
Planning with Spatial and Temporal Abstraction from
Point Clouds for Deformable Object Manipulation

Xingyu Lin ∗† Carl Qi ∗† Yunchu Zhang † Zhiao Huang ‡

Katerina Fragkiadaki † Yunzhu Li § Chuang Gan ¶ David Held †

Abstract: Effective planning of long-horizon deformable object manipulation
requires suitable abstractions at both the spatial and temporal levels. Previous meth-
ods typically either focus on short-horizon tasks or make the strong assumption that
full-state information is available. However, full states of deformable objects are
often unavailable. In this paper, we propose PlAnning with Spatial and Temporal
Abstraction (PASTA), which incorporates both spatial abstraction (reasoning about
objects and their relations to each other) and temporal abstraction (reasoning over
skills instead of low-level actions). Our framework maps high-dimension 3D point
clouds into a set of latent vectors and plans skill sequences with the latent set
representation. Our method can solve challenging, novel sequential deformable
object manipulation tasks in the real world, which require combining multiple
tool-use skills such as cutting with a knife, pushing with a pusher, and spreading
dough with a roller. Additional materials can be found on our project website.1

Keywords: Long-horizon Planning, Deformable Object Manipulation

...

Cut

Ex
ec
ut
io
n

Pl
an
ni
ng

t

latent subgoals

observed
latent vector

cutter pusher roller

latent subgoals

Push ...
More
Steps

Figure 1: Long-horizon dough manipulation with diverse tools. Our framework is able to solve long-horizon,
multi-tool, deformable object manipulation tasks that the agent has not seen during training. The illustrated task
here is to cut a piece of dough into two with a cutter, transport the pieces to the spreading area on the left (with a
high-friction surface) using a pusher, and then flatten both pieces with a roller.

1 Introduction

Consider a typical cooking task of making dumplings from dough. People plan over which piece
of dough to manipulate and which tool to use in sequence, incorporating both spatial and temporal
abstractions. A spatial abstraction reasons about objects, parts, and their relations to each other, such
as reasoning about pieces of dough instead of reasoning about individual dough particles; such a

∗ equal contribution; † CMU ‡ UC San Diego; § Stanford University; ¶ UMass Amherst & MIT-IBM Lab
1https://sites.google.com/view/pasta-plan

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sites.google.com/view/pasta-plan

spatial abstraction enables efficient planning and compositional generalization. On the other hand, a
temporal abstraction incorporates abstract actions represented as a set of skills. With abstract actions,
the agent plans for the types and parameters of the skills to execute over a period of time, instead
of making plans for low-level actions such as joint torques at each time step. Temporal abstractions
allow planning at the skill level, enabling more efficient optimization for solving long-horizon tasks.
An autonomous robot that operates in unstructured environments should be able to reason about
world dynamics using high-level spatial and temporal abstractions instead of reasoning only over the
physical state, raw sensory observation, or low-level robot actions.

The research community is making rapid progress towards developing state abstractions for manipu-
lating deformable objects, including key points [1, 2], graphs [3, 4], dense object descriptors [5], or
implicit functions [6, 7]. However, most of these approaches do not make abstractions at the temporal
level, limiting their use to short-horizon tasks. Methods are also being developed with temporal
abstractions, planning over a set of skills to solve long-horizon tasks [8, 9, 10]. However, the lack of
spatial abstraction severely limits their generalization ability. Therefore, it remains a key question
in robot learning on how to learn spatial and temporal abstractions within a unified framework for
complex and long-horizon manipulation tasks.

In this work, we focus on the challenging task of sequential deformable object manipulation, as
shown in Figure 1. We consider a set of dough manipulation tasks that require sequentially applying
different skills using multiple tools to manipulate dough, such as spreading using a roller, cutting
using a knife and pushing using a pusher, where the longest task requires applying 6 skills in sequence.
Deformable objects like dough have nearly infinite degrees of freedom. As such, in this work, we
dynamically cluster points in a point cloud into different groups and learn a point cloud encoder to
map each element in the group into a latent vector. In this way, we obtain a compositional 3D set
representation of the state space. Given an observation and a target point cloud, we then sample
skill sequences with subgoals generated in this latent space. We learn skill abstraction modules to
determine the feasibility and score of each skill sequence and use them for planning.

Our contribution of this paper is a framework that PlAns with Spatial and Temporal Abstraction
(PASTA) by learning a set of skill abstraction modules over a 3D set representation. Our framework
can compose a set of skills to solve complex tasks with more entities and longer-horizon than what
was seen during training. We show that PASTA significantly outperforms an ablation that performs
planning with a flat representation without a spatial abstraction (e.g. without a set representation).
Finally, our planner can be trained in simulation and transferred to the real world.

2 Related Work

Model-based Planning for Sequential Manipulation. One line of research for sequential manipu-
lation is Task and Motion Planning (TAMP). TAMP systems typically assume known object states
and known effects for the action operators [11, 12, 13, 14, 15]. However, it is difficult to estimate
states and dynamics for unknown objects or from partial observations. While recent works have
made progress in learning certain components of the system, such as the logical states [16] from high
dimensional observations or learning action models [17, 18, 19] from interactions, they still require
either known states or known action operators. In contrast, we do not assume known states or action
operators, and learn a 3D set representation as well as the action model with the representation.

Another approach learns dynamics directly from visual observations [3, 20, 21]. Most of these works
focus on learning a one-step dynamics model for planning short-horizon tasks. A few works learn the
dynamics model over a set of skills and use it for sequential manipulation of rigid objects [22, 23] or
deformable objects [8]. However, these works do not use an object-centric representation and thus
cannot easily generalize to more complex scenes. In contrast, our framework unifies both temporal
and spatial abstraction and can perform long-horizon manipulation for complex tasks with more
objects than in previous work, as we will show.

