
Under review as a conference paper at ICLR 2023

DECENTRALIZED POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The study of decentralized learning or independent learning in cooperative multi-
agent reinforcement learning has a history of decades. Recently empirical studies
show that independent PPO (IPPO) can obtain good performance, close to or
even better than the methods of centralized training with decentralized execution,
in several benchmarks. However, decentralized actor-critic with convergence
guarantee is still open. In this paper, we propose decentralized policy optimization
(DPO), a decentralized actor-critic algorithm with monotonic improvement and
convergence guarantee. We derive a novel decentralized surrogate for policy
optimization such that the monotonic improvement of joint policy can be guaranteed
by each agent independently optimizing the surrogate. In practice, this decentralized
surrogate can be realized by two adaptive coefficients for policy optimization at
each agent. Empirically, we compare DPO with IPPO in a variety of cooperative
multi-agent tasks, covering discrete and continuous action spaces, and fully and
partially observable environments. The results show DPO outperforms IPPO in
most tasks, which can be the evidence for our theoretical results.

1 INTRODUCTION

In cooperative multi-agent reinforcement learning (MARL), centralized training with decentralized
execution (CTDE) has been the primary framework (Lowe et al., 2017; Foerster et al., 2018; Sunehag
et al., 2018; Rashid et al., 2018; Wang et al., 2021a; Zhang et al., 2021; Yu et al., 2021). Such a
framework can settle the non-stationarity problem with the centralized value function, which takes
as input the global information and is beneficial to the training process. Conversely, decentralized
learning has been paid much less attention. The main reason may be that there are few theoretical
guarantees for decentralized learning and the interpretability is insufficient even if the simplest form
of decentralized learning, i.e., independent learning, can obtain good empirical performance in several
benchmarks (Papoudakis et al., 2021). However, decentralized learning itself still deserves attention
as there are still many settings in which the global information cannot be accessed by each agent, and
also for better robustness and scalability (Zhang et al., 2019). Moreover, the idea of decentralized
learning is direct, comprehensible, and easy to realize in practice.

Independent Q-learning (IQL) (Tampuu et al., 2015) and independent PPO (IPPO) (de Witt et al.,
2020) are the straightforward decentralized learning methods for cooperative MARL, where each
agent learns the policy by DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) respectively.
Empirical studies (de Witt et al., 2020; Yu et al., 2021; Papoudakis et al., 2021) demonstrate that
these two methods can obtain good performance, close CTDE methods. Especially, IPPO can
outperform several CTDE methods in a few benchmarks, including MPE (Lowe et al., 2017) and
SMAC (Samvelyan et al., 2019), which shows great promise for decentralized learning. Unfortunately,
to the best of our knowledge, there is still no theoretical guarantee or rigorous explanation for IPPO,
though there has been some study (Sun et al., 2022).

In this paper, we make a further step and propose decentralized policy optimization (DPO), a
decentralized actor-critic method with monotonic improvement and convergence guarantee for
cooperative multi-agent reinforcement learning. Similar to IPPO, DPO is actually independent
learning, because in DPO each agent optimizes its own objective individually and independently.
However, unlike IPPO, such an independent policy optimization of DPO can guarantee the monotonic
improvement of the joint policy.

From the essence of fully decentralized learning, we first analyze Q-function in the decentralized
setting and further show that the optimization objective of IPPO may not induce the joint policy

1

Under review as a conference paper at ICLR 2023

improvement. Then, starting from the surrogate of TRPO (Schulman et al., 2015) and together
considering the characteristics of fully decentralized learning, we introduce a novel lower bound
of joint policy improvement as the surrogate for decentralized policy optimization. This surrogate
can be naturally decomposed for each agent, which means each agent can optimize its individual
objective to make sure that the joint policy improves monotonically. In practice, this decentralized
surrogate can be realized by two adaptive coefficients for policy optimization at each agent. The idea
of DPO is simple yet effective, and suitable for fully decentralized learning.

Empirically, we compare DPO and IPPO in a variety of cooperative multi-agent tasks including a
cooperative stochastic game, MPE (Lowe et al., 2017), multi-agent MuJoCo (Peng et al., 2021),
and SMAC (Samvelyan et al., 2019), covering discrete and continuous action spaces, and fully and
partially observable environments. The empirical results show that DPO performs better than IPPO
in most tasks, which can be evidence for our theoretical results.

2 RELATED WORK

CTDE. In cooperative MARL, centralized training with decentralized execution (CTDE) is the most
popular framework (Lowe et al., 2017; Iqbal & Sha, 2019; Foerster et al., 2018; Sunehag et al., 2018;
Rashid et al., 2018; Wang et al., 2021a; Zhang et al., 2021; Peng et al., 2021). CTDE algorithms
can handle the non-stationarity problem in the multi-agent environment by the centralized value
function. One line of research in CTDE is value decomposition (Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019; Yang et al., 2020; Wang et al., 2021a), where a joint Q-function is learned and
factorized into local Q-functions by the relationship between optimal joint action and optimal local
actions. Another line of research in CTDE is multi-agent actor-critic (Foerster et al., 2018; Iqbal
& Sha, 2019; Wang et al., 2021b; Zhang et al., 2021; Su & Lu, 2022), where the centralized value
function is learned to provide policy gradients for agents to learn stochastic policies. More recently,
policy optimization has attracted much attention for cooperative MARL. PPO (Schulman et al.,
2017) and TRPO (Schulman et al., 2015) have been extended to multi-agent settings by MAPPO (Yu
et al., 2021), CoPPO (Wu et al., 2021), and HAPPO (Kuba et al., 2021) respectively via learning
a centralized state value function. However, these methods are CTDE and thus not appropriate for
decentralized learning.

