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ABSTRACT

We study model-based offline Reinforcement Learning with general function ap-
proximation without a full coverage assumption on the offline data distribution.
We present an algorithm named Constrained Pessimistic Policy Optimization
(CPPO) which leverages a general function class and uses a constraint over the
model class to encode pessimism. Under the assumption that the ground truth
model belongs to our function class (i.e., realizability in the function class), CPPO
has a PAC guarantee with offline data only providing partial coverage, i.e., it can
learn a policy that competes against any policy that is covered by the offline data.
We then demonstrate the flexibility of CPPO: it can be seamlessly applied to many
specialized Markov Decision Processes where additional structural assumptions
further refine the concept of partial coverage. Two notable examples are: (1) low-
rank MDP with representation learning where the partial coverage condition is
defined using a relative condition number measured by the unknown ground truth
feature representation; (2) factored MDP where the partial coverage condition is
defined using density ratios associated with individual factors.

1 INTRODUCTION

Offline Reinforcement Learning (RL) is one of the important areas of RL where the learner is pre-
sented with a static dataset consisting of transition-related information (state, action, reward, and
next state) collected by some behavior policy, and needs to learn purely from the offline data without
any future online interaction with the environment. Offline RL is used in a number of applications
where online random experimentation is costly or dangerous such as health care (Kosorok & Laber,
2019), digital marketing (Chen et al., 2019) and robotics (Levine et al., 2020).

The performance guarantees of offline RL often rely on two quantities: the coverage of the offline
data and the property of the function approximation used in the algorithms. For instance, for the
classic Fitted-Q-iteration (FQI) algorithm (Ernst et al., 2005; Munos & Szepesvári, 2008), it requires
(a) full coverage in the offline data, i.e., max(s,a) d

π(s, a)/ρ(s, a) < ∞ for any stochastic policies
π including history-dependent non-Markovian policies, where dπ(s, a) is a state-action occupancy
distribution of a policy π and ρ(s, a) is an offline distribution, (b) realizability in a Q function
class, i.e., the optimal Q function belongs to the function class, and (c) Bellman completeness, i.e.,
applying the Bellman operator on any function in the function class results in a new function that
also belongs to the function class (see the first row in Table 1). Among these three assumptions,
the full coverage and the Bellman completeness are particularly strong. The full coverage means
that the behavior policy needs to be exploratory enough, although figuring out an exploratory policy
itself is an extremely hard problem for large-scale MDPs. The Bellman completeness assumption
does not have a monotonic property, i.e., even starting with a function class that originally permits
Bellman completeness, slightly increasing the capacity of the function class could result in a new
class that does not have Bellman completeness anymore. Thus, we aim to relax the assumptions on
the offline data and the function class. Particularly, we are interested in the following question:

Given a realizable function class and an offline distribution that only provides
partial coverage, can we learn a policy that is able to compete with any policy that
is covered by the offline distribution?

We study this question from a model-based learning perspective and provide an affirmative answer
to the question. More specifically, different from FQI, we start with a realizable model class, i.e.,
the ground truth transition falls into the model class. We further abandon the strong full coverage
assumption, and instead, assume partial coverage which means the offline data distribution only
covers a state-action distribution of some high-quality comparator policy π∗ (π∗ is not necessarily
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Methods Type Coverage Additional Structures
FQI (Munos & Szepesvári, 2008) F Full: maxs,a

dπ(s,a)
ρ(s,a) <∞,∀π Bellman complete

Minimax Way (Uehara et al., 2020) F Full: maxs,a
dπ(s,a)
ρ(s,a) <∞,∀π Realizability in density ratio

Duan et al. (2020) F Full: Es,a∼ρφ(s, a)φ(s, a)> is PSD Linear Bellman complete
Xie & Jiang (2020) F Full: maxs,a,s′

P∗(s′|s,a)
ρ(s′) <∞ None

Liu et al. (2020) F Partial† : maxs,a
dπ
∗

(s,a)
ρ(s,a) <∞ Bellman / Policy class complete

Rashidinejad et al. (2021) F Partial: maxs,a
dπ
∗

(s,a)
ρ(s,a) <∞ Tabular MDP

Jin et al. (2020b); Zhang et al. (2021b) F Partial††: maxx
x>E

s,a∼dπ∗ φ(s,a)(φ(s,a))>x

x>Es,a∼ρφ(s,a)(φ(s,a))>x
<∞ Linear MDP (Jin et al., 2020a)

Xie et al. (2021) F Partial: maxf
‖f−T f‖2

dπ
∗

‖f−T f‖2µ
<∞ Bellman complete

Zanette et al. (2021) F Partial : maxx
x>E

s,a∼dπ∗ φ(s,a)(φ(s,a))>x

x>Es,a∼ρφ(s,a)(φ(s,a))>x
<∞ Linear Bellman complete

Batch (Ross & Bagnell, 2012) B Full: maxs,a
dπ(s,a)
ρ(s,a) <∞,∀π None

Milo (Chang et al., 2021) B Partial: maxx
x>E

s,a∼dπ∗ φ(s,a)(φ(s,a))>x

x>Es,a∼ρφ(s,a)(φ(s,a))>x
<∞ KNR / GP

Partial†††: maxs,a
dπ
∗

(s,a)
ρ(s,a) <∞ None

Partial: maxx
x>E

s,a∼dπ∗ φ(s,a)(φ(s,a))>x

x>Es,a∼ρφ(s,a)(φ(s,a))>x
<∞ Linear MDP /KNR / GP

CPPO (Ours) B
Partial: maxx

x>E
s,a∼dπ∗ φ

∗(s,a)(φ∗(s,a))>x

x>Es,a∼ρφ∗(s,a)(φ∗(s,a))>x
<∞ Low-rank MDP (unknown φ∗)

Table 1: Comparison among existing works regarding their type, coverage, and additional structural
assumptions on the function class or MDPs. Type F means model-free and type B means model-
based. Partial coverage means 2that the offline distribution ρ covers a state-action distribution of
a comparator policy π∗. † means it assumes an accurate density estimator for ρ(s, a). †† means
although the analysis in Jin et al. (2020a) is done under the full coverage for linear MDPs, based on
the argument (Zhang et al., 2021b), we can show the algorithm has the PAC guarantee under partial
coverage in terms of the relative condition number for linear MDPs. † † † means that we can refine
it to a more adaptive quantity using the model class (i.e., Definition 1). All the methods in the table
require realizability in the function class.

the optimal policy, and π∗ could be non-Markovian), i.e., maxs,a d
π∗(s, a)/ρ(s, a) <∞, We design

an algorithm — Constrained Pessimistic Policy Optimization (CPPO), which can learn a policy that
is as good as any comparator policy π∗ that is covered by the offline data. The fact that CPPO can
learn to compete against history-dependent policies is meaningful in offline RL when the offline
data does not cover the optimal policy.

While one could assume density ratio based concentrability coefficient (maxs,a d
π∗(s, a)/ρ(s, a))

to be under control for small size MDPs, in large-scale MDPs (e.g. continuous state space), the den-
sity ratio could quickly become an extremely large quantity which makes the performance guarantee
vacuous. When applying CPPO to MDPs with additional structural assumptions, we can seamlessly
refine the density ratio based concentrability coefficient to more natural and tighter quantities. No-
tably, we consider the offline representation learning setting where the underlying MDPs permit a
low-rank structure (unlikely linear MDPs (Jin et al., 2020a; Yang & Wang, 2020), we do not assume
the ground truth state-action feature representation φ? is known, and instead we need to learn φ?)
and we show that we can refine the density ratio to a relative condition number that is defined us-
ing the unknown true state-action feature representation φ?. Intuitively this means that as long as
there exists a high-quality comparator policy that only visits the subspace (defined using the true
representation φ) that is covered by the offline data, CPPO can compete against such a policy, even
without knowing the true φ?. Such bounded relative condition number assumption is much weaker
than the bounded density ratio assumption.3 While the concept of relative condition number was
originally introduced in the online RL setting (e.g., Agarwal et al. (2020c;a) with a known linear
feature φ), and later was introduced in offline RL (Zhang et al. (2021b); Chang et al. (2021)), these
prior works all rely on the fact that the feature representation φ is known to the learner a priori
(see Table 1 for the comparison). Another interesting example is factored MDPs (Kearns & Koller,
1999) where we show CPPO refines the density ratios to be density ratio associated with individual
factors, which leverages the factored structure and is provably tighter. We also give examples on
linear MDPs (Yang & Wang, 2020), kernelized nonlinear regulator (KNRs) (Kakade et al., 2020),
where we again show that CPPO enjoys problem specific quantities for measuring the coverage.

Our contributions. Our contributions are two folds, which we summarize below:

3Strictly speaking, in Jin et al. (2020b); Rashidinejad et al. (2021), a comparator policy is restricted to the
optimal policy. In Chang et al. (2021); Zanette et al. (2021); Xie et al. (2021) and CPPO, a comparator policy
can be any policy.
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1. We show that in the model-based setting, realizability and partial coverage is enough to
learn a high-quality comparator policy (Theorem 1). Notably, (1) this result holds for any
MDPs with realizable model classes, (2) we can compete against even history-dependent
policies. This is in sharp contrast to the state-of-art provable model-free offline RL results:
see Table 1 on page 2 for detailed comparisons to prior works.

2. Under additional structural assumptions (e.g., KNRs, linear MDPs (Yang & Wang, 2020),
linear mixture MDPs (Ayoub et al., 2020), low-rank MDPs, factored MDPs), we show that
we can seamlessly refine the density ratio based concentrability coefficients to problem spe-
cific quantities. This flexibility to adapt to problem specific coverage measuring quantities
is in sharp contrast to other model-free offline RL algorithms such as minimax based ap-
proaches (Uehara et al., 2020) which, to the best of our knowledge, cannot leverage MDP’s
structures (e.g., linear MDPs) to refine its density ratio based concentrability coefficients.

While we focus on the model-based setting and have demonstrated advantages of our approach over
model-free ones (i.e., no more Bellman completeness assumption on function classes, being able to
compete against a larger pool of policies, and the ability to seamlessly adapt to problem dependent
structures), it is worth noting that realizability in the model-based setting is usually considered
stronger than the one in the model-free setting. On the empirical side, model-based offline RL
algorithms are the state-of-art (e.g., Yu et al. (2020); Kidambi et al. (2020); Matsushima et al. (2020);
Cang et al. (2021); Chang et al. (2021)). Our theoretical results provide a sharp contrast between
model-based and model-free approaches in offline RL.

2 RELATED WORK

We discuss two families of related works of offline RL. In Appendix C, we discuss related works
about representation learning in RL.

Insufficient coverage of the dataset due to the lack of online exploration is known as the main
challenge in offline RL (Wang et al., 2020). To deal with this problem, a number of methods have
been recently proposed from both model-free (Wu et al., 2019; Touati et al., 2020; Kumar et al.,
2020; Liu et al., 2020; Rezaeifar et al., 2021; Fujimoto et al., 2019; Fakoor et al., 2021; Ghasemipour
et al., 2021; Buckman et al., 2020) and model-based perspectives (Yu et al., 2020; Kidambi et al.,
2020; Matsushima et al., 2020; Yin et al., 2021). More or less, their methods rely on the idea
of pessimism and its variants in the sense that the learned policy can avoid uncertain regions not
covered by offline data. As a theoretical side, Munos & Szepesvári (2008); Duan et al. (2020;
2021); Fan et al. (2020) proved FQI has a PAC (probably approximately correct) guarantee under
realizability, the global coverage, and Bellman completeness conditions. Other offline model-free
RL methods such as minimax offline RL methods also require realizability and the global coverage
(Chen & Jiang, 2019; Antos et al., 2008; Uehara et al., 2021; Duan et al., 2021; Zhang et al., 2020;
Nachum et al., 2019). Recently, by leveraging the aforementioned the pessimism idea, Jin et al.
(2020a); Rajaraman et al. (2020) showed that pessimistic FQI can be applied to partial coverage
setting for linear and tabular MDPs. Comparing to their works, our analysis focuses on model-
based approaches with general function approximation. The offline model-based method is known
to have a PAC guarantee under the realizability and the global coverage (Ross & Bagnell, 2012;
Chen & Jiang, 2019). As the most closely related work, Chang et al. (2021) proved a model-based
method with an additional penalty term can weaken the assumption from the global coverage to the
partial coverage for structured MDPs such as KNRs and Gaussian Processes models (Deisenroth &
Rasmussen, 2011). In this work, we consider arbitrary MDPs with a realizable model class and aim
for PAC bounds under a partial coverage condition.

3 PRELIMINARIES

We consider a Markov Decision process (MDP)M = {S,A, P, γ, r, d0}where P : S×A → ∆(S)
is the transition, r : S × A → [0, 1] is the reward function, γ ∈ [0, 1) is the discount factor, and
d0 ∈ ∆(S) is the initial state distribution. A policy π maps from state (or history) to distribution
over actions. Given a policy π and a transition distribution P , V πP denotes the expected cumulative
reward of π under P, d0 and r. Similarly, QπP : S × A → R, AπP : S × A → R are a Q-
function and advantage-function under P and π. Given a transition P , we denote π(P ) as the
optimal policy associated with model P under reward r. We also denote dπP ⊂ ∆(S × A) as the
average state-action distribution of π under the transition model P , i.e, dπP = (1− γ)

∑∞
t=0 γ

tdπP,t,
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where dπP,t ∈ ∆(S ×A) is the distribution of (st, at) under π and P at a time-step t. We denote the
true transition distribution as P ?, which we do not know in advance. For simplicity, we suppose r
is known. The extension to the unknown reward is straightforward.