Planning with Spatial Abstraction. Prior works leverage spatial abstraction to facilitate solving
tasks that involve complex dynamics and high-dimensional observations. These works either model a

2

(a) Generate demonstration dataset

set cost
predictor

set
feasibility
predictor

set policy

cut spread push

Demonstration Trajectories for each skill

observed pc + tool pc

(b) Learn set skill abstraction from demonstration

set cost
predictor

(c) Planning and execution with set skill abstraction

PointNet++

cut
feasibility

cut push push

push
feasibility

push
feasibility

Step 1 Step 2 Step 3

Enumerate attention structures
goal pc

<latexit sha1_base64="BhIgT5vmjGh7TZkWqBtxQMAw338=">AAACyHicdVHLbhMxFHWGVwmvFNixGVEhsYiiSRUC7CqxQayKRNpKmSG647kzserHyPY0RMYbPoOvYQt/wN/gmTSojeBItq7Offj4nrzmzNgk+d2Lbty8dfvO3t3+vfsPHj4a7D8+MarRFGdUcaXPcjDImcSZZZbjWa0RRM7xND9/1+ZPL1AbpuQnu64xE1BJVjIKNlCLwcSl3ZC5rvLMjUdJh2EyehswnQ63jG8+O5Ubv3CJ94vBwZaPt5XxX2YbHBw9LTscL/Z7X9NC0UagtJSDMfNxUtvMgbaMcvT9tDFYAz2HCuchlCDQZK5T5uMXgSniUulwpI079mqHA2HMWuShUoBdmt1cS/4zl+eKF36HEtfV6IZjMbxo91sEwbxSmtmlONwVbcs3mWOybixKutFcNjy2Km7XHhdMI7V8HQKgYQKjMV2CBmqDOf20wDI80P3MKQ2yQu+CI751ZBh2/Kq9kvCkxBVVQoAsXAq6EvDFu1TVqMEq3a5tFdRxJpg17jLv+1f9+n9wcjgaT0eTj8G4Cdlgjzwjz8lLMiavyRF5T47JjFDynfwgP8mv6ENUR6tovSmNepc9T8g1RN/+AKVA4W4=</latexit>

uobs
0

<latexit sha1_base64="7Jid2Cb9tRMa2X5rfWQ5kIwevqc=">AAACxXicdVHLjtMwFHXDayivDizZWFRILKooGZUCu5FYwHKQ6MxITVQ5zk1qjR+R7XSojMVn8DVs4Rv4G5xMi2YquJKtq3MfPj6naDgzNkl+D6Jbt+/cvXdwf/jg4aPHT0aHT0+NajWFOVVc6fOCGOBMwtwyy+G80UBEweGsuHjf1c/WoA1T8rPdNJALUktWMUpsgJaj1GX9koWui9ylcdLHJInfhZjNJjvEt0uXTnDi/XI03oF414b/IrtkjLZxsjwcfM1KRVsB0lJOjFmkSWNzR7RllIMfZq2BhtALUsMipJIIMLnraXn8MiAlrpQOR1rco9cnHBHGbEQROgWxK7Nf68B/1opC8dLvQeImG91yKCfrTtwyEOa10syuxNE+aVu9zR2TTWtB0ivOVcuxVbjTHJdMA7V8ExJCwwZGMV0RTagNzgyzEqrwQP8zpzSRNXgX7PCdHUHy+HV3JeFJCZdUCUFk6TKia0G+eJepBjSxSneyXQZ2nAlmjdvW/fC6X/9PTo/idBZPP03Hx9OtcwfoOXqBXqEUvUHH6CM6QXNE0Xf0A/1Ev6IPkYhstL5qjQbbmWfoRkTf/gDtY9x/</latexit>u1,0

<latexit sha1_base64="J/g5j7WvlJXUkC1zSN2j2I8ykro=">AAACxXicdVHLbhMxFHWGVwmvFBYs2FhUSCxG0UxVQtlVYgHsikTaSplR8HhuJlb9GNmetJGx+Aw+hRVb+AZ+gCXfgGfSoDaCK9m6Ovfh43OKmjNjk+RnL7p2/cbNW1u3+3fu3rv/YLD98MioRlMYU8WVPimIAc4kjC2zHE5qDUQUHI6L09dt/XgB2jAlP9hlDbkglWQzRokN0HSQuqxbMtFVkbt0mHQRJ8NXIUajeI34ZurSGKfeTwc7axCv2/BfZJ3sHDx+9+v31+jj4XS79ykrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakJPSQWTkEoiwOSuo+Xxs4CUeKZ0ONLiDr084YgwZimK0CmInZvNWgv+s1YUipd+AxJX2eiGQxkvWnHLQJhXSjM7F7ubpO1sP3dM1o0FSVecZw3HVuFWc1wyDdTyZUgIDRsYxXRONKE2ONPPSpiFB7qfOaWJrMC7YIdv7YiDxi/aKwlPSjijSggiS5cRXQly7l2matDEKt3KdhbYcSaYNe6i7vuX/fp/crQ7TEfDvffBuD20ii30BD1Fz1GKXqID9BYdojGi6Av6hr6jH9GbSEQ2Wqxao97FzCN0JaLPfwAUVeAJ</latexit>u1,1

<latexit sha1_base64="KSZ1Wv0kyPLHLAU4Rl945Fom+Bo=">AAACxXicdVHLbhMxFHWGVwmvFBYs2FhUSCyi0SQqAXaVWAC7IpG2UmYUPJ47E6t+jGxPSmQsPoNPYcUWvoEfYMk34Jk0qI3gSrauzn34+Jy85szYJPnZi65cvXb9xs7N/q3bd+7eG+zePzKq0RSmVHGlT3JigDMJU8ssh5NaAxE5h+P89FVbP16CNkzJ93ZVQyZIJVnJKLEBmg9GLu2WzHSVZ24UJ10Mk/hliMlkuEF8M3fjIU68nw/2NiDetOG/yCbZO3j49tfvr9GHw/lu71NaKNoIkJZyYsxslNQ2c0RbRjn4ftoYqAk9JRXMQiqJAJO5jpbHTwJS4FLpcKTFHXpxwhFhzErkoVMQuzDbtRb8Zy3PFS/8FiQus9ENh2K4bMUtAmFeKc3sQoy3SdvyReaYrBsLkq45lw3HVuFWc1wwDdTyVUgIDRsYxXRBNKE2ONNPCyjDA93PnNJEVuBdsMO3dgTJ42ftlYQnJZxRJQSRhUuJrgT56F2qatDEKt3KdhbYcSaYNe687vsX/fp/cjSOR5N4/10wbh+tYwc9Qo/RUzRCz9EBeoMO0RRR9AV9Q9/Rj+h1JCIbLdetUe985gG6FNHnPxRY4Ak=</latexit>u2,0

