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ABSTRACT

Data assimilation (DA) is an essential statistical technique for generating accurate
estimates of a physical system’s states by combining prior model predictions with
observational data, especially in the realm of weather forecasting. Effectively
modeling the prior distribution while adapting to diverse observational sources
presents significant challenges for both traditional and neural network-based DA
algorithms. This paper introduces VAE-Var, a novel neural network-based data
assimilation algorithm aimed at 1) enhancing accuracy by capturing the non-
Gaussian characteristics of the conditional background distribution p(x|xb), and
2) efficienctly assimilating real-world observational data. VAE-Var utilizes a vari-
ational autoencoder to learn the background error distribution, with its decoder
creating a variational cost function to optimize the analysis states. The advan-
tages of VAE-Var include: 1) it maintains the framework of traditional variational
assimilation, enabling it to accommodate various observation operators, partic-
ularly irregular observations; 2) it lessens the dependence on expert knowledge
for constructing the background distribution, allowing for improved modeling of
non-Gaussian structures; and 3) experimental results indicate that, when applied
to the FengWu weather forecasting model, VAE-Var outperforms DiffDA and two
traditional algorithms (interpolation and 3DVar) in terms of assimilation accuracy
in sparse observational contexts, and is capable of assimilating real-world GDAS
prepbufr observations over a year.

1 INTRODUCTION

Data assimilation (DA) is a statistical approach aimed at modeling the posterior likelihood distribu-
tion of a physical system’s states, represented as p(x|xb,y). This distribution is conditioned on prior
predictions, known as background states xb, and observational data y, ultimately yielding an accu-
rate estimate, referred to as analysis states xa, through sampling from p(x|xb,y) or by maximizing
the likelihood. Data assimilation is critical for deriving initial states in various fields, particularly in
numerical weather forecasting (Bauer et al., 2015; Kalnay, 2003; Carrassi et al., 2018).

In data assimilation for weather forecasting, background states xb are essentially predictions pro-
duced by an imprecise forecasting model, with the conditional likelihood p(x|xb) often remaining
unknown. Due to the high dimensionality of weather systems, modeling p(x|xb) presents significant
challenges (Strogatz, 2018). Since meteorological observations originate from different sources, the
types of y are highly diverse. Typically, the observation operatorH is used to represent the mapping
from physical space to observational space. An effective data assimilation algorithm must not only
deliver accurate estimates of the conditional background distribution p(x|xb) but also proficiently
manage various observation operators, preferably in a zero-shot manner.

Traditional algorithms and neural network-based approaches offer distinct advantages in address-
ing the data assimilation problem. Traditional data assimilation methods, particularly variational
assimilation algorithms, operate under the assumption that the background error, x − xb, follows
a Gaussian distribution that is independent of xb (Barker et al., 2004; Bannister, 2008; Descombes
et al., 2015; Trémolet, 2006). Under this assumption, the posterior likelihood p(x|xb,y) can be
calculated explicitly and estimation can be achieved by maximizing the likelihood function. The
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advantage of variational methods lies in its robustness to various observation operators; regardless
of how H is formulated, maximization can always be performed using techniques such as gradi-
ent descent. This approach has proven successful for over two decades (Rabier et al., 1998; 2000).
However, it relies heavily on expert knowledge for constructing the correlations of background er-
ror structures (Huang et al., 2009); additionally, the assumption of Gaussian error distribution may
constrain the potential accuracy of this approach.

In recent years, generative neural networks, particularly diffusion models, have been increasingly
utilized in data assimilation to model the background conditional distribution. Two notable exam-
ples are SDA (Rozet & Louppe, 2023) and DiffDA (Huang et al., 2024). In both studies, a diffu-
sion model is first employed to represent the background distribution p(x|xb). Subsequently, SDA
leverages diffusion posterior sampling techniques (Chung et al., 2022) to incorporate observational
information y, while DiffDA utilizes the repaint technique (Lugmayr et al., 2022) to integrate ob-
servations and sample from p(x|xb,y) during inference. The advantage of these approaches over
traditional algorithms lies in their ability to model more complex structures for p(x|xb), potentially
enhancing the accuracy of the analysis states xa. However, these methods frequently show lim-
itations in dealing with different observation operators. For example, DiffDA’s repaint technique
assumes that observations are aligned with a grid, whereas in real-world scenarios, observations are
typically very sparse and likely fall outside the grid. Similarly, SDA relies on certain assumptions
to apply diffusion posterior sampling, and experimental results indicate that these assumptions can
undermine assimilation accuracy, particularly in cases where observations are sparse or noisy.

Table 1: Comparison among traditional
DA method (Trad-DA), diffusion-based DA
(NN-DA) and VAE-Var

Structure of Observation
p(x|xb) Operator

Trad-DA Gaussian arbitrary
NN-DA non-Gaussian limited
VAE-Var non-Gaussian arbitrary

In this paper, we aim to develop a neural network-
based data assimilation algorithm that not only cap-
tures the non-Gaussian characteristics of the condi-
tional background distribution for enhanced accu-
racy but also effectively assimilates data under real-
world observations (sparse and outside of the grid).
We introduce VAE-Var, a novel data assimilation al-
gorithm in which a variational autoencoder is first
employed to learn the conditional background dis-
tribution and then the decoder component is utilized
to construct a variational cost function, which, when
optimized, yields the analysis states. The advantages
of our approach are outlined as follows:

• This algorithm inherits the framework of traditional variational assimilation by explicitly
modeling the posterior probability function p(x|xb,y) and maximizing it to derive the anal-
ysis states. As a result, compared to other neural network data assimilation methods such
as SDA and DiffDA, VAE-Var can better handle different types of observation operators,
particularly irregular observations that do not fall on the grid points of the physical field.

• Unlike traditional variational assimilation algorithms, VAE-Var alleviates the dependence
on expert knowledge for constructing the conditional background distribution, enabling the
model to effectively capture non-Gaussian structures.

• Experimental results on the FengWu weather forecasting system of 0.25◦ resolution
demonstrate that VAE-Var achieves higher assimilation accuracy than both DiffDA and
two traditional algorithms for most variables in the sparse observational settings. Further-
more, when integrated with FengWu, it can reliably assimilate real-world GDAS prepbufr
observations over a one-year period.

2 PRELIMINARIES

Variational Assimilation Variational assimilation seeks to determine the probability density func-
tion p(x|xb,y) of the physical state’s distribution at a specific time, given known observational
conditions y and the background state xb, and calculate the analysis state xa by maximizing this
probability density function, that is, xa = argmaxx p(x|xb,y).

