

000 001 002 003 004 005 DURIAN: DUAL REFERENCE IMAGE-GUIDED 006 PORTRAIT ANIMATION WITH ATTRIBUTE TRANSFER 007 008 009

010
011 **Anonymous authors**
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915<br

054 A key challenge in building such a system is obtaining suitable training data. Disentangling identity
 055 from attributes ideally requires paired images of the same person with different attributes, which are
 056 rarely available and expensive to collect at scale. This difficulty grows exponentially for multiple
 057 attributes, as capturing all combinations quickly becomes infeasible. For example, Li et al. (2023)
 058 collects multi-view images of subjects wearing different eyeglasses to model realistic glasses try-on,
 059 but the dataset remains too limited to generalize broadly. Zhang et al. (2025) propose a synthetic
 060 pipeline that predicts a bald version of a portrait and generates reference hair images using a pretrained
 061 diffusion model. However, this approach is not easily scalable beyond hair.

062 This naturally raises the question: *can we train a model for portrait animation with attribute*
 063 *transfer without any explicit attribute-paired data?* Motivated by this question, we propose a **self-**
 064 **reconstruction framework** that learns this task directly from widely available in-the-wild portrait
 065 videos. During training, we randomly sample two frames from a single video: one as the attribute
 066 reference and the other as the identity reference. The remaining frames are treated as targets to be
 067 generated, conditioned on a keypoint sequence representing the motion of the video. To prevent
 068 identity leakage, we apply complementary masking to the two reference frames so that the network
 069 must disentangle and combine the attribute and identity information to reconstruct the original video.

070 To enable this framework, we design a **Dual ReferenceNet** architecture that explicitly encodes the
 071 attribute and portrait references through two separate branches and fuses their disentangled features
 072 for generation via spatial attention. This design enables the network to move beyond simple pose
 073 driving, generating keypoint-driven portrait animations that seamlessly combine the attribute from
 074 one image with the identity from the other. Surprisingly, although the model is trained with only a
 075 single attribute reference at a time, the spatial attention mechanism allows more advanced operations
 076 at inference time. Since different attributes (e.g., hair, glasses, beard, hats) occupy distinct spatial
 077 regions, their features can be jointly injected without conflict, enabling seamless multi-attribute
 078 transfer. Furthermore, by interpolating the features of two attribute references, our model can
 079 achieve attribute interpolation, generating smooth transitions between the attributes. These emergent
 080 capabilities make our framework especially valuable for real-world styling scenarios, where users
 081 may want to explore diverse combinations and gradual transformations of facial attributes.

082 While self-reconstruction training is effective for learning to separate identity and attributes, it
 083 operates within a single video, leading to a domain gap when the model is applied to cross-identity
 084 inference, where the attribute and portrait come from different individuals. To mitigate this gap, we
 085 introduce a mask expansion strategy and lightweight augmentation schemes. These techniques expose
 086 the model to a broader range of attribute configurations during training, enabling robust transfer
 087 across spatial and structural variations of the attribute region. These designs form a unified framework
 088 capable of robust cross-identity attribute transfer. As a result, our method achieves a versatile system
 089 that generates portrait animations with diverse appearance edits in a zero-shot manner.

090 We summarize the key contributions of our work, as follows: (1) we propose the first method to
 091 generate keypoint-driven portrait animations with transferred attributes directly from two images,
 092 generalized across diverse facial attributes beyond hair; (2) we design a Dual ReferenceNet architec-
 093 ture that disentangles attribute and identity through two branches fused via spatial attention, enabling
 094 self-reconstruction training directly on uncurated in-the-wild videos without paired data; (3) we
 095 propose a mask expansion strategy and lightweight augmentations to bridge the domain gap for
 096 cross-identity transfer, improving robustness to diverse spatial configurations; and (4) our framework
 097 exhibits an emergent ability to support multi-attribute composition and interpolation in a single
 098 generation pass, without requiring any additional training.