<latexit sha1_base64="rl7IwGGNRWYzfjeB8TLQO9zX4/Q=">AAACxXicdVHLbhMxFHWGVwmvFBYs2FhUSCxG0UxbAuwqsQB2RSJtpcwoeDw3E6t+jGxPSmQsPoNPYcUWvoEfYMk34Jk0qI3gSrauzn34+Jyi5szYJPnZi65cvXb9xtbN/q3bd+7eG2zfPzKq0RTGVHGlTwpigDMJY8ssh5NaAxEFh+Pi9FVbP16ANkzJ93ZZQy5IJdmMUWIDNB2kLuuWTHRV5C4dJl3EyfBliNEoXiO+mbq9GKfeTwc7axCv2/BfZJ3sHDx8++v31+jD4XS79ykrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakJPSQWTkEoiwOSuo+Xxk4CUeKZ0ONLiDr044YgwZimK0CmInZvNWgv+s1YUipd+AxKX2eiGQxkvWnHLQJhXSjM7F7ubpO3sRe6YrBsLkq44zxqOrcKt5rhkGqjly5AQGjYwiumcaEJtcKaflTALD3Q/c0oTWYF3wQ7f2hEHjZ+1VxKelHBGlRBEli4juhLko3eZqkETq3Qr21lgx5lg1rjzuu9f9Ov/ydHuMB0N998F4/bRKrbQI/QYPUUpeo4O0Bt0iMaIoi/oG/qOfkSvIxHZaLFqjXrnMw/QpYg+/wEYveAL</latexit>u3,1

<latexit sha1_base64="2pC8G9CqmARaVXFFU5HdhU05Gwk=">AAACyXicdVFNbxMxEHWWrxK+UhAnLisKUg9RtKna0N4qcUHiUiTSVsqGaNY7u7Hqj8X2tg3GJ/4DF34KJ670xJF/gzdpUBvBSLZG782Mn+dlFWfGJsnvVnTj5q3bd9butu/df/DwUWf98aFRtaY4pIorfZyBQc4kDi2zHI8rjSAyjkfZyeuGPzpFbZiS7+2swrGAUrKCUbABmnR2XDofMtJlNnb9XjKPbtLbCzEYdJeIrz+4UgH3E5d4P+lsLIl4WRr/RZbJxv7T7183L369OJistz6nuaK1QGkpB2NG/aSyYwfaMsrRt9PaYAX0BEochVSCQDN2c2k+fhmQPC6UDkfaeI5e7XAgjJmJLFQKsFOzyjXgP7ksUzz3K5C4rkbXHPPuabPgPAjmpdLMTsXWqmhb7I4dk1VtUdKF5qLmsVVxs/c4Zxqp5bOQAA0TGI3pFDRQG9xppzkW4YH5z5zSIEv0LljiG0u6Ycc7zZWEJyWeUSUEyNyloEsB596lqkINVulmbWdBHWeCWeMued++6tf/k8OtXn/Q234XjNsmi1gjz8hzskn65BXZJ2/IARkSSr6RH+QnuYjeRh+j8+jTojRqXfY8Idci+vIHWX3irQ==</latexit>

ugoal
0

<latexit sha1_base64="heiEHx1zjCbzElOTrnwKUdwfuqk=">AAACyXicdVFNbxMxEHWWrxK+UhAnLisKUg9RtFu1ob1V4oLEpUikrZQN0ax3srHqj8X2tg3GJ/4DF34KJ670xJF/gzdpUBvBSLZG782Mn+flFWfGJsnvVnTj5q3bd9butu/df/DwUWf98aFRtaY4oIorfZyDQc4kDiyzHI8rjSByjkf5yeuGPzpFbZiS7+2swpGAUrIJo2ADNO7suGw+ZKjLfOTSXjKPbtLbC9Hvd5eIrz+4UgH3Y5d6P+5sLIl4WRr/RZbJxv7T7183L369OBivtz5nhaK1QGkpB2OGaVLZkQNtGeXo21ltsAJ6AiUOQypBoBm5uTQfvwxIEU+UDkfaeI5e7XAgjJmJPFQKsFOzyjXgP7k8V7zwK5C4rkbXHIvuabPgIgjmpdLMTsXWqmg72R05JqvaoqQLzZOax1bFzd7jgmmkls9CAjRMYDSmU9BAbXCnnRU4CQ/Mf+aUBlmid8ES31jSDTveaa4kPCnxjCohQBYuA10KOPcuUxVqsEo3azsL6jgTzBp3yfv2Vb/+nxxu9dJ+b/tdMG6bLGKNPCPPySZJySuyT96QAzIglHwjP8hPchG9jT5G59GnRWnUuux5Qq5F9OUPW67irg==</latexit>

ugoal
1

<latexit sha1_base64="xfNMgvLZt8rZcWcmknoi1V+6PwY=">AAACmnicbVHbbtNAEN2YWwm3Fh7hwSJC4qGK7Kpc3qjKSxEvQWraSHWoxuuxs+perN1xS7T1T/BG4Uf4FP6GdZIHmjLSro7OzOycPZPXUjhKkj+96NbtO3fvbdzvP3j46PGTza2nR840luOYG2nsJAeHUmgckyCJk9oiqFzicX72scsfn6N1wuhDmtc4VVBpUQoOFKjJ6KuvDMj2dHOQDJNFxDdBugKDD79/dHE1Ot3qXWaF4Y1CTVyCcydpUtPUgyXBJbb9rHFYAz+DCk8C1KDQTf1CcBu/CkwRl8aGoylesP92eFDOzVUeKhXQzK3nOvK/uTw3smjXKHVdjW0kFtvnnWNFECwrYwXN1M66aCrfT73QdUOo+VJz2ciYTNwZGRfCIic5DwB4eEHwmM/AAqdgdz8rsAwDFj/zxoKusPW2ylsfzNwO1r7priSM1HjBjVKgC5+BrRR8a31marRAxna2XQR1UihBzq/ybT/sK13fzk1wtDNM3w53vySDvV22jA32nL1kr1nK3rE9dsBGbMw4k+w7+8l+RS+i/ehT9HlZGvVWPc/YtYgO/wKjZ9R7</latexit>