Since xb is derived from a weather forecasting model and y from observatories and satellites, it is
reasonable to assume that xb and y are independent. Under this assumption, the following equation

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

holds, with the derivation provided in the Appendix:

argmax
x

p(x|xb,y) = argmax
x

p(y|x)p(x|xb). (1)

We define the variational cost as:

L(x) = − log p(y|x)p(x|xb) = − log p(y|x)− log p(x|xb). (2)

Maximizing the probability density function is equivalent to minimizing the variational cost. This
cost comprises two terms: an observation term, Lo(x,y) = − log p(y|x) and a background term,
Lb(x,xb) = − log p(x|xb).

Observation Term In this paper, we only consider observations where the observed variables are
consistent with the physical field variables, and exclude more complex observations like brightness
temperature. In this case, the error of the observation operator can be simplified to a Gaussian
distribution with a diagonal covariance matrix (Kalnay, 2003), that is, y|x ∼ N (H(x),R), where
R corresponds to the variance matrix. The observation term can then be formulated as follows:

Lo(x,y) =
1

2
(y −H(x))TR−1(y −H(x)). (3)

Background Term As previously mentioned, the background state xb is derived by integrating a
forecasting model from a previous state. In most cases, the forecasting model cannot perfectly cap-
ture all dynamical information and is subject to inherent errors. Traditional variational assimilation
algorithms assume that these errors are independent of xb and they follow a Gaussian distribution,
that is, x − xb ∼ N (0,B), where B is the background error covariance matrix. The background
term can then be expressed as:

Lb(x,xb) =
1

2
(x− xb)

TB−1(x− xb). (4)

In global weather systems, the dimensionality of physical states can be extremely large. For in-
stance, in the FengWu forecasting model with 37 vertical layers (Chen et al., 2023), the dimen-
sion of physical fields is 189 × 721 × 1440 ≈ 2 × 108, making the dimension of B approx-
imately 4 × 1016. Explicitly constructing such a large matrix is generally impractical. To ad-
dress this, a common approach is to decompose B as B = UUT and apply a variable trans-
formation, x = Uz + xb. With this transformation, the background term can be rewritten as:
L̃b(z) = Lb(Uz+ xb,xb) =

1
2z

Tz, and the observation term becomes: L̃o(z) = Lo(Uz+ xb,y).
By minimizing L̃(z) = L̃b(z) + L̃o(z) = 1

2z
Tz + Lo(Uz + xb,y), it eliminates the need to ex-

plicitly calculate the inverse of B. In traditional 3DVar, the sparse matrix U is derived by utilizing
expert knowledge to statistically analyze background error samples, which are constructed using the
NMC method (Descombes et al., 2015).

3 VAE-VAR

3.1 BACKGROUND ERROR ESTIMATION BASED ON VAE

Reviewing the process of traditional variational algorithms, we can identify two key factors for
their successful implementation: First, it assumes that the error of the background states x − xb is
independent of the background states xb, which enables the explicit construction of the expression
p(x|xb). Second, it assumes that the background states’ error follows a Gaussian distribution and
constructs a linear mapping U through expert knowledge, which can map a variable z from the
standard normal distribution to the background states’ error distribution (U−1(x− xb) ∼ N (0, I)).

In our study, we choose to maintain the first assumption. This decision is based on the fact that,
in real-world scenarios, the dimensionality is often very high while the available training dataset
is relatively small. If we were to eliminate this assumption, there is a significant risk that the net-
work would learn specious correlations between x and xb, a common issue in data assimilation.
Conversely, we opt to discard the second assumption, as the high non-linearity of the forecasting
model is likely to result in a non-Gaussian error distribution. An illustrative example is provided
in the Appendix for further clarification. If the error distribution is non-Gaussian, then a non-linear
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mapping (denoted as F) is needed to map the standard normal distribution to the background states’
error distribution (F−1(x− xb) ∼ N (0, I)).

There are three primary types of candidate network structures suitable for this task. The first option
is the normalizing flow (Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018), which estab-
lishes a deterministic mapping between the standard normal distribution and a target distribution.
However, its high computational cost and large parameter size make it impractical for learning high-
dimensional global weather fields. The second option is the diffusion model, which has strong fitting
capabilities, but introduces multiple rounds of sampling during inference, and the transformation be-
tween the Gaussian and target space is not straightforward to track. The third and preferred choice is
the variational autoencoder (VAE) (Kingma & Welling, 2013). VAE exhibits strong fitting abilities
and has been successful on high-dimensional data (Doersch, 2016). While VAE creates a stochastic
mapping from a latent Gaussian variable to the target space, the core of the mapping (i.e., the de-
coder) is deterministic, making it easier to formulate the variational cost. Thus, we adopt the VAE
to perform the transformation.

A VAE typically comprises two components: an encoder E and a decoder D. The encoder maps the
input data into a mean and a variance, from which we sample a Gaussian distribution. This sampled
output is then fed into the decoder. The goal of the VAE is to learn the structure of the data space.
Once the VAE is well-trained, we can simply sample from a standard normal distribution, pass it
through the decoder, and the output will resemble a sample from the original dataset. Essentially,
the decoder in the VAE is a good choice to serve as the non-linear mapping F for transforming the
latent space to the data space.

3.2 GENERAL FORMULATION OF VAE-VAR

Error Samples Ground Truth Samples Background Samples

Encoder Decoder

Reconstructed Samples

Mean

Std

Hidden States

Training

Assimilation

Decoder

Hidden State
(Initialized as zeros) Analysis Increment

Background Field Analysis Field

Observations Obs Loss

BG Loss

Loss
calculate gradient with auto-differentiation

update the hidden state with L-BFGS

forecast for
a time

period of 

then obtain
the difference

Figure 1: VAE-Var Framework. The upper half panel demonstrates the training phase; the lower
half panel demonstrates the assimilation phase. Please refer to the main text for detailed explanation.

Here, we propose our VAE-Var framework for data assimilation. As shown in Figure 1, it comprises
two phases: training and assimilation.
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Training Set Construction During the training phase, we adopt the traditional NMC (National
Meteorological Center) method to generate historical error samples, as outlined in Algorithm 1. The
reanalysis data are treated as the ground truth of states. We select historical reanalysis states at
intervals of τ , then integrate them for a time period of τ and 2τ respectively, ensuring that both are
predictions for the same timestamp. By subtracting these two states, we generate an error sample.
Repeating this process across a long period of reanalysis data allows us to construct a training set.