Fully decentralized learning. Independent learning (OroojlooyJadid & Hajinezhad, 2019) is the
most straightforward approach for fully decentralized learning and has actually been studied in
cooperative MARL since decades ago. The representatives are independent Q-learning (IQL) (Tan,
1993; Tampuu et al., 2015) and independent actor-critic (IAC) as Foerster et al. (2018) empirically
studied. These methods make agents directly execute the single-agent Q-learning or actor-critic
algorithm individually. The drawback of such independent learning methods is obvious. As other
agents are also learning, each agent interacts with a non-stationary environment, which violates
the stationary condition of MDP. Thus, these methods are not with any convergence guarantee
theoretically, though IQL could obtain good performance in several benchmarks (Papoudakis et al.,
2021). More recently, decentralized learning has also been specifically studied with communication
(Zhang et al., 2018; Li et al., 2020) or parameter sharing (Terry et al., 2020). However, in this paper,
we consider fully decentralized learning as each agent independently learning its policy while being
not allowed to communicate or share parameters as in Tampuu et al. (2015); de Witt et al. (2020). We
will propose an algorithm with convergence guarantees in such a fully decentralized learning setting.

IPPO. TRPO (Schulman et al., 2015) is an important single-agent actor-critic algorithm that limits the
policy update in a trust region and has a monotonic improvement guarantee by optimizing a surrogate
objective. PPO (Schulman et al., 2017) is a practical but effective algorithm derived from TRPO,
which replaces the trust region constraint with a simpler clip trick. IPPO (de Witt et al., 2020) is a
recent cooperative MARL algorithm in which each agent just learns with independent PPO. Though
IPPO is still with no convergence guarantee, it obtains surprisingly good performance in SMAC
(Samvelyan et al., 2019). IPPO is further empirically studied by Yu et al. (2021); Papoudakis et al.
(2021). Their results show IPPO can outperform a few CTDE methods in several benchmark tasks.
These studies demonstrate the potential of policy optimization in fully decentralized learning, which
we will focus on in this paper. Although there are some value-based algorithms for fully decentralized
learning (Tan, 1993; Matignon et al., 2007; Palmer et al., 2017), most of them are heuristic and
follow the principle different from policy-based algorithms, so we will not focus on these algorithms.

2

Under review as a conference paper at ICLR 2023

3 METHOD

From the perspective of policy optimization, in fully decentralized learning, we need to find an
objective for each agent such that the joint policy improvement can be guaranteed by each agent
independently and individually optimizing its own objective. Thus, we propose a novel lower bound
of the joint policy improvement to enable decentralized policy optimization (DPO). In the following,
we first discuss some preliminaries; then we analyze the critic of agent in fully decentralized learning;
next we derive the lower bound and the proof for convergence; finally we introduce the practical
algorithm of DPO.

3.1 PRELIMINARIES

Dec-POMDP. Decentralized partially observable Markov decision process is a general model for
cooperative MARL. A Dec-POMDP is a tuple G = {S,A, P, Y,O, I,N, r, γ}. S is the state space,
N is the number of agents, γ ∈ [0, 1) is the discount factor, and I = {1, 2 · · ·N} is the set of all
agents. A = A1 ×A2 × · · · ×AN represents the joint action space, where Ai is the individual action
space for agent i. P (s′|s,a) : S×A×S → [0, 1] is the transition function, and r(s,a) : S×A→ R
is the reward function of state s ∈ S and joint action a ∈ A. Y is the observation space, and
O(s, i) : S × I → Y is a mapping from state to observation for each agent i. The objective of Dec-
POMDP is to maximize J(π) = Eπ [

∑
t=0 γ

tr(st,at)] , thus we need to find the optimal joint policy
π∗ = argmaxπ J(π). To settle the partial observable problem, history τi ∈ Ti = (Y ×Ai)

∗ is often
used to replace observation oi ∈ Y . In fully decentralized learning, each agent i independently learns
an individual policy πi(ai|τi) and their joint policy π can be represented as the product of each πi.
Though each agent learns individual policy as πi(ai|τi) in practice, in our analysis, we will assume
that each agent could receive the state s, because the analysis in partially observable environments
is much more difficult and the problem may be undecidable in Dec-POMDP (Madani et al., 1999).
Moreover, the V-function and Q-function of the joint policy π are as follows,

V π(s) = Ea∼π [Qπ(s,a)] (1)

Qπ(s,a) = r(s,a) + γEs′∼P (·|s,a) [V
π(s′)] . (2)

Joint TRPO Objective. In Dec-POMDP, we can still obtain a TRPO objective for the joint policy π
from the theoretical results in single-agent RL (Schulman et al., 2015), which is referred to as the
joint TRPO objective,

J(πnew)− J(πold) ≥ Ljoint
πold

(πnew)− C ·Dmax
KL (πold∥πnew) (3)

where Ljoint
πold

(πnew) =
∑
s

ρold(s)
∑
a

πnew(a|s)Aold(s,a), (4)

where Dmax
KL (πold∥πnew) = maxs DKL(πold(·|s)∥πnew(·|s)), ρold(s) =

∑
t=0 γ

t Pr(st = s|πold)
is the discounted stationary distribution of the state given πold, Aold is the advantage function under
πold, and C is a constant.

The joint TRPO objective, i.e., RHS of (3), is a lower bound for the difference between the new
joint policy πnew and the old joint policy πold in term of expected return. Therefore, we can
use this objective as a surrogate, and maximizing this surrogate can guarantee that the policy is
improving monotonically. However, the joint TRPO objective cannot be directly optimized in fully
decentralized learning as this objective is involved in the joint policy, which cannot be accessed in
fully decentralized learning.