P goal
<latexit sha1_base64="RqXcssBxMZp6ZHzgmT8Y7ln+WJY=">AAACmXicbVFNb9NAEN2Yj5bw1cKxF4sIiUMV2VWB3ijiUnEKgjSV6lCN12Nnlf2wdsct0eIfwZHyS/gp/BvWSQ40ZaRdPb2Z2Xn7Jq+lcJQkf3rRnbv37m9tP+g/fPT4ydOd3WenzjSW45gbaexZDg6l0DgmQRLPaougcomTfP6hy08u0Tph9Bda1DhVUGlRCg4UqMnoqze5ay92BskwWUZ8G6RrMHj3+2cX16OL3d73rDC8UaiJS3DuPE1qmnqwJLjEtp81Dmvgc6jwPEANCt3UL/W28cvAFHFpbDia4iX7b4cH5dxC5aFSAc3cZq4j/5vLcyOLdoNSN9XYRmKxf9kZVgTBsjJW0EwdbIqm8mjqha4bQs1XmstGxmTizse4EBY5yUUAwMMLgsd8BhY4Bbf7WYFlGLD8mTcWdIWtt1Xe+mDmfrD2dXclYaTGK26UAl34DGyl4FvrM1OjBTK2s+0qqJNCCXJ+nW/7YV/p5nZug9ODYfpmePgpGRwfslVssz32gr1iKXvLjtkJG7Ex42zOfrBr9ivai95HJ9HHVWnUW/c8Zzci+vwXq5DUEg==</latexit>

P obs

Figure 2: Overview of our proposed framework PASTA. (a) We first generate demonstration trajectories
for each skill in a differentiable simulator using different tools. (b) We then sample point clouds (pc) from
the demonstration trajectories to train our set skill abstraction modules. (c) We map point clouds into a latent
set representation and plan over tool-use skills to perform long-horizon deformable object manipulation tasks.
P obs, P goal are the observation and target pc; ui,j denotes component j at step i. The example shows our
method performs the CutRearrange task, which requires cutting the dough into two pieces with a knife and
transporting each piece to its target location.

compositional system with Graph Neural Networks (GNN) [3, 4, 7, 24, 25] or learn policies directly
from object-centric representations [26, 27]. These works demonstrate compositional generalization,
but they learn policies or one-step dynamics models for planning, which can be difficult for solving
long-horizon tasks. In contrast, our framework connects temporally extended spatial abstractions with
a feasibility predictor to plan over a longer time horizon. Xu et al. [28] learns a planner grounded
on object-centric visual observation and can solve long-horizon tasks. However, its planner takes a
symbolic goal and plans in a predefined symbolic domain to output symbolic subgoals. In contrast,
our method does not require defining a symbolic planning domain.

Deformable Object Manipulation. Deformable objects have nearly infinite degrees of freedom and
complex dynamics, making them very challenging to manipulate. Previous works have explored
pouring liquid [6, 29, 30], rope manipulation [31, 32], and cloth manipulation [33, 34, 4, 35, 36].
Other papers have also explored manipulating elasto-plastic objects such as deforming them by
grasping [3, 37], rolling [38, 39, 40], or cutting [41]. However, these works mostly only consider
manipulation with one skill at a time. In contrast, we consider the task of sequential manipulation
using multiple tools. The one exception is DiffSkill [8], where multiple skills are chained together.
However, DiffSkill uses RGB-D images to represent the scene. In contrast, we use a 3D set
representation that separately encodes each entity in the scene, enabling compositional generalization
to tasks with more objects and longer-horizon. Furthermore, we use point clouds as the input and we
are able to transfer our planner from simulation to the real world.

3 Method

Given a point cloud of the dough P obs and a goal point cloud P goal, our objective is to execute a
sequence of actions a1, ..., aTtot

that minimizes the distance between the final observed point cloud
and the goal D(P obs

Ttot
, P goal) where P obs

Ttot
is the observation point cloud at time Ttot. We aim to

solve long-horizon tasks that require chaining multiple skills in novel scenes with more objects than
training. To do so, we present a general framework that incorporates spatial and temporal abstractions,
as summarized in Figure 2. We use point clouds as input to all our modules to enable easier transfer
from simulation to the real world and to enable robustness to changes in viewpoint.

3

We assume access to an offline dataset of demonstration trajectories Ddemo from K skills, where
each trajectory demonstrates one of the skills using one tool. We can learn skill policies by imitation
learning from these demonstrations. To chain these skills to solve long-horizon tasks, we train a set
of skill abstraction modules (Sec. 3.3) which can be used for planning in the latent space (Sec. 3.1).

3.1 Spatial Abstraction from Point Clouds

Scene Decomposition: First, we describe our spatial abstraction of the point cloud observation.
Given a point cloud P ∈ RN×3, we first cluster the points into different components based on their
proximity in space. In this paper, we apply DBSCAN [42] to P and group points into a set of entity
point clouds {Pi ∈ RNi×3}i=1...C by separating points from high-density regions into different
clusters. While other works on scene decomposition can also be used [43], we find this simple method
to be sufficient for our tasks.

Entity Encoding: Planning directly in the high-dimensional space of point clouds is inefficient. To
enable efficient planning in a latent space, we train a point cloud variational autoencoder (VAE) [44].
The VAE model includes three modules: A point cloud encoder ϕ : RNi×3 → U that maps each
entity point cloud to a latent vector, a decoder ψ : U → RNi×3 that maps from a latent space back
into a point cloud, and a prior distribution over the latent space pu : U → [0, 1] which can be used to
generate samples from the latent space during planning. We can then encode the point clouds {Pi}
into a set of latent vectors: {ui}i=1...C as our set latent representation. We further achieve translation
invariance by separating the translation from its shape embedding. See the Appendix for details.

3.2 Learning Skills by Imitation

Given the demonstration trajectories Ddemo of K skills, we first distill these trajectories into K
closed-loop policies. The input to the policy for the kth skill πk is a subset of the observed point
clouds {P o

i } and goal point clouds {P g
j }, and a tool point cloud P tool

k . The policy only sees a subset
of the dough point cloud and goal point cloud in the scene to enable compositional generalization
to scenes with more objects. For example, a dough-spreading policy will only see the dough being
spread. To achieve this, we train each set point cloud policy with behavior cloning and hindsight
relabeling [45] on the demonstration dataset with an attention mask that filters out the non-relevant
entity point clouds. During planning, this attention mask will be provided by the planner. The policy
outputs an action at each timestep to control the tool directly.

