less effective in preventing the collapse445

of the latent representations between the different446

states. As a result, we specify the tf-idf weighted447

BOW probability as:448

log p(xbow|z, c) = log

|x|∏
t=1

wxie
fxt∑V

j e
fj
,449

450 where wxt =
(1− α)

N
+ αw′

xt
, N is the corpus451

size, w′
xt

is the tf-idf word weight for the xt index,452

and α is a hyperparameter. In Section 5 we explore453

how this alteration affects the performance and454

observe if the PSL constraints still provide a boost.455

5 Experimental Evaluation456

In this section, we evaluate the performance of our457

proposed NEUPSL DSI method over two synthetic458

and one real-world task-orientated dialog corpus.459

We evaluate dialog structure induction performance460

and provide an extensive ablation analysis over all461

data settings to demonstrate the effectiveness of the462

NEUPSL DSI method. We explore the following463

questions: Q1) How does the model performance464

change in an unsupervised setting when soft con-465

straints are incorporated into the loss? Q2) When466

introducing few-shot labels to the DD-VRNN for467

training, do soft constraints provide a boost? Q3) 468

How does the alteration to the soft logic constraints 469

and the re-weighted bag-of-words loss effect per- 470

formance? 471

5.1 Dataset, Constraints, and Metrics 472

We explore these questions over three goal-oriented 473

dialog datasets: MultiWoZ 2.1 synthetic (Cam- 474

pagna et al., 2020), and two versions of the Schema 475

Guided Dialog (SGD) dataset SGD-synthetic 476

(where the utterance is generated by a template- 477

based dialog simulator) and SGD-real (which re- 478

places the machine-generated utterances of SGD- 479

synthetic with its human-paraphrased counterparts) 480

(Rastogi et al., 2020). For the SGD-real dataset, 481

we evaluate over three unique data settings, stan- 482

dard generalization (train and test over the same 483

domain), domain generalization (train and test over 484

different domains), and domain adaptation (model 485

train on (possibly labelled) data from training do- 486

main and unlabelled data from test domain, and 487

tests on the evaluation data from test domain.) Ex- 488

act details on how each synthetic dataset is created 489

can be found in the Appendix. 490

In the synthetic MultiWoZ setting, we introduce 491

a set of 11 structural domain agnostic dialog rules. 492

An example of one of these rules can be seen in 493

Equation 3. These rules are introduced to repre- 494

sent general facts about dialogs and show how a 495

few domain agnostic rules designed by a human 496

expert can drastically improve performance. For all 497

other settings we introduce a single token-based di- 498

alog rule. This constraint incorporates the idea that 499

states are likely to contain utterances with known 500

tokens, e.g., utterances containing ’hello’ are likely 501

to belong to the greet state. This rule was designed 502

to show the potential boost in performance a model 503

can achieve from a singular source of simple prior 504

information. It is important to note that these con- 505

straints, in terms of the optimization problem, are 506

not required to be satisfied. This means the model 507

can learn to harmonize conflicts between data and 508

the constraints during the learning process (e.g., in 509

semi-supervised settings). Appendix C contains 510

further details. 511

We explore an experimental evaluation in both 512

an unsupervised and highly constrained semi- 513

supervised setting. For both the overall results 514

and the ablation analysis, we use class balanced 515

accuracy and adjusted mutual information (AMI) 516

(see Appendix D.1 for detail). 517
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Method
SGD SGD Synthetic MultiWoZ

Standard Generalization Domain Generalization Domain Adaptation Standard Generalization Standard Generalization

DD-VRNN 0.448 ± 0.019 0.476 ± 0.029 0.514 ± 0.028 0.553 ± 0.017 0.451 ± 0.042
NEUPSL DSI 0.539 ± 0.048 0.541 ± 0.036 0.559 ± 0.045 0.811 ± 0.005 0.618 ± 0.028

Table 1: Test set performance on MultiWoZ Synthetic, SGD, and SGD Synthetic. All reported results are averaged
over 10 splits. Highlighted in bold are the highest performing methods.

Figure 3: Average AMI for varying amount of supervision for MultiWoZ, SGD Synthetic, and SGD Real; Standard
Generalization; Domain Generalization; Domain Adaptation.

Figure 4: Average performance for representation learning, few-shot learning, and structure induction performance
for the SGD dataset with varying amount of supervision.

