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ABSTRACT

The peer review process is central to scientific publishing, with the rebuttal phase
offering authors a critical opportunity to address reviewer concerns. However,
the causal mechanisms that determine rebuttal effectiveness, particularly how
author responses influence final review decisions, remain poorly understood. In
this work, we present a two-layer causal analysis of ICLR submissions from the
OpenReview system. At the structured level, we combine metadata features (e.g.,
soundness, presentation) with LLM-inferred features (e.g., clarity, directness), and
apply independence tests to identify their associations with rating changes. At
the unstructured level, we model rebuttal texts using a weakly supervised Causal
Representation Learning (CRL) framework, guided by LLM-inferred features as
concept-level supervision. Theoretically, we establish identifiability conditions
for recovering latent concepts under mild assumptions. Empirically, our analysis
uncovers causal patterns across structured and unstructured features, revealing
how specific rebuttal strategies shape reviewer assessments. These findings offer
actionable guidance for authors in crafting more effective rebuttals and contribute
to broader goals of transparency, fairness, and efficiency in peer review processes.

1 INTRODUCTION

Peer review is the cornerstone of scientific progress, ensuring rigor, reliability, and integrity in
published research (Tennant, 2018; Alberts et al., 2008; Tennant & Ross-Hellauer, 2020; Ceci &
Peters, 1982). In recent years, the machine learning community has advanced transparency by
adopting platforms like OpenReview, where reviews, author responses (rebuttals), and ratings are
openly available (Tran et al., 2020; Wang et al., 2023a; Sun et al., 2025a; Ross-Hellauer, 2017).
This openness presents a rare opportunity to examine how rebuttals influence reviewer judgement,
a process often considered important yet poorly understood. Despite its significance, we still lack
systematic evidence on what makes rebuttals persuasive and what strategies impact reviewers’ ratings.

Prior work on peer review has investigated systemic properties such as bias (Tomkins et al., 2017),
arbitrariness (Langford & Guzdial, 2015), predictive validity (Ragone et al., 2013; Wolfram et al.,
2020), and integrity (Barrière et al., 2023). Analyses of OpenReview data have studied reviewer
behavior and rating consistency (Stelmakh et al., 2021; Gao et al., 2019), while controlled trials
examined anchoring effects in scoring (Liu et al., 2024). Several studies have examined the role of
rebuttals in the review process. For instance, Shah et al. (2018) found limited score shifts after rebuttal
despite active discussion, while Huang et al. (2023) analyzed ICLR 2022 reviews and identified social
interaction structures and author strategies that contribute to successful rebuttals. In parallel, Wu
et al. (2022) incorporated rebuttal counter-arguments into meta-review generation. However, existing
research remains correlational and descriptive, leaving open the causal question of why and how
some rebuttal strategies succeed. Please refer to App. A3 for more details about the related work.

Building on the limitations of prior correlational studies, we analyze 8684 ICLR 2024–2025 submis-
sions from the OpenReview system to uncover the causal factors driving score changes. Our analysis
consists of two progressive layers. First, we analyze structured features. We construct 24 tabular
features, including 8 review-level features (e.g., soundness, presentation), 6 paper-level features
(e.g., abstract length), and 10 higher-level LLM-inferred features, which we also refer to as concepts
(e.g., clarity, directness). These concepts are designed to capture human-aligned signals of rebuttal
effectiveness, though they may be noisy or imperfect. To assess their relationship with rating changes,
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Table 1: Dataset statistics of ICLR 2024 and 2025 with paired ratings (initial and final) from
Paper Copilot Yang (2025). The table reports paper-level statistics and review-level statistics.

Paper Statistics Review Statistics
Poster Spotlight Oral Reject Withdraw Total Reviewed Papers Avg. Reviews/Paper Total Reviews

ICLR’24 1321 290 61 1287 127 3086 3086 3.9 12035
ICLR’25 2412 306 172 2409 252 5598 5598 4.1 22951
Total 3733 596 233 3696 379 8684 8684 4.0 35033

we apply five conditional independence tests: KCI (Zhang et al., 2012), RCIT (Strobl et al., 2019),
HSIC (Gretton et al., 2005), Chi-square (Tallarida et al., 1987), and G-square (Tsamardinos et al.,
2006). Second, we extend the analysis with textual causal representation learning (CRL). Rather
than relying only on predefined, noisy LLM-inferred concepts, we aim to directly recover latent
concepts from rebuttal and review text. This second layer serves two purposes. First, it corrects for
the noise and potential biases in the LLM-inferred concept by learning representations that more
closely reflect the underlying causal factors. Second, it adds new concepts beyond our predefined
set, uncovering dimensions of rebuttal effectiveness that may not be anticipated by human intuition.
Recent advances in CRL enable the identification of interpretable concepts from high-dimensional
text (Schölkopf et al., 2021; Yao et al., 2024), especially when supported by weak supervision
with concept cues (Rajendran et al., 2024; Locatello et al., 2020) and variation induced by multiple
distributions or interventions (Zhang et al., 2024; Ahuja et al., 2023). In this way, CRL builds directly
on the structured analysis, refining noisy concept features while also discovering new latent concepts,
thereby providing a richer understanding of how rebuttal strategies shape reviewer assessments.

To summarize, our contributions are twofold. First, we conduct a deep and wide-ranging analysis of
rebuttal effectiveness across structured features, covering paper-level metadata, review-level features,
and LLM-inferred concepts. By applying established independence tests in this setting, we provide a
comprehensive examination and extract insightful patterns about which factors are dependent from
rating changes. Second, we frame rebuttal effectiveness as a causal modeling problem and situate
it within a multi-distribution framework. Building on this formulation, we introduce a new causal
model and establish novel identifiability results for recovering latent concepts from rebuttal and
review text. These two layers are progressive: the structured layer offers weak supervision to guide
CRL, while CRL both refines noisy concepts and uncovers additional ones beyond the predefined
set. Together, these contributions advance the theoretical foundations and empirical understanding of
rebuttals, while offering practical guidance for crafting more effective responses in OpenReview.

2 DATASETS

Data Collection and Processing. We build on data from Paper Copilot (Yang, 2025), a website
launched two years ago to aggregate and analyze AI conference data. Since 2024, Paper Copilot
has compiled peer review records from major conferences, and for ICLR it provides both initial
and final reviewer ratings. We focus on ICLR 2024 and 2025 submissions because they not only
include these paired ratings, which are crucial for analyzing rating changes, but also offer the most
complete author–reviewer discussion records available in the OpenReview system. In contrast, other
conferences in Paper Copilot often release only final ratings, making it impossible to study rating
changes. Our dataset includes reviews, rebuttals, and subsequent discussions. In total, we collect 8696
papers, with additional statistics reported in Tab. 1. To ensure fair and meaningful analysis, we filter
out papers without rebuttals. After processing, we obtain 23922 valid reviewer–author discussion
samples, each with paired ratings. This dataset provides sufficient scale for both independent test and
CRL, enabling us to study rebuttal effectiveness from complementary perspectives.

Metadata Features. Each paper is typically evaluated by multiple reviewers, so we collect 8
review-level features (initial confidence, final confidence, confidence change, number of interactions,
soundness, presentation, contribution, and the average of other reviewers’ initial ratings) and 6
paper-level features (submission number, title length, abstract length, number of authors, status, and
primary area ). Here, the number of interactions denotes how many rounds of discussion occur
between the author and a reviewer. The feature average of other reviewers’ initial ratings is designed
to capture how peer assessments may influence an individual reviewer. Together, these metadata
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Table 2: Comparison of LLMs in scoring concept features. We report the L2 norm between
LLM predictions and human annotations for 10 concept features: Clarity (CL), Directness (DI),
Attitude (AT), Author Openness (AO), Evidence (EV), Rigor (RI), De-Escalation (DE), Specificity
and Constructiveness (SC), Reviewer Openness (RO), and Concern Severity (CS). The final column
shows the average L2 error (AE) across all features, and TC denotes the average time cost.