In the offline RL setting, we have an offline distribution ρ ∈ ∆(S × A), and an offline dataset
D = {s(i), a(i), r(i), s′(i)}ni=1 which is sampled in the following way: s, a ∼ ρ, r = r(s, a), s′ ∼
P ?(·|s, a). We hope to obtain π(P ?) = arg maxπ V

π
P? from this offline dataset without any further

interaction with the environment. We often denote ED[f(s, a, s′)] = 1/n
∑

(s,a,s′)∈D f(s, a, s′).
Our goal is to construct an offline RL algorithm Alg, which maps from D to π so that the subopti-
mality gap V π

∗

P? − V
Alg(D)
P? for any comparator policy π∗ ∈ Π is minimized, where Π in this work

can be an unrestricted policy class (e.g., including non-Markovian policies). Hereafter, c, c1, c2, · · ·
are always universal constants.

Partial coverage. Throughout this work, we do not assume ρ has global coverage. The global cov-
erage in this work means that the density ratio based concentrability coefficient dπP?(s, a)/ρ(s, a)
is upper-bounded by some constant C ∈ R+ for all polices π ∈ Π , or the feature covariance matrix
corresponding to the offline distribution Es,a∼ρφ(s, a)φ(s, a)> (φ ∈ S × A → R is a feature
representation) is full rank and has a non-zero minimum eigenvalue, which are commonly used
assumptions in offline RL (Munos, 2005; Antos et al., 2008; Chen & Jiang, 2019; Duan et al., 2020).
Under the full coverage, they show the output policy can compete with the globally optimal policy
π(P ?). However, this assumption may not be true in practice as computing an exploratory policy
itself is a challenging task for large-scale RL problems. Instead, we are interested in the partial
coverage setting such as dπ

∗

P?(s, a)/ρ(s, a) ≤ C, which means the state-action occupancy measure
under some comparator policy π∗ is covered by the offline dataset. We want to design an algorithm
that can compete against any policy π∗ that is covered by the offline data. This assumption is much
weaker than the global coverage.

4 PESSIMISTIC MODEL-BASED OFFLINE RL

We first introduce a general model-based algorithm that has a PAC guarantee of the suboptimality
gap under partial coverage defined with a newly introduced concentrability coefficient. The algo-
rithm takes a realizable model class as input and outputs a policy that is as good as any comparator
policy that is covered by the offline data in the sense of the bounded concentrability coefficient.

Our algorithm, Constrained Pessimistic Policy Optimization (CPPO) (Algorithm 1), takes a realiz-
able hypothesis classM (with P ? ∈ M) consisting of |M| candidate models as input, computes
the maximum likelihood estimator (MLE) P̂MLE using the given offline data D = {s, a, s′}. It then
forms a min-max objective subject to a constraint. The min-max objective introduces pessimism via
searching for the least favorable model P (in terms of its policy’s value V πP ) that is feasible with re-
spect to the constraint. We can also express the constrained optimization procedure using a version
spaceMD and a policy optimization procedure defined below:

max
π∈Π

min
P∈MD

V πP , whereMD =
{
P | P ∈M,ED

[
TV(P̂MLE(·|s, a), P (·|s, a))2

]
≤ ξ
}
, (1)

where TV(P1, P2) is a total variation (TV) distance between two distributions P1 and P2. The
version space MD contains models that are not far away from P̂MLE in terms of the average TV
distance under D. The version space is constructed such that with high probability P ? ∈MD.

Below we state the algorithm’s performance guarantee. Assuming for now that P ? ∈ MD holds
with high probability, then, V̂ π := minP∈MD V

π
P is a pessimistic policy evaluation estimator, which

satisfies V̂ π ≤ V πP? for all π ∈ Π. Using the idea of pessimism, we have the following observation:

V π
∗

P? − V π̂P? = V π
∗

P? − V̂ π
∗

+ V̂ π
∗
− V π̂P? ≤ V π

∗

P? − V̂ π
∗

+ V̂ π̂ − V π̂P? ≤ V π
∗

P? − V̂ π
∗
,

where the first inequality uses π̂ = arg maxπ∈Π V̂
π and the second inequality uses V̂ π ≤ V πP? for

all π ∈ Π. Thus, the final error only incurs the policy evaluation error for the comparator policy π∗,
which leads to the error only depending on the concentrability coefficient for the comparator policy.

We define the following new concentrability coefficient that uses the model classM :
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Algorithm 1 Constrained Pessimistic Policy Optimization (CPPO)
1: Require: ModelsM, dataset D, parameter ξ, policy class Π (note Π could be unrestricted)
2: Obtain the estimator P̂MLE by MLE: P̂MLE = arg maxP∈M ED[lnP (s′ | s, a)].
3: Constrained policy optimization:

π̂ = arg maxπ∈Π minP∈M V πP , s.t., ED
[
TV(P̂MLE(·|s, a), P (·|s, a))2

]
≤ ξ.

4: Return π̂

Definition 1 (Model-based Concentrability Coefficient). For a comparator policy π∗, we define the
concentrability coefficient C†π∗ as follows:

C†π∗ = supP ′∈M
E
(s,a)∼dπ∗

P?
[TV(P ′(·|s,a),P?(·|s,a))2]

E(s,a)∼ρ[TV(P ′(·|s,a),P?(·|s,a))2] .

The following theorem shows CPPO learns a policy that competes against π∗ when C†π∗ <∞.
Theorem 1 (PAC Bound for CPPO with general function class). Assume P ? ∈ M. We set ξ =

c1
ln(c2|M|/δ)

n . Then, with probability 1 − δ, for any comparator policy π∗ ∈ Π (Π can be the
unrestricted policy class containing non-Markovian policies),

V π
∗

P? − V π̂P? ≤ c3(1− γ)−2

√
C†
π∗ ln(c2|M|/δ)

n .

To the best of our knowledge, this is the first algorithm that achieves a PAC guarantee for any
MDPs under the partial coverage assumption C†π∗ < ∞ with only a realizable hypothesis class.
We emphasize that the inequality in the above uniformly holds for all policies with probability
1 − δ including history-dependent non-Markovian policies (see Remark 2). Note that the ability
to compete against non-Markovian policies in offline RL is meaningful when the offline data does
not cover the optimal policy π? (i.e., there could be a high-quality history-dependent policy that
is covered by the offline data against which we want to compete). In model-free approaches, this
type of result generally cannot be obtained. Indeed, the model-free approach from Xie et al. (2021)
requires Π to be a restricted Markovian policy class, since their bound contains poly(ln(|Π|))
dependence. For the detailed discussion, refer to Remark 1.

The quantity C†π∗ adaptively captures the discrepancy between the offline data and the state-action
occupancy measure under a comparator policy π∗ depending on the model classM. For example,
C†π∗ can be reduced to a relative condition number in KNRs. Besides, it is always upper bounded by
the density ratio based concentrability coefficient:

Cπ∗,∞ := sup(s,a)
dπ
∗
P? (s,a)
ρ(s,a) .

One extreme case is that functions inM are all the same, which implies C†π∗ = 1 regardless.

Theorem 1 consider the case where the hypothesis classM is finite. When the hypothesis class is
infinite, we can still obtain the PAC guarantee by utilizing the generalized result in Section A for any
realizable model class with valid statistical complexity (e.g., localized Rademacher complexity).

Prior works that achieve PAC guarantees with only realizable model classes rely on much stronger
global coverage supπ Cπ,∞ < ∞ (Chen & Jiang, 2019). Even when the comparator policy is
the optimal policy π(P ?), the partial coverage condition Cπ(P?),∞ < ∞ is weaker. Existing
pessimistic model-based algorithms and their theoretical results (Chang et al., 2021) often assume
that a point-wise model uncertainty measure is given as a by-product of model fitting, which limits
the applicability to special linear models such as KNRs/GPs. CPPO can work for any MDPs with
the realizable function class having a valid statistical complexity such that the MLE properly works.
Remark 1 (Comparison to the model-free approach from Xie et al. (2021); Zanette et al. (2021)
). Xie et al. (2021) study the model-free setting where the function class Q models Q functions
assumed to be Bellman complete for any Markovian policy in Π. While directly comparing model-
based approaches to model-free approaches is hard as they use different inductive biases in function
classes, we can leverage the approach from Chen & Jiang (2019, Corollary 6) to convert a model
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classM to a pair of Q and Π class. Specifically, we can convert a model classM to a pair of Q
class and Π class such thatQwill be realizable and also Bellman complete with respect to all π ∈ Π.
After such conversion from the model-based setting to the model-free setting, running the algorithm
from Xie et al. (2021) usingQ and Π achieves V π

∗

P? − V π̂P? =
√
C� ln(|M||Π|/n),∀π∗ ∈ Π, where

C� is some concentrability coefficient. For the detailed derivation, we refer readers to Appendix
D. Since the suboptimality gap from such conversion incurs log |Π|, a policy class Π cannot be too
large. Especially, unlike our results, it cannot take the unrestricted policy class as Π. This restriction
cannot be fixed even if we use natural policy gradient (NPG) algorithms unless models have special
structures (Xie et al., 2021; Zanette et al., 2021). The details are given in Section D.

Thus, our theorem indicates two advantages of model-based approaches: (1) realizability in function
class is enough to ensure a PAC guarantee under a partial coverage condition, (2) it can compete
against a larger pool of candidate policies including history-dependent non-Markovian policies,
which is a meaningful property when the offline data does not cover the globally optimal policy.
Next, we demonstrate another key advantage of our approach which is its flexibility to be seam-
lessly applied to MDPs with special structures.

5 EXAMPLES WITH REFINED CONCENTRABILITY COEFFICIENTS

In the previous section, our results apply to any MDP as long as its true transition belongs to a
function class M. In this section, we consider several concrete MDPs with additional structural
conditions. We show that by leveraging the additional structural conditions, we can refine the model-
based concentrability coefficient to more natural quantities. The examples that we discuss here are:
(1) linear mixture MDPs which generalize linear MDPs from Yang & Wang (2020) and tabular
MDPs, (2) KNRs which generalize LQRs, (3) low-rank MDPs, and (4) factored MDPs.

Before proceeding, we clarify CPPO cannot capture linear MDPs in Jin et al. (2020a) that is differ-
ent from the one (Yang & Wang, 2020) we use, and linear Bellman-complete MDPs (Duan et al.,
2020) without any modification since MLE-based model learning is no longer applicable to them.
However, other objective functions for learning models could be applied to these models (e.g., see
the nonparametric model-based learning approach from Lykouris et al. (2021); Neu & Pike-Burke
(2020) in the online setting), which we leave it as a future work.

5.1 TABULAR MDPS AND LINEAR MIXTURE MDPS

Tabular MDPs Tabular MDPs are MDPs where the state and action spaces are finite. Although the
corresponding hypothesis class for tabular MDPs is infinite, we can still run MLE, that is, estimating
P ? by the empirical distribution. Then, Algorithm 1 has the following guarantee.

Corollary 1 (PAC bound for tabular MDP). We set ξ = c1
|S|2|A| ln(n|S|A|c2/δ)

n . Then with proba-
bility 1− δ, for all π∗ ∈ Π,

V π
∗

P? − V π̂P? ≤ c3(1− γ)−2

{√
Cπ∗,∞|S|2|A| ln(n|S||A|c4/δ)

n

}
.

Here, for tabular MDPs withM = {P : P (·|s, a) ∈ ∆(S),∀s, a}, the model-based concentrability
coefficient in Definition 1 is equal to the density ratio based concentrability coefficient Cπ∗,∞ which
is the right quantity for small-size tabular MDPs.

Linear mixture MDPs We define linear mixture MDPs (Ayoub et al., 2020; Modi et al., 2020).
Definition 2 (Linear mixture MDPs). Given a feature vector ψ : (S,A,S)→ Rd, a linear mixture
MDP is an MDP where the ground truth transition is P ?(s′|s, a) := θ?>ψ(s, a, s′), θ? ∈ Rd.

By setting, ψ(s, a, s′) = µ(s′)
⊗
φ(s, a) (⊗ denotes the Kronecker product), linear mixture MDPs

include the following linear MDPs (Yang & Wang, 2020):

Definition 3 (Linear MDPs). Linear MDP has P ?(s′|s, a) :=
∑d1
i=1

∑d2
j=1M

?
ijµi(s

′)φj(s, a) with
µ : S → Rd1 and φ : S ×A → Rd2 are known features, and M? ⊂ Rd1×d2 .

We use CPPO to learn on linear mixture MDPs. The correspondingM is

MMix =
{
θ>ψ(s, a, s′) | θ ∈ Θ ⊂ Rd,

∫
θ>ψ(s, a, s′)d(s′) = 1 ∀(s, a)

}
.
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Given a function V : S → R, define the state-action feature indexed by V as ψV (s, a) :=∫
ψ(s, a, s′)V (s′)d(s′), we have the following PAC guarantee.

Corollary 2 (PAC bound for linear mixture MDPs). Suppose infs,a,s′ P
?(s′ | s, a) ≥ c3 > 0,

Θ = {θ : ‖θ‖2 ≤ R}, ‖ψV (s, a)‖2 ≤ 1,∀V ∈ S → [0, 1] and P ? ∈ MMix. We set ξ =
c1d ln2(c2nR/δ)/n. Then, with probability 1− δ, for any π∗ in Π (again Π can be the unrestricted
policy class), CPPO outputs a policy π̂ such that:

V π
∗

P? − V π̂P? ≤ c4(1− γ)−2

√
min(dC†π∗ , d

2C̄π∗,mix)
ln2(c5nR/δ)

n
, (2)

where the concentrability coefficient C̄π∗,mix is defined as:

C̄π∗,mix := sup
P∈ZP?

sup
x∈Rd

x>Σπ∗,ψ
V π
∗

P

x

x>Σρ,ψ
V π
∗

P

x


with the localized class ZP? := {P : E(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ≤ ξ}, Σρ,ψ

V π
∗

P

=

E(s,a)∼ρ[ψV π∗P
(s, a)ψV π∗P

(s, a)>], and Σπ∗,ψ
V π
∗

P

= Es,a∼dπ∗
P?

[ψV π∗P
(s, a)ψV π∗P

(s, a)>].