5.2 Main results518

Table 1 summarizes the main results of the NE-519

UPSL DSI model compared to the DD-VRNN base-520

line, in a strictly unsupervised setting across all 5521

dialog structure induction datasets. In comparison522

to the purely data driven DD-VRNN method, the523

NEUPSL DSI method outperforms all settings by524

over 4.0% in AMI. To reiterate, this performance525

improvement does not require additional supervi-526

sion in the form of labels, but rather a few selected527

structural constraints. Additionally, comparing the528

NEUPSL DSI performance in the SGD standard529

generalization against the SGD domain generaliza-530

tion and SGD domain adaptation we see the AMI531

maintains its performance or improves. This trend532

indicates that the constraints do not hurt the gener-533

alizability of the neural model.534

To further understand how these constraints af-535

fect the model we examine three highly constrained536

few shot settings: 1 shot, proportional 1 shot, and537

3 shot. Both the 1 shot and 3 shot settings are ran-538

domly given one or three labels per class, while539

proportional 1 shot is given the same number of540

labels as the 1 shot setting but the distribution of 541

labels are proportional to the class size. Any class 542

below 1% will not be provided a label. Figure 3 543

summarizes the few shot results. In all settings 544

the introduction of labels improves performance. 545

This means the constraints do not overpower learn- 546

ing, rather it is a trade off between generalizing 547

to these priors and learning over the labels. In the 548

SGD settings, as the number of labels increase, the 549

pure data driven approach is able to perform as 550

well or better then NEUPSL DSI. This indicates 551

that the token constraint hits a limit and the small 552

decrease in performance is a notion of the bias- 553

variance trade-off. However, the in the MultiWoZ 554

setting, the domain agnostic dialog rules are able to 555

maintain a performance improvement showing the 556

simple constraints can boost a models performance 557

without additional labeled data. 558

5.3 Ablation Study 559

In this section we provide an extensive ablation 560

analysis over the SGD dataset where we exam- 561

ine when soft constraints provide a boost in per- 562
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Bag-of-Words
Weights

Constraint
Loss Embedding

Representation Learning Few-Shot Learning Structure Induction
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Uniform Linear Bert 0.588 ± 0.016 0.517 ± 0.021 0.539 ± 0.048
Uniform Linear GloVe 0.620 ± 0.023 0.428 ± 0.021 0.458 ± 0.024
Uniform Log Bert 0.600 ± 0.022 0.517 ± 0.023 0.520 ± 0.033
Uniform Log GloVe 0.650 ± 0.011 0.456 ± 0.014 0.532 ± 0.009

tf-idf Linear Bert 0.573 ± 0.022 0.521 ± 0.018 0.522 ± 0.024
tf-idf Linear GloVe 0.595 ± 0.014 0.379 ± 0.015 0.533 ± 0.048
tf-idf Log Bert 0.578 ± 0.021 0.510 ± 0.022 0.507 ± 0.060
tf-idf Log GloVe 0.653 ± 0.014 0.460 ± 0.009 0.534 ± 0.033

Table 2: Test set performance on SGD standard generalization data setting.

Bag-of-Words
Weights

Constraint
Loss Embedding

Representation Learning Few-Shot Learning Structure Induction
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Uniform Linear Bert 0.597 ± 0.018 0.528 ± 0.026 0.541 ± 0.036
Uniform Linear GloVe 0.597 ± 0.012 0.391 ± 0.018 0.441 ± 0.030
Uniform Log Bert 0.598 ± 0.032 0.512 ± 0.021 0.517 ± 0.036
Uniform Log GloVe 0.608 ± 0.014 0.438 ± 0.017 0.508 ± 0.006

tf-idf Linear Bert 0.536 ± 0.026 0.518 ± 0.034 0.511 ± 0.018
tf-idf Linear GloVe 0.579 ± 0.033 0.360 ± 0.016 0.486 ± 0.057
tf-idf Log Bert 0.573 ± 0.018 0.516 ± 0.035 0.501 ± 0.064
tf-idf Log GloVe 0.599 ± 0.025 0.430 ± 0.020 0.505 ± 0.005

Table 3: Test set performance on SGD domain generalization data setting.

Bag-of-Words
Weights

Constraint
Loss Embedding

Representation Learning Few-Shot Learning Structure Induction
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Uniform Linear Bert 0.554 ± 0.135 0.492 ± 0.124 0.538 ± 0.107
Uniform Linear GloVe 0.667 ± 0.022 0.547 ± 0.025 0.419 ± 0.073
Uniform Log Bert 0.593 ± 0.049 0.541 ± 0.023 0.559 ± 0.045
Uniform Log GloVe 0.638 ± 0.024 0.555 ± 0.022 0.511 ± 0.045

tf-idf Linear Bert 0.584 ± 0.035 0.546 ± 0.023 0.494 ± 0.033
tf-idf Linear GloVe 0.593 ± 0.039 0.529 ± 0.022 0.463 ± 0.041
tf-idf Log Bert 0.597 ± 0.034 0.554 ± 0.025 0.549 ± 0.038
tf-idf Log GloVe 0.583 ± 0.029 0.534 ± 0.027 0.451 ± 0.044

Table 4: Test set AMI and standard deviation on SGD domain adaptation data setting.