Models (LLMs) Metrics

TC↓ CL↓ DI↓ AT↓ AO↓ EV↓ RI↓ RI↓ SC↓ RO↓ CS↓ AE↓
DeepSeek-R1 18.33s 0.30 0.55 0.47 0.60 0.83 0.63 0.67 0.80 0.55 0.80 0.62
Grok-3-Latest 11.74s 0.45 0.50 0.74 0.60 0.39 0.53 0.67 1.00 0.90 1.30 0.71
Gemini-2.0-Flash-Lite 3.70s 0.40 0.75 0.53 0.95 0.89 0.58 1.00 0.30 1.10 0.65 0.71
ChatGPT-4.1-Mini 9.73s 0.35 0.65 0.95 0.95 0.94 0.63 1.00 1.25 0.60 0.65 0.80
Gemini-2.0-Flash 4.12s 0.45 1.10 0.79 0.95 1.11 0.74 0.83 0.75 1.05 0.45 0.82
ChatGPT-4.1 9.73s 0.55 0.70 0.79 1.05 0.89 0.84 0.67 1.40 0.90 0.65 0.84
ChatGPT-4.1-Nano 5.34s 0.35 0.55 1.05 1.30 0.72 0.58 2.50 0.50 0.50 0.75 0.88
Llama-4-Maverick 5.86s 0.50 0.75 1.26 1.35 1.28 0.89 2.00 0.75 0.70 0.75 1.02
Gemini-2.5-Flash-Preview-04-17 13.26s 0.65 0.75 0.74 1.35 0.94 0.84 1.17 1.45 1.20 1.25 1.03
Deepseek-V3-0324 5.94s 0.55 1.00 1.84 0.80 1.28 1.16 1.50 1.40 1.30 0.85 1.17
ChatGPT-4o-Latest 8.43s 0.60 1.30 2.00 1.40 1.17 0.95 2.17 2.00 1.05 0.80 1.34

features reflect both the content and dynamics of the peer review process. The App. A4.2 and App. A2
present a full description of all features and their distributions respectively. Together, these features
serve as the foundation for our structured analysis.

LLM-Inferred Features. To capture finer-grained aspects of rebuttals and reviews, we introduce
ten human-interpretable features, hereafter referred to as concepts. Seven are author-related: clar-
ity, directness, attitude, openness, evidence, rigor, and de-escalation. Three are reviewer-related:
specificity and constructiveness, openness, and concern severity. Formal definitions and empirical
distributions of these features are provided in App. A4.1 and App. A1. All features are annotated
on a five-point ordinal scale. To scale annotation beyond manual labeling, we benchmarked several
LLMs on a randomly sampled set of 200 annotated examples (20 rebuttals evaluated across 10
features). Each example was independently labeled by two senior machine learning researchers,
with disagreements resolved through discussion to produce gold-standard scores. We then compared
LLM-inferred predictions against expert annotations using the L2 norm.

The results in Tab. 2 show that DeepSeek-R1 achieves the best overall alignment with human
annotations, with the lowest average L2 error across all concept features, albeit at a rather costly
inference time. Grok-3-Latest and Gemini-2.0-Flash-Lite perform competitively (av-
erage error 0.71) while being faster, but with higher variance across specific features. In contrast,
models such as ChatGPT-4o-Latest and DeepSeek-V3-0324 exhibit significantly larger
errors (>1.0), indicating weaker consistency with expert labels. Overall, DeepSeek-R1 providing
the best performance for large-scale inference. Based on this result, we adopt DeepSeek-R1 for
large-scale inference. Due to budget and inference time constraints, we annotate a 10% subset of the
dataset (2393 samples) using DeepSeek-R1. The full prompt is provided in Prompt 1 and 2.

3 FIRST LAYER: STRUCTURED FEATURE ANALYSIS

To identify which factors influence reviewer ratings, we investigate how review- and rebuttal-related
features are associated with rating changes. For this purpose, we apply five widely used independence
tests: KCI (Zhang et al., 2012), RCIT (Strobl et al., 2019), HSIC (Gretton et al., 2005), Chi-square
(Tallarida et al., 1987), and G-square (Tsamardinos et al., 2006). The tests are conducted on two sets
of features: (i) 14 metadata features available for all 23922 reviewer–author discussions, and (ii) the
annotated subset (2393 samples) with 10 LLM-inferred features. At the review level, Fig. 1 reports
the aggregated independence test results between ratings and metadata or LLM-inferred features.
At the paper level, Fig. 2 shows the aggregated results between the average paper rating and the
six paper-level metadata features. Together, these analyses provide a comprehensive view of how
different types of features may be linked to changes in reviewer ratings.

Analysis of review-level metadata features. As shown in Fig. 1 (orange), for both initial and final
ratings, we find strong dependence on core review attributes such as soundness, presentation, and
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Figure 1: Aggregated independence test results between rating and metadata features (orange) or
LLM-inferred features (blue). Each cell reports how many of the five tests fail to reject independence
at significance level α=0.05. A value of 0 indicates strong evidence of dependence, while 5 indicates
strong evidence of independence across all tests. Refer to Fig. A5.2-A5 for all complete p values.

contribution. This pattern is consistent across all five tests, indicating that these factors reliably shape
how reviewers assign scores. Interestingly, rating init and rating final appear independent of each
other but both are dependent on rating change, suggesting that absolute ratings and their shifts capture
complementary aspects of the review process. Rating changes show weaker but notable dependence
on initial/final confidence and on the average of other reviewers’ initial ratings, highlighting the role
of confidence and peer influence in shaping score adjustments. Finally, the number of interactions
also exhibits dependence with rating change, underscoring the importance of active reviewer–author
engagement during the discussion phase.

Figure 2: Aggregated independence test
results between average rating and paper-
level metadata features.

Analysis of LLM-inferred features. Also in Fig. 1
(blue), turning to the ten concept features extracted
from rebuttal and review text, we observe systematic
dependence with rating changes. Features such as
clarity, directness, attitude, openness, evidence qual-
ity, and rigor all show strong associations with score
adjustments, suggesting that the style and substance
of rebuttals are key drivers of reviewer updates. Un-
like review-level metadata, which primarily governs
baseline ratings, these content-oriented concepts ap-
pear to capture how authors’ responses shift reviewers’
perceptions. This supports the intuition that rebuttal
effectiveness is closely tied to the persuasiveness and tone of the exchange.

Analysis of paper-level metadata features. As shown in Fig. 2, static paper descriptors such as
title length, abstract length, number of authors, and primary area exhibit little evidence of association
with rating changes. In most cases, the tests fail to reject independence, particularly for average rating
adjustments, indicating that these surface-level attributes have minimal impact on how scores evolve
during the rebuttal stage. Weak dependencies are observed for submission number, abstract length,
and number of authors with initial ratings, but these effects vanish once rating changes are considered.
This suggests that while such metadata may weakly shape first impressions, it does not determine
whether reviewers subsequently adjust their scores. Taken together, these findings underscore an
important distinction: paper-level descriptors capture static characteristics of the submission, but
rebuttal effectiveness hinges on dynamic interactions between authors and reviewers. In other words,
what changes minds is not how long the title is or how many co-authors are listed, but rather the
persuasiveness, clarity, and responsiveness demonstrated during the rebuttal process.

Takeaway. Our findings have several insights for the machine learning community. We highlight
that rebuttal effectiveness depends more on discourse quality than on paper metadata. For authors,
features such as clarity, rigor, evidence, and constructiveness are most associated with rating gains,
whereas soundness, presentation, contribution, and confidence measures show little effect (see
Fig.3). For reviewers and area chairs, this underscores the need for calibration, as specific rebuttal
strategies can systematically shape score adjustments. We also observe a regression-to-the-mean
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Figure 3: Dependency panels of rating changes and various features. Each subplot shows the
distribution of rating change conditioned on metadata or LLM-inferred features. Most features
are centered around zero, indicating little systematic effect. Notable dependencies appear for
aoor rating init (lower initial ratings linked to positive changes, consistent with a regression-to-the-
mean effect), num interactions (more exchanges associated with slight gains), and discourse-related
features such as clarity, rigor, evidence, and constructiveness, which show modest positive shifts.
Appendix A6 provide the corresponding dependency panels for rating init and rating final.

effect, where lower initial ratings tend to increase, and a modest positive trend with more reviewer–
author interactions. Overall, the substance and quality of rebuttals matter in influencing final rating.