When specializing to linear MDPs, the above bound still holds with C̄π∗,mix being replaced by the
relative condition number C̄π∗ :

C̄π∗ := sup
x∈Rd

xTΣπ∗x

x>Σρ, x
, where Σρ = E(s,a)∼ρ[φ(s, a)φ(s, a)>], Σπ∗ = E(s,a)∼dπ∗

P?
[φ(s, a)φ(s, a)>].

This is the first PAC-guarantee result in the offline setting under partial coverage C̄π∗,mix < ∞ for
linear mixture MDPs. C̄π∗,mix is a newly-introduced concentrability coefficient for linear mixture
MDPs. This coefficient is measured on the integrated feature vectors φV (s, a) for V : S → [0, 1].
Note the class of V is localized, i.e., we consider state-value functions V π

∗

P (s) for all P centered
around P ? under data distribution ρ (i.e., P ∈ ZP? ). Such localization property ensures that
C̄π∗,mix ≤ C†π? (see Lemma 10 in Section F).

Note that these relative condition number based quantifiers are always tighter than the density ratio
based concentrability coefficients (i.e., max{C̄π∗ , C̄π∗,mix} ≤ Cπ∗,∞). For the special case where
φ(s, a) is a one-hot encoding vector, then they are reduced to the density ratio based concentrability
coefficient. In a non-tabular setting, even if when the density ratio is infinite, the relative condition
number can be still finite. Intuitively, the bounded relative condition number implies that the offline
data covers the subspace that the comparator policy π∗ visits.

We remark P ?(s′ | s, a) ≥ c3 > 0 in Corollary 2 is a technical condition that allows us to calculate
the entropy integral of the hypothesis class easily. It can be potentially discarded by a more careful
argument following (van de Geer, 2000, Chapter 7). The norm assumption ‖ψV (s, a)‖2 < 1 is
commonly assumed in the online setting (Zhou et al., 2021).

5.2 KERNELIZED NOLINEAR REGULATORS

We consider the example of KNRs in this section. A kernelized Nonlinear Regulator (KNR) (Kakade
et al., 2020) is a model where the ground truth transitionP ?(s′|s, a) is defined as s′ = W ?φ(s, a)+ε,
ε ∼ N (0, ζ2I), with φ : S × A → Rd being a possibly nonlinear feature mapping. We denote
the corresponding model on W by P (W ). We can apply Algorithm 1 and obtain its guarantee.
Especially, since TV(P (W )(· | s, a), P (W ?)(· | s, a))2 = Θ(‖(W − W ?)φ(s, a)‖22) (Devroye
et al., 2018), C†π∗ is upper-bounded by the relative condition number C̄π∗ .

Then, we can also recover the result of Chang et al. (2021) which proposes a reward penalty-based
pessimistic offline RL algorithm. The detail is given in Section B. In summary, we can show

V π
∗

P? − V π̂P? ≤ c1(1− γ)−2 min(d1/2, R̄)
√
R̄

√
dSC̄π∗ ln(1+n)

n , .

where R̄ := rank[Σρ]{rank[Σρ] + ln(c2/δ)} and dS is the dimension of the state.
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This implies CPPO can learn a policy that can compete against π∗ with partial coverage C̄π∗ <∞.
Note that the condition C̄π∗ <∞ does not require Σρ to be full-rank. Also the bound uses rank[Σρ]
instead of d, which means that our bound is distribution dependent and is still valid even when
d =∞ as long as the offline data only concentrate on a low-dimensional subspace.

5.3 LOW-RANK MDPS WITH REPRESENTATION LEARNING

We consider the representation learning in offline RL. Following FLAMBE (Agarwal et al., 2020b),
we study low-rank MDPs but in the offline setting. Note that low-rank MDPs here are a more
generalized model of the aforementioned linear MDPs (Yang & Wang, 2020) since the true feature
representation φ? in a low-rank MDP is unknown.
Definition 4 (Low rank MDPs). The ground-truth model P ? admits a low rank decomposition with
a dimension d if there exists two embedding functions µ∗ : S → Rd, φ∗ : S × A → Rd s.t.
P ?(s′ | s, a) = µ∗(s′)>φ∗(s, a). Neither µ∗ nor φ∗ is known to the learner.

One interesting special case of a low-rank MDP is the following latent variable model (see Agarwal
et al. (2020b) for more details).
Definition 5 (Latent variable models). There exists a latent space Z along with functions µ∗ : Z →
∆(S) and φ∗ : S ×A → ∆(Z) s.t. P ?(· | s, a) =

∑
z∈Z µ

∗(· | z)φ∗(z | s, a).

To tackle representation learning under partial coverage on low-rank MDPs, we setup function
classes as follows: given two function classes Ψ ⊂ S → Rd,Φ ⊂ S × A → Rd (both are re-
alizable in the sense that µ∗ ∈ Ψ and φ∗ ∈ Φ), we consider a hypothesis class {µ(s′)>φ(s, a);µ ∈
Ψ, φ ∈ Φ}. Then, CPPO (Algorithm 1) and Theorem 1 still work under this setting. Note that this
function class setup is exactly the same as the one from FLAMBE.

Here we show that by leveraging the low-rankness, we can refine the concentrability coefficient to
a relative condition number defined by the unknown true representation φ∗. We emphasize that this
does not depend on the other features. Particularly, given a comparator policy π∗, we define C̄π∗,φ? :

C̄π∗,φ? = sup
x∈Rd

x>Σπ∗x

x>Σρx
, Σπ∗ := Es,a∼dπ∗

P?
φ∗(s, a)φ∗(s, a)>, Σρ := Es,a∼ρφ∗(s, a)φ∗(s, a)>.

We can show CPPO learns a policy that can compete against π∗ as long as C̄π∗,φ? <∞.

Theorem 2 (PAC bound for low-rank MDP). We set ξ = c1
ln(|Φ||Ψ|c2/δ)

n . Suppose (a):
‖φ(s, a)‖2 ≤ 1,∀(s, a) ∈ S×A,∀φ ∈ Φ,

∫
µ(s′)>φ(s, a)d(s′) = 1 and

∫
‖µ(s)‖2ds ≤

√
d,∀µ ∈

Ψ, φ ∈ Φ, (b) ρ(s, a) = dπbP?(s, a), (c) P ?(s′|s, a) = µ∗(s′)>φ∗(s, a) for some µ∗ ∈ Ψ, φ∗ ∈ Φ.
With probability at least 1− δ, for all π∗ ∈ Π (again Π can be an unrestricted policy class), CPPO
(Algorithm 1) finds π̂ such that:

V π
∗

P? − V π̂P? ≤ c3
√
C̄π∗,φ?ωπ∗rank(Σρ)

ln(|Ψ||Φ|c4/δ)
(1−γ)4n , ωπ∗ =

(
max(s,a)

π∗(a|s)
πb(a|s)

)
(3)

To the best of our knowledge, this is the first established PAC result under the partial coverage
condition C̄π∗,φ? < ∞, ωπ∗ < ∞ for low-rank MDPs in the offline setting. We also emphasize
that our bound in Theorem 2 is distribution dependent, i.e., it depends on rank(Σρ) rather than
the exact rank d. Note that rank(Σρ) ≤ d, and rank(Σρ) could be much smaller than d when the
offline distribution only concentrates on a low-dimensional subspace (defined using φ∗). Note that
the assumption that ωπ∗ <∞ does not imply the state-action density ratio Cπ∗,∞ is small. Indeed,
ωπ∗ <∞ is much weaker than Cπ∗,∞ <∞.

5.4 FACTORED MDPS

The last example we include is the factored MDP (Kearns & Koller, 1999) defined as follows:
Definition 6 (Factored MDPs). Let d ∈ N+ andO being a small finite set. The state space S = Od,
and for each state s, we denote s[i] ∈ O as the i-th variable of the state s. For each i ∈ [1, · · · , d],
the parents of i, pai ⊂ [1, · · · , d], is the subset of state variables that directly influences i, i.e., the
transition is defined as follows:

∀s, a, s′ : P ?(s′|s, a) =
∏d
i=1 P

?
i (s′[i]|s[pai], a).

We will denote Si = O|pai|, and given s ∈ S, we will have s[pai] ∈ Si

8
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Due to the factorization, the transition operator P ? can be described with L :=
∑d
i=1 |A||O|1+|pai|

many parameters. In contrast, the non-factored transition will need O(|O|d) parameters. When
|pai| � d∀i, it is expected that we can learn this model with lower sample complexity by leveraging
the factorization which has been demonstrated in the online setting (Kearns & Koller, 1999). We
remark a factored MDP is an example where model-based approaches are necessary as neither the
optimal policy nor the Q functions are factored (Koller & Parr, 2000).

We will slightly modify Algorithm 1 to take the factorization into consideration. First, we perform
MLE for model learning: each factor P ?i is independently learned via MLE:

∀i ∈ [d], P̂MLE,i = arg maxP ED[lnP (s′[i]|s[pai], a)], P̂ =
∏
i P̂MLE,i.

Next, the constrained policy optimization procedure is defined as

π̂ = arg max
π

min
P :=

∏
i Pi

V πP , s.t.,ED[TV(Pi(· | s, a), P̂MLE,i(· | s, a))2] ≤ ξi (∀i ∈ [1, · · · , d]).

Note that in the above objective, there is no restriction on the policy, i.e., the arg max operator
searches over all possible policies including non-Markovian ones.

To analyze the performance of the above modified CPPO, we introduce a specialized con-
centration coefficient for factored MDPs that utilizes the factored structure. We focus on
density ratio based concentrability coefficients since in a factored MDP with the function class
M := {P =

∏
i Pi : Pi ∈ Si × A → ∆(O)}, the concentrability coefficient associated with

M in Definition 1 will be reduced to the density ratio. For any π∗, we define the concentrability
coefficients for the factored MDP as follows:

C̈π∗,∞ := max
j∈[1,··· ,d]

max
sj∈Sj ,a∈A

dπ
∗

P?(sj , a)

ρ(sj , a)
,

where for sj ∈ Sj , we denote ν(sj , a) :=
∑
s∈S:s[paj ]=sj

ν(s, a) for any distribution ν ∈ ∆(S×A).

Comparing to Cπ∗,∞ defined on the original state space S, here C̈π∗,∞ is defined over each state
space Sj associated with each factor j. Note that when |paj | = Θ(1), |Sj | is exponentially smaller
than |S|. One can verify that C̈π∗,∞ ≤ Cπ∗,∞ (see Appendix E.7), where Cπ∗,∞ ignores the
factored structure and treat S as a whole single space. This formally demonstrates the benefit of the
factored structure in terms of the coverage condition in offline RL.

With the new definition of the concentrability coefficients, now we are ready to state the PAC bound
of CPPO for factored MDPs. Recall L :=

∑d
i=1 Li, Li = |A||O|1+|pai|.

Theorem 3 (PAC bound for factored MDP). We set ξi = c1
Li ln(Lic2d/δ)

n . Then with probability
1− δ, CPPO finds a policy π̂ such that for all comparator policy π∗ ∈ Π (Π can be unrestricted),

V π
∗

P? − V π̂P? ≤ c3(1− γ)−2

√
dC̈π∗,∞L·ln(nLc4d/δ)

n .

Note that our sub-optimality gap scales polynomially with respect to L, i.e., the complexity of the
factored MDP, rather than |S| which can be Ω(exp(d)).

6 CONCLUSION

We study model-based offline RL with function approximation under partial coverage. We show that
for the model-based setting, realizability in function class and partial coverage together are enough
to learn a policy that is comparable to any policies (including history-dependent policies) covered by
the offline distribution. Our result demonstrates a sharp contrast to model-free offline RL approaches
which often require additional structural conditions in the function class (e.g., Bellman completion)
and have restrictions on the pool of candidate policies that they can compete against.

Some readers might wonder whether CPPO is computationally efficient. The minimax optimiza-
tion problem arg maxπ∈Π minP∈M V πP fits into a framework of planning on robust MDPs (Nilim
& El Ghaoui, 2005; Iyengar, 2005). By introducing a robust Bellman equation, they proposed value
iteration and policy iteration algorithms, and showed that algorithms are practically tractable in the
tabular setting. In the non-tabular setting, Lim & Autef (2019); Tamar et al. (2014) propose the ex-
tension using function approximation. Thus, we can apply their methods to approximately solve the
minimax optimization problem in a model-free fashion. We leave the formal theoretical justification
when using these approximation planning algorithms as an important direction for future work.
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Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(May):815–857, 2008.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning.
arXiv preprint arXiv:2007.01891, 2020.

Chengzhuo Ni, Anru Zhang, Yaqi Duan, and Mengdi Wang. Learning good state and action repre-
sentations via tensor decomposition. arXiv preprint arXiv:2105.01136, 2021.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, and Matteo Pirotta. Lever-
aging good representations in linear contextual bandits. arXiv preprint arXiv:2104.03781, 2021.

Nived Rajaraman, Lin F Yang, Jiantao Jiao, and Kannan Ramachandran. Toward the fundamental
limits of imitation learning. arXiv preprint arXiv:2009.05990, 2020.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
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A GENERALIZATION OF THEOREM 1

We present the generalized version of Theorem 1 when the hypothesis class is infinite. We define
the modified function class ofM:

H =

{√
P + P ∗

2
| P ∈M

}
.

Given a function class F , let N[](δ,F , d) be the bracketing number of F w.r.t the metric d(a, b)
given by

d(a, b) = E(s,a)∼ρ

[∫
(a(s′ | s, a)− b(s′ | s, a))2d(s′)

]1/2

.

Then, the entropy integral of F is given by

JB(δ,F , d) = max

(∫ δ

δ2/2

(logN[](u,F , d))1/2du, δ

)
. (4)

We also define the localized class ofH:

H(δ) = {h ∈ H : E(s,a)∼ρ[h
2(P (· | s, a)‖P ?(· | s, a))] ≤ δ2},

where h(P (· | s, a)‖P ?(· | s, a)) denotes Hellinger distance defined by(
0.5

∫
{
√
P (s′ | s, a)−

√
P ?(s′ | s, a)}2d(s′)

)1/2

.

Based on Theorem 7.4 (van de Geer, 2000), the MLE has the following guarantee.