3.3 Neural Spatial and Temporal Abstraction

We assume that each skill learned from the demonstration is only capable of performing a single-stage
task with a single tool for a single object. To solve longer-horizon tasks, we further learn a feasibility
predictor and a cost predictor. They can be used to plan subgoals that chain the skills into a sequence,
such that each subgoal is feasible for the corresponding policy to reach and the final subgoal reaches
a given goal. Additionally, all these modules take in the set representation {P1 . . . PC} as input to
achieve compositional generalization.

Set Feasibility Predictor Similar to DiffSkill [8], we train a feasibility predictor fk(Uo, Ug) for each
skill, where Uo = {uoi }i=1...No

, Ug = {ugj}j=1...Ng
are latent set representations of an observation

and goal point cloud respectively. The feasibility predictor outputs a value in [0, 1] denoting if the
goal can be reached from the observation by executing the kth skill. In DiffSkill, the feasibility
predictor uses a flat representation that takes in a single latent vector for all objects in the scene
as input. However, as our skills such as cutting or spreading only need to take in a subset of the
objects as input, we use the same attention method for the feasibility and assume that the feasibility
predictor only takes as input a subset of the full set representation Ûo ⊆ Uo, Ûg ⊆ Ug, where
Ûo = {uoi }i=1...Nk

, Ûg = {ugj}j=1...Mk
, Here, Nk and Mk are the number of components in the

observation and goal for skill k. The number of components in the observation and goal can be
different since the number of components can change before and after executing a skill; for example,
the cut skill takes one component as observation and cuts it into two components. As another example

4

for robot assembly [46], the number of entities increases when a piece is disassembled into parts and
the number of entities decreases when the parts are assembled. In this work, we manually define the
number of entities Nk, Mk per skill. Determining which subset to attend to when executing each
skill can be difficult; we make this decision during planning and defer the details to Sec. 3.4. We
parameterize fk to be invariant to permutation using max-pooling layers. See Appendix for details.

We train the feasibility predictor of skill k with positive examples Ûo, Ûg , where the goal Ûg can be
reached from the observation Ûo within T timesteps by executing skill k. The negative examples are
goal Ûg that cannot be reached from the observation Ûo using skill k. During training, we obtain
positive pairs for the feasibility predictor by sampling two point clouds (P obs, P goal) from the same
trajectory in the demonstration set. To find Ûo, Ûg, we first cluster the observation and goal point
clouds into two sets {P o

i }, {P
g
j } respectively. Then, we match point clouds in the observation set

to those in the goal set by finding the pairs of point clouds that are within a Chamfer distance of ϵ:
{(P o

i , P
g
j) | DChamfer(P

o
i , P

g
j) < ϵ}. We then remove these point clouds from the corresponding

set, since these are the point clouds that have already been moved to the target location in the goal.
We can then encode the remaining point clouds into Ûo, Ûg as explained above. We generate hard
negative samples by replacing one entity in the positive examples with a random latent vector.

Set Cost Predictor As we do planning in a latent space, we train a set cost predictor as our planning
objective which determines how close a plan is to a given goal. The set cost predictor C takes
two latent set representation as input Uo, Ug. Since our tasks focus on matching each entity in
the observation with one in the goal, we assume they have the same number of components, i.e.
|Uo| = |Ug| = Nc. To compute the cost, we try to find the matching entity with the minimal
matching cost: C

(
{uoi }, {u

g
j}
)
= argminσ

∑Nc

i=1 cθ(u
o
i , u

g
σ(i)), where σ is a permutation and cθ is

a cost prediction network parameterized by an MLP trained to predict the Chamfer Distance between
the point clouds corresponding to the two latent vectors. This allows faster planning compared to first
decoding latent vectors to point clouds and then computing their distance. Finally, optimization of
the cost is done by performing Hungarian matching between the two sets containing latent vectors.

3.4 Planning with Set Representation

Given an observation and a goal point cloud P obs, P goal, we plan for the types of skills to apply
in sequence, the attention for each skill (i.e. find Ûo ⊆ Uo), and the latent subgoals for each skill
(i.e. the exact value for each latent vector in Ûo). As the simplest approach, we run a three-level
nested optimization: In the top level, we exhaustively search over the combinations of skills to
apply at each step, i.e. k1 . . . , kH , where kh indexes the skill applied at the high-level step h.
We only keep the sequences that end with the same set cardinality as the goal by ensuring that∑H

h=1Mkh
− Nkh

= Ng − No, where Mkh
and Nkh

are the number of observation and goal
components for the skill applied at step h and No and Ng are the number of components in the
observed and target point clouds.

In the second-level optimization, we search over different attention structures. Denote the latent set at
the high level step h to be Uh. We formally define the attention structure at step h to be Ih, which
consists of a list of indices, each of length Nkh

, such that Ih selects a subset from Uh−1 to be the
input to the feasibility predictor, i.e. Ûh−1 = Uh−1

Ih ⊆ Uh−1. Assume that we have Nh components
before applying skill kh, i.e. |Uh−1| = Nh and skill kh takes Kh components as its observation. We
can search over all CKh

Nh
combinations of attention structures. For components not considered by the

skill, its latent vector will remain the same at step h. The combination of each skill attention yields an
attention structure I for the whole plan, as illustrated in Fig. 2(c). For this level of optimization, we
use a sampling-based procedure to avoid an exhaustive search over topologically equivalent attention
structures. See the Appendix for how we do this efficiently.

In the low-level optimization, for each attention structure I, we follow the optimization in DiffSkill [8].
We first sample multiple initializations for the set of latent subgoals U, where each latent vector in the
set is initialized from our generative model. We can then perform gradient descent to further optimize
the latent subgoals on the following objective:

5

argmin
k,I,U

J(k, I,U) =

H∏
h=1

fkh
(Ûh−1, Ûh) exp(C(UH , Ug)), (1)

where k is the skill sequence, I is the attention structure of the plan, U is the set of all latent subgoals,
Ûh = {uhi }i=1...Mkh

are the latent subgoals at step h, Û0 = Ûo ⊆ Uo is the attended observed set,
and Ug is the goal set. Finally, we can use our policy to execute our plan by following each subgoal.
A summary of our method can be found in Algorithm 1.