formance. An ablation analysis for MultiWoZ563

and SGD Synthetic is provided in the Appendix.564

Throughout this section we evaluate how each vari-565

ation of the model performs over three aspects: 1)566

representation learning, 2) few-shot learning, and567

3) structure induction. To evaluate the representa-568

tion learning that the NEUPSL DSI method learns,569

we take the hidden representation of the learned570

model and train a fully supervised linear classifier571

to predict dialog acts. After training this linear clas-572

sifier, we evaluate the averaged class balanced ac-573

curacy label performance. To evaluate the few-shot574

learning that the NEUPSL DSI method learns, we575

take the hidden representation of the learned model576

and train a semi-supervised linear classifier to pre-577

dict dialog acts. We average the class-balanced578

accuracy of three few-shot settings: 1 shot, 5 shot,579

and 10 shot. Finally, structure induction perfor-580

mance is evaluated using AMI.581

Table 2 (SGD standard), Table 3 (SGD domain582

generalization), and Table 4 (SGD domain adap-583

tation) summarize the results for the SGD data584

setting for the unsupervised learning. Each of the585

tables report the three aspects for evaluation over586

eight different model settings; uniform / tf-idf bag-587

of-words weights, linear / log constraint loss, and588

BERT (Devlin et al., 2018) / GloVe (Pennington589

et al., 2014) embedding. All reported results are 590

averaged over 10 splits. Highlighted in bold are the 591

highest performing methods, or methods within the 592

the standard deviation of the highest performing 593

methods. In the unsupervised setting no method 594

outshines all others completely. In general the 595

GloVe embedding outperforms Bert in the repre- 596

sentation learning, however, for structure induction 597

and few-shot learning Bert typically outperforms 598

its GloVe counterpart. 599

Figure 4 summarizes the few-shot training re- 600

sults for the SGD data settings when training with 601

1 shot, proportional 1 shot, and 3 shots. Interest- 602

ingly we see three methods generally on top in 603

performance: uniform-log-bert, tf-idf-linear-bert, 604

and uniform-linear-bert. There seems to be no clear 605

winner between uniform/tf-idf and linear/log, how- 606

ever, all three of these settings use BERT. 607

6 Conclusion 608

We study NEUPSL DSI, a principled learning 609

framework to guide the neural dialog structure 610

learning via symbolic knowledge. Thorough em- 611

pirical investigation illustrates the concrete benefit 612

of NEUPSL DSI learning on the representation 613

quality, few-shot learning, and out-of-domain gen- 614

eralization performance of the neural network. 615
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# Token Constraint

w1 : HASWORD(Utt, Class) → STATE(Utt, Class)

Figure 5: SGD Structure Induction Constraint Model

A Model Details793

In this section we provide additional details on794

the NEUPSL DSI models for the Multi-WoZ and795

SGD settings. Throughout these subsections, we796

cover the symbolic constraints and the hyperparam-797

eters used. All unspecified values for either the798

constraints or the DD-VRNN model were left at799

their default values. Code will be released upon800

acceptance and is under the Apache 2.0 license.801

A.1 SGD Constraints802

The NEUPSL DSI model for all SGD settings (syn-803

thetic, standard, domain generalization, domain804

adaptation) uses a single constraint. Figure 5 pro-805

vides an overview of the constraint which contains806

the following two predicates:807

1. STATE(Utt,Class)808

The STATE continuous valued predicate is809

the probability that an utterance, identified810

by the argument Utt, belongs to a dialog811

state, identified by the argument Class.812

For instance the utterance hello world ! for813

the greet dialog state would create a pred-814

icate with value between zero and one, i.e.815

STATE(hello world !, greet) = 0.7.816

2. HASWORD(Utt,Class)817

The HASWORD binary predicate indicates818

if an utterance, identified by the argu-819

ment Utt, contains a known token for820

a particular class, identified by the argu-821

ment Class. For instance if a known822

token associated with the greet class is823

hello, then the utterance hello world !824

would create a predicate with value one, i.e.825

HASWORD(hello world !, greet) = 1.826

This token constraint encodes the prior knowl-827

edge that utterances’ are likely to belong to dialog828

states when an utterance contains tokens that rep-829

resent that state. For example, if a known token830

associated with the greet class is hello, then the831

utterance hello world ! is likely to belong to the832

greet state. The major purpose of incorporating833

this constraint into the model is to show how even834

a small amount of prior knowledge can aid pre- 835

dictions. To get the set of tokens associated with 836

each state, we trained a supervised linear classifier 837

where the input is an utterance and label is the class. 838

After training, every token is then individually run 839

through the trained model in order to get a set of 840

logits over each class. These logits represent the 841

relative importance that each token has over every 842

class. Sparsity is introduced to this set of logits, 843

leaving only the top 0.1% of values and replacing 844

the others with zeros. This sparsity reduces the set 845

of 261,651 logits to 262 non-zero logits. 846

A.2 Multi-WoZ Constraints 847

The NEUPSL DSI model for the Multi-WoZ set- 848

ting uses a set of dialog constraints, which can 849

be broken into dialog start, dialog middle, and di- 850

alog end. Figure 6 provides an overview of the 851

constraints which contains the following 11 predi- 852

cates: 853

1. STATE(Utt,Class) 854

The STATE continuous valued predicate is 855

the probability that an utterance, identified 856

by the argument Utt, belongs to a dialog 857

state, identified by the argument Class. 858

For instance the utterance hello world ! for 859

the greet dialog state would create a pred- 860

icate with value between zero and one, i.e. 861

STATE(hello world !, greet) = 0.7. 862

2. FIRSTUTT(Utt) 863

The FIRSTUTT binary predicate indicates if 864

an utterance, identified by the argument Utt, 865

is the first utterance in a dialog. 866

3. LASTUTT(Utt) 867

The LASTUTT binary predicate indicates if 868

an utterance, identified by the argument Utt, 869

is the last utterance in a dialog. 870

4. PREVUTT(Utt) 871

The PREVUTT binary predicate indicates if an 872

utterance, identified by the argument Utt2, 873

is the previous utterance in a dialog of another 874

utterance, identified by the argument U1. 875
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# Dialog Start

w1 : ¬FIRSTUTT(Utt) → ¬STATE(Utt, greet)

w2 : FIRSTUTT(Utt) ∧ HASGREETWORD(Utt) → STATE(Utt, greet)

w3 : FIRSTUTT(Utt) ∧ ¬HASGREETWORD(Utt) → STATE(Utt, init_request)