Algorithm 1 Training Set Construction

Require: : Forecasting modelM, sample
number N , time gap τ
for i from 1 to N do

Randomly pick reanalysis data with
an interval of τ : x0, xτ

x̂1 ←Mτ→2τ (xτ )
x̂2 ←Mτ→2τ ◦M0→τ (x0)
Add x̂1 − x̂2 to the training set

end for

Algorithm 2 VAE-Var Assimilation

Require: : Trained decoderD, background state xb,
observation y
z← 0
L̃b(z)← 1

2λz
Tz

L̃o(z)← Lo (D(z) + xb,y)

Minimize L̃(z) = L̃b(z) + L̃o(z) with L-
BFGS (Liu & Nocedal, 1989; Paszke et al., 2017)
and get the minimum point z⋆
xa = D(z⋆) + xb

Loss Function We employ the standard approach for training the VAE, where the loss function
consists of two components: the reconstruction loss (Lossrec) and the Kullback-Leibler (KL) di-
vergence (LossKL). The reconstruction loss quantifies how accurately the decoder can regenerate
the original input from the latent space, which, in our case, is defined as the mean squared error be-
tween the input and its reconstruction. The KL divergence ensures that the learned latent distribution
aligns closely with a standard normal distribution. These two terms together guide the optimization
process, enabling the VAE to capture the underlying data distribution effectively. Additionally, a
hyperparameter σ is introduced to balance the reconstruction loss and the KL divergence, and the
total loss is expressed as Loss = 1

σ2Lossrec + LossKL.

Assimilation Once VAE is trained, we use its decoder to implement VAE-Var assimilation, as de-
scribed in Algorithm 2. Similar to traditional algorithms, VAE-Var aims to optimize variables in the
latent space, denoted by z. The key difference is that the transformation from the latent space to the
physical space is non-linear, i.e., x = D(z) + xb, where D(z) represents the decoder output. As
a result, the observation term is modified accordingly, expressed as L̃o(z) = Lo (D(z) + xb,y). It
is important to note that, from a rigorous mathematical perspective, when the mapping between the
latent space and the physical space is nonlinear, the transformation of the probability density func-
tion introduces an additional non-constant determinant term in the background field, which is almost
computationally intractable. To account for this, we empirically scale the original background term
1
2zz

T by a positive parameter λ for proper compensation. We provide a further explanation on the
formulation of the background term in the Appendix. For any given observation y, as long as the
observation operatorH is constructed in an auto-differentiable way, which will be explained in Sec-
tion 4, then all components of L̃(z) are differentiable, and we can leverage auto-differentiation to
perform back-propagation and compute the gradient ∂L̃(z)

∂z , with the parameters of D fixed. Follow-
ing this, the L-BFGS algorithm can be used to find the minimum of L̃(z).

Algorithm 3 Cyclic Forecasting and Assimilation with VAE-Var

Require: : Initial state x
(0)
b , forecasting modelM, observations, steps L, assimilation cycle T .

1: t← 0 ▷ Initialize the time stamp
2: for step from 0 to L do
3: z

(t)
a ← argminz L̃

(
z
∣∣∣x(t)

b ,y(t)
)

▷ Obtain the analysis control variable

4: x
(t)
a = D(z(t)a ) + x

(t)
b ▷ Recover the analysis states.

5: x
(t+T )
b ←Mt→t+T (x

(t)
a ) ▷ Obtain the background at the next time step.

6: t← t+ T
7: end for
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Cyclic Forecasting and Assimilation VAE-Var and the weather forecasting model can be coupled
to realize the cyclic forecasting and assimilation, similar to FengWu-4DVar (Xiao et al., 2024).
Denoting L̃ (·|xb,y) the objective function with respect to observations y and the background states
xb, and using the superscript to represent time steps, the coupling of VAE-Var with model forecasts
is implemented as shown in Algorithm 3.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Forecasting Model Our experiments utilize FengWu (Chen et al., 2023), a prominent data-driven
global medium-range weather forecasting model. FengWu simulates five atmospheric variables
(each across 13 pressure levels in the version we use) and four surface variables, leading to a total
of 69 predictands. In this study, the atmospheric variables are geopotential (z), specific humidity
(q), zonal wind component (u), meridional wind component (v), and air temperature (t); the 13
sub-variables across various vertical levels are denoted using abbreviations of their short names and
pressure levels (e.g., z500 represents geopotential height at 500 hPa). The four surface variables
are 2-meter temperature (t2m), 10-meter zonal wind component (u10), 10-meter meridional wind
component (v10), and mean sea level pressure (mslp). We test a spatial resolution of 721 × 1440.
Following the convention of the original paper (Chen et al., 2023), the six-hour forecasting model is
trained using the ERA5 dataset from 1979 to 2015.

VAE Structure and Training Our approach allows considerable flexibility in selecting the neural
network structure for VAE. Rather than designing a new architecture from the ground up, we opted
to adapt the well-established FengWu structure, which primarily consists of multiple “Swin Trans-
former v2” (Liu et al., 2022) networks and is proved to be capable of capturing complex spatial
and temporal relationships. In our experiments, we employ two FengWu networks to construct the
encoder and decoder, as shown in Figure 2. As for the encoder, the channel number of “Mean i”
and “Std i” is set to 6 (the original channel number is 13) for 1 ≤ i ≤ 5 and the channel number of
“Mean 0” and “Std 0” is set to 2 (the original channel number is 4); this guarantees that the latent
space has a smaller dimensionality than the original space. The decoder is almost symmetric to the
encoder, with the key difference being that the input layer channel number is half of the encoder’s
output layer channel number. We use ERA5 reanalysis data from 1979 to 2015 to train the VAE
model, and the loss weight σ is set to 2.0.
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Figure 2: VAE Structure for the FengWu forecasting system. “SF-v2” is abbreviated for “Swin
Transformer v2”. Both the encoder and the decoder adopt the FengWu backbone structure.

Observation Setup Two types of observations are considered in our experiments. The first type
involves simulated observations from the ERA5 (Hersbach et al., 2020) dataset. Following Huang
et al. (2024), we apply sparse grid column masks to mimic the sparse distribution of real-world
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observations. For instance, if we have 1000 observation columns, only 1000 points from the 721×
1440 grid are observed, and when a grid point is observed, we have data for all variables at all
height levels. The second type uses observations from the Global Data Assimilation System (GDAS)
prepbufr dataset (Rodell et al., 2004), which provides data from various observing systems and
instruments. In the second experiment, the observations may fall outside the grid points and are
typically sparse across height levels, which closely resembles an operational scenario.