We will propose a new lower bound (surrogate) for J(πnew)− J(πold), which can be optimized in
fully decentralized learning. Before introducing our new surrogate, we need to first analyze the critic
of agent in fully decentralized learning, which is referred to as decentralized critic.

3.2 DECENTRALIZED CRITIC

In fully decentralized learning, each agent learns independently from its own interactions with the
environment. Therefore, the Q-function of each agent i is actually the following formula:

Qπi

π−i(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [Qπi

π−i(s′, a′i)], (5)

3

Under review as a conference paper at ICLR 2023

where rπ−i(s, ai) = Eπ−i [r(s, ai, a−i)], and π−i and a−i respectively denote the joint policy and
joint action of all agents expect agent i. If we take the expectation Ea′

−i∼π−i(·|s′),a−i∼π−i(·|s) over
both sides of the Q-function of joint policy (2), then we have

Eπ−i [Qπ(s, ai, a−i)] = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi

[
Eπ−i [Qπ(s′, a′i, a

′
−i)]

]
.

We can see that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] satisfy the same iteration. Moreover, we will
show in the following that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] are just the same.

We first define an operator Γπi

π−i as follows,

Γπi

π−iQ(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [Q(s′, a′i)].

Then we will prove that the operator Γπi

π−i is a contraction.

Considering any two individual Q-functions Q1 and Q2, we have:

∥Γπi

π−iQ1 − Γπi

π−iQ2∥∞ = max
s,ai

γ|Ea−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [Q1(s

′, a′i)−Q2(s
′, a′i)]|

≤ γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [max

s′,a′
i

|Q1(s
′, a′i)−Q2(s

′, a′i)|]

= γmax
s′,a′

i

|Q1(s
′, a′i)−Q2(s

′, a′i)|

= γ∥Q1 −Q2∥∞.

So the operator Γπi
π−i

has one and only one fixed point, which means

Qπi

π−i(s, ai) = Eπ−i [Qπ(s, ai, a−i)],

V πi

π−i(s) = Eπ−i [V π(s)] = V π(s).

With this well-defined decentralized critic, we can further analyze the objective of IPPO (de Witt
et al., 2020). In IPPO, the policy objective of each agent i can be essentially formulated as follows:

Li
πold

(πi
new) =

∑
s

ρold(s)
∑
ai

πi
new(ai|s)Ai

old(s, ai), (6)

where Ai
old(s, ai) = Q

πi
old

π−i
old

(s, ai)− Eπi
old

[Q
πi
old

π−i
old

(s, ai)] = Eπ−i
old

[Aold(s, ai, a−i)].

However, (6) is different from (4) in the joint TRPO objective. Thus, directly optimizing (6) may
not improve the joint policy, and thus cannot provide any guarantee for convergence, to the best of
our knowledge. Nevertheless, it seems that Ai

old(s, ai) is the only advantage formulation that can
be accessed by each agent in fully decentralized learning. So, the policy objective of DPO will be
derived on (6) but with modifications to guarantee convergence, and we will introduce the detail in
the next section. In the following, we discuss how to compute this advantage in practice in fully
decentralized learning.

As we need to calculate Ai
old(s, ai) = Eπ−i

old
[r(s, ai, a−i) + γV πold(s′) − V πold(s)] for the policy

update, we can approximate Ai
old(s, ai) with Âi(s, ai) = r + γV πi

π−i(s′) − V πi

π−i(s), which is an
unbiased estimate of Ai

old(s, ai), though it may be with a large variance. In practice, we can follow the
traditional idea in fully decentralized learning, and let each agent i independently learn an individual
value function V i(s). Then, we further have Âi(s, ai) ≈ r + γV i(s′) − V i(s). The loss for the
decentralized critic is as follows:

Li
critic = E

[
(V i(s)− yi)

2
]
, where yi = r + γV i(s′) or Monte Carlo return. (7)

There may be some ways to improve the learning of this critic, which however is beyond the scope of
our discussion.

3.3 DECENTRALIZED SURROGATE

We are ready to introduce the decentralized surrogate. First, we derive our novel lower bound of the
joint policy improvement by the following theorem.

4

Under review as a conference paper at ICLR 2023

Theorem 1. Suppose πold and πnew are two joint policies. Then, the following bound holds:

J(πnew)−J(πold) ≥
1

N

N∑
i=1

Li
πold

(πi
new)−M̃ ·

N∑
i=1

√
Dmax

KL (πi
old∥πi

new)−C·
N∑
i=1

Dmax
KL (πi

old∥πi
new),

where M̃ =
2maxs,a |Aold(s,a)|

1−γ and C =
4γ maxs,a |Aold(s,a)|

(1−γ)2 are two constants.

Proof. We first considerLjoint
πold

(πnew)−Li
πold

(πi
new). According to (4) and (6), we have the following

equation:

Ljoint
πold

(πnew)− Li
πold

(πi
new)

=
∑
s

ρold(s)
∑
ai

πi
new(ai|s)

(∑
a−i

π−i
new(a−i|s)Aold(s, ai, a−i)−Ai

old(s, ai)

)

= Eρold
Eπi

new

[∑
a−i

(
π−i
new(a−i|s)− π−i

old(a−i|s)
)
Aold(s, ai, a−i)

]
.