4 SECOND LAYER: HUMAN-ALIGNED CAUSAL REPRESENTATION LEARNING

Figure 4: Causal model of the rebuttal process
with two modalities, capturing latent factors from
reviewers (z1) and authors (z2). The framework
allows bidirectional causal influences between z1
and z2, reflecting the interactive nature of rebuttal
discussions. x denotes the observed text, c the true
human-aligned concepts, and c̃ the noisy estima-
tion inferred by LLMs used as weak supervision.

Multi-modality Multi-measurement CRL
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Beyond structured metadata features, rebuttals
involve high-dimensional textual interactions be-
tween reviewers and authors. To move beyond
predefined and potentially noisy features, we em-
ploy causal representation learning (CRL) (Xu
et al., 2024; Zheng et al., 2022; Yao et al., 2023;
Sun et al., 2025b). These two layers are progres-
sive: the structured feature analysis in the previ-
ous section provides weak supervision for CRL,
while CRL serves two complementary functions.
First, it refines noisy LLM-inferred concepts
by recovering latent representations that better
align with the true underlying concepts. Sec-
ond, it uncovers additional human-aligned con-
cepts beyond the predefined set, capturing as-
pects of rebuttal effectiveness that may not be
immediately apparent. Our setting naturally ex-
hibits multiple modalities (reviewer text and au-
thor text) and heterogeneous distributions (e.g.,
different primary areas, reviewer backgrounds),
which provide the variation necessary for causal
identification. Fig. 4 illustrates that the causal
model of the rebuttal process with two modal-
ities. We organize this section as follows. In
§ 4.1, we introduce our causal formulation, motivated by the real-world rebuttal problem. § 4.2
develops the identifiability theory grounded in this formulation. Building on these insights, § 4.3
presents our network design and training procedure. To evaluate the effectiveness of the proposed
method, we conduct synthetic experiments in § 4.4. Finally, § 4.5 applies our approach to the rebuttal
dataset, providing the actionable insights and practical guidance on effective rebuttal strategies.
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4.1 CAUSAL FORMULATION

We denote the observed text as x = [x1,x2], where x1 represents aggregated reviewer text and x2

aggregated author text. These are generated from latent variables z = [z1, z2], which capture hidden
factors underlying how reviewers and authors express themselves, respectively. We introduce θ to
represent the heterogeneity of latent variables across different primary areas or reviewer backgrounds.

On top of the latent variables, we define a set of human-aligned concepts c = [c1, c2], which corre-
spond to interpretable attributes such as openness. Each concept is modeled as a linear projection of z
through a mapping A. In practice, however, LLMs-inferred scores only provide noisy approximations
c̃ of these concepts, which we generally represent this relation as c̃m,i = cm,i + ηm,i, where η are
Gaussian noises introduced by annotation variability, prompt ambiguity, or model bias.

Formally, the data-generating process of the variables defined above can be written as:

zm,i := hm,i(Pa(zm,i), θ, ϵm,i), (latent causal relations) (1)

xm := gm(zm), (observed text) (2)

cm := A zm, (true human-aligned concepts) (3)

c̃m,i := cm,i + ηm,i, (noisy concepts inferred by LLMs) (4)

where m ∈ {1, 2} indexes reviewers (m=1) and authors (m=2). Pa(zm,i) are the parents of zm,i in
the latent causal graph Gz, ϵm,i are exogenous noise variables, gm is a nonlinear mixing function
mapping zm to observed text xm , and A is a linear matrix aligning zm with human-interpretable
concepts cm. Notably, we treat the noisy LLM-derived c̃ as weak supervision for CRL training;
ultimately, CRL refines them to recover the true concept c by utilizing the estimated ẑ, thereby
offering a more reliable concept representation beyond LLM-inferred results.

4.2 IDENTIFIABILITY THEORY

A central question in our setting is whether human-aligned concepts c can be uniquely recovered
from the observational data. More concretely, we are given an observational dataset (all reviews)
together with multiple concept-conditional datasets (subsets of reviews filtered by concept scores)
with LLM-inferred noisy concept; the fundamental problem is to determine the conditions under
which the true underlying concepts can be recovered from them with minor indeterminacy.

Definition 1. (Identifiability) Given observational and concept-conditional datasets, we say the
concepts c = {c1, . . . , cm} with associated linear maps {A1, . . . , Am} are identifiable if, for any
alternative parameterization (f̃ , Ãe, b̃e) that produces the same observed data distributions, there
exists an invertible linear map T , a shift w ∈ Rdz , permutation matrices P e, and invertible diagonal
matrices Λe such that, for all x and for each concept e, the concept parameters are related by

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w), Ãe = P eAeT−1, b̃e = ΛeP e(be −Aew). (5)

In this context, identifiability means that the human-aligned concepts c can be recovered up to a small
set of unavoidable ambiguities. Specifically, in Eq. 5, the subspaces corresponding to interpretable
dimensions such as soundness or clarity and their evaluation maps can be consistently learned,
modulo permutation (P e), scaling (Λe), and a global linear transformation of the latent space (A).
These ambiguities are intrinsic to causal representation learning, since the latent variables z are never
directly observed; however, they do not obstruct our objective if we can recover them up to minor
indeterminacy. Learning the evaluation maps Aef−1 allows us to dissect rebuttals, identify which
latent factors causally drive reviewer perceptions, and align the results with interpretable axes such as
rigor, evidence, or openness. Importantly, the conditions for identifiability, relying on the diversity
of concept-conditional distributions, are naturally satisfied in our setting due to the rich variety of
sub-score data available in the OpenReview System.
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Theorem 1. (Identifiability of Concepts) Suppose we match the observations xm across modalities
(authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g1 and g2 are differentiable and invertible.

ii (Sufficient Diversity): All entries of v⊤B are non-zero, where Bi,j =
bek
σ2 denotes the

area–concept matrix.
iii (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors
C = {a1, . . . , an} such that, for each concept Ce, the rows of the aligning matrix Ae lie in C,
i.e., (Ae)⊤ei ∈ C. Let Se denote the indices of the subset of C that appear as rows of Ae. Every
aligning vector in C appears in at least one primary area e (where an area corresponds to a
concept-conditional distribution), that is,⋃

e

Se = [n].

Then the concepts c are identifiable as demonstrated in Definition 1.

Assumption i requires that the latent space is recoverable from the observed data. Assumption ii
further requires the presence of latent distribution shifts in the review concepts across different
primary areas, ensuring variability in the underlying structure. Finally, Assumption iii ensures that
all concepts can be decomposed into a finite set of atomic components that remain distinct across
primary areas, which is essential. Under such a theorem, we can guarantee that the hidden concepts
are uniquely recovered and aligned with the LLM-inferred noisy version, ensuring the correctness of
the obtained causal relations on those latent embeddings through conditional independence testing.

4.3 NETWORK DESIGN

Building on the identifiability conditions, we now describe our practical framework for learning latent
causal representations from rebuttal and review text. The key challenge is to approximate the posterior
distribution of latent variables z given observed embeddings x, while accounting for domain-specific
variation θ (e.g., primary research areas or reviewer backgrounds). Since the generative process
x = g(z) is highly nonlinear, the posterior p(z|x, θ) is intractable. We therefore adopt a variational
approach enhanced with flow-based priors.