Theorem 4 (MLE guarantee with general function approximation). We take a function G(ε) :
[0, 1] → R s.t. G(ε) ≥ JB [ε,H(ε), d] and G(ε)/ε2 is a non-increasing function w.r.t ε. Then,
letting ξn be a solution to

√
nε2 ≥ cG(ε) w.r.t ε. With probability 1− δ, we have

E(s,a)∼ρ[‖P̂MLE(· | s, a)− P (· | s, a)‖21] ≤ c1
{
ξn +

√
log(c2/δ)/n

}2

.

We remark that the original guarantee in (van de Geer, 2000) is given for the estimation of uncondi-
tional distributions. The adaption to the conditional case is straightforward. For more details, refer
to Section A.1. Besides, when we assume the convexity of the function class, the entropy integral
with bracketing (4) can be replaced with the entropy integral with covering number (Wainwright,
2019, Chapter 14).

By using the above notation and the MLE guarantee, we can generalize Theorem 1.

Theorem 5 (Finite sample error bound of CPPO with an infinite hypothesis class). Assume P ? ∈
M. Let f(P )(s, a) = TV(P (· | s, a), P ?(· | s, a))2. Define

M1 =

{
P : E(s,a)∼ρ [f(P )(s, a)] ≤ c

(
ξ2
n +

ln(c/δ)

n

)}
,

M2 =

{
P : E(s,a)∼D[f(P )(s, a)] ≤ c

(
G(M1) + ξ2

n +
ln(c/δ)

n

)}
,

G(M1) = E[ sup
P∈M1

|(ED − Eρ)[f(P )]|], G(M2) = E[ sup
P∈MD

|(ED − Eρ)[f(P )]|].

Here, in G(M1) and G(M2), the expectation is taken over the data. We set ξ = cG(M1) + cξ2
n +

c
(

ln(c/δ)
n

)
. Then, for all π∗ ∈ Π, we have

V π
∗

P? − V π̂P? ≤ (1− γ)−2c1

√
C†π∗

√
G(M2) +G(M1) + ξ2

n +
ln(c/δ)

n
.
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This theorem shows once we can calculate GM1
,GM2

and ξn, we can obtain the tight rate. Im-
portantly, GM1

and GM2
are upper-bounded by the localized versions of Rademacher complexities

based on symmetrization argument. Hence, their rates are faster than the ones of the nonlocalized
versions.

For example, when |M| is finite, we first have ξn =
√

ln(|M|c/δ)/n. Then, from Bernstein’s
inequality (Wainwright, 2019, Exercise 2.8) and union bound, G(M1) is upper-bounded by

G(M1) . ξn︸︷︷︸
Variance term

×
√

ln(|M|c/δ)/n︸ ︷︷ ︸
Union bound

. ξ2
n.

Similarly, from empirical Bernstein’s inequality,

G(M2) . ξn︸︷︷︸
Variance term

×
√

ln(|M|c/δ)/n︸ ︷︷ ︸
Union bound

. ξ2
n.

Then, we can obtain the result of Theorem 1:

V π
∗

P? − V π̂P? ≤ (1− γ)−2c1

√
C†π∗

√
ln(|M|c/δ)

n
, ∀π∗ ∈ Π.

We stress if we use Hoeffeding’s inequality above, we would immediately get the slower rate
O(n−1/4). To calculate G(M1) and G(M2) in a tight manner, we need to leverage the knowl-
edge that the variance of each element inM1 andM2 is controlled from the restriction P ∈M1 or
P ∈M2.

A.1 RATE OF CONVERGENCE OF MAXIMUM LIKELIHOOD ESTIMATION WITH INFINITE
HYPOTHESIS CLASS

We aim for obtaining a PAC guarantee of MLE following (van de Geer, 2000). We explain how we
should modify the proof of van de Geer (2000) for unconditional density estimation to conditional
density estimation. For simplicity, we assume P ? > 0.

We first introduce the notation:

P̄ = (P + P ?)/2, gP = 0.5 log
P̄

P ?
, (M̄)1/2 =

{√
P̄ | P ∈M

}
.

Recall

h2(P1(· | s, a), P2(· | s, a)) =

(
0.5

∫
P

1/2
1 (s′ | s, a)− P 1/2(s′ | s, a)d(s′)

)0.5

.

Here, from Lemma 4.2 (van de Geer, 2000), the following holds:
Lemma 1 (Some property of Hellinger distance).

E(s,a)∼ρ[h
2(P̄1(· | s, a), P̄2(· | s, a))] ≤ 0.5E(s,a)∼ρ[h

2(P1(· | s, a), P2(· | s, a))],

E(s,a)∼ρ[h
2(P (· | s, a), P ?(· | s, a))] ≤ E(s,a)∼ρ[16h2(P̄ (· | s, a), P ?(· | s, a))].

We also recall Hellinger distance is stronger than TV distance:
Lemma 2 (Relation of Hellinger distance and TV distance ).

TV(P1(· | s, a), P2(· | s, a)) ≤
√

2h(P1(· | s, a), P2(· | s, a)).

The following lemma is useful to connect the log-loss and the Hellinger distance.
Lemma 3 (Basic Inequality for MLE).

E(s,a)∼ρ[h
2(P̂MLE(· | s, a), P ?(· | s, a))] ≤ (ED − E(s,a)∼ρ,s′∼P?(·|s,a))[gP (s, a, s′)].

This is proved by Lemma 4.1 (van de Geer, 2000). To simplify the notation, we define

H2(P1, P2) = E(s,a)∼ρ[h
2(P1(· | s, a), P2(· | s, a))].
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Here, our goal is showing with probability 1− δ,

H2(P̂MLE, P
?) ≤ {ξn +

√
log(c2/δ)/n}2.

This is proved by showing for x ≥ ξn,

P(H2(P̂MLE, P
?) ≥ x2) ≤ c exp(−nx2/c2).

This corresponds to the statement in Theorem 7.4 (van de Geer, 2000). To prove the above, we first
use

P(H2(P̂MLE, P
?) ≥ x2) ≤ P(16H2(

¯̂
PMLE, P

?) ≥ x2),

from Lemma 1. Then, from Lemma 3, this is upper-bounded by

P( sup
P∈M,H2(P̄ ,P?)≥x2/16

νn(gP )−
√
nH2(P, P ?) ≥ 0) (5)

where νn =
√
n(ED − E(s,a)∼ρ,s′∼P?(·|s,a)). To prove the term 5 is less than c exp(−nδ2/c2),

we use Theorem 5.11 (van de Geer, 2000), that is, some uniform inequality based on entropy with
bracketing. The rest of the proof is the same as Theorem 7.4 (van de Geer, 2000). In summary, the
only difference is we use the distance H(a, b) tailored to the conditional density estimation instead
of unconditional density estimation.

B MORE DETAILS FOR KNRS

We explain the algorithm and present the PAC guaranteed for KNRs. Here, we denote the dimension
of S by dS .

We tailor Algorithm 1 to KNRs as follows to obtain a tighter guarantee. First, MLE procedure is
replaced with ŴMLE by regularized MLE:

ŴMLE = arg min
W∈RdS×d

ED[‖Wφ(s, a)− s′‖22] + λ‖W‖2F ,

where ‖ · ‖F is a Frobenius norm. Then, the final policy optimization procedure is

π̂ = arg maxπ∈Π minW∈WD V
π
P (W ), s.t.,WD = {W ∈ RdS×d : ‖(ŴMLE −W )(Σn)1/2‖2 ≤ ξ}

where Σn =
∑n
i=1 φ(si, ai)φ

>(si, ai). We state the theoretical guarantee for KNRs below.

Corollary 3 (PAC bound for KNRs). Assume ‖φ(s, a)‖2 ≤ 1,∀(s, a) ∈ S ×A. We set

ξ =
√

2λ‖W ?‖22 + 8ζ2
(
dS ln(5) + ln(1/δ) + Īn

)
, Īn = ln (det(Σn)/ det(λI)) .

Suppose the KNR model is well-specified. By letting ‖W ?‖22 = O(1), ζ2 = O(1), λ = O(1), with
probability 1− δ, for all π∗, we have

V π
∗

P? − V π̂P? ≤ c1H2 min(d1/2, R̄)
√
R̄

√
dSC̄π∗,P? ln(1 + n)

n
, where R̄ := rank[Σρ]{rank[Σρ] + ln(c2/δ)}.

The proof is deferred to Section E.5.

C MORE RELATED WORKS

We discuss literature related to representation learning in RL.

Representation learning for low-rank MDPs (ground truth feature representation is unknown) in
online learning is studied from a model-based perspective (Agarwal et al., 2020b) and model-free
perspective (Modi et al., 2021). In the online setting, Zhang et al. (2021a); Papini et al. (2021)
also study representation learning under different model assumptions. Comparing with these works,
since our setting is offline, the algorithm and analysis are totally different.
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In the offline setting, Ni et al. (2021) study dimensionality reduction in a given kernel space, and Hao
et al. (2021) study feature selection in sparse linear MDPs. Their focus is different as they do not
study PAC guarantees under partial coverage. Ni et al. (2021) assumes the transition operator can be
properly embedded into predefined Reproducing Kernel Hilbert Spaces and learns low-dimensional
state-action representations via kernelized embedding and low-rank tensor decomposition. However,
they did not study the errors for policy optimization after using these learned features. Regarding
offline distribution coverage, Ni et al. (2021) assumes that the feature covariance matrix (feature
associated with the pre-defined kernel) of the offline distribution is full rank. Hao et al. (2021) studies
an OPE problem on sparse linear Bellman complete MDPs in the offline learning setting where
they assume all covariance matrices (covariance matrices that correspond to all possible subsets of
features) under the offline distribution are full rank as well. We study policy optimization in low-
rank MDPs (with unknown feature representation), and we do not assume full coverage, i.e., we do
not assume the feature covariance matrix is full rank, and indeed our result is distribution-dependent
since it scales with respect to the rank of the covariance matrix that is defined using the ground truth
feature representation.

D COMPARISON TO XIE ET AL. (2021)

We compare a result in (Xie et al., 2021) to our result in detail. Let F be a function class for Q-
functions. Here, we consider a more general version of their algorithm by replacing the original
E(f, π;D) in their algorithm with

E(f, π;D) := L(f, f ;π,D)−min
g∈G
L(g, f ;π,D).

In their original algorithm, they set G = F . Here, we consider the version such that a discriminator
class G can be different from F .

They show the PAC result under partial coverage as follows. Here, T πP? is a Bellman operator under
π and P ?:

T πP? : {S × A → R} 3 f 7→ r(s, a) + EP∗(s′|s,a)[f(s′, π)] ∈ {S ×A → R}.

Theorem 6 (Extension of Result in (Xie et al., 2021) ). Suppose realizaibility QπP? ∈ F ,∀π ∈ Π
and closeness maxf∈F ming∈G Es,a∼ρ[(g − T πP?f)2(s, a)] = 0,∀π ∈ Π. Then, with 1− δ, for any
π∗ ∈ Π, we have

V π
∗

P? − V π̂P? = O(
√
C� ln(|Π||F||G|/δ)/n), C� = sup

f∈F

E(s,a)∼dπ∗
P?

[(f − T f)2(s, a)]

E(s,a)∼ρ[(f − T f)2(s, a)]
.

By combining this result with the conversion from model-free results to model-based results in
(Chen & Jiang, 2019, Corollary 6), we can obtain the following result under partial coverage.

Theorem 7 (PAC guarantee from the direct application of (Xie et al., 2021) to mode-based RL ).
Assume P ? ∈M. Then, there exists an algorithm s.t. with 1− δ, for any policy π? ∈ Π,

V π
∗

P? − V π̂P? = O(
√
C� ln(|Π||M|/δ)/n).

As we mentioned, this is worse than our result since it includes |Π|. Besides, the algorithm can
only compete against policies restricted in Π, while our algorithm works for the unrestricted policy
class Π which could even include history dependent policies. For completeness, we give the proof
as follows.

We remark that their results (Theorem 4.1) with NPG that can possibly compete with any stochastic
policies, are not applicable here. This is because they need an assumption that the comparator policy
π∗ needs to satisfy Qπ

∗

P? ∈ F and maxf∈F ming∈G Es,a∼ρ[(g−T π
∗

P? f)2(s, a)] = 0, which does not
hold for the corresponding Q-function class F after the conversion. As a notable exception, when
the model is a linear Bellman-complete MDP (Zanette et al., 2021), any stochastic policies satisfy
the Bellman completeness for the linear Q-function class; then, their algorithms can learn policies
that can compete with any stochastic policies satisfying partial coverage.
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Proof of Theorem 7. Given a model class M, consider the following reduction. We define a Q-
function class:

F = {qπP | π ∈ Π, P ∈M}.
Then, we define a discriminator class G:

G = {T π
′

P ′ q
π
P | π ∈ Π, π′ ∈ Π, P ∈M, P ′ ∈M}.

The above satisfies the realizability QπP? ∈ F ,∀π ∈ Π and the closedness T πP?F ⊂ G,∀π ∈ Π.
Thus, the assumptions in Theorem 6 are satisfied. Then, we have

V π
∗

P? − V π̂P? = O(
√
C� ln(|Π||F||G|/δ)/n)

= O(
√
C� ln(|Π||M|/δ)/n),

noting |F| = |Π||M| and |G| = |Π|2|M|2.

E MISSING PROOFS

Below we use c, c1, c2, · · · to denote universal constants. For a d-dimensional vector a and a matrix
A ∈ Rd×d, we denote ‖a‖2A = a>Aa. Here, a . B means a ≤ cB for some universal constant. c

E.1 PROOFS FOR GENERAL FUNCTION APPROXIMATION

Proof of Theorem 1. From Lemma 6, the MLE guarantee gives us the following generalization
bound: with probability 1− δ,

Es,a∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2] .
ln(|M|/δ)

n
. (6)

Letting
A(P ) := |Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2]− ED[TV(P (· | s, a), P ?(· | s, a))2]|.

with probability 1− δ, from union bound and Bernstein’s inequality, we also have

A(P ) ≤
√
c1var(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ln(|M|/δ)

n
+
c2 ln(|M|/δ)

n
,∀P ∈M.