099

2 RELATED WORK

100

101 **Face Editing.** Generative models have advanced facial editing from unconditional synthesis to
 102 fine-grained manipulation of existing images (Goodfellow et al., 2014; Rezende & Mohamed, 2015;
 103 Ho et al., 2020). Latent-space editing with StyleGAN (Karras et al., 2020) and GAN inversion (Zhu
 104 et al., 2016; Abdal et al., 2019; Richardson et al., 2021) has been extended to video via latent
 105 trajectory modeling (Yao et al., 2021; Tzaban et al., 2022) and 3D-aware editing (Bilecen et al., 2024;
 106 Xu et al., 2024). However, such approaches often rely on attribute classifiers or fixed editing controls.
 107 Diffusion-based models have introduced more flexible editing through prompt-driven (Brooks et al.,
 108 2023) or identity-preserving techniques (Ye et al., 2023; Wang et al., 2024), with extensions to video

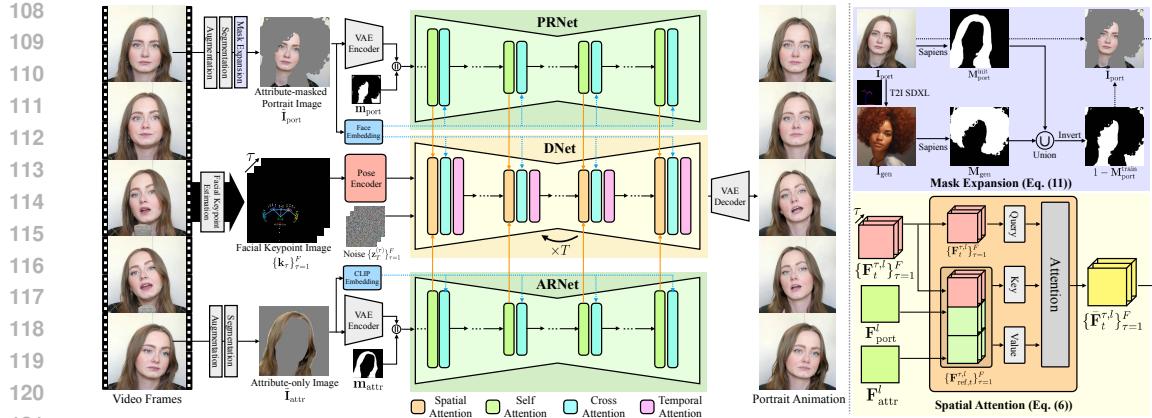


Figure 2: **Overview of Training Pipeline.** Given an attribute-masked portrait image $\tilde{\mathbf{I}}_{\text{port}}$ and an attribute-only image $\tilde{\mathbf{I}}_{\text{attr}}$, Durian synthesizes a portrait animation with the transferred attribute. These inputs are constructed by randomly sampling two frames from a training video and applying the estimated masks. A sequence of facial keypoints $\{\mathbf{k}_\tau\}_{\tau=1}^F$ is extracted from the video to guide the motion. During generation, spatial features from PRNet and ARNet are fused via spatial attention into the DNet, ensuring identity preservation and attribute consistency in the synthesized video.

improving temporal consistency (Ku et al., 2024; Kim et al., 2023). Still, these methods are limited to modifying existing content and cannot generate new motions or expressions.

Diffusion-based Attribute Transfer. Diffusion-based attribute transfer methods typically formulate editing as masked inpainting, where reference content is inserted into a target image using explicit masks (Yang et al., 2023; Chen et al., 2024; Mou et al., 2025; Chen et al., 2025; Song et al., 2025). These approaches have been adapted to domain-specific tasks such as hairstyle (Zhang et al., 2025; Chung et al., 2025), clothing (Kim et al., 2024a; Li et al., 2024; Chong et al., 2024), and makeup (Zhang et al., 2024b). While effective for static images, they rely on category labels or mask annotations. Video extensions (Fang et al., 2024; Tu et al., 2025) apply per-frame inpainting with post-hoc smoothing, but predefined masks are hard to specify for deformable facial attributes that vary over time. Recent works have also explored attribute transfer in 3D avatars (Kim et al., 2024b; Nam et al., 2025; Cha et al., 2024; 2025; Wang et al., 2025; Kim et al., 2025), but such approaches often require specialized capture setups or are not easily generalizable to in-the-wild scenarios. In contrast, our model performs attribute transfer and animation jointly in a single forward pass, conditioned only on a pair of reference images and a facial keypoint sequence. This eliminates the need for per-frame masks, text prompts, or category labels, enabling zero-shot transfer of diverse facial attributes.

Portrait Animation from a Single Image. Portrait animation aims to generate motion from a static image, typically guided by facial keypoints, audio, or motion trajectories. Early methods rely on GANs with implicit keypoint modeling (Guo et al., 2024; Wang et al., 2021), while recent approaches use diffusion models (Hu, 2024; Zhu et al., 2024; Yang et al., 2025) for improved realism and temporal stability. These methods primarily focus on reenactment and identity preservation. Others incorporate paired motion (Xie et al., 2024) or audio (Yang et al., 2025), but require multi-stage inference or fine-tuning. Our model jointly performs facial attribute transfer and motion generation, producing photorealistic, identity-preserving videos from diverse attribute references and keypoint-driven motion in a single pass.