# Dialog Middle

w4 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, greet) → STATE(Utt1, init_request)

w5 : PREVUTT(Utt1, Utt2) ∧ ¬STATE(Utt2, greet) → ¬STATE(Utt1, init_request)

w6 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, init_request) → STATE(Utt1, second_request)

w7 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second_request) ∧ HASINFOQUESTIONWORD(Utt1) → STATE(Utt1, info_question)

w8 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second_request) ∧ HASSLOTQUESTIONWORD(Utt1) → STATE(Utt1, slot_question)

w9 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, end) ∧ HASCANCELWORD(Utt1) → STATE(Utt1, cancel)

# Dialog End

w10 : LASTUTT(Utt) ∧ HASENDWORD(Utt) → STATE(Utt, end)

w11 : LASTUTT(Utt) ∧ HASACCEPTWORD(Utt) → STATE(Utt, accept)

w12 : LASTUTT(Utt) ∧ HASINSISTWORD(Utt) → STATE(Utt, insist)

Figure 6: MultiWoZ Structure Induction Constraint Model

5. HASGREETWORD(Utt)876

The HASGREETWORD binary predicate indi-877

cates if an utterance, identified by the argu-878

ment Utt, contains a known token for the879

greet class. The list of known greet words are880

[′hello′,′ hi′].881

6. HASINFOQUESTIONWORD(Utt)882

The HASINFOQUESTIONWORD binary pred-883

icate indicates if an utterance, identified by884

the argument Utt, contains a known token885

for the info question class. The list of known886

info question words are [′address′,′ phone′].887

7. HASSLOTQUESTIONWORD(Utt)888

The HASSLOTQUESTIONWORD binary pred-889

icate indicates if an utterance, identified by890

the argument Utt, contains a known token891

for the slot question class. The list of known892

slot question words are [′what′,′ ?′].893

8. HASINSISTWORD(Utt)894

The HASINSISTWORD binary predicate indi-895

cates if an utterance, identified by the argu-896

ment Utt, contains a known token for the897

insist class. The list of known insist words are898

[′sure′,′ no′].899

9. HASCANCELWORD(Utt)900

The HASCANCELWORD binary predicate in-901

dicates if an utterance, identified by the ar-902

gument Utt, contains a known token for the903

cancel class. The list of known cancel words904

are [′no′].905

10. HASACCEPTWORD(Utt) 906

The HASACCEPTWORD binary predicate in- 907

dicates if an utterance, identified by the ar- 908

gument Utt, contains a known token for the 909

accept class. The list of known accept words 910

are [′yes′,′ great′]. 911

11. HASENDWORD(Utt) 912

The HASENDWORD binary predicate indi- 913

cates if an utterance, identified by the argu- 914

ment Utt, contains a known token for the 915

end class. The list of known end words are 916

[′thank′,′ thanks′]. 917

The dialog start constraints take advantage of 918

the inherent structure built into the beginning of 919

task-oriented dialogs. In the same order as the 920

dialog start rules in Figure 6: 1) If the first turn 921

utterance does not contain a known greet word, 922

then it does not belong to the greet state. 2) If the 923

first turn utterance contains a known greet word, 924

then it belong to the greet state. 3) If the first turn 925

utterance does not contain a known greet word, 926

then it belongs to the initial request state. 927

The dialog middle constraints exploit the tempo- 928

ral dependencies within the middle of a dialog. In 929

the same order as the dialog middle rules in Figure 930

6: 1) If the previous utterance belongs to the greet 931

state, then the current utterance belongs to the 932

initial request state. 2) If the previous utterance 933

does not belong to the greet state, then the current 934

utterance does not belong to the initial request 935

state. 3) If the previous utterance belongs to the 936

initial request state, then the current utterance be- 937
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longs to the second request state. 4) If the previ-938