(7)
Hereafter, we condition on the above two events. Recall that we construct the version space using
D and P̂MLE as follows:

MD :=
{
P ∈M : ED[TV(P (· | s, a), P̂MLE(· | s, a))2] ≤ ξ

}
.

First Step: Show P ? ∈ MD in high-probability. We set ξ = c ln(|M|/δ)
n . Conditioning on the

above two events equations (6) and (7), we prove P ? ∈MD. This is proved by

ED[TV(P̂MLE(· | s, a), P ?(· | s, a))2]

= ED[TV(P̂MLE(· | s, a), P ?(· | s, a))2]− E(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2]

+ E(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2]

= ED[TV(P̂MLE(· | s, a), P ?(· | s, a))2]− E(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2] +
c1 ln(|M|/δ)

n

.

√
var(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2] ln(|M|/δ)

n
+

ln(|M|/δ)
n

(From (7))

.

√
E(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2] ln(|M|/δ)

n
+

ln(|M|/δ)
n

(TV(P̂MLE(· | s, a), P ?(· | s, a))2 ≤ 4)

.
1

n
ln(|M|/δ). (Plug in MLE guarantee)
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Second Step: Show Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ≤ cξ, ∀P ∈ MD in high probabil-
ity. We show for any P ∈MD, the distance between P ? is sufficiently controlled in terms of TV
distance. More concretely (conditioning on the above two events (6) and (7) ), we show

Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2] . ξ, ∀P ∈MD.

In order to observe this, for any P ∈MD, we have

ED[TV(P (· | s, a), P ?(· | s, a))2]

≤ 2ED[TV(P̂MLE(· | s, a), P (· | s, a))2] + 2ED[TV(P̂MLE(· | s, a), P ?(· | s, a))2] ≤ 4ξ
(From (a+ b)2 ≤ 2a2 + 2b2.)

Thus, we have:

Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2]

= Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2]− ED[TV(P (· | s, a), P ?(· | s, a))2] + ED[TV(P (· | s, a), P ?(· | s, a))2]

≤ A(P ) + cξ. (8)

Here, from (7), we have

A(P ) ≤
√
c1var(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))2]] ln(|M|/δ)

n
+
c2 ln(|M|/δ)

n
,∀P ∈MD.

Then, for any P ∈MD, we have

A(P ) ≤
√
c1E(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))4] ln(|M|/δ)

n
+
c2 ln(|M|/δ)

n

≤
√

4c1E(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ln(|M|/δ)
n

+
c2 ln(|M|/δ)

n
([TV(P (· | s, a), P ?(· | s, a))2] ≤ 4.)

≤
√

4c1(A(P ) + cξ) ln(|M|/δ)
n

+
c2 ln(|M|/δ)

n
.

From (a+ b)2 ≤ 2a2 + 2b2,

A2(P ) .

(√
c(A(P ) + ξ) ln(|M|/δ)

n
+
c ln(|M|/δ)

n

)2

.
(A(P ) + ξ) ln(|M|/δ)

n
+

{
c ln(|M|/δ)

n

}2

.
(A(P ) + ξ) ln(|M|/δ)

n
(ξ includes ln(|M|/δ))

.
(A(P ) + 1/n ln(|M|/δ)) ln(|M|/δ)

n
.

Then, we have

A2(P )−B1A(P )−B2 ≤ 0, B1 = c ln(|M|/δ)/n, B2 = c(1/n)2 ln(|M|/δ)2.

This concludes

0 ≤ A(P ) ≤ B1 +
√
B2

1 + 4B2

2
≤ c(B1 +

√
B2) ≤ c ln(|M|/δ)

n
. ξ.

Thus, by using the above A(P ) . ξ(P ∈MD) and (8), with probability 1− δ, we have:

Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ≤ A(P ) + cξ . ξ, P ∈MD.

Third Step: Calculate the final error bound taking the distribution shift into account For
any P ∈MD, we prove

V π
∗

P? − V π
∗

P ≤ (1− γ)−2c

√
C†π∗

√
ln(|M|/δ)

n
. (9)
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For any P ∈MD, this is proved as follows:

V π
∗

P? − V π
∗

P ≤ (1− γ)−2E(s,a)∼dπ∗
P?

[TV(P (· | s, a), P ?(· | s, a))]

(Simulation lemma, Lemma 5)

≤ (1− γ)−2
√

E(s,a)∼dπ∗
P?

[TV(P (· | s, a), P ?(· | s, a))2]

≤ (1− γ)−2
√
C†π∗E(s,a)∼ρ[TV(P (· | s, a), P ?(· | s, a))2]

≤ c(1− γ)−2

√
C†π∗

√
ln(|M|/δ)

n
. (Based on the consequence of the second step)

Combining all things together, with probability 1− δ, for any π∗ ∈ Π, we have

V π
∗

P? − V π̂P? ≤ V π
∗

P? − min
P∈MD

V π
∗

P + min
P∈MD

V π
∗

P − V π̂P?

≤ V π
∗

P? − min
P∈MD

V π
∗

P + min
P∈MD

V π̂P − V π̂P? (definition of π̂)

≤ V π
∗

P? − min
P∈MD

V π
∗

P (Fist step, P ? ∈MD)

. (1− γ)−2c1

√
C†π∗

√
ln(|M|c2/δ)

n
. (From (9))

Remark 2 (To compete with all history-dependent polices). Consider the case where Π is all
Markovian polices. We want to show we can compete with all history-dependent non-Markovian
polices:

Π̄ =

{ ∞∏
i=1

πi | πi ∈

[(
i−1∏
k=1

S ×A

)
→ ∆(A)

]}
.

We take an element π∗ from Π̄. Then, V π
∗

P? and dπ
∗

P? are still well-defined. Then, every step in the
proof still holds. The only step we need to check carefully is this line:

V π
∗

P? − V π̂P? ≤ V π
∗

P? − min
P∈MD

V π
∗

P + min
P∈MD

V π
∗

P − V π̂P?

≤ V π
∗

P? − min
P∈MD

V π
∗

P + min
P∈MD

V π̂P − V π̂P? .

This is proved by maxπ∈Π̄ V
π
P = maxπ∈Π V

π
P for any P .

E.2 PROOFS FOR GENERAL FUNCTION APPROXIMATION WITH INFINITE HYPOTHESIS CLASS

Proof of Theorem 5. From Theorem 4, the MLE guarantee gives us the following generalization
bound: with probability 1− δ,

E(s,a)∼ρ[TV(P̂MLE(· | s, a), P ?(· | s, a))2] .

(
ξ2
n +

ln(c/δ)

n

)
. (10)

We define

M1 =

{
P ∈M : E(s,a)∼ρ

[
TV(P (· | s, a), P ?(· | s, a))2

]
≤ c

(
ξ2
n +

√
ln(c/δ)

n

)}
.

for some large c. From a functional Bernstein’s inequality (Lemma 12), by defining

f(P )(s, a) = TV(P (· | s, a), P ?(· | s, a))2, G(M1) = E[ sup
P∈M1

|(ED − Eρ)[f(P )]|].
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with probability 1− δ, we have

sup
P∈M1

|(ED − Eρ)[f(P )]| . G(M1) + {G(M1) + sup
P∈M1

Eρ[f(P )2]}1/2
√

log(c1/δ)

n
+

log(c1/δ)

n

. G(M1) + {G(M1) + sup
P∈M1

Eρ[f(P )]}1/2
√

log(c1/δ)

n
+

log(c1/δ)

n

. G(M1) + ξ2
n +

(
ln(c/δ)

n

)
. (11)

Similarly, by defining

M2 =

{
P : E(s,a)∼D[TV(P (· | s, a), P ?(· | s, a))2] ≤ cG(M1) + cξ2

n + c

(
ln(c/δ)

n

)}
,

G(M2) = E[ sup
P∈MD

|(ED − Eρ)[f(P )]|],

Zn = sup
P∈M2

E(s,a)∼ρ[f(P )(s, a)].

from a functional Bernstein’s inequality, with probability 1− δ, we have

sup
P∈M2

|(ED − Eρ)[f(P )]| . G(M2) + {G(M2) + Zn}1/2
√

log(c1/δ)

n
+

log(c1/δ)

n

. G(M2) +

√
Zn

ln(c/δ)

n
+

ln(c/δ)

n
(12)

Hereafter, we condition on the above three events:(10), (11) and (12).

First step: Show P ∗ ∈MD in high probability. From (10), we have

E(s,a)∼ρ[f(P̂MLE)(s, a)] ≤ ξ2
n +

ln(c/δ)

n
.

Thus, P ? ∈M1. Then, from (11) and (10),

E(s,a)∼D[f(P̂MLE)(s, a)]

= |E(s,a)∼D[f(P̂MLE)(s, a)]− E(s,a)∼ρ[f(P̂MLE)(s, a)]|+ E(s,a)∼ρ[f(P̂MLE)(s, a)]

. G(M1) + ξ2
n +

ln(c/δ)

n
.

Thus, P ? ∈MD recalling the definition ofMD (we set ξ = G(M1) + ξ2
n + ln(c/δ)

n ).

Second step: Show the upper bound of E(s,a)∼ρ[f(P )(s, a)] for any P ∈ MD. For any
P ∈MD, as the proof of Theorem 1, we can prove P ∈M2. Thus,

sup
P∈MD

E(s,a)∼ρ[f(P )(s, a)] ≤ Zn.

Thus, we will hereafter analyze Zn. Here from (12), for any P ∈M2, we have

E(s,a)∼ρ[f(P )(s, a)] ≤ sup
P∈M2

(
|(E(s,a)∼D − E(s,a)∼ρ)[f(P )(s, a)]|

)
+ sup
P∈M2

E(s,a)∼D[f(P )(s, a)]

. G(M2) +

√
Zn

ln(c/δ)

n
+G(M1) + ξ2

n +
ln(c/δ)

n
.

Hence,

Zn ≤ G(M2) +

√
Zn

ln(c/δ)

n
+G(M1) + ξ2

n +
ln(c/δ)

n
.

This shows

Zn ≤ G(M2) +G(M1) + ξ2
n +

ln(c/δ)

n
.
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Third step: Calculate the final error bound. Following the proof of Theorem 1, we can prove

V π
∗

P? − V π̂P? ≤ (1− γ)−2c1

√
C†π∗

√
G(M2) +G(M1) + ξ2

n +
ln(c/δ)

n
.

E.3 PROOFS FOR TABULAR MDPS

Proof of Corollary 1. We prove in a similar way as Theorem 1.

First step We set ξ = c |S|
2|A| ln(n|S|A|c2/δ)}

n . Then, from Lemma 7, with probability 1 − δ, we
can show P ? ∈MD since

Es,a∼D
[
TV(P̂MLE(· | s, a), P ?(· | s, a))2

]
≤ ξ.

Hereafter, we condition on the above event.

Second step. Following the second step in the proof of Theorem 1 based on (8), for any P ∈MD,
we have

Es,a∼ρ
[
TV(P (· | s, a), P ?(· | s, a))2

]
≤ cξ +A(P ) (13)

where

A(P ) := |Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2]− ED[TV(P (· | s, a), P ?(· | s, a))2]|.

Our goal here is showing with probability 1− δ,

A(P ) . ξ,∀P ∈MD. (14)

To prove (14), consider an ε-net {P1(s, a), · · · , PK(s, a)} covering a simplex in terms of ‖ · ‖1 4 for
each fixed pair (s, a) ∈ S × A. We take ε = 1/n. Since the covering number K is upper-bounded
by (c/ε)|S| (Wainwright, 2019, Lemma 5.7), we can obtain M̄ = {P1, · · · , PK|S|×|A|} s.t. for any
possible P ⊂ S ×A → ∆(S), there exists Pi s.t.

TV(Pi(· | s, a), P (· | s, a)) ≤ ε, ∀(s, a).

This implies for any P ⊂ S ×A → ∆(S), there exists Pi(· | s, a) s.t. ∀(s, a),

|TV(P (· | s, a), P ?(· | s, a))2 − TV(Pi(· | s, a), P ?(· | s, a))2|
≤ 4|TV(P (· | s, a), P ?(· | s, a))− TV(Pi(· | s, a), P ?(· | s, a))| (a2 − b2 = (a− b)(a+ b))
≤ 4TV(P · | s, a), Pi(· | s, a)) (|‖a‖ − ‖b‖| ≤ ‖a− b‖)
≤ 4ε. (15)

We often use this property (15) hereafter.

Next, we defineM′ ⊂ M̄ so that it coversMD. Concretely, we defineM′:

M′ = {P ∈ M̄ : ∃P ′′ ∈MD,TV(P (· | s, a), P ′′(· | s, a)) ≤ ε ∀(s, a)}. (16)

The construction is illustrated in Figure 1. Here, from the definition, for any P ∈MD , we can also
find P ′ ∈M′ s.t.

TV(P (· | s, a), P ′(· | s, a)) ≤ ε, ∀(s, a).

This is because from the definition of M̄ , we can always find P ∈ M̄ satisfying the above. Such P
belongs toM′ from the definition ofM′. We use this fact later.

Then, from (16) and recalling (13), we have

Es,a∼ρ
[
TV(P (· | s, a), P ?(· | s, a))2

]
. ξ +A(P ), ∀P ∈M′. (17)

4In the tabular setting, since the state space is countable, it is equivalent to L1 distance.
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Figure 1: MD is colored in gray. M′ corresponds to the set of black dots. Orange dots correspond
to M̄, which do not belong toM′.

because
Es,a∼ρ

[
TV(P (· | s, a), P ?(· | s, a))2

]
≤ Es,a∼ρ

[
TV(P (· | s, a), P ′′(· | s, a))2

]
+ Es,a∼ρ

[
TV(P ′′(· | s, a), P ?(· | s, a))2

]
≤ Es,a∼ρ

[
TV(P ′′(· | s, a), P ?(· | s, a))2

]
+ ε2 (Take some P ′′ ∈MD noting (16))

≤ cξ +A(P ). (From (13))

Then, with probability 1− δ, from Bernstein’s inequality, we have

A(P ) ≤
√
c
var[TV(P (· | s, a), P ?(· | s, a))2] ln(K |S|×|A|/δ)

n
+
c ln(K |S|×|A|/δ)

n
,∀P ∈M.