Cyclic Forecasting and Assimilation Setup The initial state for our cyclic forecasting is derived
from the ERA5 dataset. In our experiments, the forecasting system begins at 00:00 on January 1. To
generate the background states xb

0, we begin with the ERA5 reanalysis field at 00:00 on December
30 of the previous year, run the 6-hour forecasting model for eight steps, and use the resulting fields
of variables as the starting point for the cyclic forecasting process. The assimilation cycle T equals
six hours, consistent with the pre-trained six-hour Fengwu forecasting model.

Baselines VAE-Var is compared against three baselines: DiffDA, interpolation and a traditional
variational method (3DVar). For DiffDA, we draw from the results presented in the original pa-
per (Huang et al., 2024); the interpolation method employs bilinear interpolation for station-based
data; the 3DVar method is implemented following the approach outlined in Descombes et al. (2015).

4.2 ERA5-SIMULATED OBSERVATIONS

In the ERA5-simulated observational setting, all observations are positioned on the grid. Thus, the
observation operator H is defined as a mask operator, where the values at the observation locations
are set to one, and the values at locations without observations are set to zero. We implement H
with element-wise matrix multiplication in PyTorch, and it is clearly differentiable. The observation
covariance matrix R is assumed to be diagonal, with the square root of each entry set to 0.1 times
the standard deviation of the respective variable. The parameter λ is set to 4.0.

Fixed Observations First, we examine the scenario where the observation positions remain con-
stant over time. To align with DiffDA, we initiate our forecasting system on January 1, 2022, sim-
ulate it for 15 days, and conduct experiments with four different observation amounts: 1000, 2000,
4000, and 8000 columns. We calculate the root mean square errors (RMSE) of the analysis states
at various time steps to assess assimilation accuracy. The results are illustrated in Figure 3, which
indicate that VAE-Var consistently outperforms all three baseline methods, across all three demon-
strated variables and the four observation amounts. Results for other important variables are left in
the Appendix. Notably, when the observation amount is relatively low (1000 columns), VAE-Var
demonstrates a marked advantage over the other two algorithms, highlighting its strong capability
in leveraging background information. As the observation amount increases, VAE-Var maintains
superior performance, albeit with a reduced margin, since the significance of effectively utilizing
background information diminishes with more observations.

Unfixed Observations Next, we conduct experiments where the observation positions vary over
time, while keeping the observation amount constant. The results, presented in Figure 4, are consis-
tent with the “fixed observation” case. VAE-Var continues to outperform DiffDA, the interpolation
method and 3DVar across all demonstrated variables and all observational settings.

4.3 GDAS PREPBUFR OBSERVATIONS

In this experiment, we aim to assimilate real-world observations. The observation dataset we choose
is the GDAS prepbufr dataset. This dataset consists of a global collection of surface and upper air
reports gathered by the National Centers for Environmental Prediction (NCEP). It includes obser-
vations from land and marine surfaces, radiosondes, pibals, aircraft, and Global Telecommunica-
tions System (GTS) reports. It also incorporates data from wind profilers, U.S. radar-derived winds,
SSM/I oceanic winds and TCW retrievals, as well as satellite wind data provided by the National En-
vironmental Satellite Data and Information Service (NESDIS). We utilize this observational dataset
because it is comprehensive and directly applied in today‘s operational weather forecasting systems.
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Figure 3: Results for fixed observation positions (15 days). The system is simulated in an auto-
regressive manner for 15 days, starting from January 1, 2022. Following DiffDA, we demonstrate
the RMSEs of the analysis field for three variables (z500, t850, t2m) in three different rows.
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Figure 4: Results for unfixed observation positions (15 days). The system is simulated in an auto-
regressive manner for 15 days, starting from January 1, 2022. Following DiffDA, we demonstrate
the RMSEs of the analysis field for three variables (z500, t850, t2m) in three different rows.

Data Processing In the GDAS prepbufr dataset, each message represents a single measurement
taken by an observational instrument at a specific time and location. Since our assimilation al-
gorithm focuses on a specific time point, we only select observations within half an hour of the
assimilation time for processing. For instance, if the current time is 3 PM, we choose observations
taken between 2:30 PM and 3:30 PM. Moreover, the spatial locations of observations are often not
located on the grid of FengWu. To address this, we construct a new, finer grid for the observations
and apply a nearest-neighbor interpolation method to map the observations to the nearest grid points.
Theoretically, this grid can be fine enough to minimize the error introduced by nearest-neighbor in-
terpolation. As a trade-off between accuracy and computational cost, the grid is designed to have
the same latitude and longitude resolution as the FengWu physical grid, but with 40 vertical lay-
ers, which is much denser than FengWu. Also, we applied quality control after gridding the data,
filtering out observations that deviate substantially from the corresponding ERA5 values.
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Observation Operator After data processing, all observations are placed on a grid with a finer
resolution than FengWu. The observation operator H is then defined as the interpolation from the
FengWu grid to the observation grid, which can be implemented using a differentiable ’Linear’ layer
in PyTorch. Details of this implementation are provided in the Appendix.

Figure 5: Visualization of z500 assimilation results at time 2017-01-01 00:00:00. ERA5 ground
truth, the background field and the observation mask are demonstrated in the first row; the error of
the background field (background field minus ground truth), the analysis increment (analysis field
minus background field) and the error of the analysis field (analysis field minus ground truth) are
shown in the second row. Strictly, the figure titled “z500 obs mask” correspond to observations at
501hPa because the observations use a different height axis. Please refer to the Appendix for details.

Analysis Field Visualization We select the year 2017 for conducting the assimilation experiment
because the completeness of the observational data is highest for that year. In Figure 5, we visualize
the assimilation results at time 2017-01-01 00:00. At this time, there are a total of 375,371 obser-
vations, which are reduced to 142,647 (approximately 0.2% of the total grid points) after quality
control. From the visualization of the observation mask, it is evident that the observations are pri-
marily concentrated over Eurasia, North America, and the South Atlantic Ocean. The observations
over the first two regions are mainly derived from radiosondes launched from the ground, while
those over the South Atlantic come from retrievals based on geostationary satellite data. The anal-
ysis increment closely aligns with the observations, and in areas where the observations are more
concentrated, the analysis increment is more pronounced. By comparing the errors between the
analysis field and the background field, we observe a reduction in error after assimilation, which
highlights the effectiveness of our method.