Following the general CRL framework (Zhang et al., 2024), we use a Dense Sigmoid Flow (DDSF)
(Wehenkel & Louppe, 2019) to implement the prior distribution over z. The flow transforms each
dependent latent variable zi into an independent noise variable ϵi, conditioned on its latent parents
and domain factor θ. Let W denote the adjacency matrix of the latent causal graph Gz, and Ŵ be the
estimated one. For each ẑi, the transformation is:

ϵ̂i, log det Ji = Flow
(
ẑi; NN({Ŵi,j ẑj}j<i, θ)

)
, (6)

where ϵ̂i is the transformed independent noise, log |Ji| is the Jacobian determinant, and NN denotes
a neural network generating flow parameters. Assuming ϵ is factorized (e.g., N (0, I)), the prior
distribution is:

log p(ẑ; θ) =
∑
i

(
log p(ϵ̂i) + log |Ji|

)
. (7)

We implement an encoder qϕ(ẑ|x, θ) that maps observed text embeddings x into an approximate
posterior over latent variables ẑ. A decoder pψ(x|z, θ) reconstructs the observed embeddings from
the true latent variables z. The model is trained by maximizing the domain-conditioned Evidence
Lower Bound (ELBO):

LELBO = Eqϕ(ẑ|x,θ)[log pψ(x|ẑ, θ)]−DKL

(
qϕ(ẑ|x, θ) ∥ p(z; θ)

)
, (8)

where ϕ are encoder parameters, ψ are decoder parameters, and p(z; θ) is the flow-based prior. To
ensure the learned space is both causally structured and human-aligned, we add two regularizers:

Lsparsity = ∥Ŵ∥1, Lsupervision =
1

K

K∑
k=1

(
ˆ̃ck − c̃k

)2
, (9)

where ˆ̃c are the estimated noisy concepts, c̃ are LLM-inferred concepts, and K is the total latents.
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Table 3: Synthetic experiment results across different configurations. We evaluate our method
against four baselines: β-VAE (reconstruction loss only), iVAE (independent VAE), Sun et al. (multi-
modal only), and Zhang et al. (multi-domain only). Results are reported as Pearson MCC and
Spearman MCC percentages. Our method consistently achieves higher MCC across most configura-
tions, demonstrating the effectiveness of combining multi-modal and multi-domain information.

Method Linear Nonlinear
Gaussian Laplacian Gaussian Laplacian

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
Y Structure

β-VAE 73.00±5.2 73.80±4.8 70.77±6.1 70.31±5.9 86.11±3.2 88.64±2.9 75.34±4.7 75.96±4.3
iVAE 51.63±8.4 51.12±7.9 39.33±9.2 37.00±8.7 53.02±6.8 51.41±6.5 12.25±3.1 13.43±2.8
Sun et al. 82.86±4.1 82.70±3.8 72.59±5.3 73.89±4.9 69.49±6.2 70.86±5.7 61.60±7.4 71.16±6.8
Zhang et al. 70.32±6.8 70.30±6.2 63.60±8.1 66.57±7.5 72.22±5.9 72.66±5.4 48.33±9.2 50.70±8.7
Ours 84.33±6.17 86.08±6.02 81.01±7.31 83.38±9.16 82.79±2.73 83.65±3.33 71.38 ± 2.82 77.58 ± 3.98

Chain Structure
β-VAE 77.95±4.8 79.66±4.2 77.14±5.1 77.30±4.6 72.08±6.3 74.04±5.8 69.79±7.2 71.33±6.9
iVAE 46.99±7.2 45.83±6.8 46.47±8.1 49.04±7.6 50.87±5.9 49.32±5.4 8.87±2.4 12.44±2.1
Sun et al. 86.52±3.7 87.06±3.4 68.13±6.8 70.28±6.2 65.43±7.9 65.61±7.3 59.63±8.6 70.47±7.8
Zhang et al. 70.55±6.4 69.63±5.9 62.24±7.8 66.16±7.2 69.90±5.6 70.93±5.1 46.16±8.9 48.86±8.4
Ours 80.33±11.29 81.00±11.87 81.88±6.71 83.72±7.13 79.60±5.53 80.99±5.75 68.87 ± 2.51 76.78 ± 2.34

Final objective. The overall objective is:

Ltotal = LELBO + λ1Lsparsity + λ2Lsupervision, (10)

with λ1, λ2 balancing reconstruction, causal sparsity, and concept alignment. This design ensures that
the model (i) captures domain-dependent causal mechanisms via the flexible flow-based prior, (ii)
recovers human-interpretable dimensions by refining noisy LLM-derived concepts c̃ into true latent
concepts c, and (iii) retains additional capacity to uncover novel concepts beyond the predefined set.

4.4 SYNTHETIC EXPERIMENTS

Baselines and Metrics. We evaluate our method against four representative CRL baselines, each
emphasizing different modeling assumptions and trade-offs. β-VAE (Higgins et al., 2017) relies only
on reconstruction loss and encourages disentanglement but lacks explicit identifiability guarantees.
iVAE (Tomczak & Welling, 2018) introduces identifiable priors but does not exploit multi-domain or
multi-modal variation effectively. Sun et al. (Sun et al., 2025b) leverage multi-modal information
but assume a single domain setting, while Zhang et al. (Zhang et al., 2024) leverage multi-domain
variation in a general setting but are limited to a single modality. Our approach integrates both
multi-domain and multi-modal information simultaneously, directly addressing the limitations of
these baselines. For evaluation metrics, we adopt both Pearson MCC and Spearman MCC. Pear-
son measures linear alignment between learned and ground-truth causal factors, while Spearman
assesses monotonic rank-order consistency across values. Using both together provides a robust and
comprehensive view of causal discovery performance, with higher values indicating better recovery.

Implementation Details. We generate synthetic data with four latent variables under two canonical
causal structures: Y-structure and Chain-structure. Each domain contains 10,000 samples, with 20
heterogeneous simulated domains in total. The model architecture consists of an encoder–decoder
with two hidden layers (64 and 32 units), trained for 1,000 iterations using Adam with learning
rate 0.001 throughout. Key hyperparameters are: reconstruction weight 5.0, KL divergence weight
0.1, sparsity weight 0.01, and supervision weight 1.0. We test both Gaussian and Laplacian priors
extensively, with evaluation every 50 iterations, averaged across multiple random seeds for robustness.

Results and Analysis. Table 3 summarizes results across all configurations. First, iVAE consistently
performs the weakest, especially under nonlinear settings (e.g., Spearman MCC below 15% in
nonlinear Laplacian cases), showing that identifiable VAEs alone are insufficient without domain
or modality variation. Second, β-VAE performs reasonably well in linear settings (above 70%), but
performance degrades significantly under nonlinear distributions, reflecting its lack of identifiability.
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Figure 5: Real-world experiment result. This
causal graph is learned by our proposed CRL
method. Excepts the 10 given concepts, we also
learn additional two concepts. See § 4.5 for details.

Author Concepts

Reviewer Concepts

Third, Sun et al. (multi-modal only) and Zhang
et al. (multi-domain only) improve over β-VAE
and iVAE in certain cases, but both struggle
when only one type of variation is available. For
instance, Sun et al. underperform in nonlinear
chain structures, while Zhang et al. show sharp
drops under nonlinear Laplacian settings. Fi-
nally, our method consistently achieves the best
or near-best MCC across all configurations, im-
proving by 3–10 points over the strongest base-
line. Notably, in challenging nonlinear Lapla-
cian settings, our approach maintains high cor-
relations (e.g., 77.58% Spearman in Y-structure
and 76.78% in Chain-structure), while baselines
deteriorate. These results confirm that leverag-
ing both multi-domain and multi-modal informa-
tion is critical for robust causal representation
learning. Our method not only recovers known
causal factors more faithfully but also demonstrates strong generalization across different domains.

4.5 REAL-WORLD EXPERIMENT ON ICLR REBUTTAL DATASET

We apply our CRL framework to the ICLR rebuttal dataset to learn latent variables z from review and
rebuttal text, and then use causal discovery methods to recover the underlying causal graph (Fig. 4).
Using 2393 labeled samples with 10 LLM-inferred concept labels, plus extensive unlabeled data,
we train a MultiModalMarkovFlowVAE with separate encoders for reviewer (4 latent variables) and
author (8 latent variables) modalities, each discovering one additional unknown concept. The learned
causal graph (Fig. 5) shows that on the author side, Clarity plays a central role, influencing Directness,
Attitude, and De-escalation, while Openness connects to Rigor and Evidence, highlighting how
clear, transparent responses shape both tone and substance. On the reviewer side, Review Quality,
Reviewer Openness, and Concern Severity form a tightly connected cluster, with Reviewer Openness
directly driving Rating Change. Notably, two emergent latent concepts enrich this picture: the
Author Unknown node, connected to openness and influencing reviewer openness, likely reflects
hidden aspects of persuasiveness or tone in author responses, while the Reviewer Unknown node,
linked with review quality and concern severity and directly affecting rating change, appears to
capture latent reviewer dispositions such as strictness or flexibility. These results show that rebuttal
effectiveness arises from both author strategies (clarity, evidence, rigor) and reviewer disposition,
while latent factors further reveal subtle but impactful influences beyond predefined features.