3 METHOD

3.1 OVERVIEW: LEARNING ATTRIBUTE TRANSFER FROM SELF-RECONSTRUCTION

We propose a diffusion-based generative framework for portrait animation with cross-identity attribute transfer. At a high level, our model generates an F -frame animation sequence $\mathbf{V} = \{\mathbf{I}_\tau\}_{\tau=1}^F$ as:

$$\mathbf{V} = \text{Durian}(\mathbf{I}_{\text{attr}}, \mathbf{M}_{\text{attr}}, \mathbf{I}_{\text{port}}, \mathbf{M}_{\text{port}}, \mathbf{K}), \quad (1)$$

162 conditioned on an attribute image \mathbf{I}_{attr} , a portrait image \mathbf{I}_{port} , and a sequence of driving facial
 163 keypoint images $\mathbf{K} = \{\mathbf{k}_\tau\}_{\tau=1}^F$. Each reference image has a binary mask: \mathbf{M}_{attr} localizes the
 164 attribute region (*e.g.*, hair or glasses) in the reference image, while \mathbf{M}_{port} specifies the candidate
 165 region in the portrait where the attribute will be transferred. Using these masks, we construct two
 166 masked inputs: the *attribute-only image* $\tilde{\mathbf{I}}_{\text{attr}} = \mathbf{I}_{\text{attr}} \odot \mathbf{M}_{\text{attr}}$, where only the attribute region
 167 is preserved, and the *attribute-masked portrait image* $\tilde{\mathbf{I}}_{\text{port}} = \mathbf{I}_{\text{port}} \odot (1 - \mathbf{M}_{\text{port}})$, where the
 168 corresponding region is removed. These masked inputs are fed into the **Dual ReferenceNet**, consisting
 169 of the *Attribute ReferenceNet (ARNet)* and *Portrait ReferenceNet (PRNet)*, which extract multi-scale
 170 spatial features. These features are then injected into a diffusion-based generator, the *Denoising UNet*
 171 (*DNet*), to synthesize the remaining frames of the video with keypoint guidance \mathbf{K} (Section 3.2).

172 To enable training without requiring explicitly annotated triplets (*i.e.*, combinations of a target attribute
 173 image, an original portrait image, and an edited portrait image), we adopt a **self-reconstruction**
 174 **strategy** based on portrait videos (Yu et al., 2023; Xie et al., 2022). Specifically, we simulate attribute
 175 transfer by sampling two frames \mathbf{I}_{attr} and \mathbf{I}_{port} from the same video, treating one as the attribute
 176 reference and the other as the target portrait. We then construct the masked inputs $\tilde{\mathbf{I}}_{\text{attr}}$ and $\tilde{\mathbf{I}}_{\text{port}}$ using
 177 the same masking formulation as in inference, based on a segmentation mask of a randomly selected
 178 attribute. Although the two frames come from the same identity, the complementary masking enforces
 179 a clear separation between identity and attribute inputs, encouraging the model to learn meaningful
 180 mappings from these features to output frames without requiring cross-identity supervision. To
 181 enhance the model’s ability to generalize beyond the self-attribute transfer setup, we introduce an
 182 augmentation scheme that improves robustness to spatial and appearance variations (Section 3.3).

183 At inference time, we estimate refined attribute masks by aligning the attribute image to the portrait
 184 through a lightweight alignment process, mitigating spatial misalignment between them. Conditioned
 185 on the two masked reference images and the driving keypoint sequence, our model then synthesizes
 186 portrait animations with attribute transfer. Notably, our design also supports multi-attribute composi-
 187 tion and smooth interpolation within a single generation pass, without requiring additional training or
 188 post-processing (Section 3.4). Fig. 1 shows our generated portrait animations with attribute transfer.

190 3.2 MODEL ARCHITECTURE: DUAL REFERENCENET

191 Inspired by recent approaches (Guo et al., 2023; Hu, 2024; Zhu et al., 2024) that leverage ReferenceNet to inject spatial features into diffusion models, we propose a **Dual ReferenceNet** architecture
 192 tailored for portrait animation with attribute transfer. Unlike previous work, our model includes two
 193 separate encoders: *Attribute ReferenceNet (ARNet)* and *Portrait ReferenceNet (PRNet)*, each sharing
 194 the same architecture as the *Denoising U-Net (DNet)* in the diffusion model, excluding the temporal
 195 layers. The networks follow the U-Net (Long et al., 2015) architecture used in latent diffusion
 196 models (Rombach et al., 2022), with each block containing convolutional layers followed by self-
 197 and cross-attention modules. The overall architecture is shown in Fig. 2.