Cyclic Forecasting and Assimilation Results Figure 6 presents the RMSE and Bias of the analy-
sis fields at various time steps when VAE-Var is coupled with FengWu for a year-long simulation. In
the GDAS prepbufr observational settings, it is common to encounter positions where only a subset
of variables is observed. Since the DiffDA is currently unable to address such cases, we compare
VAE-Var with the interpolation and 3DVar baselines in this section. The results show that for all
eight reported variables, VAE-Var outperforms both methods in RMSE and Bias, demonstrating that
our approach effectively reduces both error and systematic bias in the cyclic forecasting system.

4.4 COMPUTATIONAL COST

In VAE-Var, the linear transformation U in 3DVar is replaced with a nonlinear D. The number of
floating-point operations inD is no samller than in U, so from a floating-point computation perspec-
tive, the computational complexity of VAE-Var is not lower than that of 3DVar. However, VAE-Var’s
main advantage is its easy implementation on GPUs, which significantly improves overall assimila-
tion efficiency. For example, on a single A100 GPU, one cycle of assimilation takes approximately

9
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Figure 6: Results for GDAS prepbufr observations (one year). The system is simulated in an
auto-regressive manner for one year, starting from January 1, 2017. The y-axis represents RMSE
and Bias with respect to the ERA5 ground truth. Due to the varying amounts of observations over
time, the RMSE for the interpolation method experiences significant fluctuations. The curves have
been smoothed to provide better visualization.

18 seconds. In contrast, 3DVar is typically implemented on CPUs, where one cycle of assimilation
takes several minutes (Smith et al., 2014). Therefore, in practice, VAE-Var can easily leverage GPU
capabilities to achieve assimilation one order of magnitude faster than traditional 3DVar.

5 RELATED WORK

The concept behind our work is similar to “latent space data assimilation”. For instance, in Amen-
dola et al. (2020), an LSTM is used to map physical states into latent space, where observed data
are assimilated using a Kalman Filter. Similarly, Peyron et al. (2021) employs an autoencoder to
construct the latent space and has achieved promising results on the augmented Lorenz 96 system.
In Melinc & Zaplotnik (2023), a VAE is trained for learning the map, with experiments conducted
on the ERA5 dataset. However, the observational settings and forecasting models in these works are
overly simplified and the effectiveness on more complicated systems remains to be evaluated.

While these approaches focus on finding the latent space of the physical fields, the critical aspect in
data assimilation is not the physical fields themselves but the uncertainty (or error) of these fields.
In contrast, the VAE-Var algorithm we propose directly learns the latent space of the error fields,
offering a straightforward yet effective method for data assimilation. Moreover, our algorithm is
proved effective on a global-scale AI forecasting model with real-world observations.

6 CONCLUSION

In this paper, we introduce a novel data assimilation algorithm, VAE-Var, which leverages a varia-
tional autoencoder to model the non-Gaussian structures of the background error distribution while
utilizing the traditional variational methods for effective assimilation of real-world irregularly sam-
pled observations. Experimental results on ERA5-simulated observations show that our method sur-
passes both an AI data assimilation algorithm, DiffDA, and two traditional methods (interpolation
and 3DVar). Additionally, we conducted experiments using real-world observations, demonstrating
that VAE-Var is capable of performing cyclic forecasting and assimilation over the span of one year.
VAE-Var is also shown to have high computational efficiency on GPU devices.
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REPRODUCIBILITY STATEMENT

All experiments in this paper are fully reproducible. For VAE-Var, the loss function used for train-
ing the VAE network is provided in Section 3; the specific architecture of the VAE network, along
with the training parameters and dataset selection, is detailed in Section 4. In the experimental sec-
tion, we provide comprehensive details regarding the observation settings, initial field setup, time
settings, and other experimental configurations related to the data assimilation process. Addition-
ally, the construction of the observation operator under real observational conditions is described
in the Appendix. For the baseline algorithms, three baselines are considered: DiffDA, 3DVar, and
interpolation. Regarding DiffDA, we directly adopt the results from the original paper. For 3DVar,
the construction details of the background error covariance matrix are provided in the Appendix.
As for the interpolation method, we clarify that it is based on the bilinear interpolation algorithm.
Additionally, all the datasets we use, including ERA5 and GDAS prepbufr, are also available online.
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A APPENDIX

A.1 DERIVATION OF EQUATION 1

We aim to maximize p(x|xb,y), which can be rewritten as:

argmax
x

p(x|xb,y) = argmax
x

p(xb,y|x)p(x)
p(xb,y)

= argmax
x

p(xb,y|x)p(x).

Here, p(xb,y) is independent of x and thus can be omitted from the optimization.

Now, assuming that xb and y are independent conditional on x, we can decompose p(xb,y|x) as
p(xb|x)p(y|x). Substituting this into the equation gives:

argmax
x

p(x|xb,y) = argmax
x

p(xb|x)p(y|x)p(x).

Next, applying Bayes’ rule to p(xb|x), we have p(xb|x) = p(x|xb)p(xb)/p(x). Substituting this
back, and noting that p(xb) is constant with respect to x, we obtain:

argmax
x

p(x|xb,y) = argmax
x

p(x|xb)p(y|x).

This is the right-hand side of Equation 1, which follows logically under the given assumptions.

A.2 NON-GAUSSIAN FEATURES OF THE BACKGROUND ERROR

We use the Lorenz 63 (Lorenz, 1963) system to provide an illustrative demonstration of the
background error’s non-Gaussian features. This system involves three parameters: σ, ρ, β, as
shown in Equation 5. We create dynamical models using two different sets of parameter values:
σ = 10, ρ = 28, β = 8

3 (for ground truth model) and σ = 10, ρ = 29, β = 8
3 (for prediction model).

By numerically integrating these models from randomly-chosen identical initial states and calculat-
ing the difference between their outputs, we generate a set of error samples, as depicted with the
blue dots in Figure 7. The error distribution is observed to be distinctly non-Gaussian and exhibits a
non-convex structure.



dX

dt
= σ(Y −X)

dY

dt
= X(ρ− Z)− Y

dZ

dt
= XY − βZ

(5)

Figure 7: Distribution of the background error for
the Lorenz 63 system.