5 DISCUSSIONS AND CONCLUSION

Discussions. A key limitation of our study is that the analysis is restricted to reviews from the ICLR
2024 and 2025, which may limit the generalizability of the findings to other conferences or time
periods. In addition, due to data availability constraints, we aggregate each paper’s reviews without
accounting for the precise timestamps of individual revisions. As a result, our analysis do not capture
the temporal dynamics of how rebuttals and reviewer ratings evolve over the review process.

Conclusions. We presented a two-layer causal analysis of rebuttal effectiveness in ICLR 2024–2025
submissions. At the structured layer, independence tests on metadata and LLM-inferred concepts
revealed that clarity, directness, rigor, and evidence are most strongly linked to rating changes, while
static paper descriptors play little role. At the unstructured layer, our causal representation learning
framework refined noisy LLM-derived concepts and uncovered new latent dimensions, supported
by identifiability guarantees. Together, these findings provide both theoretical insights into causal
modeling of text and actionable guidance for the ML community: authors can focus on substantive,
evidence-based rebuttals, while reviewers and chairs should remain aware of systematic influences on
scoring. Our work thus contributes toward a more transparent, fair, and effective peer review process.
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A1 ETHICS STATEMENT

All datasets used in this work are restricted to non-commercial, academic research purposes. We
obtained the necessary permissions from the respective platforms. A summary of the applicable
terms-of-use is as follows:

• ICLR – Submissions and reviews are hosted on OpenReview under an open-access license
(CC BY 4.0), which explicitly permits reuse for research purposes.

• PaperCopilot – According to its Terms of Use, no part of the Site’s content may be copied,
reproduced, distributed, or otherwise exploited for commercial purposes without express
prior written permission. We obtained such permission and consent directly from the website
to enable non-commercial and academic research use.

A2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employ large language models (LLMs) to infer author- and reviewer-related concepts from textual
inputs in our dataset. To ensure robustness and model fit, we conducted a comparative evaluation
across candidate LLMs and selected the most suitable model for this task (Tab. 2). In line with
community guidance on LLM usage, we explicitly disclose this use and retain full responsibility for
the accuracy and integrity of all LLM-derived outputs. For transparency and reproducibility, we also
provide the exact inference prompt used in our pipeline (App. 1), enabling independent verification
and replication of our procedure.
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A3 DETAILS ABOUT RELATED WORK

A3.1 PEER REVIEW ANALYSIS

Peer review in scientific publishing has been widely studied, with work addressing bias (Tomkins
et al., 2017), consistency (Langford & Guzdial, 2015), and predictive validity (Ragone et al., 2013).
The transparency of the OpenReview platform has further enabled analyses of reviewer behavior and
decision-making (Stelmakh et al., 2021; Gao et al., 2019). Recent studies provide complementary
perspectives. (Liu et al., 2024) conducted a randomized controlled trial and found that reviewers are
not strongly anchored to their initial scores, showing a willingness to revise after rebuttals, though the
drivers of such changes remain unclear. The LazyReview dataset (Purkayastha et al., 2025) addresses
a different challenge by identifying low-effort or vague reviews, offering tools to improve review
quality. By contrast, the effectiveness of rebuttals themselves has received relatively limited attention.
(Shah et al., 2018) showed that rebuttals lead to score changes in about 25% of reviews, while (Gao
et al., 2019) explored correlates of successful rebuttals without establishing causality. Our work
extends these efforts by explicitly modeling the causal mechanisms underlying rebuttal effectiveness.

A3.2 CAUSAL REPRESENTATION LEARNING

Causal representation learning (CRL) seeks to uncover latent causal factors from high-dimensional
data (Schölkopf et al., 2021; Parascandolo et al., 2018), enabling reasoning about interventions and
counterfactuals. Recent work has shown that CRL can learn disentangled representations capturing
causal mechanisms (Lachapelle et al., 2022; Lippe et al., 2022), making it particularly useful in
domains where causal factors are latent or noisy, such as peer review. Unsupervised CRL methods
face identifiability challenges (Locatello et al., 2019), which researchers have attempted to address
using temporal structure (Klindt et al., 2020), sparsity assumptions (Bengio et al., 2019), or group-
theoretic frameworks (Besserve et al., 2018). However, such assumptions often fail in real-world
settings. To overcome this, weak supervision and multi-environment data have been proposed to
improve identifiability (Locatello et al., 2020; Shu et al., 2020). Building on weakly supervised
approaches (Shen et al., 2022) and concept-based representation learning (Rajendran et al., 2024),
our work adapts these ideas to model rebuttal effectiveness.

A3.3 NATURAL LANGUAGE PROCESSING FOR SCIENTIFIC TEXT

Analyzing rebuttals requires handling complex scientific text. Advances in natural language process-
ing have enabled richer analysis of scientific documents (Beltagy et al., 2019; Cohan et al., 2020),
supporting tasks such as classification, summarization, citation intent detection (Cohan et al., 2019;
Jurgens et al., 2018), document retrieval (Wang et al., 2023b), and fact-checking (Wadden et al.,
2022). While less explored, rebuttals have been studied through argument mining (Lawrence & Reed,
2020; Fromm et al., 2021) and persuasive language (Tan et al., 2016), reflecting their persuasive
nature in influencing reviewer opinions.

Our work connects these directions by applying causal representation learning to study rebuttal
effectiveness in scientific peer review, focusing on the OpenReview system in machine learning
conferences.

A4 DETAILS ABOUT THE DATASET AND ANALYSIS

A4.1 EXPLANATION OF CONCEPT FEATURES IN TAB.2

We consider ten variables capturing key aspects of rebuttals and reviews. Clarity (CL) reflects how
clearly the rebuttal communicates its arguments, while Directness (DI) measures the extent to which it
addresses reviewer concerns explicitly. Attitude (AT) captures the tone of the rebuttal, distinguishing
professional and respectful responses from defensive ones. Authors Openness (AO) denotes the
willingness of authors to acknowledge limitations or alternative perspectives. Evidence (EV) refers to
the use of data, experiments, or citations to support claims, and Rigor (RI) evaluates the technical
soundness and thoroughness of rebuttal arguments. De-Escalation (DE) reflects the ability to resolve
misunderstandings and reduce conflict during the exchange. On the reviewer side, Review Quality
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(RQ) measures the specificity and constructiveness of feedback, Reviewer Openness (RO) captures
the willingness of reviewers to revise their evaluation in light of rebuttals, and Concern Severity (CS)
indicates the seriousness of the issues raised in the review.

A4.2 EXPLANATION OF VARIABLES IN FIG.1

We further include metadata and reviewer-provided variables. Title Length and Abstract Length
measure the verbosity of the submission’s title and abstract, respectively, while Num Authors captures
the number of contributing authors. Status indicates the acceptance outcome (e.g., oral, poster, reject),
and Primary Area records the main research domain of the paper. Num Interactions reflects the extent
of back-and-forth exchanges between authors and reviewers. Reviewer scores are also considered:
Soundness assesses methodological correctness, Presentation evaluates clarity of exposition, and
Contribution reflects novelty and significance. Finally, aoor rating diff measures the average of other
reviews’s rating differences or changes for one reviewer; we define this variable in order to see how
one reviewer can be influenced by other reviewers.

A4.3 DATASET ANALYSIS

For fine-grained analysis, we annotate a 10% random sample of the dataset with interpretable labels
capturing both rebuttal quality and reviewer behavior. Rebuttal-related dimensions include Clarity, Di-
rectness in Addressing Reviewer Concerns, Positive Attitude, Willingness to Acknowledge Limitations,
Strength of Evidence, Technical Convincingness and Rigor, and Handling of Misunderstandings and
De-escalation, while reviewer-related dimensions include Review Specificity and Constructiveness,
Open-mindedness, and Severity of Concerns. All labels are rated on a 5-point ordinal scale, with
detailed guidelines provided in the annotation prompt (Appendix).