198 **Reference inputs.** Given an attribute image $\mathbf{I}_{\text{attr}} \in \mathbb{R}^{3 \times H \times W}$ and a portrait image $\mathbf{I}_{\text{port}} \in \mathbb{R}^{3 \times H \times W}$, along with their binary masks $\mathbf{M}_{\text{attr}} \in \mathbb{R}^{1 \times H \times W}$ and $\mathbf{M}_{\text{port}} \in \mathbb{R}^{1 \times H \times W}$, which localize
 199 the attribute region and the candidate transfer region respectively, we construct two masked inputs:
 200 the attribute-only image $\tilde{\mathbf{I}}_{\text{attr}} = \mathbf{I}_{\text{attr}} \odot \mathbf{M}_{\text{attr}}$, where only the attribute region is preserved, and the
 201 attribute-masked portrait image $\tilde{\mathbf{I}}_{\text{port}} = \mathbf{I}_{\text{port}} \odot (1 - \mathbf{M}_{\text{port}})$, where the corresponding candidate
 202 region is removed. We then encode these masked images into latent representations using the
 203 pretrained VAE from the latent diffusion model (Rombach et al., 2022), yielding $\mathbf{z}_{\text{attr}}, \mathbf{z}_{\text{port}} \in \mathbb{R}^{c \times h \times w}$. The corresponding masks $\mathbf{M}_{\text{attr}}, \mathbf{M}_{\text{port}}$ are downsampled to match the latent resolution,
 204 producing $\mathbf{m}_{\text{attr}}, \mathbf{m}_{\text{port}} \in \mathbb{R}^{1 \times h \times w}$. These downsampled masks are concatenated with the latents
 205 along the channel dimension to form $(c + 1)$ -channel inputs $\tilde{\mathbf{z}}_{\text{attr}}, \tilde{\mathbf{z}}_{\text{port}} \in \mathbb{R}^{(c+1) \times h \times w}$ as follows:

$$\tilde{\mathbf{z}}_{\text{attr}} = \text{concat}_c(\mathbf{z}_{\text{attr}}, \mathbf{m}_{\text{attr}}), \quad \tilde{\mathbf{z}}_{\text{port}} = \text{concat}_c(\mathbf{z}_{\text{port}}, \mathbf{m}_{\text{port}}). \quad (2)$$

213 **Spatial attention.** The augmented latents are passed to ARNet $\mathcal{E}_{\text{attr}}$ and PRNet $\mathcal{E}_{\text{port}}$ to extract
 214 multi-scale feature maps after convolutional layers of each block:

$$\mathcal{F}_{\text{attr}} := \{\mathbf{F}_{\text{attr}}^l\}_{l=1}^L = \mathcal{E}_{\text{attr}}(\tilde{\mathbf{z}}_{\text{attr}}; \Theta_{\text{attr}}), \quad \mathcal{F}_{\text{port}} := \{\mathbf{F}_{\text{port}}^l\}_{l=1}^L = \mathcal{E}_{\text{port}}(\tilde{\mathbf{z}}_{\text{port}}; \Theta_{\text{port}}), \quad (3)$$

216 where $\Theta_{\{\text{attr}, \text{port}\}}$ are the parameters of Dual ReferenceNet. Let $\mathbf{F}_t^{\tau, l} \in \mathbb{R}^{c_l \times h_l \times w_l}$ denote the feature
 217 map of the frame τ at the l -th block of the denoising U-Net. While the original denoising U-Net
 218 includes a self-attention layer at each resolution, we replace it with our spatial attention to integrate
 219 identity and attribute features in a spatially-aware manner. We denote width-wise concatenation as
 220 $\text{concat}_w(\cdot)$, and define our spatial attention $\text{SA}(\cdot, \cdot, \cdot)$ as:

$$\mathbf{F}_{\text{ref}, t}^{\tau, l} := \text{concat}_w(\{\mathbf{F}_t^{\tau, l}, \mathbf{F}_{\text{port}}^l, \mathbf{F}_{\text{attr}}^l\}) \in \mathbb{R}^{c_l \times h_l \times 3w_l}, \quad (4)$$

$$\bar{\mathbf{F}}_t^{\tau, l} = \text{SA}(\mathbf{F}_t^{\tau, l}, \mathbf{F}_{\text{port}}^l, \mathbf{F}_{\text{attr}}^l) = \text{Attention}(\mathbf{W}_Q \mathbf{F}_t^{\tau, l}, \mathbf{W}_K \mathbf{F}_{\text{ref}, t}^{\tau, l}, \mathbf{W}_V \mathbf{F}_{\text{ref}, t}^{\tau, l}), \quad (5)$$