ous utterance belongs to the second request state939

and it has a known info question token, then the940

current utterance belongs to the info question941

state. 5) If the previous utterance belongs to the942

second request state and it has a known slot ques-943

tion token, then the current utterance belongs to the944

slot question state. 4) If the previous utterance945

belongs to the end state and it has a known can-946

cel token, then the current utterance belongs to the947

cancel state.948

The dialog end constraints take advantage of the949

inherent structure built into the end of task-oriented950

dialogs. In the same order as the dialog end rules951

in Figure 6: 1) If the last turn utterance contains a952

known end word, then it belongs to the end state.953

2) If the last turn utterance contains a known accept954

word, then it belong to the accept state. 3) If the955

last turn utterance contains a known insist word,956

then it belong to the insist state.957

B Additional Model Details958

B.1 Symbolic-rule Normalization in the959

Multi-class Setting960

In the multi-class setting (e.g., multiple latent961

states), some soft logic operation on the model962

probability pw will lead a probability that no longer963

normalize to 1. For example, the negation op-964

eration on the probability vector pw will lead to965

!pw = 1 − pw; then in the multi-class setting, the966

norm of !pw is
∑|C|

i (1−pi) = |C|−1 > 1, where967

|C| is the number of classes. To address the above968

concern, we re-normalize after every soft logic op-969

eration:970

fw(y,x) = fw(y,x)/||fw(y,x)||,971

where fw(y,x) is the output of a soft logical oper-972

ation.973

B.2 Model Hyperparameters974

The DD-VRNN uses an LSTM (Hochreiter and975

Schmidhuber, 1997) with 200-400 units for the976

RNNs, and fully-connected highly flexible feature977

extraction functions with a dropout of 0.4 for the978

input x, the latent vector z, the prior, the encoder979

and the decoder. The input to the DD-VRNN is980

the utterances with a 300-dimension word embed-981

ding created using a GloVe embedding (Pennington982

et al., 2014) and a Bert embedding (Devlin et al.,983

2019). The maximum utterance word length was984

set to 40, the maximum length of a dialog was985

set to 10, and the tunable weight, γ (Equation 2), 986

was set to 0.1. The total number of parameters are 987

26,033,659 for the model with GloVe embedding 988

and 135,368,227 with Bert embedding. 989

The experiments are run in Google TPU V4, and 990

the total GPU hours for all finetuning are 326 GPU 991

hours. 992

C Datasets 993

In this section we provide additional information 994

on the SGD, SGD synthetic, and MultiWoZ 2.1 995

synthetic datasets. 996

C.1 SGD 997

The Schema-Guided Dialog (SGD) (Rastogi et al., 998

2020) is a task-oriented conversation dataset involv- 999

ing interactions with services and APIs covering 1000

20 domains. There are overlapping functionalities 1001

over many of different APIs, but their interfaces 1002

are different. One conversion may involve multiple 1003

domains. Train set contains conversions from 16 1004

domains, and 4 other domains are only present in 1005

dev or test sets. 1006

In the experiment, we split the test set based on 1007

whether the example is from the 4 domains not 1008

present in the train set or not. This gives us 34,308 1009

in-domain 5,441 out-of-domain test examples. To 1010

evaluate the generalization of the model, we eval- 1011

uate the model performance on both test sets. In 1012

specific, we establish three different evaluation pro- 1013

tocols. 1014

• SGD Standard Generalization We train the 1015

model using SGD train set, evaluate on the 1016

in-domain test set. 1017

• SGD Domain Generalization We train the 1018

model using SGD train set, evaluate on the 1019

out-of-domain test set. 1020

• SGD Domain Adaptation We train the model 1021

using SGD train set and label-wiped in- 1022

domain and out-of-domain test sets, evaluate 1023

on out-of-domain test set. 1024

C.2 SGD Synthetic 1025

Using the template-based generator from the SGD 1026

developers Kale and Rastogi (2020), we generate 1027

10,800 synthetic dialogs using the same APIs and 1028

dialog states as the official SGD data. We split 1029

the examples with 75% train and 25% test. The 1030

schema-guided generator code is under Apache 2.0 1031
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license: https://github.com/google-research/task-1032

oriented-dialogue/blob/main/LICENSE.1033

C.3 MulitWoZ 2.1 Synthetic1034

MultiWoZ 2.1 synthetic (Campagna et al., 2020)1035

is a multi-domain goal-oriented dataset cover-1036

ing five domains (Attraction, Hotel, Restau-1037

rant, Taxi, and Train) and nine dialog acts1038

(greet, initial request, second request, insist,1039

info question, slot question, accept, cancel,1040

and end). Following Campagna et al. (2020),1041

we generate 104 synthetic dialogs from a known1042

ground-truth dialog structure. Figure 7 provides1043

an overview of the ground truth dialog structure,1044

which is based on the original MultiWoz 2.1 dataset1045

(Eric et al., 2019), used through the generative1046

process. These 104 synthetic dialogs are ran-1047

domly sampled without replacement to create 101048

splits with 80% train, 10% test, and 10% vali-1049

dation. The MultiWoZ 2.1 synthetic code is un-1050

der the MIT License: https://github.com/stanford-1051

oval/zero-shot-multiwoz-acl2020. The MultiWoZ1052

2.1 code uses genie which is under the MIT1053

License: https://github.com/stanford-oval/genie-1054

k8s/blob/master/LICENSE.1055

D Extended Experimental Evaluation1056

In this section we provide additional experimental1057

results on the NEUPSL DSI models for all settings.1058

We split the extended evaluation into additional1059

main results, ablation results, and additional exper-1060

iments. Details describing changes to the models1061

are provided in each subsection.1062

D.1 Evaluation Metrics1063

Adjusted Mutual Information (AMI) - AMI1064

evaluates dialog structure prediction by evaluat-1065

ing the correctness of the dialog state assignments.1066

Let U∗ = {U∗
1 , . . . , U

∗
C∗} be the ground-truth as-1067

signment of dialog states for all utterances in the1068

corpus, and U = {U1, . . . , UC} be the predicted1069

assignment of dialog states based on the learned1070

dialog structure model. U∗ and U are not directly1071

comparable because they draw from different base1072

sets of states (U∗ from the ground truth set of states1073

and U from the set of states induced by the DD-1074

VRNN), that may even have different cardinalities.1075

We address this problem by using Adjusted Mutual1076

Information (AMI), a metric originally developed1077

to compare unsupervised clustering algorithms. In-1078

tuitively, AMI treats each assignment as a prob-1079

ability distribution over states, and uses Mutual 1080

Information to measure their similarity, adjusting 1081

for the fact that larger clusters tend to have higher 1082

MI. AMI is defined as follows: 1083

AMI(U,U∗) = 1084

MI(U,U∗)− E(MI(U,U∗))