To construct the annotated subset, we manually labeled 20 review–rebuttal threads and used them to
benchmark 10 LLMs. We then computed the L-2 distance between model predictions and human
labels across dimensions. As shown in Table 2, DeepSeek-R1 achieved the closest alignment to
human annotations and was chosen to label the full 10% set.

In addition to the annotated labels, we extract further labels from OpenReview, including metadata
such as Title Length, Abstract Length, Number of Authors, Status, Primary Area, and Number
of Reviewer-Author(s) Interactions, as well as reviewer-provided scores Soundness, Presentation,
Contribution, Initial Rating, Final Rating, Initial Confidence, and Final Confidence. Using this
subset, we conduct pairwise independence tests with Kernel-based Conditional Independence (KCI),
Randomized Conditional Independence (RCSI), Hilbert-Schmidt Independence Criterion (HSIC),
Chi-squared, and G-squared tests. Detailed results for each method are given in the Appendix A5.2.
Figure 1 summarizes the findings, where each cell shows how many of the five tests failed to reject
the null hypothesis.

The aggregated results in Figure 1 reveal several patterns. Rating Difference shows strong dependence
with Openness, Evidence, and Rigor, suggesting that reviewers who initially gave low scores are
more likely to revise them when faced with open, well-supported, and rigorous rebuttals. Number of
Interaction is also dependent on Rating Difference, reflecting the role of back-and-forth communica-
tion in driving score changes. By contrast, Clarity, Directness, and Attitude show no dependence with
Rating Difference, likely due to their skewed distribution (most rebuttals score highly, leaving little
variability) or the selection bias of top-tier conference submissions, where both papers and reviews
tend to be of consistently high quality. Interestingly, Clarity and Attitude do show dependence with
Initial Rating and Final Rating, but not with Rating Difference, implying that they shape the overall
impression of a paper without directly influencing score updates.

We also find that Reviewer Openness and Severity of Concerns are strongly associated with Rating
Difference, indicating that large score changes occur when open-minded reviewers engage with
rebuttals addressing serious issues. In contrast, metadata features such as Title Length, Abstract
Length, Number of Authors, and Primary Area show no dependence on Rating Difference, suggesting
they play only a minor role compared to content-based signals. The dependence of Status on Initial
Rating, Final Rating, and Rating Difference is expected, as decisions (e.g., oral, poster) follow review
scores. Finally, Confidence scores appear largely independent of other features, suggesting they are
influenced by external factors.
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Figure A1: Distributions of features

Figure A2: Paper-level metadata feature distributions; see Appendix A1 for primary area details.

A5 LEARNING HUMAN-ALIGNED CAUSAL REPRESENTATIONS

A5.1 BASIC CONCEPT

To connect abstract latent variables with human-understandable criteria, we model review subscores
(e.g., soundness, clarity, novelty) as concepts. Formally, each concept is defined as a linear projection
A : Rdz → RdC of the latent rebuttal representation z, with a valuation b ∈ RdC corresponding to
the reviewer’s assigned subscore (e.g., clarity = 4). Thus, rebuttals with the same subscore form
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a concept-conditional set in latent space. This formulation anchors the learned representations to
interpretable axes aligned with reviewer evaluations.

A5.2 IDENTIFIABILITY OF CAUSAL MODELS: THEOREM AND PROOF

Theorem 1. (Identifiability of Review Concepts) Suppose we match the observations xm across
modalities (authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g1 and g2 are differentiable and invertible.

ii (Primary Area Diversity): All entries of v⊤B are non-zero, where Bi,j =
bek
σ2 denotes the

area–concept matrix.
iii (Thought Reflection): The latent components in z1 are causal parents of z2, but not vice versa.
iv (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors
C = {a1, . . . , an} such that, for each concept Ce, the rows of the aligning matrix Ae lie in
C, i.e., (Ae)⊤ei ∈ C. Let Se denote the indices of the subset of C that appear as rows of Ae.
Every aligning vector in C appears in at least one area e (where an area corresponds to a
concept-conditional distribution), that is,⋃

e

Se = [n].

Then the review concepts are identifiable as in Definition 1.

Discussion of Assumptions Assumption i requires that the latent space is recoverable from the
observed data. Assumption ii further requires the presence of latent distribution shifts in the review
concepts across different primary areas, ensuring variability in the underlying structure. Assump-
tion iii reflects the natural process in which authors first read the reviews, then engage in reflection,
and finally provide rebuttals. Finally, Assumption iv ensures that all concepts can be decomposed
into a finite set of atomic components that remain distinct across primary areas, which is essential for
separating and identifying them.

Proof Sketch We first recover the latent space from the reviews and author responses by applying
the inverse generating functions together with the fixed causal direction between the author and review
modules. The presence of latent distribution shifts in the review concepts across different primary
areas then provides additional variation, which allows us to identify each concept by comparing the
concept spaces across environments. In this way, the atomic concepts can be causally inferred.

Overview. We prove that the review-side concepts are identifiable in the OpenReview system under
Assumptions i–iv. Authors and reviewers provide two observed modalities (x1,x2) generated from
latent variables (z1, z2). True human-aligned concepts are linear functionals of the latents, c = Az,
while the LLM only yields noisy surrogates c̃ defined by c̃m,i = cm,i + ηm,i with Gaussian noise
ηm,i. Our argument follows five steps: first we pass to a canonical latent parameterization; next we
obtain a key observable identity; then we identify the concepts in different primary areas; after that,
we recover primary-area valuations; finally, we remove residual symmetries to obtain uniqueness
of the concept coordinates (up to permutation and scaling), matching Definition 1. Throughout this
proof, “environments” are primary areas of OpenReview.

Assumption i states that both observation maps g1, g2 are differentiable and invertible, hence
(z1, z2) = (g−1

1 (x1), g
−1
2 (x2)).

Assumption iii fixes the causal direction: reviewer latents z2 are parents of response latents z1
(reviews influence responses), which rules out label-swap artifacts between the two modalities.

Let the atomic concept directions be the rows of the alignment map A, denoted C = {a1, . . . , an}.
For each primary area e, let Ae collect the active rows and be be the associated valuations. Introduce
the primary-area–concept incidence matrix M ∈ Rm×n and the primary-area–valuation matrix
B ∈ Rm×n by

Mei =

{
σ−2
i , if ai is a row of Ae,

0, otherwise,
Bei =

{
σ−2
i bek, if the k-th row of Ae equals ai,

0, otherwise.
(11)
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Writing qσ2 for a centered Gaussian with variance σ2, the primary-area densities satisfy

ln p(z)− ln pe(z) =

n∑
i=1

(
1

2
Mei ⟨ai, z⟩2 −Bei ⟨ai, z⟩

)
+ ce, (12)

for constants ce.

To place the model in standard coordinates, pick an invertible T ∈ Rdz×dz with T−⊤ai = ei for
1 ≤ i ≤ n, a shift λ ∈ Rdz with λi = 0 for i > n, and a diagonal matrix Σ with Σii = σi for i ≤ n
and Σii = 1 otherwise. Define the affine reparameterization

L(z) = Σ−1Tz − λ. (13)

Push the model through L:

z = L(z), gm ← gm ◦ L−1, Ae ← AeT−1, p(z) = p(L−1z) |detT−1|. (14)

If the k-th row of Ae equals ai, update

bek ← bek/σi − λi. (15)

In this standard form all nonzero entries of M are 1, and

M =M Diag(σ2
1 , . . . , σ

2
n), B = BDiag(σ−1

1 , . . . , σ−1
n )−M Diag(λ1, . . . , λn). (16)

The observed distributions are unchanged (only the Jacobian modifies densities), so both parameteri-
zations generate the same (x1,x2). Choose λ so each row of B has mean zero across primary areas,
and flip any coordinate zi so that the first nonzero entry in column i of B is positive. Assumption ii is
stable under this normalization: v⊤M = 0 and v⊤B ̸= 0 before the transformation implies the same
after diagonal rescaling and centering. We henceforth work in this standard form.