A.3 MATHEMATICAL EXPLANATION OF VARIATIONAL COST

Although our method is generally heuristic, a mathematical explanation can be provided under some
assumptions. Suppose that the VAE is well learnt and the decoder is a bijection map from the
low-dimensional latent space to a manifold of the high-dimensional physical space. In this case,
according to the change of variables formula in Theorem (2.80) of Giaquinta & Modica (2010)
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(Chapter 2.5.2), supposing that the physical space has a dimensionality of dx, and the latent space
has a dimensionality of dz , then for any measurable set A ⊆ Rdz , the following equation holds:∫

A

px(D(z))J (DD) (z) dz =

∫
Rdx

px(x)H0
(
A ∩ D−1({x})

)
dHdz (x), (6)

where px correspond to the probability density function of x, D−1({x}) represents the preimage
of the set under the mapping D, Hs corresponds to the Hausdorff s-dimensional measure, and
J(Df)(x) is defined as:

J(Df)(x) =

√
det

(
∂f(x)

∂x

)T(
∂f(x)

∂x

)
. (7)

Intuitively, the same event should have the same probability measured in two different space. De-
noting pz the probability density function of z, the following “equation” holds:

px(x) dHdz (x) = pz(z) dz. (8)

Combining these two equations above, we have:∫
A

px(D(z))J (DD) (z) dz =

∫
A

pz(z)H0 (A ∩ {z}) dz. (9)

It is apparent that for z ∈ A,H0 (A ∩ {z}) = 1 holds; thus,∫
A

px(D(z))J (DD) (z) dz =

∫
A

pz(z) dz. (10)

Since this equation holds for any measurable set A, we have

px(D(z))J (DD) (z) = pz(z). (11)

Denoting δ = x− xb, pδ the probability density function of δ; then

pδ(δ) = px(x)

∣∣∣∣det ∂x∂δ
∣∣∣∣ = px(x). (12)

Further, we have:
pδ(δ) = pz(z) [J (DD) (z)]−1

= pz(z)

(
det

(
∂D(z)
∂z

)T(
∂D(z)
∂z

))−1/2

.
(13)

Since, the latent space of VAE is assumed to follow the standard Gaussian distribution, therefore,
p(z) ∼ N (0, I). Then,

L̃b(z) = − log p(x|xb) = − log pδ(δ) = − log pz(z) +
1

2
log det

(
∂D(z)
∂z

)T(
∂D(z)
∂z

)
=

1

2
zTz+

1

2
log det

(
∂D(z)
∂z

)T(
∂D(z)
∂z

)
.

(14)

Compared to the formula used in the paper, the strict expression includes an additional determinant
term, which represents the scaling factor of the volume element when mapping from the latent space
to the physical space.

Simplification Since Transformer-based neural networks are highly complex, nonlinear, and high-
dimensional systems, this scaling factor can fluctuate unpredictably over time. Including this term
would make the assimilation objective function extremely difficult to optimize. For this reason,
we empirically omitted the determinant term from our formula. As a compensatory measure, we
introduced an adjustable parameter λ in the background term of the assimilation objective function,
that is, Lb(z) = 1

2λz
Tz. Since the observation deviation term Lo (D(z) + xb,y) is calculated in
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the physical space, and the background error term Lb(z) =
1
2z

Tz is calculated in the latent space,

the former would intuitively be
(

dx

dz

)2
times larger than the latter. To balance this dimensionality

difference, the parameter λ should be approximately equal to
(

dx

dz

)2
. In our experimental setup,

the physical space has dimensions dx = 69 × 721 × 1440 and the latent space has dimensions
dz = 32× 721× 1440. This gives λ ≈ 4.64, and we round this value to 4 for simplicity.

We admit that such a simplification is not mathematically rigorous, but it greatly reduces the opti-
mization difficulty and is experimentally proven to be effective.

Rigorous Consideration of Jacobian Determinant In Bayesian modeling, one class of ap-
proaches rigorously addressing the Jacobian determinant of the mapping D from a Gaussian prior
to the target dataset distribution is normalizing flow (Rezende & Mohamed, 2015). These methods
constrain the structure ofD to ensure the Jacobian determinant is computationally tractable. Typical
constraints include the use of 1 × 1 convolution layers, single-variable activation functions, or in-
vertible transformations with simple Jacobian structures. For instance, Glow (Kingma & Dhariwal,
2018) is a well-known example in this family of methods.

While normalizing flow approaches retain the universal approximation property, they face significant
challenges when applied to high-dimensional systems, such as weather modeling. Specifically, the
structural constraints lead to substantial computational complexity, making training time-intensive
and resource-demanding. To our knowledge, few success has been achieved in modeling high-
dimensional systems using normalizing flow.

In future work, we will explore incorporating the advantages of normalizing flows into VAE-Var,
with a focus on addressing the scalability and efficiency challenges in high-dimensional meteoro-
logical systems.

A.4 GDAS PREBUFR OBSERVATION HEIGHTS

The potential height of the observation coordinate axis is evenly distributed logarithmically from 50
hPa to 1000 hPa. Specifically, the coordinate axis includes the following 40 potential height levels:

50 hPa, 54 hPa, 58 hPa, 63 hPa, 68 hPa, 73 hPa, 79 hPa, 86 hPa, 92 hPa, 100 hPa, 108 hPa, 116 hPa,
126 hPa, 136 hPa, 147 hPa, 158 hPa, 171 hPa, 185 hPa, 199 hPa, 215 hPa, 232 hPa, 251 hPa, 271 hPa,
293 hPa, 316 hPa, 341 hPa, 368 hPa, 398 hPa, 430 hPa, 464 hPa, 501 hPa, 541 hPa, 584 hPa, 631 hPa,
681 hPa, 735 hPa, 794 hPa, 858 hPa, 926 hPa, 1000 hPa

In contrast, the potential height axis of the physical space coordinate axis of FengWu includes the
following 13 levels:

50 hPa, 100 hPa, 150 hPa, 200 hPa, 250 hPa, 300 hPa, 400 hPa, 500 hPa, 600 hPa, 700 hPa, 850 hPa,
925 hPa, 1000 hPa

A.5 IMPLEMENTATION OF THE 3DVAR BASELINE

The implementation of the 3DVar baseline follows the GEN BE method from Descombes et al.
(2015) and we reproduce it with Python. Generally speaking, GEN BE consists of three steps. First,
1000 ERA5 fields are sampled between 1979 and 2015; then the NMC method is applied to calculate
the resulting background error samples; last, calculate the statistics of U. In GEN BE, U is assumed
to be decomposed into four operators, U = UpSUvUh, where Up handles the transformation of
physical variables, S represents the standard deviation, Uv corresponds to vertical transformation,
and Uh handles horizontal transformation.