Avg(H(U), H(U∗))− E(MI(U,U∗))
1085

where MI(U,U∗) is the mutual information 1086

score, E(MI(U,U∗)) is the expected mutual 1087

information over all possible assignments, and 1088

Avg(H(U), H(U∗)) is the average entropy of the 1089

two clusters (Vinh et al., 2010). 1090

Purity . Let U∗ = {U∗
1 , . . . , U

∗
C∗} be the 1091

ground-truth assignment of dialog states for all 1092

utterances in the corpus, and U = {U1, . . . , UC} 1093

be the predicted assignment of dialog states based 1094

on the learned dialog structure model. Each cluster 1095

is assigned to the class which is most frequent in 1096

the cluster. This assignment then calculates an ac- 1097

curacy summing together the total correct of each 1098

cluster and dividing by the total number of clusters. 1099

Purity is defined as follows: 1100

Purity(U,U∗) =
1

N

K∑
k=1

Count(U,U∗, Ak) 1101

whereK is the number of unique clusters predicted, 1102

N is the total number of predicted utterances,Ak is 1103

the most frequent underlying ground truth in cluster 1104

k, and Count(U,U∗, Ak) is the total number of 1105

correctly labeled utterances within that assigned 1106

cluster. 1107

D.2 Main Results 1108

In this section we provide addition experimental 1109

results for the structure induction performance. To 1110

further understand how accurate the generated di- 1111

alog structure is, we evaluate the NEUPSL DSI 1112

model and the DD-VRNN baselines on two addi- 1113

tional evaluation metrics, class-balanced accuracy 1114

and purity. 1115

Table 5 summarizes extended evalution of the 1116

main results for the NEUPSL DSI model and DD- 1117

VRNN baseline in a strictly unsupervised setting 1118

across all 5 dialog structure induction dataset. Note, 1119

these values correlate with the reported results in 1120

Table 1, i.e., these are not the best performing re- 1121

sults but are other metrics for the same runs. The 1122

extended results follow a similar trend to the AMI 1123
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Figure 7: Ground truth dialog structure used to generate the MultiWoZ 2.1 dataset. Transition graph shows
transitions over 0.05%.

Metric Method
SGD

SGD Synthetic MultiWoZ
Standard Domain Generalization Domain Adaptation

Purity
DD-VRNN 0.341 ± 0.019 0.425 ± 0.016 0.443 ± 0.015 0.447 ± 0.024 0.701 ± 0.042

NEUPSL DSI 0.463 ± 0.039 0.468 ± 0.039 0.425 ± 0.056 0.810 ± 0.005 0.762 ± 0.015

Class Balanced
Accuracy

DD-VRNN 0.016 ± 0.012 0.018 ± 0.016 0.009 ± 0.009 0.020 ± 0.015 0.104 ± 0.076
NEUPSL DSI 0.125 ± 0.018 0.159 ± 0.021 0.146 ± 0.036 0.474 ± 0.005 0.625 ± 0.008

Table 5: Test set performance on MultiWoZ Synthetic, SGD, and SGD Synthetic. These values correlate with the
results reported in Table 1.