Then, we have the following inequalities:

|Ljoint
πold

(πnew)− Li
πold

(πi
new)|

≤ Eρold
Eπi

new

[∑
a−i

|π−i
old(a−i|s)− π−i

new(a−i|s)| |Aold(s, ai, a−i)|
]

≤ Eρold
Eπi

new

[
M

∑
a−i

|π−i
old(a−i|s)− π−i

new(a−i|s)|
]

(M = max
s,a
|Aold(s,a)|)

= 2MEρold

[
DTV(π

−i
old(·|s)∥π

−i
new(·|s))

]
≤ 2M

1− γ
max

s
DTV(π

−i
old(·|s)∥π

−i
new(·|s))

= M̃Dmax
TV (π−i

old∥π
−i
new) (M̃ =

2M

1− γ
)

≤ M̃
√
Dmax

KL (π−i
old∥π

−i
new) (8)

≤ M̃

√∑
j ̸=i

Dmax
KL (πj

old∥π
j
new), (9)

where (8) is from the relationship between the total variance and KL-divergence that DTV(p∥q)2 ≤
DKL(p∥q) (Schulman et al., 2015), and (9) is a property of the KL-divergence, which can be obtained
as follows,

Dmax
KL (πold||πnew) = max

s
DKL(πold(·|s)||πnew(·|s))

= max
s

∑
i

DKL(π
i
old(·|s)||πi

new(·|s))

≤
∑
i

max
s

DKL(π
i
old(·|s)||πi

new(·|s))

=
∑
i

Dmax
KL (πi

old||πi
new). (10)

From (9), we can further obtain the following inequality,

Ljoint
πold

(πnew)− Li
πold

(πi
new) ≥ −M̃

√∑
j ̸=i

Dmax
KL (πj

old∥π
j
new). (11)

5

Under review as a conference paper at ICLR 2023

Next we will prove this theorem, starting from (3),

J(πnew)− J(πold) ≥ Ljoint
πold

(πnew)− C ·Dmax
KL (πold||πnew)

=
1

N

N∑
i=1

Ljoint
πold

(πnew)− C ·Dmax
KL (πold||πnew)

≥ 1

N

N∑
i=1

Li
πold

(πi
new)−

M̃

N

N∑
i=1

√∑
j ̸=i

Dmax
KL (πj

old∥π
j
new)− C ·Dmax

KL (πnew∥πold) (12)

≥ 1

N

N∑
i=1

Li
πold

(πi
new)− M̃

√√√√N − 1

N

N∑
i=1

Dmax
KL (πi

old∥πi
new)− C ·Dmax

KL (πnew∥πold) (13)

≥ 1

N

N∑
i=1

Li
πold

(πi
new)− M̃

√√√√N − 1

N

N∑
i=1

Dmax
KL (πi

old∥πi
new)− C ·

N∑
i=1

Dmax
KL (πi

old∥πi
new) (14)

≥ 1

N

N∑
i=1

Li
πold

(πi
new)− M̃

√√√√ N∑
i=1

Dmax
KL (πi

old∥πi
new)− C ·

N∑
i=1

Dmax
KL (πi

old∥πi
new)

≥ 1

N

N∑
i=1

Li
πold

(πi
new)− M̃ ·

N∑
i=1

√
Dmax

KL (πi
old∥πi

new)− C ·
N∑
i=1

Dmax
KL (πi

old∥πi
new). (15)

The inequality (12) is the direct application of the inequality (11). The inequality (13) is from the
Cauthy-Schwarz inequality,

N∑
i=1

√∑
j ̸=i

Dmax
KL (πj

old∥π
j
new) ≤

√
N

∑
i=1

∑
j ̸=i

Dmax
KL (πj

old∥π
j
new)

=

√
N(N − 1)

∑
i=1

Dmax
KL (πi

old∥πi
new).

The inequality (14) is from (10), while the inequality (15) is from the simple inequality
√∑

i ai ≤∑
i

√
ai (ai ≥ 0, ∀i).

The lower bound in Theorem 1 is dedicated to decentralized policy optimization, because it can be
directly decomposed individually for each agent as a decentralized surrogate. From Theorem 1, if we
set the policy optimization objective of each agent i as

πi
new = argmax

πi

(1

N
Li
πold

(πi)− M̃ ·
√
Dmax

KL (πi
old∥πi)− C ·Dmax

KL (πi
old∥πi)

)
, (16)

then we have J(πnew) ≥ J(πold) from TRPO (Schulman et al., 2015). Moreover, as the objective
J(π) is bounded, the convergence of {J(πt)} is guaranteed, where πt is the joint policy after t
iterations according to (16). Therefore, the joint policy of agents improves monotonically and
converges to sub-optimum by fully decentralized policy optimization, i.e., independent learning.
Note that this result is under the assumption that each agent can obtain the state, and in practice each
agent will take the individual trajectory τi as the approximation to the state.

3.4 ALGORITHM

DPO is with a simple idea that each agent optimizes the decentralized surrogate (16). However, we
face the same trouble as TRPO that the constant M̃ and C are large and if we directly optimize this
objective, then the step size of the policy update will be small.

To settle this problem, we absorb the idea of the adaptive coefficient in PPO (Schulman et al., 2017).
We use two adaptive coefficients βi

1 and βi
2 to replace the constant M̃ and C and additionally replace

6

Under review as a conference paper at ICLR 2023

Algorithm 1. DPO
1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute action ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update decentralized critic according to (7)
8: Update policy according to the surrogate (17)
9: Update βi

1 and βi
2 according to (18).

10: end for

the maximum KL-divergence with the average KL-divergence (Schulman et al., 2015). In practice,
we will actually optimize the following objective

πi
new = argmax

πi

(1

N
Li
πold

(πi)− βi
1

√
Davg

KL (π
i
old∥πi)− βi

2D
avg
KL (π

i
old∥πi)

)
, (17)

where Davg
KL (π

i
old∥πi) = Es∼πold

[
DKL(π

i
old(·|s)∥πi(·|s))

]
.