Hereafter, we condition on the above event. Based on (17), we can state
var[TV(P (· | s, a), P ?(· | s, a))2] . E[TV(P (· | s, a), P ?(· | s, a))2] . ξ +A(P ), ∀P ∈M′,
with probability 1− δ. Following the argument of Theorem 1, for P ∈M′, we have

A2(P )−A(P )B1 −B2 ≤ 0, B1 =
ln(K |S|×|A|/δ)

n
, B2 = ξ

ln(K |S|×|A|/δ)

n
+

(
ln(K |S|×|A|/δ)

n

)2

.

Then, with probability 1− δ, we have

A(P ) ≤ ln(K |S|×|A|/δ)

n
+

√
ln(K |S|×|A|/δ)

n
ξ1/2 . ξ, ∀P ∈M′. (18)

This shows for any P ∈MD, we have
|{ED − E(s,a)∼ρ}[TV(P (· | s, a), P ?(· | s, a))2]|
≤ |{ED − E(s,a)∼ρ}[TV(P ′(· | s, a), P (· | s, a))2 + TV(P ′(· | s, a), P ?(· | s, a))2]|

(We take P ′ ∈M′ such that (16))

≤ |{ED − E(s,a)∼ρ}[TV(P ′(· | s, a), P ?(· | s, a))2] + 8ε (From the definition ofM′)
. ξ. (From (18) and P ′ ∈M′)

Thus, (14) is proved.

Third step. We follow the third step of Theorem 1:

V π
∗

P? − V π̂P? . (1− γ)−2

√
C†π∗ξ.
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E.4 PROOFS FOR LINEAR MIXTURE MDPS

Proof of Corollary 2. Here, letting P (θ) = θ>ψ(s, a, s′), recall

MMix =

{
P (θ) | θ ∈ Θ ⊂ Rd,

∫
θ>ψ(s, a, s′)d(s′) = 1 ∀(s, a)

}
, H =

{√
P + P ?

2
| P ∈MMix

}
.

Upper-bounding E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2].
By invoking Theorem 4, we first show

E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2] ≤ c{(d/n) ln2(nR) + ln(c/δ)/n}.

To do that, we calculate the entropy integral with bracketing. First, we have
N[](ε,H, d) ≤ N[](ε,MMix, d

′). (19)
where

d′(a, b) = E(s,a)∼ρ

[∫
(a(s, a, s′)− b(s, a, s′))2d(s′)

]1/2

, (20)

d(a, b) = E(s,a)∼ρ

[∫
(
√
a(s, a, s′)−

√
b(s, a, s′))2d(s′)

]1/2

. (21)

Here, we use two observations. The first observation is

d2

(√
P (θ′) + P ?

2
,

√
P (θ′′) + P ?

2

)
≤ c1d′2(P (θ′), P (θ′′))

due to the mean-value theorem√
a−
√
b ≤ max(1/

√
a, 1/
√
b)(a− b)

and assumption P ?(s′ | s, a) ≥ c0 > 0. The second observation is when we have P ′ < g < P ′′, we
also have

√
(P ′ + P ?)/2 <

√
(g + P ?)/2 <

√
(P ′′ + P ?)/2. Then, (19) is concluded.

Next, by letting θ(1), · · · , θ(K) be an ε-cover of the d-dimensional ball with a radius R, i.e, Bd(R),
we have the brackets {[P (θ(i)) − ε, P (θ(i)) + ε]}Ki=1 which coverMmix. This is because for any
P (θ) ∈Mmix, we can take θ(i) s.t. ‖θ − θ(i)‖2 ≤ ε, then,

P (θ(i))− ε < P (θ) < P (θ(i)) + ε, ∀(s, a, s′)
noting

|P (θ)(s, a, s′)− P (θ(i))(s, a, s′)| ≤ ‖θ − θ(i)‖2 ≤ ε, ∀(s, a, s′) (22)
The last equality is from Lemma 10.

The brackets above are size of ε. Therefore, we have
N[](ε,Mmix, ‖ · ‖2) ≤ N (ε, Bd(cR), ‖ · ‖2),

where N (ε, Bd(cR), ‖ · ‖2) is a covering number of Bd(cR) w.r.t ‖ · ‖2. This is upper-bounded by
(cR/ε)d (Wainwright, 2019, Lemma 5.7). Thus, we can calculate the upper bound of the entropy
integral JB(δ,Mmix, ‖ · ‖2):∫ δ

0

d1/2 ln1/2(cR/u)du ≤
∫ δ

0

d1/2 ln(1/u)du+ δd1/2 ln(c1R)

= cd1/2(δ + δ ln(1/δ)) + δd1/2 ln(cR)

≤ cd1/2δ ln(cR/δ).

By taking G(x) = d1/2x ln(cR/x) in Theorem 4, δn = (d/n)1/2 ln(nR) satisfies the critical in-
equality √

nδ2
n ≥ d1/2δn ln(cR/δn).

Finally, with probability 1− δ
E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2] ≤ ξ′, ξ′ := {(d/n) ln2(nR) + ln(c/δ)/n}.

(23)
Hereafter, we condition on this event.
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Upper bounding ED[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2]. We take an ε-cover of the ball
Bd(R) in terms of ‖·‖2, i.e., M̄ = {θ(1), · · · , θ(K)}, whereK = (cR/ε)d. We take ε = 1/n. Then,
for any θ ∈ Bd(R), there exists θ(i) s.t. ∀(s, a),

|TV(P (θ)(· | s, a), P (θ̂MLE)(· | s, a))2 − TV(P (θ(i))(· | s, a), P (θ̂MLE)(· | s, a))2|
≤ 4|TV(P (θ)(· | s, a), P (θ̂MLE)(· | s, a))− TV(P (θ(i))(· | s, a), P (θ̂MLE)(· | s, a))|

(a2 − b2 = (a− b)(a+ b))

≤ 4TV(P (θ)(· | s, a), P (θ(i))(· | s, a)) (|‖a‖ − ‖b‖| ≤ ‖a− b‖)
≤ 4‖θ − θ(i)‖2 (From Lemma 10.)
≤ 4ε. (24)

Hereafter, we condition on the event:

|(ED − E(s,a)∼ρ)[TV(P (θ)(· | s, a), P (θ?)(· | s, a))2]| (25)

.

√
var(s,a)∼ρ[TV(P (θ)(· | s, a), P (θ?)(· | s, a))2] ln(K/δ)

n
+

ln(K/δ)

n
, ∀θ ∈ M̄.

This event holds with probability 1− δ from Bernstein’s inequality.

Here, note for θ̂MLE, we have θ(i) s.t. ‖θ̂MLE − θ(i)‖2 ≤ ε. Then, following the first step of
Theorem 1,

E(s,a)∼DTV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2

. E(s,a)∼DTV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2 + ε (From (24))

. (ED − E(s,a)∼ρ)TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2 + ε+ E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2

.

√
var(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2] ln(K/δ)

n
+

ln(K/δ)

n

+ ε+ E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2 (From (25))

.

√
E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2] ln(K/δ)

n
+

ln(K/δ)

n

+ ε+ E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2].

(TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2 ≤ 4)

Then, we have

ED[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2]

.

√
{E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2] + ε} ln(K/δ)

n
+

ln(K/δ)

n

+ ε+ E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2

.

√
{ξ′ + ε} ln(K/δ)

n
+

ln(K/δ)

n
+ ε+ ξ′. (From (23))

In the end, by taking ε = 1/n, we have with probability 1− δ,

EDTV(P (θ?)(· | s, a), P (θ̂MLE)(· | s, a))2 ≤ ξ, ξ = c{(d/n) ln2(nR) + ln(c/δ)/n}.

This also implies with probability 1− δ, P ? ∈MD.

Show E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ)(· | s, a))2 . ξ,∀P (θ) ∈MD.
We show for any P ∈ MD, the distance between P ? is controlled in terms of TV distance. Our
goal is showing

E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ)(· | s, a))2 . ξ, ∀P (θ) ∈MD.
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First, following the second step of Theorem 1 based on equation 8, we have
E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ)(· | s, a))2 ≤ A(θ) + cξ, ∀P (θ) ∈MD (26)

where
A(θ) := |(ED − E(s,a)∼ρ)TV(P (θ?)(· | s, a), P (θ)(· | s, a))2|.

From now on, we again consider an ε-cover of the ball Bd(R) in terms of ‖ · ‖2, i.e., M̄ =
{θ(1), · · · , θ(K)}, where K = (c1R/ε)

d (ε = 1/n). This also covers the space MD. We take
M′ = {θ(i1), θ(i2) · · · , } ⊂ M which coversMD, that is,

M′ =
{
θ ∈ M̄ | ∃θ′s.t.P (θ′) ∈MD, ‖θ − θ′‖2 ≤ ε

}
.

Recall Figure 1, which illustrates this definition. Here, for any θ s.t. ∀P (θ) ∈ MD, we can take
θ′ ∈ M′ s.t. ‖θ − θ′‖2 ≤ 1/n. This is because we can take θ ∈ M̄ s.t. ‖θ − θ′‖2 ≤ ε noting M̄ is
an ε-net, but such θ belongs toM′ from the definition ofM′.
Then, we have

E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ)(· | s, a))2 ≤ A(θ) + cξ, ∀θ ∈M′. (27)

This is because for any θ(i) ∈M′, we can take P (θ) ∈MD such that

E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2

≤ E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ(i))(· | s, a))2 − TV(P (θ?)(· | s, a), P (θ)(· | s, a))2]

+ E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ)(· | s, a))2]

≤ 4ε+ E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ)(· | s, a))2] (‖θ − θ(i)‖2 ≤ ε and from (24))

. A(θ) + ξ. ( From (26))

Here, from (25), we have

A(θ) ≤
√
c
var(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ)(· | s, a))2] ln(K/δ)

n
+
c ln(K/δ)

n
, ∀θ ∈M′

Based on the construction ofM′ and (27), we have
var(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ)(· | s, a))2] . A(θ) + ξ, ∀θ ∈M′.

Then, following the second step of Theorem 1, A(θ) satisfies

A2(θ)−A(θ)B1 −B2 ≤ 0, B1 =
ln(K/δ)

n
,B2 = ξ

ln(K/δ)

n
+

(
ln(K/δ)

n

)2

.

Then, we have

A(θ) ≤ ln(K/δ)

n
+ ξ1/2

√
ln(K/δ)

n
. ξ, ∀θ ∈M′. (28)

We combine all steps. Recall for any ∀P (θ) ∈ MD, we can take θ′ ∈ M′ s.t. ‖θ − θ′‖2 ≤ 1/n.
Then, for any P (θ) ∈MD, we have

A(θ) = |(ED − E(s,a)∼ρ)TV(P (θ)(· | s, a), P (θ?)(· | s, a))2

≤ |(ED − E(s,a)∼ρ)[TV(P (θ)(· | s, a), P (θ?)(· | s, a))2 − TV(P (θ′)(· | s, a), P (θ?)(· | s, a))2]

+ (ED − E(s,a)∼ρ)[TV(P (θ′)(· | s, a), P (θ?)(· | s, a))2]

≤ 8ε+ |(ED − E(s,a)∼ρ)[TV(P (θ′)(· | s, a), P (θ?)(· | s, a))2] (From equation 24)

. ξ. (From equation 28 and θ′ ∈M′)
Then, we have with probability 1− δ,

A(θ) . ξ, ∀P (θ) ∈MD. (29)
Finally, for any P (θ) ∈MD, with probability 1− δ, we have

E(s,a)∼ρ[TV(P (θ?)(· | s, a), P (θ)(· | s, a))2] ≤ A(θ) + cξ (From equation 26)

. ξ. (From equation 29)
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Distribution shift part Here, for P ∈MD we prove

V π
∗

P? − V π
∗

P . (1− γ)−2
√
dCπ∗,mixξ, (30)

V π
∗

P? − V π
∗

P . (1− γ)−2

√
C†π∗ξ. (31)

Following the third step of the proof of Theorem 5, this immediately concludes the bound

V π
∗

P? − V π̂P? . (1− γ)−2
√
dCπ∗,mixξ,

V π
∗

P? − V π̂P? . (1− γ)−2

√
C†π∗ξ.

Since (31) is obvious from simulation lemma, we only prove (30). To prove (30), we take a distri-
bution P (θ) ∈MD. First, recall for P (θ) ∈MD, we have

E(s,a)∼ρTV(P (θ?)(· | s, a), P (θ)(· | s, a))2 . ξ.

From the third statement of Lemma 10, for any V : S → [0, 1], we have

E(s,a)∼ρ[|(θ − θ∗)>ψV (s, a)|2] . ξ.

Thus,

∀V : S → [0, 1], (θ − θ∗)>Σρ,V (θ − θ∗) . ξ, Σρ,V = E(s,a)∼ρ[ψV (s, a)ψ>V (s, a)].

Here, we have

V π
∗

P? − V π
∗

P ≤ (1− γ)−1

∣∣∣∣E(s,a)∼dπ∗
P?

[∫
{P (s′ | s, a)− P ?(s′ | s, a)}V π

∗

P (s′)d(s′)

]∣∣∣∣
(Simulation lemma, Lemma 5)

≤ (1− γ)−1
∣∣∣E(s,a)∼dπ∗

P?

[
(θ − θ∗)ψV π∗P (s, a)

]∣∣∣
(Recall ψV =

∫
ψ(s, a, s′)V π

∗

P (s′)d(s′))

≤ (1− γ)−1 ‖θ − θ∗‖λI+Σ
ρ,V π

∗
P︸ ︷︷ ︸

(a)

E(s,a)∼dπ∗
P?