results. Surprisingly, we get over 60% class bal-1124

anced accuracy in the MultiWoZ setting. This in-1125

dicates that designing a set of domain agnostic1126

common-sense structural rules can provide massive1127

improvements to the models trained over purely to-1128

ken level prior information.1129

Additionally, we examine three highly con-1130

strained few shot settings: 1 shot, proportional 11131

shot, and 3 shot. Both the 1 shot and 3 shot set-1132

tings are randomly given one or three labels per1133

class, while proportional 1 shot is given the same1134

number of labels as the 1 shot setting but the dis-1135

tribution of labels are proportional to the class size.1136

Anything below 1% will not be provided a label.1137

Figure 8 summarizes the few shot results. Similar1138

to the AMI, in all settings the introduction of labels1139

improves performance. In the SGD real setting,1140

we are seeing comparable performance, while the1141

SGD synthetic and MulitWoZ settings see drastic1142

improvements.1143

D.3 Ablation Analysis1144

In this section we provide an extensive ablation1145

analysis over the SGD synthetic and MultiWoZ1146

datasets, in which we examine when the constraints1147

provide a boost in performance. Throughout this1148

section, we evaluate how each variation performs1149

over three aspects: 1) representation learning, 2)1150

few-shot learning, and 3)structure induction. To1151

evaluate the representation learning that the NE-1152

UPSL DSI method learns, we take the hidden 1153

representation of the learned model and train a 1154

fully supervised linear classifier with this repre- 1155

sentation. After training this linear classifier, we 1156

evaluate the averaged class balanced accuracy label 1157

performance. To evaluate the few-shot learning that 1158

the NEUPSL DSI method learns, we take the hid- 1159

den representation of the learned model and train 1160

a semi-supervised linear classifier with this repre- 1161

sentation. We average the class-balanced accuracy 1162

of three few-shot settings: 1 shot, 5 shot, and 10 1163

shot. Finally, to evaluate the structure induction 1164

performance, we evaluate the model’s AMI. 1165

Table 6 summarizes the unsupervised results for 1166

the MulitWoZ data setting. The results are reported 1167

over the three aspects for sixteen different model 1168

settings; uniform/tf-idf bag-of-words weights, lin- 1169

ear/log constraint loss, standard/normalized con- 1170

straints, and Bert/GloVe embedding. All reported 1171

results are averaged over 10 splits. Highlighted in 1172

bold are the highest performing methods, or meth- 1173

ods within the standard deviation of the highest 1174

performing method. 1175

Table 7 summarizes the unsupervised results for 1176

the SGD synthetic data setting. The results are 1177

reported over the three aspects for four different 1178

model settings; uniform/supervised bag-of-words 1179

weights, and linear/log constraint loss. Supervised 1180

bag-of-words weights use the weights of a fully 1181

trained linear classifier, as described in Appendix 1182
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Figure 8: Average Purity and Class Balanced Accuracy on MultiWoZ Synthetic, SGD, and SGD Synthetic for
varying amount of supervision. These values correlate with the results reported in Figure 3.

Bag-of-Words
Weights

Constraint
Loss

Constraints
Normalized Embedding

Representation Learning Few-Shot Learning Structure Induction
( Class Balanced Acc. ) ( Class Balanced Acc. ) ( AMI )

Uniform Linear Standard Bert 0.941 ± 0.010 0.667 ± 0.030 0.529 ± 0.040
Uniform Linear Standard GloVe 0.919 ± 0.015 0.672 ± 0.060 0.589 ± 0.050
Uniform Linear Normalized Bert 0.949 ± 0.008 0.645 ± 0.028 0.550 ± 0.018
Uniform Linear Normalized GloVe 0.934 ± 0.009 0.748 ± 0.057 0.516 ± 0.010
Uniform Log Standard Bert 0.944 ± 0.005 0.624 ± 0.039 0.586 ± 0.038
Uniform Log Standard GloVe 0.906 ± 0.008 0.711 ± 0.050 0.571 ± 0.011
Uniform Log Normalized Bert 0.944 ± 0.006 0.695 ± 0.027 0.505 ± 0.029
Uniform Log Normalized GloVe 0.918 ± 0.023 0.680 ± 0.057 0.612 ± 0.081

tf-idf Linear Standard Bert 0.943 ± 0.010 0.675 ± 0.035 0.574 ± 0.064
tf-idf Linear Standard GloVe 0.881 ± 0.016 0.744 ± 0.052 0.607 ± 0.061
tf-idf Linear Normalized Bert 0.947 ± 0.021 0.705 ± 0.021 0.511 ± 0.027
tf-idf Linear Normalized GloVe 0.925 ± 0.013 0.721 ± 0.051 0.544 ± 0.039
tf-idf Log Standard Bert 0.943 ± 0.007 0.705 ± 0.030 0.587 ± 0.027
tf-idf Log Standard GloVe 0.921 ± 0.016 0.747 ± 0.042 0.604 ± 0.012
tf-idf Log Normalized Bert 0.943 ± 0.005 0.689 ± 0.038 0.618 ± 0.028
tf-idf Log Normalized GloVe 0.913 ± 0.015 0.762 ± 0.070 0.545 ± 0.053

Table 6: Test set performance on MultiWoZ Synthetic data setting.

A.1, and the embedding used is GloVe. All reported1183

results are averaged over 10 splits. Highlighted in1184

bold are the highest performing methods, or meth-1185

ods within the standard deviation of the highest1186

performing method.1187

Figure 9 and Figure 10 summarize the few-shot1188

training results for the MultiWoZ and SGD syn-1189

thetic data settings when training with 1 shot, pro-1190

portional 1 shot, and 3 shots.1191

D.4 Additional Experiments1192

Throughout this section, we provides additional1193

dialog structure experiments to further understand1194

when the injection of common-sense knowledge as1195

structural constraints is beneficial. The additional1196

experiments are broken into the following: 1) A1197

study of the sparsity introduced into the tokens in1198

the SGD synthetic setting, and 2) An exploration1199

of an alternative principled soft logic formulation1200

in the MultiWoZ setting. 1201

D.4.1 Sparsity 1202

In this experiment we explore varying the spar- 1203

sity that was introduced to the token weights, as 1204

described in Appendix A.1. Table 8 shows the 1205

performance over the three aspects: 1) representa- 1206

tion learning, 2) few-shot learning, and 3) struc- 1207

ture induction. When the percent of non-zero 1208

word weights is 100.00%, this implies the model 1209

is trained on full supervision, while the non-zero 1210

word weights at 0.00% represents the unsupervised 1211

DD-VRNN results. Surprisingly, we find that in 1212

all data settings we see substantial improvement to 1213

all aspects across the board. Even when the non- 1214

zero word weight percentage is 0.02%, resulting 1215

in 54 non-zero weights, we still see approximately 1216

a 20% improvement to the AMI. Note, 54 non- 1217

zero weights is equivalent to about two identifiable 1218
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Bag-of-Words
Weights

Constraint
Loss

Representation Learning Few-Shot Learning Structure Induction
( Class Balanced Acc. ) ( Class Balanced Acc. ) ( AMI )

Uniform Linear 0.983 ± 0.003 0.717 ± 0.021 0.754 ± 0.032
Uniform Log 0.992 ± 0.003 0.758 ± 0.015 0.811 ± 0.005

Supervised Linear 0.988 ± 0.004 0.714 ± 0.021 0.746 ± 0.035
Supervised Log 0.993 ± 0.004 0.741 ± 0.019 0.820 ± 0.005

Table 7: Test set performance on SGD Synthetic data setting.