As for the adaption of βi
1 and βi

2, we need to define a hyperparameter dtarget, which can be seen as a
ruler for the average KL-divergence Davg

KL (π
i
old∥πi

new) for each agent. If Davg
KL (π

i
old∥πi

new) is close
to dtarget, then we believe current βi

1 and βi
2 are appropriate. If Davg

KL (π
i
old∥πi

new) exceeds dtarget
too much, we believe βi

1 and βi
2 are small and need to increase and vice versa. In practice, we will

use the following rule to update βi
1 and βi

2:

If Davg
KL (π

i
old∥πi

new) > dtarget ∗ δ, then βi
j ← βi

j ∗ ω ∀j ∈ {1, 2}
If Davg

KL (π
i
old∥πi

new) < dtarget/δ, then βi
j ← βi

j/ω ∀j ∈ {1, 2}.
(18)

We choose the constants δ = 1.5 and ω = 2 as the choice in PPO (Schulman et al., 2017). As for the
critic, we just follow the standard method in PPO. Then, we can have the fully decentralized learning
procedure of DPO for each agent i in Algorithm 1.

The practical algorithm of DPO actually uses some approximations to the decentralized surrogate.
Most of these approximations are traditional practice in RL or with no alternative in fully decentralized
learning yet. We admit that the practical algorithm may not maintain the theoretical guarantee.
However, we need to argue that we go one step further to give a decentralized surrogate in fully
decentralized learning with convergence guarantee. We believe and expect that a better practical
method can be found based on this objective in future work.

4 EXPERIMENTS

In this section, we compare the practical algorithm of DPO with IPPO (de Witt et al., 2020) in a
variety of cooperative multi-agent environments, including a cooperative stochastic game, MPE
(Lowe et al., 2017), multi-agent MuJoCo (Peng et al., 2021), and SMAC (Samvelyan et al., 2019),
covering both discrete and continuous action spaces, and fully and partially observable environments.
As we consider fully decentralized learning, in the experiments agents do not use parameter-sharing
as sharing parameters should be considered as centralized learning (Terry et al., 2020). In all
experiments, the network architectures and common hyperparameters of DPO and IPPO are the same
for a fair comparison. More details about experimental settings and hyperparameters are available in
Appendix. Moreover, all the learning curves are from 5 random seeds and the shaded area corresponds
to the 95% confidence interval.

4.1 A DIDACTIC EXAMPLE

First, we use a cooperative stochastic game as a didactic example. The cooperative stochastic game is
with 100 states, 6 agents and each agent has 5 actions. All the agents share a joint reward function.
The reward function and the transition probability are both generated randomly. This stochastic

7

Under review as a conference paper at ICLR 2023

0 100000 200000 300000 400000 500000
steps

0

100

200

300

400

500

m
ea

n
ep

iso
de

 re
wa

rd
s

Stochastic Game

OPTIMAL
DPO
IPPO

(a) DPO compared with IPPO

0 100000 200000 300000 400000 500000
steps

0

100

200

300

400

m
ea

n
ep

iso
de

 re
wa

rd
s

Stochastic Game

dtarget=0.001
dtarget=0.01
dtarget=0.1
dtarget=1

(b) the influence of dtarget

Figure 1: Empirical studies of DPO on the didactic example: (a) learning curve of DPO compared
with IPPO and the global optimum; (b) the influence of different values of dtarget on DPO, x-axis is
environment steps.

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

m
ea

n
ep

iso
de

 re
wa

rd
s

simple spread

DPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

line control

DPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

10
circle control

DPO
IPPO

Figure 2: Learning curve of DPO compared with IPPO in 5-agent simple spread, 5-agent line control,
and 5-agent circle control in MPE, where x-axis is environment steps.

game has a certain degree of complexity which is helpful to distinguish the performance of DPO and
IPPO. On the other hand, this environment is tabular which means training in this environment is fast
and we can do ablation studies efficiently. Moreover, we can find the global optimum by dynamic
programming to compare with in this game.

The learning curves in Figure 1a show that DPO performs better than IPPO and learns a better solution
in this environment. The fact that DPO learns a sub-optimal solution agrees with our theoretical
result. However, the sub-optimal solution found by DPO is still away from the global optimum. This
means that there is still improvement space.

On the other hand, we study the influence of the hyperparameter dtarget on DPO. We choose
dtarget = 0.001, 0.01, 0.1, 1. The empirical results are shown in Figure 1b. We find that when
dtarget is small, the coefficient β1 and β2 are more likely to be increased and the step size of the
policy update is limited. So for the case that dtarget = 0.001, 0.01, the performance of DPO is
relatively low. And when dtarget is large, the policy update may be out of the trust region. This
can be witnessed by the fluctuating learning curve of the case dtarget = 1. So we need to choose
an appropriate value for dtarget and in this environment we choose dtarget = 0.1, which is also
the learning curve of DPO in Figure 1a. We found that the appropriate value for dtarget changes
in different environments. In the following, we keep dtarget to be the same for tasks of the same
environment. There may be some better choices for dtarget, but it is a bit time-consuming and out of
the range of our discussion.

4.2 MPE

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects
in MPE environment are either agents or landmarks. Landmark is a part of the environment, while
agents can move in any direction. With the relation between agents and landmarks, we can design
different tasks. We use the discrete action space version of MPE and the agents can accelerate or
decelerate in the direction of x-axis or y-axis. We choose MPE for its partial observability. We take
dtarget = 0.01 for all MPE tasks.

The MPE tasks we used for the experiments are simple spread, line control, and circle control which
are originally used in Agarwal et al. (2020). In our experiments, we set the number of agents N = 5
in all these three tasks. The empirical results are illustrated in Figure 2. We can find that although
DPO may fall behind IPPO at the beginning of the training in some tasks, DPO learns a better policy
in the end for all three tasks.