[
‖ψV π∗P (s, a)‖(Σ

ρ,V π
∗

P
+λI)−1

]
︸ ︷︷ ︸

(b)

.

(CS inequality)

The first term (a) is upper-bounded by
√
{(1− γ)−2ξ + λR2} noting 0 ≤ V π

∗

P ≤ (1 − γ)−1. The
term (b) is upper-bounded by

E(s,a)∼dπ∗
P?

[
‖ψV π∗P (s, a)‖(Σ

ρ,V π
∗

P
+λI)−1

]
≤ E(s,a)∼dπ∗

P?

[
‖ψV π∗P (s, a)‖2(Σ

ρ,V π
∗

P
+λI)−1

]1/2

(Jensen’s inequality)

=
√

Tr(Σdπ∗
P?
,V π
∗

P
(λI + Σρ,V π∗P

)−1)

≤
√
Cπ∗,mix Tr(Σρ,V π∗P

(λI + Σρ,V π∗P
)−1)

(From Lemma 11)

≤
√
Cπ∗,mixrank(Σρ,V π∗P

) ≤
√
Cπ∗,mixd.

By taking λ s.t. λR2 . (1− γ)−2ξ, (30) is proved.

For linear MDPs, from the fourth statement of Lemma 10, Cπ∗,mix ≤ C̄π∗ . Then, the statement is
concluded.

E.5 PROOFS FOR KNRS

Proof of Corollary 3. We prove in a similar way as Theorem 1.
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First Step Recall

ξ =
√

2λ‖W ?‖22 + 8ζ2
(
dS ln(5) + ln(1/δ) + Īn

)
, Īn = ln (det(Σn)/ det(λI)) .

Thus, from Lemma 8, with probability 1− δ, we can show W ∗ ∈ WD since∥∥∥(ŴMLE −W ?
)

(Σn)
1/2
∥∥∥

2
≤ ξ.

Hereafter, we condition on this event.

Second step For any W ∈ WD, with probability 1− δ, we have∥∥∥(W −W ?) (Σn)
1/2
∥∥∥

2
≤
∥∥∥(W − Ŵ) (Σn)

1/2
∥∥∥

2
+
∥∥∥(W ∗ − Ŵ) (Σn)

1/2
∥∥∥

2
≤ ξ.

Third step Note P ? = P (W ∗). Then,

V π
∗

P? − V π̂P? ≤ V π
∗

P? − min
W∈WD

V π
∗

P (W ) + min
W∈WD

V π
∗

P (W ) − V
π̂
P?

≤ V π
∗

P? − min
W∈WD

V π
∗

P (W ) + min
W∈WD

V π̂P (W ) − V
π̂
P? (definition of π̂)

≤ V π
∗

P? − min
W∈WD

V π
∗

P (W ). (Fist step, W ∗ ∈ WD)

Then, by setting W ′ = arg minW∈MD V
π∗

P (W ), we have

V π
∗

P? − V π̂P? ≤ (1− γ)−2E(s,a)∼dπ∗
P?

[‖P ′(s, a)− P ?(s, a)‖TV]

≤ (1− γ)−2

ζ
E(s,a)∼dπ∗

P?
[‖(W ′ −W ?)φ(s, a)‖2] (Lemma 9)

≤ (1− γ)−2

ζ
E(s,a)∼dπ∗

P?

[∥∥∥(W ′ −W ?)(Σn)1/2
∥∥∥

2
‖φ(s, a)‖Σ−1

n

]
(CS inequality)

≤ (1− γ)−2

ζ
ξE(s,a)∼dπ∗

P?
[‖φ(s, a)‖Σ−1

n
] (Second step)

From Chang et al. (2021, Theorem 20), with probability 1− δ, we have

ξ ≤ c1
√
‖W ∗‖2 + dS min(rank(Σρ){rank(Σρ) + ln(c2/δ)}, d) ln(1 + n).

In addition, from Chang et al. (2021, Theorem 21), with probability 1− δ, we also have

E(s,a)∼dπ∗
P?

[‖φ(s, a)‖Σ−1
n

] ≤ c1

√
C̄π∗rank[Σρ]{rank[Σρ] + ln(c2/δ)}

n
.

Finally, by combining all things, we have

V π
∗

P? − V π̂P? ≤ c1(1− γ)−2 min(d1/2, R̄)
√
R̄

√
dSC̄π∗ ln(1 + n)

n
, R̄ = rank[Σρ]{rank[Σρ] + ln(c2/δ)}.

E.6 PROOFS FOR LOW-RANK MDPS

Proof of Theorem 2. Until the second step, we can perform the same analysis as Theorem 1. More
concretely, with probability 1− δ, we have P ? ∈MD and

Es,a∼ρ[TV(P (· | s, a), P ?(· | s, a))2] ≤ ξ, ∀P ∈MD, ξ := c
ln(|M|/δ)

n
. (32)

Hereafter, we condition on the above event.

28



Published as a conference paper at ICLR 2022

Letting f(s, a) = TV(P (· | s, a), P ?(· | s, a)), we use Lemma 4. Then,

E(s,a)∼dπ
P?

[f(s, a)] ≤ E(s,a)∼dπ
P?

[‖φ?(s, a)‖Σ−1
ρ,φ?

]
√
nγωπEρ[f2(s, a)] + 4γ2λd+

√
(1− γ)ωπEρ[f2(s, a)]

where Σ = nEρ[φ?φ?>] + λI . We consider how to bound E(s,a)∼dπ
P?

[‖φ?(s, a)‖Σ−1
ρ,φ?

]. This is
upper-bounded by

E(s,a)∼dπ
P?

[‖φ?(s, a)‖Σ−1
ρ,φ?

] ≤
√

tr(E(s,a)∼dπ
P?

[φ?φ?>]Σ−1
ρ,φ?)

≤
√
C̄π∗,φ? tr(E(s,a)∼ρ[φ?φ?

>]Σ−1
ρ,φ?) (From Lemma 11)

≤
√
C̄π∗,φ?rank(Σρ)/n.

Here, in the last line, by letting the SVD of Σρ = Eρ[φφ>] be U Σ̃ρU
> where Σ̃ρ is a d×d diagonal

matrix and U is a d× d orthogonal matrix , we use

tr
(

ΣρΣ
−1
ρ,φ?

)
= tr(U Σ̃ρU

>{nU Σ̃ρU
> + λI}−1) = tr(Σ̃ρU

>{nU Σ̃ρU
> + λI}−1U)

= tr(Σ̃ρU
>{U{nΣ̃ρ + λI}U>}−1U)

= tr(Σ̃ρU
>U{nΣ̃ρ + λI}−1U>U)

= tr(Σ̃ρ{nΣ̃ρ + λI})−1 ≤ rank(Σρ)/n.

Hence, when P ∈MD, by setting λ s.t. λd . nωπξ, we have

E(s,a)∼dπ
P?

[f(s, a)] ≤
√
γC̄π∗,φ?rank(Σρ)ωπ ln(|M|/δ)

n
+

√
(1− γ)ωπ ln(|M|/δ)

n
.

We use (32) here.

Finally,

V π
∗

P? − V π̂P?
≤ V π

∗

P? − min
P∈MD

V π
∗

P (Recall the proof of the third step in the proof of Theorem 1)

≤ (1− γ)−2Es,a∼dπ?
P?

TV(P ′(s, a), P ?(· | s, a)) (P ′ = arg minP∈MD V
π∗

P )

.

√
C̄π∗,φ?rank(Σρ)ωπ∗ ln(|M|/δ)

n(1− γ)4
.

The following inequality is an important lemma to connect E(s,a)∼dπ
P?
{f(s, a)} with an elliptical

potential E(s̃,ã)∼dπ
P?
‖φ?(s̃, ã)‖Σ−1

ρ,φ?
.

Lemma 4 (One-step back inequality). Take any f ⊂ S × A → R s.t. ‖f‖∞ ≤ B and 0 < λ ∈ R.
Letting ω = maxs,a(π(a | s)/πb(a | s)), for any policy π, we have

|E(s,a)∼dπ
P?
{f(s, a)} | ≤ E(s̃,ã)∼dπ

P?
‖φ?(s̃, ã)‖Σ−1

√{
nωπγE(s,a)∼ρ [f2(s, a)]

}
+ γ2λdB2

+
√

(1− γ)ωπE(s,a)∼ρ [f2(s, a)].

where Σ = nE(s,a)∼ρ[φ
?(s, a)φ?>(s, a)] + λI .

Proof of Lemma 4. First, we have an equality:

E(s,a)∼dπ
P?
{f(s, a)} = γE(s̃,ã)∼dπ

P?
,s∼P?(s̃,ã) {f(s, a)}+ (1− γ)Es∼d0,a∼π(s0) {f(s, a)} .

(33)
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The second term in (33) is upper-bounded by

Es∼d0,a∼π(s0) {f(s, a)} ≤ Es∼d0,a∼π(s0)

{
f2(s, a)

}
}1/2 =

√
ωπE(s,a)∼ρ [f2(s, a)] /(1− γ).

Next we consider the first term in (33). By CS inequality, we have∣∣∣E(s̃,ã)∼dπ
P?
,s∼P?(s̃,ã) {f(s, a)}

∣∣∣ =

∣∣∣∣E(s̃,ã)∼dπ
P?
φ?(s̃, ã)>

∫
µ̂(s)π(a | s)f(s, a)d(s, a)

∣∣∣∣
≤ E(s̃,ã)∼dπ

P?
‖φ?(s̃, ã)‖Σ−1

ρ,φ?
‖
∫
µ̂(s)π(a | s)f(s, a)d(s, a)‖Σρ,φ? .

Then,

‖
∫
µ̂(s)π(a | s)f(s, a)d(s, a)‖2Σρ,φ?

≤
{∫

µ̂(s)π(a | s)f(s, a)d(s, a)

}> {
nE(s,a)∼ρ[φ

?φ?>] + λI
}{∫

µ̂(s)π(a | s)f(s, a)d(s, a)

}
≤ n

{
E(s̃,ã)∼ρ

[∫
µ̂(s)>φ?(s̃, ã)π(a | s)f(s, a)d(s, a)

]}2

+B2λd

(Use the assumption ‖f(s, a)‖∞ ≤ B and ‖
∫
µ̂(s)d(s)‖2 ≤

√
d)

= n
{
E(s̃,ã)∼ρ,s∼P?(s̃,ã),a∼π(s) [f(s, a)]

}2
+B2λd

≤ n
{
E(s̃,ã)∼ρ,s∼P?(s̃,ã),a∼π(s)

[
f2(s, a)

]}
+B2λd. (Jensen)

Finally, the the first term in (33) is upper-bounded by

n
{
E(s̃,ã)∼ρ,s∼P?(s̃,ã),a∼π(s)

[
f2(s, a)

]}
+ λdB2

≤ nωπ
{
E(s̃,ã)∼ρ,s∼P?(s̃,ã),a∼πb(s)

[
f2(s, a)

]}
+ λdB2 (Importance sampling)

≤ nωπ
{

1

γ
E(s,a)∼ρ

[
f2(s, a)

]}
+ λdB2. (Definition of ρ)

The final statement is immediately concluded.

E.7 PROOFS FOR FACTORED MDPS

Proof of Theorem 3. We denote the constrained set asMD:

MD =

{
P =

∏
i

Pi | ED
[
TV(P̂MLE,i(· | s[pai], a), Pi(· | s[pai], a))2

]
≤ ξi,∀i ∈ [1, · · · , d]

}
.

Following the first step in the proof of Corollary 1, with probability 1 − δ, the product
∏
i P

?
i is in

MD, i.e.,

Es,a∼D
[
TV(P̂MLE,i(· | s[pai], a), P ?i (· | s[pai], a))2

]
≤ ξi,∀i ∈ [1, · · · , d], ξi =

√
Li log(Lid/δ)

n .

Note d comes from the union bound. Besides, following the second step in the proof of Corollary 1,
for any P ∈MD, with probability 1− δ,

Es,a∼ρ
[
TV (P̂i(· | s[pai], a), P ?i (· | s[pai], a))2

]
≤ ξi,∀i ∈ [1, · · · , d].
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After conditioning on the above two events, then, for any P ∈MD and π? ∈ Π, we have

V π
∗

P? − V π
∗

P ≤ (1− γ)−2E(s,a)∼dπ∗
P?

[TV(P (· | s, a), P ?(· | s, a))]

(Simulation lemma, Lemma 5)

≤ (1− γ)−2E(s,a)∼dπ∗
P?

[
∑
i

TV(Pi(· | s[pai], a), P ?i (· | s[pai], a))]

≤ (1− γ)−2
∑
i

√√√√E(s,a)∼ρ

[(
dπ
∗
P?(s[pai], a)

ρ(s[pai], a)

)2
]
E(s,a)∼ρ[TV(Pi(· | s[pai], a), P ?i (· | s[pai], a))2]

(CS inequality)

≤ (1− γ)−2
∑
i

√
C̈π∗,∞E(s,a)∼ρ[TV(Pi(· | s, a), P ?i (· | s, a))2] ≤ (1− γ)−2

∑
i

√
C̈π∗,∞ξi

≤ (1− γ)−2

√
dC̈π∗,∞

∑
i

ξi (CS inequality)

≤ c(1− γ)−2

√
dC̈π∗,∞

L ln(Lnd/δ)

n
.

Here, recall

C̈π∗,∞ = max
i∈[1,··· ,d]

E(s,a)∼ρ

[(
dπ
∗

P?(s[pai], a)

ρ(s[pai], a)

)2
]
.

Following the third step in the proof of Corollary 1, the statement is concluded.

Next, we show that C̈π∗,∞ ≤ Cπ∗,P? = maxs,a
dπ
∗
P? (s,a)
ρ(s,a) .