225 where $\bar{\mathbf{F}}_t^{\tau, l} \in \mathbb{R}^{c_l \times h_l \times w_l}$ is the feature map after the spatial attention, $\text{Attention}(Q, K, V) =$
 226 $\text{softmax}(QK^\top / \sqrt{d})V$ is the standard scaled dot-product attention (Vaswani et al., 2017),
 227 $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ are linear projection layers. This width-wise concatenation preserves spatial resolution
 228 and allows the model to attend across all positions in the combined reference and target features.
 229 As a result, the model can leverage both attribute and portrait guidance at every step.

230 **Cross-attention with semantic embeddings.** After applying spatial attention, we further inject
 231 semantic guidance into both the Dual ReferenceNet and the denoising U-Net via cross-attention. For
 232 ARNet, we use the CLIP (Radford et al., 2021) embedding of the attribute-only image $\tilde{\mathbf{I}}_{\text{attr}}$ as the
 233 attribute embedding ϕ_{attr} , which is injected via cross-attention into each block of ARNet. For PRNet
 234 and DNet, we construct a portrait embedding ϕ_{port} by combining ArcFace (Deng et al., 2019) and
 235 CLIP embeddings of the attribute-masked portrait image $\tilde{\mathbf{I}}_{\text{port}}$ following StableAnimator (Tu et al.,
 236 2024). This embedding is injected into both PRNet and DNet to enhance identity preservation. We
 237 define the cross-attention operation $\text{CA}(\cdot, \cdot)$ as:

$$\text{CA}(\bar{\mathbf{F}}, \phi) = \text{Attention}(\mathbf{W}'_Q \bar{\mathbf{F}}, \mathbf{W}'_K \phi, \mathbf{W}'_V \phi), \quad (6)$$

238 where $\bar{\mathbf{F}}$ is the input feature map, ϕ is the conditioning embedding, and $\mathbf{W}'_Q, \mathbf{W}'_K, \mathbf{W}'_V$ are learned
 239 linear projections. Let $\bar{\mathbf{F}}_{\text{attr}}^l$ and $\bar{\mathbf{F}}_{\text{port}}^l$ be the self-attended features of the l -th block in ARNet and
 240 PRNet, and $\bar{\mathbf{F}}_t^l$ the spatially attended feature of DNet. Then, the cross-attention updates are given by:

$$\tilde{\mathbf{F}}_{\{\text{attr}, \text{port}\}}^l = \text{CA}(\bar{\mathbf{F}}_{\{\text{attr}, \text{port}\}}^l, \phi_{\{\text{attr}, \text{port}\}}), \quad \tilde{\mathbf{F}}_t^{\tau, l} = \text{CA}(\bar{\mathbf{F}}_t^{\tau, l}, \phi_{\text{port}}), \quad (7)$$

241 where $\tilde{\mathbf{F}}_{\text{attr}}^l$, $\tilde{\mathbf{F}}_{\text{port}}^l$, and $\tilde{\mathbf{F}}_t^{\tau, l}$ are the feature maps after cross-attention in ARNet, PRNet, and DNet.

242 **Temporal extension and keypoint guidance.** Our model incorporates temporal awareness to
 243 generate coherent portrait animations by inserting temporal self-attention into each U-Net block,
 244 following Hu (2024); Zhu et al. (2024). To control pose and expression, we use a sequence of facial
 245 keypoints $\mathbf{K} = \{\mathbf{k}_\tau\}_{\tau=1}^F$ extracted by Sapiens (Khirodkar et al., 2024). Each keypoint image \mathbf{k}_τ is
 246 encoded into a spatial feature map $\mathbf{F}_{\text{kpt}}^\tau$ via a pose encoder and combined with the noisy latent $\mathbf{z}_t^{(\tau)}$
 247 following Zhu et al. (2024). For each frame τ , DNet ϵ_θ predicts the added noise $\hat{\epsilon}_t^{(\tau)}$ from the noisy
 248 latent $\mathbf{z}_t^{(\tau)}$ at timestep t , using the reference features, semantic embeddings, and keypoint features:

$$\hat{\epsilon}_t^{(\tau)} = \epsilon_\theta \left(\mathbf{z}_t^{(\tau)}, t, \mathcal{F}_{\text{attr}}, \mathcal{F}_{\text{port}}, \phi_{\text{attr}}, \phi_{\text{port}}, \mathbf{F}_{\text{kpt}}^\tau \right). \quad (8)$$