8

Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

500

1000

1500

2000

2500

m
ea

n
ep

iso
de

 re
wa

rd
s

Hopper-v2 3x1

DPO
IPPO

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

4000
HalfCheetah-v2 3x2

DPO
IPPO

0 1 2 3 4 5
steps 1e6

0

1000

2000

3000

Walker2d-v2 3x2

DPO
IPPO

0 1 2 3 4
steps 1e6

1000

1500

2000

Ant-v2 4x2

DPO
IPPO

0 1 2 3 4
steps 1e6

200

300

400

500

Humanoid-v2 17x1

DPO
IPPO

Figure 3: Learning curve of DPO compared with IPPO in 3-agent Hopper, 3-agent HalfCheetah,
3-agent Walker2d, 4-agent Ant, and 17-agent Humanoid in multi-agent MuJoCo, where x-axis is
environment steps.

0.0 0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

wi
n

ra
te

s

2s3z

DPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0.0

0.2

0.4

0.6

0.8
wi

n
ra

te
s

8m

DPO
IPPO

0 1 2 3 4 5
steps 1e6

0.0

0.2

0.4

0.6

0.8

wi
n

ra
te

s

3s5z

DPO
IPPO

0.0 0.5 1.0 1.5 2.0
steps 1e6

5

10

15

m
ea

n
ep

iso
de

 re
wa

rd
s

27m vs 30m

DPO
IPPO

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10

m
ea

n
ep

iso
de

 re
wa

rd
s

MMM2

DPO
IPPO

Figure 4: Learning curve of DPO compared with IPPO in 2s3z, 8m, 3s5z, 27m_vs_30m, and MMM2
in SMAC, where x-axis is environment steps.

4.3 MULTI-AGENT MUJOCO

Multi-agent MuJoCo is a robotic locomotion control environment for multi-agent settings, which
is built upon single-agent MuJoCo (Todorov et al., 2012). In multi-agent MuJoCo, each agent
controls one part of a robot to carry out different tasks. We choose this environment for the reason of
continuous state and action spaces. We select 5 tasks for our experiments: 3-agent Hopper, 3-agent
HalfCheetah, 3-agent Walker2d, 4-agent Ant and 17-agent Humanoid. In all these tasks, we set
agent_obsk=2. We take dtarget = 0.001 for all multi-agent MuJoCo tasks.

The empirical results are illustrated in Figure 3. We can find that in all five tasks, DPO outperforms
IPPO, though in 3-agent HalfCheetah DPO learns slower than IPPO at the beginning. The results on
multi-agent MuJoCo verify that DPO is also effective in facing continuous state and action spaces.
Moreover, the better performance of DPO in the 17-agent Humanoid task could be evidence of the
scalability of DPO.

4.4 SMAC

SMAC is a partially observable and high-dimensional environment that has been used in many
cooperative MARL studies. We select five maps in SMAC, 2s3z, 8m, 3s5z, 27m_vs_30m, and
MMM2 for our experiments. We take dtarget = 0.02 for all SMAC tasks.

The empirical results are illustrated in Figure 4. The two super hard SMAC tasks (27m_vs_30m and
MMM2) are too difficult for both DPO and IPPO to win, so we use episode reward as the metric to
show their difference. DPO performs better than IPPO in all five maps. We need to argue that though
we have controlled the network architectures of DPO and IPPO to be the same, in our experiments
each agent has its individual parameters which increases the difficulty of training. So our results in
SMAC may be different from other works. Although IPPO has been shown to perform well in SMAC
(de Witt et al., 2020; Yu et al., 2021; Papoudakis et al., 2021), DPO can still outperform IPPO, which
verifies the effectiveness of the practical algorithm of DPO in high-dimensional complex tasks and
can also be evidence of our theoretical result. Again, the better performance of DPO in 27m_vs_30m
shows its good scalability in the task with many agents.

5 CONCLUSION

In this paper, we investigate fully decentralized learning in cooperative multi-agent reinforcement
learning. We derive a novel decentralized lower bound for the joint policy improvement and we
propose DPO, a fully decentralized actor-critic algorithm with convergence guarantee and monotonic
improvement. Empirically, we test DPO compared with IPPO in a variety of environments including
a cooperative stochastic game, MPE, multi-agent MuJoCo, and SMAC, covering both discrete and
continuous action spaces, and fully and partially observable environments. The empirical results
show the advantage of DPO over IPPO, which can be evidence for our theoretical results.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable cooperative
behavior in multi-agent team. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2020.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, and Hongyuan Zha. F2a2: Flexible fully-
decentralized approximate actor-critic for cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:2004.11145, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable markov decision problems. In AAAI/IAAI, pp. 541–548, 1999.

Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an algo-
rithm for decentralized reinforcement learning in cooperative multi-agent teams. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1908.03963, 2019.

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep
reinforcement learning. arXiv preprint arXiv:1707.04402, 2017.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning (ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), 2015.

10

Under review as a conference paper at ICLR 2023

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2019.

Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International
Conference on Machine Learning (ICML), 2022.

Mingfei Sun, Sam Devlin, Katja Hofmann, and Shimon Whiteson. Monotonic improvement guaran-
tees under non-stationarity for decentralized ppo. arXiv preprint arXiv:2202.00082, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
arXiv preprint arXiv:1511.08779, 2015.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
Conference on Machine Learning (ICML), 1993.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625,
2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations (ICLR), 2021a.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy multi-
agent decomposed policy gradients. In International Conference on Learning Representations
(ICLR), 2021b.

Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. Coordinated proximal
policy optimization. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Hsuan-Yu Yao, Ping-Chun Hsieh, Kuo-Hao Ho, Kai-Chun Hu, Liang-Chun Ouyang, I Wu, et al.
Hinge policy optimization: Rethinking policy improvement and reinterpreting ppo. arXiv preprint
arXiv:2110.13799, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Baar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference on Machine
Learning (ICML), 2018.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. arXiv preprint arXiv:1911.10635, 2019.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2021.

11

Under review as a conference paper at ICLR 2023

A EXPERIMENTAL SETTINGS

A.1 MPE

The three tasks are built on the origin MPE (Lowe et al., 2017) (MIT license) and are originally used
in Agarwal et al. (2020) (MIT license). The objective in these three tasks are listed as follows:

• Simple Spread: There are N agents who need to occupy the locations of N landmarks.

• Line Control: There are N agents who need to line up between 2 landmarks.

• Circle Control: There are N agents who need to form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We set the
number of agents N = 5 for these three tasks in our experiment.

A.2 MULTI-AGENT MUJOCO

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task with
continuous action space for multi-agent settings. The robot could be divided into several parts and
each part contains several joints. Agents in this environment control a part of the robot which could
be different varieties. So the type of the robot and the assignment of the joints decide a task. For
example, the task ‘HalfCheetah-3×2’ means dividing the robot ‘HalfCheetah’ into three parts for
three agents and each part contains 2 joints.

The details about our experiment settings in multi-agent Mujoco are listed in Table 1. The configura-
tion defines the number of agents and the joints of each agent. The ‘agent obsk’ defines the number
of nearest agents an agent can observe.

Table 1: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

B TRAINING DETAILS

Our code is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license). We modify
the code for individual parameters and ban the tricks used by MAPPO for SMAC. The network
architectures and base hyperparameters of DPO and IPPO are the same for all the tasks in all the
environments. We use 3-layer MLPs for the actor and the critic and use ReLU as non-linearities. The
number of the hidden units of the MLP is 128. We train all the networks with an Adam optimizer.
The learning rates of the actor and critic are both 5e-4. The number of epochs for every batch of
samples is 15 which is the recommended value in Yu et al. (2021). For IPPO, the clip parameter is
0.2 which is the same as Schulman et al. (2017). For DPO, the initial values of the coefficient βi

1 and
βi
2 are 0.01. The value of dtarget is 0.1 for the cooperative stochastic game, 0.01 for MPE, 0.001 for

multi-agent MuJoCo, and 0.02 for SMAC.

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We
set the episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo
experiments. We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have
summarized the hyperparameters in Table 2.

1https://github.com/marlbenchmark/on-policy

12

Under review as a conference paper at ICLR 2023

Table 2: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi

1 0.01
initial βi

2 0.01
δ 1.5
ω 2

dtarget different for environments as aforementioned
clip parameter for IPPO 0.2

C ADDITIONAL RESULTS

Schulman et al. (2017) actually proposed two versions of PPO. The first version, which is also the
most popular version, is with the clip trick. The second version is directly optimizing the penalty
formula with adaptive coefficients and we refer to this algorithm as PPO-KL. IPPO (de Witt et al.,
2020) is actually extended from the first version, while the practical algorithm of DPO is similar
to the second version. The main difference between DPO and PPO-KL is the term of the square
root of the KL-divergence in the policy loss. We modify IPPO by making each agent learn with
PPO-KL to obtain IPPO-KL. On the other hand, independent Q-learning (IQL) (Tan, 1993) is a
classic independent learning algorithm. IQL could obtain good performance in some tasks but it is
not with any theoretical guarantee, to the best of our knowledge.

0 100000 200000 300000 400000 500000
steps

0

100

200

300

400

500

m
ea

n
ep

iso
de

 re
wa

rd
s

Stochastic Game

OPTIMAL
DPO
IPPO

IPPO-KL
IQL

Figure 5: Learning curve of DPO compared with IPPO, IPPO-KL, IQL, and the global optimum in
the cooperative stochastic game, where x-axis is environment steps.

For the completeness of our experiments, we test the performance of IPPO-KL and IQL in the
cooperative stochastic game and the empirical result is illustrated in Figure 5. We find that the
performance of IPPO-KL is close to DPO but a little bit lower and more unstable. This can be
explained as the policy loss of IPPO-KL is actually a biased approximation of DPO, which omits
the square root term. The theoretical guarantee of DPO may also help IPPO-KL perform better than
IPPO in this game, while the bias in the policy loss of IPPO-KL makes it perform worse than DPO.
As for IQL, its performance is lower than IPPO though it converges faster. Since IQL performs worse
than IPPO in such a didactic environment and IQL is a value-based algorithm and is out of the scope
of our discussion, we do not take IQL as a baseline in other environments. Moreover, we think the
essential relations among IPPO, IPPO-KL, and DPO can be clearly witnessed from the empirical
results in the cooperative stochastic game. For other tasks, we focus on the mainstream version of
IPPO as in de Witt et al. (2020); Yu et al. (2021); Papoudakis et al. (2021).

Besides our empirical results, we would like to share our views on the difference between DPO
and IPPO and give some intuitive ideas. KL regularization and ratio clipping are similar in the

13

Under review as a conference paper at ICLR 2023

single-agent setting, but they are not supposed to be similar in multi-agent settings. The ‘correct’
ratio clipping in multi-agent setting according to the theory of PPO should clip over the joint policy
ratio πnew(a|s)

πold(a|s) . IPPO just clips individual policy ratio πi
new(ai|s)
πi
old(ai|s)

for each agent i which may not be
enough to realize the ‘correct’ ratio clipping. We could find more discussion about this in the CoPPO
(Wu et al., 2021) paper. So IPPO is not supposed to enjoy the theoretical results of DPO.