Proposition 1 (Comparison of L∞-density-ratio based concentrabiliity coefficient between factored
MDPs and non-factored MDPs ). For any π∗, we have:

C̈π∗,∞ ≤ Cπ∗,∞. (34)

Proof. From now on, for any i ∈ [1, · · · , d], by defining S ′i s.t. S = Si × S ′i, we prove

max
si∈Si,a∈A

dπ
∗

P?(si, a)

ρ(si, a)
≤ max
s∈Si,s′i∈Si,a∈A

dπ
∗

P?(si, s
′
i, a)

ρ(si, s′i, a)
= Cπ∗,∞.

Then, (34) is easily proved.

First, for any si ∈ Si, a ∈ A, we have

max
s′i

dπ
∗

P?(si, s
′
i, a)

ρ(si, s′i, a)
= max

s′i

dπ
∗

P?(si, a)dπ
∗

P?(s′i | si, a)

ρ(si, a)ρ(s′i | si, a)
=
dπ
∗

P?(si, a)

ρ(si, a)
max
s′i

dπ
∗

P?(s′i | si, a)

ρ(s′i | si, a)
≥ dπ

∗

P?(si, a)

ρ(si, a)
.

(35)
Here, we use

1 ≤ max
s′i

dπ
∗

P?(s′i | si, a)

ρ(s′i | si, a)
,

which is proved by the contradiction argument, that is, if 1 > maxs′i
dπ
∗
P? (s′i|si,a)
ρ(s′i|si,a) , both ρ and dπ

∗

P?

cannot be probability mass functions since we would get

1 =
∑
s′i

dπ
∗

P?(s′i | si, a) ≤ max
s′i

(
dπ
∗

P?(s′i | si, a)

ρ(s′i | si, a)

)∑
s′i

ρ(s′i | si, a) <
∑
s′i

ρ(s′i | si, a).

Then, by taking the maximum over si ∈ Si, a ∈ A for both sides on (35), we have

max
si,a

dπ
∗

P?(si, a)

ρ(si, a)
≤ max
si,s′i,a

dπ
∗

P?(si, s
′
i, a)

ρ(s1, s′i, a)
.
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F AUXILIARY LEMMAS

Lemma 5 (Simulation Lemma). Consider any two transitions P and P̂ , and any policy π : S →
∆(A). We have:

|V πP − V πP̂ | ≤ |(1− γ)−1Es,a∼dπP [Es′∼P (s,a)[V
π
P̂

(s′)]− Es′∼P (s,a)[V
π
P̂

(s′)]]|

≤ (1− γ)−2Es,a∼dπP
[
TV(P (·|s, a), P̂ (·|s, a))

]
.

Proof. Such simulation lemma is standard in model-based RL literature and the derivation can be
found, for instance, in the proof of Lemma 10 from Sun et al. (2019).

Lemma 6 (MLE guarantee). Given a set of modelsM = {P : S × A → ∆(S)} with P ? ∈ M,
and a dataset D = {si, ai, s′i}ni=1 with si, ai ∼ ρ, and s′i ∼ P ?(si, ai), let P̂MLE be

P̂MLE = arg min
P∈M

n∑
i=1

− lnP (s′i|si, ai).

With probability at least 1− δ, we have:

Es,a∼ρTV(P̂MLE(·|s, a), P ?(·|s, a))2 .
ln(|M|/δ)

n
.

Proof. Refer to (Agarwal et al., 2020b, Section E)

Lemma 7 (MLE guarantee for tabular models).

ED
[
TV(P (·|s, a), P̂MLE(·|s, a))2

]
≤ |S|A|{|S| ln 2 + ln(2|S||A|/δ)}

2n
.

Proof. From Chang et al. (2021, Lemma 12) , with probability 1− δ,

TV(P (·|s, a), P̂MLE(·|s, a))2 ≤ |S| ln 2 + ln(2|S||A|/δ)
2N(s, a)

∀(s, a) ∈ S ×A,

where N(s, a) is the number of visiting times for (s, a). Then,

ED
[
TV(P (·|s, a), P̂MLE(·|s, a))2

]
≤ ED

[
|S| ln 2 + ln(2|S||A|/δ)

2N(s, a)

]
≤
∑
(s,a)

[
|S| ln 2 + ln(2|S||A|/δ)

2n

]

=
|S|A|{|S| ln 2 + ln(2|S||A|/δ)}

2n
.

Lemma 8 (MLE guarantee for KNRs).∥∥∥(ŴMLE −W ?
)

(Σn)
1/2
∥∥∥

2
≤ βn.

Proof. The proof directly follows the confidence ball construction and proof from (Kakade et al.,
2020).

Lemma 9 (`1 Distance between two Gaussians). Consider two Gaussian distributions P1 :=
N (µ1, ζ

2I) and P2 := N (µ2, ζ
2I). We have:

TV(P1, P2) ≤ 1

ζ
‖µ1 − µ2‖2 .
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Proof. This lemma is proved by Pinsker’s inequality and the closed-form of the KL divergence
between P1 and P2. Refer to (Kakade et al., 2020).

Lemma 10 (Property of linear mixture MDPs). Let P (θ) = θ>ψ(s, a, s′). Suppose P (θ) ∈ S ×
A → ∆(S). For any function V ∈ S → [0, 1], letting ψV (s, a) =

∫
ψ(s, a, s′)V (s′)d(s′), we

suppose ‖ψV (s, a)‖2 ≤ 1. The following theorems hold:

1. For any (s, a, s′), we have |P (θ)(s, a, s′)− P (θ′)(s, a, s′)| ≤ ‖θ − θ′‖2.

2. For any (s, a), we have TV(P (θ)(s, a, ·), P (θ′)(s, a, ·)) ≤ ‖θ − θ′‖2. Besides, for any
V : S → [0, 1], we have

|(θ − θ′)ψV (s, a)| ≤ TV(P (θ)(s, a, ·), P (θ′)(s, a, ·)).

3.

C†π?,P? = sup
x

x>E(s,a)∼dπ∗
P?

[ψV(s,a,x)
(s, a)ψ>V(s,a,x)

(s, a)]x

x>E(s,a)∼ρ[ψV(s,a,x)
(s, a)ψ>V(s,a,x)

(s, a)]x
,

V(s,a,x) = arg max
V :S→[0,1]

∣∣∣∣x> ∫ φ(s, a, s′)V (s′)d(s′)

∣∣∣∣ .
4. In linear MDPs (i.e., ψ(s, a, s′) = φ(s, a)⊗ µ(s′)), we have

sup
V ∈{S→[0,1]}

sup
x

x>E(s,a)∼dπ∗
P?

[ψV (s, a)ψ>V (s, a)]x

x>E(s,a)∼ρ[ψV (s, a)ψ>V (s, a)]x
= sup

x

x>Edπ∗
P?

[φ(s, a)φ(s, a)>]x

x>Eρ[φ(s, a)φ(s, a)>]x
.

Proof. We prove the first statement. This is proved by

|P (θ)− P (θ′)| = |(θ − θ′)ψ(s, a, s′)| ≤ ‖θ − θ′‖2‖ψ(s, a, s′)‖2 ≤ ‖θ − θ′‖2,

Here, we use ‖ψ(s, a, s′)‖2 ≤ 1 which is proved by the assumption by setting V (s) = I(s′ = s)
for any s′.

Next, we prove the second statement. For fixed θ ∈ Rd and (s, a) ∈ S ×A, we have

TV(P (θ)(s, a, ·), P (θ?)(s, a, ·)) = sup
V :S→[0,1]

|
∫

(θ − θ?)>ψ(s, a, s′)V (s′)d(s′)|

= sup
V :S→[0,1]

|(θ − θ?)>
∫
ψ(s, a, s′)V (s′)d(s′)|

= |(θ − θ?)>
∫
ψ(s, a, s′)V(s,a,θ)(s

′)d(s′)|

= |(θ − θ?)>ψV(s,a,θ)
(s, a)|.

In the third line, we define V (s, a, θ) = arg maxV :S→[0,1] |(θ − θ?)>
∫
ψ(s, a, s′)V (s′)d(s′)|.

Then, from CS inequality,

TV(P (θ)(s, a, ·), P (θ?)(s, a, ·)) ≤ ‖(θ − θ?‖2‖ψV(s,a,θ)
(s, a)|‖2 ≤ ‖θ − θ?‖2.

We use the assumption ‖ψV(s,a,θ)
(s, a)‖2 ≤ 1. This concludes the second statement. Besides, for

any V : S → [0, 1], we have

|(θ − θ′)ψV (s, a)| ≤ |(θ − θ?)>ψV(s,a,θ)
(s, a)|

≤ TV(P (θ)(s, a, ·), P (θ′)(s, a, ·)).

The third statement is immediately concluded by

E(s,a)∼dπ∗
P?

[TV(P (θ)(s, a, ·), P (θ?)(s, a, ·))2]

E(s,a)∼ρ[TV(P (θ)(s, a, ·), P (θ?)(s, a, ·))2]
=

E(s,a)∼dπ∗
P?

[|(θ − θ?)>ψV(s,a,θ)
(s, a)|2]

E(s,a)∼ρ[|(θ − θ?)>ψV(s,a,θ)
(s, a)|2]

. (36)
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Finally, we prove the fourth statement. Suppose ψ(s, a, s′) = φ(s, a)⊗ µ(s′) (⊗ denotes kronerker
product). Then, φV (s, a, s′) = φ(s, a) ⊗

∫
µ(s′)V (s′)d(s′). Then, by defining a vector µ(V ) =∫

µ(s′)V (s′)d(s′), we immediately have

x>E(s,a)∼dπ∗
P?

[ψV (s, a)ψ>V (s, a)]x

x>E(s,a)∼ρ[ψV (s, a)ψ>V (s, a)]x
= sup

x

x>E(s,a)∼dπ∗
P?

[(φ(s, a)⊗ µ(V ))(φ(s, a)⊗ µ(V ))>]x

x>E(s,a)∼ρ[(φ(s, a)⊗ µ(V ))(φ(s, a)⊗ µ(V ))>]x
.

(37)

Here, we have

Eρ[(φ(s, a)⊗ µ(V ))(φ(s, a)⊗ µ(V ))>] = Eρ[(φ(s, a)⊗ µ(V ))(φ(s, a)> ⊗ µ(V )>)]

= Eρ[(φ(s, a)φ(s, a)>)]⊗ (µ(V )µ(V )>).

We notice

{Eρ[(φ(s, a)φ(s, a)>)]⊗ (µ(V )µ(V )>)}1/2 = Eρ[φ(s, a)φ(s, a)>]1/2 ⊗ (µ(V )µ(V )>)1/2.

This is because the square root of a matrix is unique and we have (A1/2 ⊗ B1/2)(A1/2 ⊗ B1/2) =
AB for symmetric matrices A and B. Then, by denoting Fρ = Eρ[φ(s, a)φ(s, a)>], Fdπ

P?
=

Edπ
P?

[φ(s, a)φ(s, a)>] and denoting the pseudo inverse of F as F+, we can see (37) is equal to

{F 1/2
ρ ⊗ (µ(V )µ(V )>)1/2}+{Fdπ

P?
⊗ (µ(V )µ(V )>)}{F 1/2

ρ ⊗ (µ(V )µ(V )>)1/2}+

= {F−1/2
ρ ⊗ (µ(V )µ(V )>)−1/2}{Fdπ

P?
⊗ (µ(V )µ(V )>)}{F−1/2

ρ ⊗ (µ(V )µ(V )>)−1/2}

= {F−1/2
ρ Fdπ

P?
F−1/2
ρ } ⊗ {(µ(V )µ(V )>)−1/2(µ(V )µ(V )>)(µ(V )µ(V )>)−1/2}

= {F−1/2
ρ Fdπ

P?
F−1/2
ρ } ⊗ Ik (k = rank(µ(V )µ(V )>)).

Here, Ik is a diagonal matrix s.t. k ∈ N+ values in the diagonal entries are 1 and the rest of
values are 0. Then, the maximum singular value of {F−1/2

ρ Fdπ
P?
F
−1/2
ρ } ⊗ Ik is equal to the one of

{F−1/2
ρ Fdπ

P?
F
−1/2
ρ }. This is equal to

sup
x

x>Fdπ
P?
x

x>Fρx

Hence, the fourth statement is concluded.

Lemma 11 (Distribution shift lemma). Suppose A1, A2, A3 are semipositive definite matrices:

Tr(A1A2) ≤ σmax(A
−1/2
3 A1A

−1/2
3 ) Tr(A3A2).

Note

σmax(A
−1/2
3 A1A

−1/2
3 ) = sup

x∈Rd

x>A1x

x>A3x
.

Proof.

Tr(A1A2) = Tr(A
1/2
1 A2A

1/2
1 ) = Tr(A

1/2
1 A

−1/2
3 A

1/2
3 A2A

1/2
3 A

−1/2
3 A

1/2
1 )

= Tr(A
−1/2
3 A1A

−1/2
3 A

1/2
3 A2A

1/2
3 ).

In addition, for any semipositive definite matrices A,B we have

Tr(AB) = Tr(UΛU>B) = Tr(ΛU>BU) ≤ σmax(Λ) Tr(U>BU) = σmax(A) Tr(B),

where UΛU> is the SVD decomoposition of A. This concludes that

Tr(A1A2) ≤ σmax(A
−1/2
3 A1A

−1/2
3 ) Tr(A3A2).
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The following lemma is useful to obtain the generalized result of Theorem 1. The proof is given in
(Wainwright, 2019, Theorem 3.27). We first define

Z = sup
f∈F
|{ED − Eρ}[f ]

Σ2 = sup
f∈F

ED[{f(s, a)− Eρ[f(s, a)]}2], σ2 = sup
f∈F

var[f(s, a)].

Lemma 12 (Functional Bernstein’s inequality: Talagrand concentration inequality for empirical
process). Suppose ‖f‖∞ ≤ B. With probability 1− δ,

|Z − E[Z]| ≤ Σ2

√
log(c/δ)

n
+
B log(c/δ)

n
.

As an immediate corollary,

|Z − E[Z]| ≤ {σ2 +BE[Z]}
√

log(c/δ)

n
+
B log(c/δ)

n
.
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