Algorithm 1: Planning with Spatial and Temporal Abstraction (PASTA)
Input :Demonstration Dataset Ddemo, skill horizon T , planning horizon H , modules for neural

skill abstraction πk, fk, rθ, Point Cloud VAE with encoder ϕ, decoder ψ, prior pu
1 for each valid skill sequence k1, . . . kH do
2 for each valid attention structure I1, . . . IH do
3 Initialize different latent subgoals Û1, . . . ÛH from pu ;
4 Optimize latent subgoals Û1, . . . ÛH according to Sec. 3.4 to obtain cost J(k, I,U) ;

5 Choose skill sequence k, attention structure I, and subgoals U that minimizes J(k, I,U) ;
6 for h← 0 to H − 1 do
7 Decode the subgoal from Ûh using the decoder ψ ;
8 Execute policy πki

following the subgoal ;

4 Experiments

Our experiments are categorized into three parts: In Sec. 4.1, we describe the experimental setups and
the baselines we consider. In Sec. 4.2 and Sec. 4.3, we show that PASTA outperforms the baselines
and ablate different components in our framework. In Sec. 4.4, we demonstrate that PASTA can be
effectively transferred to the real world without any fine-tuning.

4.1 Simulation Tasks and Baselines

Environment setups We consider several long-horizon dough manipulation tasks and divide them
into two categories. First, we consider the three tasks from Diffskill [8]: LiftSpread, GatherTransport,
and CutRearrange. These tasks require the agent to sequentially compose at most two skills to spread,
cut or transport the dough. We further propose two new generalization tasks: CutRearrangeSpread
(CRS) and CRS-Twice, where there are more entities during testing than during training. Similar to
prior work [8], we specify the minimal planning horizon required for each task. Our approach also
succeeds when we increase the horizon up to twice as long. See the Appendix, Sec 4.5 for details.

Generalization tasks The CRS task provides a number of demonstration trajectories performing
one of the three skills: Cutting with a knife, pushing with a pusher, and spreading with a roller. The
demonstration of each skill only shows a tool manipulating a single piece of dough. During testing,
the agent needs to cut a dough into two, transport one piece to a spreading area and then spread it.
Generalization to more entities is required as there will be two entities in the scene, whereas during
training there was only one entity. Can we do even more generalization? In the CRS-Twice task, we
use the same agent trained on the CRS dataset and ask it to cut two pieces of dough from a chunk,
transport both of them to a spreading area, and spread them both. This is a 6-horizon task with up
to 3 entities in the scene, much more complex than the skill demonstrations the agent is trained on.
Due to the long-horizon nature of CRS-Twice, we specify the skill skeleton and use receding horizon
planning for all the planning-based methods. See the Appendix for details.

Baselines We consider several baselines in simulation: First, a gradient-based trajectory optimizer
with oracle information (Traj-Opt), which can solve single-stage tasks for deformable object manipu-
lation as shown in prior works [47]. Second, a model-free RL with Soft Actor Critic [48] with RGB-D
image input (SAC-Image). Third, a SAC agent that takes in the dough, target dough, and tool point
clouds as input, the same as our method (SAC-Point). Fourth is DiffSkill, a model-based planning

6

method from Lin et al. [8], which takes RGB-D images as input and has no spatial abstraction.
The last one is Flat 3D, which extends DiffSkill to use 3D point clouds as input, with a “flat” 3D
representation that encodes the whole scene to a single latent vector without any spatial abstraction.

Metric We specify goals as 3D point clouds of different geometric shapes such as boxes and
spheres at specific locations. We report the normalized decrease in the Earth Mover Distance (EMD)
approximated by the Sinkhorn diverge [49] computed as s(t) = s0−st

s0
, where s0, st are the initial

and current EMD. We additionally set a threshold for the score to determine the success of a trial.

4.2 Comparison with Baselines in Simulation

Method
Task (Horizon) DiffSkill tasks Generalization tasks

LiftSpread (2) GatherMove (2) CutRearrange (3) CRS (3) CRS-Twice (6)

Traj-Opt (Oracle) [47] 0.818 / 40% 0.403 / 0% 0.511 / 20% 0.312 / 0% 0.227 / 0%
SAC-Image [48] 0.797 / 0% 0.567 / 20% 0.103 / 0% 0.562 / 0% 0.365 / 0%
SAC-Point [48] 0.796 / 0% 0.603 / 40% 0.147 / 0% 0.573 / 0% 0.353 / 0%

DiffSkill-Image [8] 0.920 / 100% 0.683 / 60% 0.249 / 20% -0.505 / 0% -
Flat 3D (Ours) * * 0.797 / 60% -0.712 / 0% -0.108 / 0%
PASTA (Ours) 0.904 / 100% 0.715 / 100% 0.837 / 80% 0.896 / 100% 0.604 / 40%

Table 1: Normalized improvement and success rate of all methods on two sets of tasks: tasks in DiffSkill and
tasks that require generalization to more steps and entities. For CRS and CRS-Twice, training data only contains
skills operating on one component of dough but at test time there are more than two components. Only the
best-performing baselines in CRS are evaluated on CRS-Twice. For LiftSpread and GatherMove, we consider
the whole scene as a single spatial abstraction, so Flat 3D is equivalent to PASTA.

Table 1 shows the quantitative results of simulation tasks. First, we show that using a 3D representation
is beneficial to planning and complex manipulation, as PASTA matches DiffSkill in LiftSpread and
outperforms it in all the other tasks. Second, we highlight PASTA’s compositional generalization
power in CRS and CRS-Twice, in which there are additional components of dough at test time.
Effectively using spatial abstraction to model the scene, PASTA achieves 100% success rate in CRS
and retains a good performance in CRS-Twice. All the baselines, especially the planning baselines
(DiffSkill, Flat 3D) fail dramatically, as they can only produce plans that consist of scenes seen
in training. Impressively, PASTA is the only approach that reaches a non-zero success rate on
these tasks that require compositional generalization. PASTA has a computational complexity of
O(KH · |I| · TG), where K is the number of skills, H is the planning horizon, |I| is the number
of attention structures and TG is the time it takes to solve each gradient-based optimization. We
discuss more efficient planning algorithms in the limitation section as well as in the Appendix, Sec. 5.