Figure 9: Average performance for Representation Learning, Few-Shot, and Structure Induction for the MulitWoZ
dataset with varying amount of supervision.

Non-Zero Word Weights Representation Learning Few-Shot Learning Structure Induction
Percentage Count ( Class Balanced Acc. ) ( Class Balanced Acc. ) ( AMI )

100.00% 261651 0.9997 ± 0.0006 0.9527 ± 0.0083 0.9999 ± 0.0001
3.25% 8499 0.9995 ± 0.0005 0.9636 ± 0.0028 0.9962 ± 0.0006
0.92% 2418 0.9995 ± 0.0002 0.9475 ± 0.0074 0.9616 ± 0.0010
0.42% 1111 0.9955 ± 0.0010 0.9213 ± 0.0053 0.9450 ± 0.0020
0.19% 504 0.9954 ± 0.0016 0.8591 ± 0.0082 0.7954 ± 0.0018
0.10% 262 0.9904 ± 0.0025 0.8241 ± 0.0243 0.8071 ± 0.0056
0.02% 54 0.9848 ± 0.0019 0.8193 ± 0.0111 0.6607 ± 0.0014
0.00% 0 0.9443 ± 0.0107 0.7283 ± 0.0127 0.5527 ± 0.0171

Table 8: Test set performance on the SGD Synthetic data setting over varying sparsity in the token weights.

Soft Logic
Bag-of-Words

Weights
Constraint

Loss
Representation Learning Few-Shot Learning Structure Induction

( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Lukasiewicz

Uniform Linear 0.9188 ± 0.0150 0.6320 ± 0.0290 0.5892 ± 0.0496
Uniform Log 0.9060 ± 0.0083 0.6574 ± 0.0184 0.5707 ± 0.0105

tf-idf Linear 0.8807 ± 0.0164 0.6761 ± 0.0289 0.6066 ± 0.0605
tf-idf Log 0.9210 ± 0.0160 0.6579 ± 0.0204 0.6037 ± 0.0120

Product Real

Uniform Linear 0.9151 ± 0.0566 0.6194 ± 0.0529 0.3928 ± 0.1881
Uniform Log 0.8807 ± 0.0502 0.6174 ± 0.0525 0.4579 ± 0.1897

tf-idf Linear 0.9176 ± 0.0369 0.6741 ± 0.0411 0.4392 ± 0.1903
tf-idf Log 0.9232 ± 0.0147 0.6479 ± 0.0367 0.5202 ± 0.0455

Table 9: Test set AMI and standard deviation on MulitWoZ data setting on two soft logic relaxations.

tokens per class.1219

D.4.2 Alternative Soft Logic Approximation1220

In this experiment we explore an alternative soft1221

logic formulation, Product Real logic, which is1222

used in another principled NeSy framework called1223

Logic Tensor Networks (Badreddine et al., 2022). 1224

Similar to the Lukasiewicz logic, Product Real logic 1225

approximates logical clauses with linear inequali- 1226
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Figure 10: Average performance for Representation Learning, Few-Shot, and Structure Induction for the SGD
synthetic dataset with varying amount of supervision.

Figure 11: Average performance for Representation Learning, Few-Shot, and Structure Induction for the MultiWoZ
dataset with varying amount of supervision on two soft logic relaxations.

ties:1227

A ∧B = A ∗B1228

A ∨B = A+B −A ∗B1229

¬A = 1.0−A1230

where A and B are either ground atoms or logical1231

expressions over atoms. In either case, they have1232

values between [0,1].1233

Table 9 summarizes the unsupervised results1234

for the MultiWoZ data setting over both the Prod-1235

uct Real and Lukasiewicz logics. The results are1236

reported over the three aspects for four different1237

model settings; uniform/supervised bag-of-words1238

weights, and linear/log constraint loss. All reported1239

results are averaged over 10 splits using a GloVe1240

embedding. Surprisingly, in the Structure Induc-1241

tion aspect, Lukasiewicz logic out performs Prod-1242

uct Real logic by over 15% in all settings. This1243

result is interesting, as the performance for the rep-1244

resentation learning and few-shot learning aspects1245

are roughly equivalent. As both of these aspects1246

use the learned hidden representation, these values1247

suggest that the Lukasiewicz results are aiding the1248

dialog structure induction task without overfitting1249

the hidden representation.1250

Figure 11 summarizes the few-shot training re-1251

sults for the MultiWoZ synthetic data settings when1252

training with 1 shot, proportional 1 shot, and 31253

shots. Noticeably, with the introduction of labels,1254

the Product Real logic closes the gap in all three1255

aspects. However, when observing the largest semi- 1256

supervised setting, Lukasiewicz logic still has an 1257

edge. 1258
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