Define the latent log-density contrasts

ge(z) := ln p0(z)− ln pe(z) =

n∑
i=1

(
1
2Meiz

2
i −Beizi

)
− c′e, (17)

where p0 is the observational mixture over primary areas. On the observation side, set

Ge(x) := ln p0X(x)− ln peX(x). (18)

Because gm are diffeomorphisms on the data manifold, Jacobians cancel in differences and

ge(z) = Ge
(
g(z)

)
= Ge(x). (19)

Even when g maps into a submanifold (if dz ̸= dx), local charts yield the same difference; hence Ge
is identifiable from data and so are geometric features of argmin sets of

∑
e∈T ge.

Let Se = {i ∈ [n] : ai is a row of Ae} be the active atoms in area e. For T ⊂ [m], write ST =⋃
e∈T S

e and consider

IT := argmin
z

∑
e∈T

ge(z). (20)

Since ge are convex quadratics that separate across coordinates, there exist univariate convex functions
hTi with∑
e∈T

ge(z) =

n∑
i=1

hTi (zi), hTi (zi) =

{
strictly convex with unique minimizer zTi , i ∈ ST ,
0, i /∈ ST .

(21)
Therefore

IT = {z ∈ Rdz : zi = zTi for all i ∈ ST }, dim(IT ) = dz − |ST |. (22)

Using ge(z) = Ge(g(z)),
g(IT ) = argmin

x

∑
e∈T

Ge(x), (23)
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and dim g(IT ) = dim(IT ) because g is a diffeomorphism on the data manifold. Hence |ST | is
identifiable for every T ⊂ [m]. In particular, n = |S[m]| (each atom appears in at least one primary
area by Assumption iv).

Knowing all |ST | recovers M up to a permutation of columns (relabeling concepts). An induction on
m is standard: when m = 1, |S{1}| counts active atoms in the first area; for the step m→ m+1, the
values |ST∪{m+1}| across T ⊂ [m] reveal which columns satisfy Mm+1,i = 1, and the differences
|ST | − |ST∪{m+1}| identify the columns with Mm+1,i = 0. Thus M is identified up to column
permutation.

Fix an atom i and define
Ti = {e ∈ [m] :Mei = 0}. (24)

By Assumption iv (distinctive alignment), for every i′ ̸= i there exists an area that filters i′, hence
STi = [n] \ {i}. Consequently,

ITi
= {z ∈ Rdz : zi′ = zTi

i′ for all i′ ̸= i}, (25)

so only zi varies on ITi
. For any area e with i ∈ Se (so Mei = 1 in standard form),

ge(z) = cTi
e +

1

2
z2i −Beizi on ITi

. (26)

If e1 ̸= e2 both contain i, define the slice where ge1 is minimized:

Ie1Ti
= arg min

z∈ITi

ge1(z) = {z ∈ ITi
: zi = Be1i}. (27)

Evaluating ge2 on Ie1Ti
and subtracting its minimum over ITi gives

min
z∈Ie1Ti

ge2(z)− min
z∈ITi

ge2(z) =
(Be1i −Be2i)2

2
. (28)

The left-hand side is observable since g(ITi
) = argminx

∑
e∈Ti

Ge(x) is identifiable and we can
minimize Ge2 over g(ITi). Hence |Be1i −Be2i| is identified for all pairs with i active. Choose the
pair with maximal separation to bracket all Bei for i ∈ Se; the zero-mean row constraint from Step 1
fixes the additive constant and the “first nonzero positive” convention fixes the sign. Repeating over i
identifies B (up to the same column permutation as M ).

Consider two standard-form representations (z, g, p) and (z̃, g̃, p̃) that share (M,B). Let φ = g̃−1◦g.
Decompose z = (zc, zo) with zc ∈ Rn the concept coordinates and zo ∈ Rdz−n the complement; fix
zo and set ιo(zc) = (zc, zo) and φo(zc) = πc(φ(ιo(zc))), where πc projects to the first n coordinates.
Since ge depends only on (M,B) in both models,

g(ιo(zc)) = G(g(ιo(zc))) = G(g̃(φ(ιo(zc)))) = g(φo(zc)), (29)

with g = (ge)
m
e=1 and G = (Ge)

m
e=1. Differentiating,

Dige(z) =Meizi −Bei, Dg(z) =M Diag(z1, . . . , zn)−B, (30)

so for z = ιo(zc) and z̃ = ιo(φo(zc)),

M Diag(z1, . . . , zn)−B =
(
M Diag(z̃1, . . . , z̃n)−B

)
Dφo(zc). (31)

Let M+ be a left pseudoinverse of M (rank n holds by coverage and linear independence), and
choose v from Assumption ii with v⊤M = 0 and v⊤B ̸= 0. Stacking yields

M̃+ =

(
M+

v⊤

)
∈ R(n+1)×m, (32)

and multiplying,
z1 0 · · · 0

. . . . . .
...

0 · · · zn 0
0 · · · 0 0

− M̃+B =



z̃1 0 · · · 0

. . . . . .
...

0 · · · z̃n 0
0 · · · 0 0

− M̃+B

 Dφo(zc). (33)
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Table A1: Primary areas and counts
ID Primary Area Counts

0 General machine learning (i.e., none of the above) 295
1 Transfer learning, meta learning, and lifelong learning 274
2 Datasets and benchmarks 425
3 Representation learning for computer vision, audio, language, and other modalities 360
4 Unsupervised, self-supervised, semi-supervised, and supervised representation learning 686
5 Generative models 844
6 Reinforcement learning 637
7 Applications to physical sciences (physics, chemistry, biology, etc.) 408
8 Applications to neuroscience & cognitive science 166
9 Learning theory 284

10 Causal reasoning 96
11 Neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.) 95
12 Probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.) 220
13 Applications to robotics, autonomy, planning 196
14 Learning on graphs and other geometries & topologies 320
15 Societal considerations including fairness, safety, privacy 214
16 Optimization 328
17 Visualization or interpretation of learned representations 87
18 Metric learning, kernel learning, and sparse coding 6
19 Infrastructure, software libraries, hardware, systems, etc. 50
20 Applications to computer vision, audio, language, and other modalities 574
21 Alignment, fairness, safety, privacy, and societal considerations 499
22 Interpretability and explainable AI 249
23 Foundation or frontier models, including LLMs 670
24 Learning on time series and dynamical systems 116
25 Other topics in machine learning (i.e., none of the above) 223

The top-left n×n block equals Diag(z1, . . . , zn)−M+B, whose determinant is a nonzero polynomial
(the z1 · · · zn coefficient equals 1), hence it is invertible for almost all zc; thus Dφo(zc) is invertible
generically. There exists (up to scale) a unique nonzero w with

w⊤



z1 0 · · · 0

. . . . . .
...

0 · · · zn 0
0 · · · 0 0

− M̃+B

 = 0, w⊤



z̃1 0 · · · 0

. . . . . .
...

0 · · · z̃n 0
0 · · · 0 0

− M̃+B

 = 0.

(34)
If somewi vanished on a set of positive measure, either the upper block would lose rank (contradicting
the generic invertibility) or a minor involving the bottom row would force (v⊤B)1 = 0, violating
Assumption ii. Hence wi ̸= 0 for all i ≤ n almost everywhere, and subtracting the two displays gives

(w1(z1 − z̃1), . . . , wn(zn − z̃n), 0) = 0, (35)

so zi = z̃i for all 1 ≤ i ≤ n. Therefore φo(zc) = zc almost everywhere (and by continuity
everywhere), which implies

⟨ei, g̃−1(x)⟩ = ⟨ei, g−1(x)⟩, 1 ≤ i ≤ n. (36)

Thus the concept coordinates, hence the true concepts c = Az, are identified up to permutation and
coordinate-wise scaling. Since c̃ enters only as weak supervision with independent Gaussian noise, it
does not alter the identifiability class of c; rather, it guides estimation.

This completes the proof of Theorem 1.
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Prompt 1. (Complete Prompt for Generating Concepts for Authors/Reviewers (1/2))
Task Description
You are an expert analyst tasked with evaluating an author-reviewer discussion from the OpenReview system. Your goal is to label the
discussion content across 10 specific dimensions, as defined below, based on the provided reviewer comments, author rebuttals, and any
additional interactions. For each dimension, assign a score (1, 2, 3, 4, or 5) according to the calibration criteria provided, and provide a brief
justification (1-2 sentences) explaining your reasoning. This rubric is calibrated for top-tier machine learning conferences. A score of 3 reflects
the expected standards from competent researchers at a top conference. Scores of 1–2 indicate responses that fall short of this benchmark,
while 4–5 are reserved for rebuttals that are truly exceptional. Don’t hesitate to give a 3 for strong, competent responses; use higher scores
only for standout cases. Ensure your analysis is objective, precise, and grounded in the content.