Ablation Method Performance / Success

No Hard Negatives Feasibility 0.740 / 40%
No Sampling Planning -0.455 / 0%
No Gradient Planning 0.329 / 0%

PASTA (Ours) 0.837 / 80%
Table 2: Ablation results from CutRearrange.

4.3 Ablation analysis

Table 2 shows the quantitative performance
of each ablation and PASTA in CutRearrange.
First, we consider a variant of feasibility predic-
tor’s training, which removes the hard negative
samples and only uses random negative sampling (No Hard Negatives), which halves the success
rate. Second, we consider two variants of the planner, one without gradient-descent (No Gradient
Planning) and one without sampling (No Sampling Planning). The results show that both components
are crucial to planning. We provide more ablations on the policy and the planner in the Appendix.

4.4 Real World Experiments

Figure 3 shows our real world setup. We use a Franka robot with an Azure Kinect camera capturing
the RGB-D observation of the workspace. The robot is equipped with a tool station [50] that allows
an automatic change of tools. For real world “dough”, we use Kinect Sand as a proxy because of its
stable physical property. We transfer the feasibility predictor and cost predictor of PASTA directly
from simulation and define heuristic controllers for the skills. For evaluation, we first generate a
desired target point cloud and then reset the dough to its initial shape and record its point cloud. We

7

Observation Step 1 Step 2 Step 3 Final

3D view

Observation Step 1 Step 2 Step 3 Final

0.820

CutRearrange

CRS-Twice

Observation Step 1 Step 2 Step 3 Step 4

3D view

Step 5 Step 6 Final

0.786

Observed dough Generated subgoal Final target

Tool changer

Top-down camera

Robot setup

cut push spread

CRS
0.877

3D view

Figure 3: Real world setup and execution with planned subgoals. Our workspace consists of a Franka robot,
a top-down camera, and a novel tool changer behind the robot that allows the robot to automatically switch tools.
For each task, we show frames after executing a skill overlaid with the decoded point cloud subgoal; we report
the final performance in red and overlay the ground truth target in green in the final frame. Additionally, we
include a 3D view of the last generated subgoal to show the shape variations.

then plan using PASTA and then use the heuristic controllers to follow the plan. Finally, we report
the normalized improvement EMD. We compare with the Flat3D method and also with human.

We evaluate three of the simulation tasks: CutRearrange, CRS, and CRS-Twice. For each task, we
evaluate the same four initial and target shapes for all methods and report the performance in Table 3.
Figure 3 shows the keyframes from the execution of PASTA. We overlay the planned subgoals as well
as the final goal. PASTA performs on par with human in the real world, highlighting the robustness
of our planner and the advantage of using 3D representation for sim2real transfer.

Method
Task (Horizon) CutRearrange (3) CRS (3) CRS-Twice (6)

Flat 3D 0.351 ± 0.478 0.007 ± 0.429 -
PASTA (Ours) 0.836 ± 0.029 0.854 ± 0.016 0.795 ± 0.035

Human 0.910 ± 0.014 0.863 ± 0.018 0.895 ± 0.013

Table 3: Normalized improvement on real world tasks. Each entry shows the mean and std of the performance
over 4 runs. Flat 3D does not produce any meaningful plan for CRS, so we do not evaluate it on CRS-Twice.

5 Conclusions and Limitations
In this work, we propose a planning framework named PASTA that incorporates both spatial and
temporal abstraction by planning with a 3D latent set representation with attention structure. We
demonstrate a manipulation system in the real world that uses PASTA to plan with multiple tool-use
skills to solve the challenging deformable object manipulation tasks, and we show that it significantly
outperforms a flat 3D representation, especially when generalizing to more complex tasks.

Limitations: First, we only transfer the planner to the real world and use heuristic controllers instead
of the policy trained in simulation. This is due to the sim2real gap caused by the differences in
dough’s physical parameters, table friction, and occlusions from the robot arm. Prior work [38]
shows promising results in transferring a closed-loop policy taking partial point clouds as input, and
future work can explore better sim2real methods. Second, our planner exhaustively searches overall
skill combinations and attention structures and does not scale well to longer sequences with more
skills. Future work can incorporate more efficient search algorithms or priors to prune the search
space. Finally, we rely on an unsupervised clustering method for entity decomposition and a point
cloud VAE for mapping an observation to our latent set representation. Future work can incorporate
self-supervised methods for learning the decomposition. For further discussion on the limitations and
future work, please see Sec. 5 of the Appendix.

8

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.
IIS-2046491, IIS-1849154, NSF award under AWD00001520, LG Electronics, Carnegie Mellon
University’s GSA/Provost GuSH Grant funding, and Amazon Research Award.

References
[1] X. Ma, D. Hsu, and W. S. Lee. Learning latent graph dynamics for visual manipulation of

deformable objects. In 2022 International Conference on Robotics and Automation (ICRA),
pages 8266–8273. IEEE, 2022.

[2] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kpam: Keypoint affordances for category-
level robotic manipulation. arXiv preprint arXiv:1903.06684, 2019.

[3] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba. Learning particle dynamics for
manipulating rigid bodies, deformable objects, and fluids. In ICLR, 2019.

[4] X. Lin, Y. Wang, Z. Huang, and D. Held. Learning visible connectivity dynamics for cloth
smoothing. In Conference on Robot Learning, 2021.

[5] P. R. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learning dense visual object
descriptors by and for robotic manipulation. In Conference on Robot Learning, pages 373–385.
PMLR, 2018.

[6] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba. 3d neural scene representations for
visuomotor control. In Conference on Robot Learning, pages 112–123. PMLR, 2022.

[7] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics with
compositional neural radiance fields. In International Symposium of Robotics Research, 2022.

[8] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. Diffskill: Skill abstraction
from differentiable physics for deformable object manipulations with tools. ICLR, 2022.

[9] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives
for diverse manipulation tasks. In IEEE International Conference on Robotics and Automation
(ICRA), 2022.

[10] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. Advances in Neural Information Processing Systems, 34, 2021.

[11] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.

[12] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics
and stable modes for tool-use and manipulation planning. Robotics: Science and Systems
Foundation, 2018.