We could rewrite the objective of IPPO for agent i with a similar formulation in HPO (Yao et al.,
2021) as follows:

Li,IPPO
πold

(πi
new) =

∑
s

ρold(s)
∑
ai

πi
new(ai|s)|Ai

old(s, ai)|l
(
sign(Ai

old(s, ai)), ui(s, ai)− 1, ϵ
)
,

where l(y, x, ϵ) = max{0, ϵ− y × x} is the hinge loss and ui(s, ai) =
πi
new(ai|s)
πi
old(ai|s)

is the ratio.

If we follow the same idea as PPO, then IPPO is the ‘correct’ ratio clipping version for the surrogate
of DPO. However, the effectiveness of this ratio clipping formulation in theory is still open in
decentralized learning since there is not any convergence guarantee for IPPO, to the best of our
knowledge.

Though the effectiveness of IPPO in theory is beyond the scope of our paper, we could provide an
intuitive explanation for the fact that the performance of DPO can surpass IPPO from this formulation
and the analysis in HPO. In the proof of HPO, there is a critical assumption that the sign of the
estimated advantage is the same as that of the true advantage (Assumption 4 in Section 2.3 in Yao
et al. (2021)). And HPO also shows that the sign of the advantage is more important than the value
for this formulation of PPO-clip. In decentralized learning, both DPO and IPPO are facing the
difficulty of learning the individual advantage function as there may be noise in the individual value
function. However, the objective of DPO is continuous and the objective of IPPO is discrete for
sign(Ai

old(s, ai)). So the impact of the noise in the value function may be larger on IPPO than DPO.

D DISCUSSION

In the paper, we derive a novel lower bound that can be naturally divided into independent surrogate
(16) for each agent. By each agent optimizing this surrogate, the monotonic improvement of the joint
policy can be guaranteed in fully decentralized settings. However, the practical algorithm of DPO
takes the formula of (17) with several approximations. How to solve the optimization of (16) more
precisely is left as future work.

Moreover, we expect our work could provide some insights for future studies on fully decentralized
multi-agent reinforcement learning, since current methods still have a gap from the optimum as
shown in Figure 5.

E ADDITIONAL RESULTS FOR REBUTTAL

We first add some experiments results of the ablation study about the objective in (17). We consider
two ablation methods: in the first one, we will keep βi

1 = 0 to eliminate the influence of the term

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

4000

m
ea

n
ep

iso
de

 re
wa

rd
s

HalfCheetah-v2 3x2

DPO
DPO_w/o_kl
DPO_w/o_sqrt

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
steps 1e6

500

1000

1500

2000

Walker2d-v2 3x2

DPO
DPO_w/o_kl
DPO_w/o_sqrt

0.0 0.5 1.0 1.5 2.0 2.5
steps 1e6

800

1000

1200

1400

1600

1800
Ant-v2 4x2

DPO
DPO_w/o_kl
DPO_w/o_sqrt

Figure 6: Learning curves of DPO compared with DPO_w/o_sqrt and DPO_w/o_kl in 3-agent
HalfCheetah, 3-agent Walker2d, and 4-agent Ant in multi-agent MuJoCo, where x-axis is environment
steps.

14

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0.0

0.2

0.4

0.6

wi
n

ra
te

s

2s3z

DPO
DPO_w/o_kl
DPO_w/o_sqrt

0 50000 100000 150000 200000 250000 300000 350000 400000
steps

0.0

0.2

0.4

0.6

0.8

8m

DPO
DPO_w/o_kl
DPO_w/o_sqrt

Figure 7: Learning curves of DPO compared with DPO_w/o_sqrt and DPO_w/o_kl on 2s3z and 8m
in SMAC, where x-axis is environment steps.

√
Davg

KL (π
i
old∥πi), which is actually the same as IPPO-KL; in the second one, we will keep βi

2 = 0
to eliminate the influence of the term Davg

KL (π
i
old∥πi). The other parameters are controlled to be the

same as DPO. We will call these two methods as DPO_w/o_sqrt and DPO_w/o_kl respectively. We
select three multi-agent MuJoCo tasks (3-agent HalfCheetah, 3-agent Walker2d and 4-agent Ant) and
two SMAC tasks (2s3z and 8m) for this ablation study. The empirical results are included in Figure 6
and Figure 7. We find that eliminating either the term

√
Davg

KL (π
i
old∥πi) or the term Davg

KL (π
i
old∥πi)

will lower the performance of DPO in all these tasks. This could be evidence for the significance of
our novel lower bound (16) and the objective (17).

Moreover, we further study the influence the values of δ and ω for the adaptive adjustments
of the coefficient βi

1 and βi
2. We test seven different choices of δ and ω as (δ, ω) =

(1.5, 2), (1.5, 4), (1.5, 6), (1.1, 2), (3, 2), (3, 6), (1.1, 6) in the cooperative stochastic game. The em-
pirical results are included in the Figure 8. We find that the influence of different δ and ω is relatively
limited and the adaptive adjustment is not very sensitive to them. This conclusion is similar to the
PPO paper (Schulman et al., 2017).

0 100000 200000 300000 400000 500000
steps

0

100

200

300

400

m
ea

n
ep

iso
de

 re
wa

rd
s

Stochastic Game

=1.5_ =2
IPPO
=1.5_ =4
=1.5_ =6

=1.1_ =2
=3_ =2
=3_ =6
=1.1_ =6

Figure 8: Learning curves of DPO with different values of δ and ω in the cooperative stochastic game,
where x-axis is environment steps.

15