Input Content:
The discussion content is provided in JSON format, containing reviewer summaries, strengths, weaknesses, questions, ratings, and author
responses. Here is the content with one reviewer’s comments to analyze:

{discussion}

Dimensions and Calibration Criteria:

1. Clarity of the Rebuttal (Presentation)
Definition: The extent to which the rebuttal communicates the authors’ arguments and clarifications clearly, with logical structure, precise
language, and proper grammar.
Calibration:

• 1 (Weak): Generally understandable but with notable ambiguity or unclear phrasing.
• 2 (Acceptable): Mostly clear, but with occasional awkwardness or minor lapses in flow or precision.
• 3 (Competent): Well-structured and precise, meeting top-tier expectations.
• 4 (Strong): Exceptionally clear and engaging, with polished language and logical flow.
• 5 (Exceptional): Exemplary clarity using outstanding prose or innovative formatting to enhance understanding.

2. Directness in Addressing Reviewer Concerns (Presentation)
Definition: The degree to which the rebuttal directly and comprehensively responds to the reviewer’s specific criticisms and questions.
Calibration:

• 1 (Inadequate): Fails to meaningfully engage with reviewer concerns.
• 2 (Partially Direct): Responds to some points but omits or glosses over others.
• 3 (Fully Direct): Addresses all major concerns clearly and completely.
• 4 (Very Direct): Thoughtful, complete, and anticipates follow-ups.
• 5 (Exceptionally Direct): Insightful, persuasive, and goes beyond expectations in addressing concerns.

3. Positive Attitude (Presentation)
Definition: The extent to which the rebuttal maintains a constructive, respectful, and collaborative tone, even when disagreeing with reviewers.
Calibration:

• 1 (Negative): Dismissive or combative tone.
• 2 (Slightly Defensive): Polite but subtly frustrated or curt.
• 3 (Constructive): Respectful, professional, and collaborative.
• 4 (Gracious): Appreciative and collegial, fostering a positive tone.
• 5 (Diplomatic): Extremely professional and generous in tone, even under criticism.

4. Willingness to Acknowledge Limitations or Propose Changes (Presentation)
Definition: The authors’ openness to revising their work and candidly acknowledging limitations raised by reviewers.
Calibration:

• 1 (Resistant): Avoids or dismisses valid concerns.
• 2 (Minimally Open): Acknowledges minor issues with superficial fixes.
• 3 (Open): Candidly acknowledges limitations and proposes improvements.
• 4 (Receptive): Actively proposes meaningful adjustments.
• 5 (Reflective): Embraces feedback and suggests substantial changes with humility.

5. Strength of Evidence or Justification (Technical)
Definition: The robustness of the rebuttal’s claims, supported by experiments, references, logical reasoning, or other concrete evidence.
Calibration:

• 1 (Weak): Vague or unsupported claims.
• 2 (Partially Supported): Limited or insufficient justification.
• 3 (Well Justified): Solid and relevant evidence or logic.
• 4 (Thorough): Multiple, well-integrated forms of support.
• 5 (Persuasive): Deep, compelling evidence demonstrating technical mastery.

6. Technical Convincingness and Rigor (Technical)
Definition: The technical soundness, rigor, and depth of understanding demonstrated in the rebuttal’s arguments.
Calibration:

• 1 (Unconvincing): Contains technical errors or vague reasoning.
• 2 (Partially Convincing): Shows some understanding but includes logical gaps.
• 3 (Solid and Sound): Technically correct and well-reasoned.
• 4 (Insightful): Demonstrates thoughtful, deeper understanding.
• 5 (Exceptional): Reveals technical mastery and strengthens the paper’s core claims.
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Prompt 2. (Complete Prompt for Generating Concepts for Authors/Reviewers (2/2))
7. Handling of Misunderstandings and De-escalation
Definition: The extent to which the authors recognize and address misunderstandings in reviewer comments while maintaining a constructive
tone.
Calibration:

• 1 (Defensive): Escalates tension with sarcasm or dismissiveness.
• 2 (Tense): Curt or irritated tone; misunderstanding remains partially unresolved.
• 3 (Professional): Clarifies misunderstandings calmly and clearly.
• 4 (Tactful): Resolves issues gracefully and respectfully.
• 5 (Masterful): Turns conflict into constructive dialogue with diplomacy.

8. Review Specificity and Constructiveness
Definition: The specificity, actionability, and constructiveness of the reviewer’s feedback provided to the authors.
Calibration:

• 1 (Vague): Lacks actionable suggestions.
• 2 (Somewhat Specific): Contains some helpful points but is mixed with generalities.
• 3 (Constructive): Clear, specific, and actionable feedback.
• 4 (Thorough): Covers various aspects with a balanced and helpful tone.
• 5 (Exemplary): Deeply engaged, precise, and improvement-oriented feedback.

9. Reviewer Open-mindedness
Definition: The reviewer’s apparent willingness to reconsider their evaluation based on a compelling rebuttal.
Calibration:

• 1 (Rigid): Unwilling to engage or revise stance.
• 2 (Cautious): Skeptical, with minimal openness.
• 3 (Reasonable): Acknowledges merit and shows willingness to revise.
• 4 (Flexible): Thoughtfully re-evaluates if rebuttal is persuasive.
• 5 (Proactive): Encourages rebuttal and signals readiness to change stance.

10. Severity of Concerns
Definition: The seriousness of the reviewer’s criticisms, influencing the rebuttal’s potential to change the reviewer’s opinion.
Calibration:

• 1 (Minor): Only minor or editorial comments.
• 2 (Moderate): Substantive but addressable issues.
• 3 (Serious): Challenges to key aspects of the paper.
• 4 (Major): Foundational doubts about core contributions.
• 5 (Critical): Calls the publishability of the work into question.

Instructions

1. Analyze the provided content, focusing on the author’s rebuttal (if any) and the reviewer’s comments.
2. For each of the 10 dimensions, assign a score (1, 2, 3, 4, or 5) based on the calibration criteria.
3. Provide a brief justification (1-2 sentences) for each score, referencing specific aspects of the content.
4. Summary: After analyzing all, provide a summary string containing the 10 dimension scores separated by hyphens.
5. If a dimension cannot be evaluated due to insufficient information (e.g., no rebuttal for technical dimensions), assign a score 0

and explain why.
6. If the content references another reviewer (e.g., “reviewer ciFG” or “reviewer sq8T”) whose comments are not provided, note

that the analysis is limited to the available content.
7. Ensure your tone remains neutral and professional, focusing on the content’s quality and alignment with the criteria.
8. Present your output strictly in the following format:

Output Format
1. Clarity of the Rebuttal: [Score]

Justification: [1–2 sentences]
2. Directness in Addressing Reviewer Concerns: [Score]

Justification: [1–2 sentences]
3. Positive Attitude: [Score]

Justification: [1–2 sentences]
4. Willingness to Acknowledge Limitations or Propose Changes: [Score]

Justification: [1–2 sentences]
5. Strength of Evidence or Justification: [Score]

Justification: [1–2 sentences]
6. Technical Convincingness and Rigor: [Score]

Justification: [1–2 sentences]
7. Handling of Misunderstandings and De-escalation: [Score]

Justification: [1–2 sentences]
8. Review Specificity and Constructiveness: [Score]

Justification: [1–2 sentences]
9. Reviewer Open-mindedness: [Score]

Justification: [1–2 sentences]
10. Severity of Concerns: [Score]

Justification: [1–2 sentences]
Summary: [Score1–Score2–...–Score10].
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Figure A3: Conditional Independence Test. The p-value of KCI (blue) and RCIT (orange).

Figure A4: Conditional Independence Test. The p-value of HSIC (blue) and Chi-square (orange).

Figure A5: Conditional Independence Test. The p-value of GSQ (orange).
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Figure A6: Dependency Panels of rating init

Figure A7: Dependency Panels of rating final
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