[13] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[14] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. Pddl-the planning domain definition language. Technical Report CVC TR-98-
003/DCS TR-1165, 1998.

[15] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

9

[16] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations for
sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR, 2022.

[17] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. Search-based task
planning with learned skill effect models for lifelong robotic manipulation. In 2022 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2022.

[18] E. Ugur and J. Piater. Bottom-up learning of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic planning. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 2627–2633, 2015. doi:10.1109/ICRA.
2015.7139553.

[19] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
of robot skills for task and motion planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021.

[20] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based
deep reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[21] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[22] K. Fang, Y. Zhu, A. Garg, S. Savarese, and L. Fei-Fei. Dynamics learning with cascaded
variational inference for multi-step manipulation. In Conference on Robot Learning, pages
42–52. PMLR, 2020.

[23] A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A long
horizon planning framework for manipulating rigid pointcloud objects. In 4th Conference on
Robot Learning (CoRL 2020). Massachusetts Institute of Technology, 2020.

[24] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simulation
with graph networks. In International Conference on Learning Representations, 2020.

[25] X. Ma, D. Hsu, and W. S. Lee. Learning latent graph dynamics for deformable object manipula-
tion. arXiv preprint arXiv:2104.12149, 2021.

[26] N. Heravi, A. Wahid, C. Lynch, P. Florence, T. Armstrong, J. Tompson, P. Sermanet, J. Bohg,
and D. Dwibedi. Visuomotor control in multi-object scenes using object-aware representations.
arXiv preprint arXiv:2205.06333, 2022.

[27] C. Devin, P. Abbeel, T. Darrell, and S. Levine. Deep object-centric representations for gener-
alizable robot learning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7111–7118. IEEE, 2018.

[28] D. Xu, R. Martín-Martín, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-Fei. Regression
planning networks. Advances in Neural Information Processing Systems, 32, 2019.

[29] C. Schenck and D. Fox. Visual closed-loop control for pouring liquids. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2629–2636. IEEE, 2017.

[30] G. Narasimhan, K. Zhang, B. Eisner, X. Lin, and D. Held. Transparent liquid segmentation for
robotic pouring. In 2022 International Conference on Robotics and Automation (ICRA), 2022.

[31] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey, K. Stone, J. E. Gonzalez,
and K. Goldberg. Learning rope manipulation policies using dense object descriptors trained
on synthetic depth data. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 9411–9418. IEEE, 2020.

10

http://dx.doi.org/10.1109/ICRA.2015.7139553
http://dx.doi.org/10.1109/ICRA.2015.7139553

[32] P. Mitrano, D. McConachie, and D. Berenson. Learning where to trust unreliable models in
an unstructured world for deformable object manipulation. Science Robotics, 6(54):eabd8170,
2021.

[33] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detection
based on multiple-view geometric cues with application to robotic towel folding. In 2010 IEEE
International Conference on Robotics and Automation, pages 2308–2315. IEEE, 2010. URL
https://ieeexplore.ieee.org/abstract/document/5509439.

[34] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. Tanwani, N. Jamali, K. Yamane, S. Iba, and
K. Goldberg. VisuoSpatial Foresight for Physical Sequential Fabric Manipulation. Autonomous
Robots (AURO) journal, 2021.

[35] Z. Huang, X. Lin, and D. Held. Mesh-based dynamics model with occlusion reasoning for cloth
manipulation. Robotics: Science and Systems (RSS), 2022.

[36] T. Weng, S. Bajracharya, Y. Wang, K. Agrawal, and D. Held. Fabricflownet: Bimanual cloth
manipulation with a flow-based policy. In Conference on Robot Learning, 2021.

[37] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. Robocraft: Learning to see, simulate, and shape
elasto-plastic objects with graph networks. Robotics: Science and Systems (RSS), 2022.

[38] C. Qi, X. Lin, and D. Held. Learning closed-loop dough manipulation using a differentiable
reset module. IEEE Robotics and Automation Letters, 7(4):9857–9864, 2022. doi:10.1109/
LRA.2022.3191239.

[39] N. Figueroa, A. L. P. Ureche, and A. Billard. Learning complex sequential tasks from demon-
stration: A pizza dough rolling case study. In 2016 11th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 611–612. Ieee, 2016.

[40] C. Matl and R. Bajcsy. Deformable elasto-plastic object shaping using an elastic hand and
model-based reinforcement learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3955–3962. IEEE, 2021.

[41] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and F. Ramos. DiSECt: A Differentiable
Simulation Engine for Autonomous Robotic Cutting. In Proceedings of Robotics: Science and
Systems, July 2021. doi:10.15607/RSS.2021.XVII.067.

[42] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.

[43] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Doso-
vitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in Neural Information
Processing Systems, 33:11525–11538, 2020.

[44] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan. Pointflow: 3d point
cloud generation with continuous normalizing flows. ICCV, 2019.

[45] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

[46] Y. Lee, E. S. Hu, and J. J. Lim. Ikea furniture assembly environment for long-horizon complex
manipulation tasks. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6343–6349. IEEE, 2021.

[47] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan. Plasticinelab: A
soft-body manipulation benchmark with differentiable physics. In International Conference on
Learning Representations, 2020.

11

https://ieeexplore.ieee.org/abstract/document/5509439
http://dx.doi.org/10.1109/LRA.2022.3191239
http://dx.doi.org/10.1109/LRA.2022.3191239
http://dx.doi.org/10.15607/RSS.2021.XVII.067

[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[49] T. Séjourné, J. Feydy, F.-X. Vialard, A. Trouvé, and G. Peyré. Sinkhorn divergences for
unbalanced optimal transport. arXiv preprint arXiv:1910.12958, 2019.

[50] Y. Zhang. Library of behaviors and tools for robot manipulation. Master’s thesis, Carnegie
Mellon University, Pittsburgh, PA, August 2022.

12

	Introduction
	Related Work
	Method
	Spatial Abstraction from Point Clouds
	Learning Skills by Imitation
	Neural Spatial and Temporal Abstraction
	Planning with Set Representation

	Experiments
	Simulation Tasks and Baselines
	Comparison with Baselines in Simulation
	Ablation analysis
	Real World Experiments

	Conclusions and Limitations