The details for constructing the four operators are as follows:

Implementation of Up Up is the only transformation that does not require parameters derived
from the NMC samples. It is used to convert the stream function and potential function (ϕ, ψ)
into wind components (u, v) in the latitude-longitude directions, while keeping other variables un-
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changed. Specifically, it is computed using the following equations:

u =
∂ψ

∂y
+
∂ϕ

∂x
, v = −∂ψ

∂x
+
∂ϕ

∂y

Implementation of S S represents the error variance for each variable layer. To calculate it, we
first apply the inverse transformation of Up to all error samples (i.e., converting winds from the
latitude-longitude direction back to stream functions and potential functions). This is done using
spectral methods, which are supported by the ‘torch-harmonic‘ library in PyTorch for solving the
differential equations. After transforming the fields, we compute the sample variance at each pixel.
The resulting variances are averaged in the latitude-longitude direction, yielding 69 values corre-
sponding to the error variance at each vertical layer.

Implementation of Uv Uv is computed using eigenvalue decomposition. Specifically, for each
upper-air variable, we first average the variable in the latitude-longitude direction to obtain 1000
69-length vectors. The covariance matrix A of these 1000 vectors is then computed. We perform
eigen-decomposition on A such that A = PΛP−1, and Uv is then defined as Uv = PΛ1/2, where
P is the eigenvector matrix and Λ is the diagonal matrix of eigenvalues.

Implementation of Uh Uh is essentially a horizontal recursive filter applied to each of the 69
layers. The length scale L for the filter is given by:

L =

(
8 ·Variance(ϕ)
Variance(∇2ϕ)

)1/4

This filter is applied to each layer individually to perform horizontal smoothing.

To summarize, Up is a fixed, parameter-free variable transformation operator that converts stream
and potential functions into wind components; S represents error variance with 69 parameters cor-
responding to each vertical layer; Uv corresponds to eigenvalue decomposition applied to the 1000
samples, yielding 69*69 + 69 parameters; Uh is a horizontal recursive filter applied to each of the
69 layers, with 69 parameters.

A.6 IMPLEMENTATION OF THE OBSERVATION OPERATOR

As for the real-world observations, the observation operator aims to do vertical interpolation from
the physical grids to the observational grids. Since the geopotential height changes approximately
exponentially with physical height, logarithmic linear interpolation is required when performing
vertical layer interpolation. The computation of the interpolation matrix P ∈ R40×13 is shown in
Algorithm 4, where X represents the scale of the geopotential height at the physical grid points and
Y represents that at the observational grid points. After calculating the interpolation matrix, the
PyTorch construction of the observation operator is shown in Algorithm 5.

Algorithm 4 Logarithmic Interpolation Matrix Construction

Require: : Vectors X (scale of the vertical axis of the physical space) and Y (scale of the vertical
axis of the observational space)
P ← zeros(len(Y ), len(X))
for i = 0 to len(Y )− 1 do

for j = 0 to len(X)− 1 do
if Y [i] = X[j] then

P [i, j]← 1
else if Y [i] > X[j] and Y [i] < X[j + 1] then

P [i, j]← log(X[j+1])−log(Y [i])
log(X[j+1])−log(X[j])

P [i, j + 1]← log(Y [i])−log(X[j])
log(X[j+1])−log(X[j])

end if
end for

end for
return P
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Algorithm 5 Observation Operator Implementation in PyTorch

Require: : Physical layer x ∈ R69×721×1440, interpolation matrix P
x0 ← x.unsqueeze(0)
y ← []
y.append(x0[:, : 4])
for i = 0 to 5 do

mat← x0[:, 4 + i× 13 : 4 + (i+ 1)× 13]
mat← torch.nn.functional.linear(mat.transpose(1, 3), P ).transpose(1, 3)
y.append(mat)

end for
y ← torch.cat(y, 1)
y ← y.squeeze(0)
return y

A.7 ABLATION STUDY

Different Initial States To investigate how the change of initial state x(0)
b would affect the perfor-

mance of VAE-Var, we construct seven initial fields to conduct the ablation study:

1. Start from ERA5 24 hours earlier and use four 6-hour FengWu forecasts as the initial field.
2. Start from ERA5 48 hours earlier and use eight 6-hour FengWu forecasts as the initial field.
3. Start from ERA5 192 hours earlier and use thirty-two 6-hour FengWu forecasts as the initial
field.
4. Directly use ERA5 fields from 24 hours earlier as the initial field.
5. Directly use ERA5 fields from 48 hours earlier as the initial field.
6. Directly use ERA5 fields from 192 hours earlier as the initial field.
7. Use ERA5 fields from half a year earlier as the initial field.

These seven settings are denoted as ”init-1”, ”init-2”, ..., ”init-7”, respectively. All the other experi-
mental settings are consistent with the unfixed ERA5-simulated observation experiments in the main
paper. The cyclic forecasting and assimilation is performed for 25 days and the results of RMSE are
demonstrated in Figure 8. It can be found that if the initial field is not derived from FengWu forecast
(init-4, init-5, init-6, init-7), the assimilation process can still continuously reduce errors over cycles,
eventually achieving comparable performance. Even when the initial field is significantly different
from the ground truth, e.g., with a half-year phase (init-7), z500 still converges after about 20 days
of assimilation. This ablation study proves that VAE-Var is robust to initial conditions.

Different Observation Quantities To investigate the impact of how observation quantity affects
the performance of VAE-Var, we added experiments with 100, 200, 400, 800, 10,000, 20,000, and
40,000 observation columns (the largest density corresponding to approximately one observation
per grid point on a global 1.25-degree latitude-longitude grid).

The experiments use a 15-day assimilation cycle from January 1 to January 15, 2022, with differ-
ent observation locations at each time step but a consistent number of observations. The results
for observation quantities from 100 to 8000 are demonstrated in Figure 9 and those from 8000 to
40000 are demonstrated in Figure 10. It can be found that when the number of observations is low
(below 8000), VAE-Var shows a clear improvement in analysis accuracy as the observation quan-
tity increases. However, when the observation density exceeds 8000, the improvement in accuracy
becomes less pronounced. In contrast, 3DVar demonstrates more consistent improvement as the
observation count increases. When the number of observations is below 10,000, VAE-Var generally
outperforms 3DVar, with the advantage becoming more pronounced as the observations are sparser.
However, when the number of observations exceeds 10,000, the performance of VAE-Var slightly
lags behind 3DVar.

Regarding why the improvement in analysis accuracy with higher observation density is less pro-
nounced for VAE-Var, we think this is due to the fact that the increments in the analysis field are
constrained within the latent space defined by the decoder output, D(z). During training, VAE may
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Figure 8: Results for different initial states. The observations are unfixed in different time steps.
The system is simulated for 25 days, starting from January 1, 2022.

not fully generalize to the complete analysis increment space, meaning that certain finer details of
the analysis may not be captured effectively. When observation density is high, achieving further
improvement requires fine-grained adjustments to the analysis increments, which may not be well-
represented in the latent space. As a result, the analysis accuracy may plateau once the background
field error is already small. Currently, the RMSE for the z500 field has a lower bound of approx-
imately 26m2/s2, which represents a good level of accuracy, but further improvements may be
limited due to these modeling constraints.

A.8 EXPERIMENTS EVALUATED BASED ON GDAS OBSERVATIONS

Figure 11: Division of observations. The region
marked by the red dashed box represents the ob-
servation area reserved for evaluation.

Another important evaluation method in the
field of data assimilation is to treat the obser-
vation sites as ground truth for assessment. In
this method, all observations are first divided
into two parts: one part is used for assimilation,
and the other part is reserved as ground truth
to evaluate the quality of the assimilated anal-
ysis field. In this section, we also adopt this
method to assess the assimilation performance
of VAE-Var. Specifically, we select the obser-
vation sites within the region bounded by 50°E
to 150°E longitude and 15°N to 40°N latitude
(with the main area covering East Asia). Dur-
ing the assimilation process, we do not assim-
ilate these observations, but use them as truth
for evaluation.

Starting from January 1, 2017, the cyclic forecasting and assimilation system is simulated for one
year and the results are shown in Figure 12, 13, 14. It is shown that under the evaluation of GDAS
observations, VAE-Var still consistently outperforms 3DVar on most variables.
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Figure 9: Results for different observation quantities (100≤ #obs≤ 8000). The observations are
unfixed in different time steps. The system is simulated for 15 days, starting from January 1, 2022.

A.9 ADDITIONAL RESULTS FOR EXPERIMENTS IN THE MAIN PAPER

Results for other important variables in the fixed-position ERA5-simulated observational settings
are demonstrated in Figure 15-17 and those in the unfixed-position are demonstrated in Figure 18-
20. The fields of other important variables for the GDAS prepbufr observations are visualized in
Figure 21-27.
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Figure 10: Results for different observation quantities (8000≤ #obs≤ 40000). The observations
are unfixed in different time steps. The system is simulated for 15 days, starting from January 1,
2022.
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Figure 12: Evaluation results based on GDAS observations. Surface variables (u10, v10, t2m,
mslp) are reported. The system is simulated in an auto-regressive manner for one year, starting
from January 1, 2017. The upper row demonstrates the RMSEs between the analysis fields and
the GDAS observations. The RMSEs are averaged among all the observations available at a given
layer. For example, to calculate the RMSE of z501 at 00:00, January 1, 2017, we first interpolate
the analysis field to the height of 501hPa; then, calculate the squared error between the value an
observation at the height 501hPa value and the value of the analysis field at that point; by averaging
all these observations and taking the square root, we can obtain the RMSE. The lower row shows
the value of the RMSE of 3DVar minus that of VAE-Var. A value larger than zero indicates that
VAE-Var is better than 3DVar.
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Figure 13: Evaluation results based on GDAS observations. z501, t501, u501 and v501 are
reported. Please refer to the caption of Figure 12 for details.
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Figure 14: Evaluation results based on GDAS observations. z858, t858, u858 and v858 are
reported. Please refer to the caption of Figure 12 for details.
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Figure 15: Results for fixed observation positions (15 days). The system is simulated in an auto-
regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field for
three variables (u10, v10, mslp) are demonstrated in three different rows.
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Figure 16: Results for fixed observation positions (15 days). The system is simulated in an auto-
regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field for
three variables (z850, u850, v850) are demonstrated in three different rows.
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Figure 17: Results for fixed observation positions (15 days). The system is simulated in an auto-
regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field for
three variables (u500, v500, t500) are demonstrated in three different rows.
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Figure 18: Results for unfixed observation positions (15 days). The system is simulated in an
auto-regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field
for three variables (u10, v10, mslp) are demonstrated in three different rows.
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Figure 19: Results for unfixed observation positions (15 days). The system is simulated in an
auto-regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field
for three variables (z850, u850, v850) are demonstrated in three different rows.
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Figure 20: Results for unfixed observation positions (15 days). The system is simulated in an
auto-regressive manner for 15 days, starting from January 1, 2022. The RMSEs of the analysis field
for three variables (u500, v500, t500) are demonstrated in three different rows.
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Figure 21: Visualization of z850 assimilation results at time 2017-01-01 00:00:00. The figure
titled “z850 obs mask” correspond to observations at 858hPa because the observations use a different
height axis.

Figure 22: Visualization of u500 assimilation results at time 2017-01-01 00:00:00. The figure
titled “u500 obs mask” correspond to observations at 501hPa because the observations use a different
height axis.
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Figure 23: Visualization of u850 assimilation results at time 2017-01-01 00:00:00. The figure
titled “u850 obs mask” correspond to observations at 858hPa because the observations use a different
height axis.

Figure 24: Visualization of v500 assimilation results at time 2017-01-01 00:00:00. The figure
titled “v500 obs mask” correspond to observations at 501hPa because the observations use a different
height axis.
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Figure 25: Visualization of v850 assimilation results at time 2017-01-01 00:00:00. The figure
titled “v850 obs mask” correspond to observations at 858hPa because the observations use a different
height axis.

Figure 26: Visualization of t500 assimilation results at time 2017-01-01 00:00:00. The figure
titled “t500 obs mask” correspond to observations at 501hPa because the observations use a different
height axis.
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Figure 27: Visualization of t850 assimilation results at time 2017-01-01 00:00:00. The figure
titled “t850 obs mask” correspond to observations at 858hPa because the observations use a different
height axis.

29


	Introduction
	Preliminaries
	VAE-Var
	Background Error Estimation Based on VAE
	General Formulation of VAE-Var

	Results
	Experimental Setup
	ERA5-Simulated Observations
	GDAS prepbufr Observations
	Computational Cost

	Related Work
	Conclusion
	Appendix
	Derivation of Equation 1
	Non-Gaussian Features of the Background Error
	Mathematical Explanation of Variational Cost
	GDAS prebufr Observation Heights
	Implementation of the 3DVar Baseline
	Implementation of the Observation Operator
	Ablation Study
	Experiments Evaluated Based on GDAS Observations
	Additional Results magentafor Experiments in the Main Paper