249 The predicted noise is used to recover the denoised latent $\mathbf{z}_0^{(\tau)}$, then decoded by the VAE decoder \mathcal{D}
 250 to produce the final video frame as $\mathbf{I}_\tau = \mathcal{D}(\mathbf{z}_0^{(\tau)})$ for $\tau = 1, \dots, F$.

261 3.3 TRAINING STRATEGY

262 **Training loss.** To effectively train our model, we adopt a two-stage training scheme following the
 263 previous approaches (Hu, 2024; Zhu et al., 2024). In the first stage, we optimize the entire model
 264 except the temporal attention layers, treating each video frame as an independent training sample. We
 265 define the per-frame conditioning bundle as $\mathcal{C} := (\mathcal{F}_{\text{attr}}, \mathcal{F}_{\text{port}}, \phi_{\text{attr}}, \phi_{\text{port}})$, where $\mathcal{F}_{\text{port}}, \mathcal{F}_{\text{attr}}$ are
 266 the multi-scale spatial features from PRNet and ARNet and $\phi_{\text{port}}, \phi_{\text{attr}}$ are the semantic embeddings.
 267 Then, the training objective is the standard denoising diffusion loss:

$$\mathcal{L}_{\text{diff}}^{(1)} = \mathbb{E}_{\mathbf{z}_0, \epsilon, t} \left[\|\epsilon - \epsilon_\theta(\mathbf{z}_t, t, \mathcal{C}, \mathbf{F}_{\text{kpt}})\|^2 \right], \quad (9)$$

270 where z_t is the noised latent at diffusion timestep t , ϵ is the sampled noise, and \mathbf{F}_{kpt} is the feature
 271 map of the corresponding facial keypoint image. In the second stage, we freeze all modules except the
 272 temporal attention layers and train them using multi-frame inputs. The temporal objective considers
 273 a sequence of noised latents and corresponding keypoints:

$$275 \quad \mathcal{L}_{\text{diff}}^{(2)} = \mathbb{E}_{\{z_0^{(\tau)}\}_{\tau=1}^F, \epsilon^{1:F}, t} \left[\left\| \epsilon^{1:F} - \epsilon_\theta \left(\{z_t^{(\tau)}\}_{\tau=1}^F, t, \mathcal{C}, \{\mathbf{F}_{\text{kpt}}^{\tau}\}_{\tau=1}^F \right) \right\|^2 \right], \quad (10)$$

277 where $\epsilon^{1:F} = \{\epsilon^{(\tau)}\}_{\tau=1}^F$ denotes the per-frame noise sequence. This staged training improves
 278 convergence and allows the temporal attention module to focus on modeling motion dynamics
 279 without disrupting the spatial fidelity learned in the first stage.

281 **Attribute-aware mask expansion.** To expose the model to diverse spatial extents of facial attributes
 282 during training, we introduce an attribute-aware mask expansion strategy, illustrated in the top right
 283 of Fig. 2. Given a training frame \mathbf{I} , we first select a target attribute (e.g., hair, eyeglasses, beard)
 284 and obtain its binary mask \mathbf{M}_{attr} using Sapiens (Khirodkar et al., 2024). To simulate variation in
 285 the shape and coverage of this attribute, we generate a modified image \mathbf{I}_{gen} with SDXL (Podell
 286 et al., 2023) and ControlNet (Zhang et al., 2023), conditioned on the facial keypoints of \mathbf{I} and a
 287 text prompt describing an altered appearance (e.g., “long wavy hair”). **To enable fully automated
 288 prompt generation without any human intervention, we construct a dictionary of descriptive attribute
 289 modifiers (e.g., long, short, wavy, curly) and randomly sample their combinations to generate prompts
 290 for image generation.** A new mask \mathbf{M}_{gen} is then extracted from \mathbf{I}_{gen} using Sapiens. The final training
 291 mask is computed as the union of the original and generated masks, and the two masked inputs are
 292 constructed as:

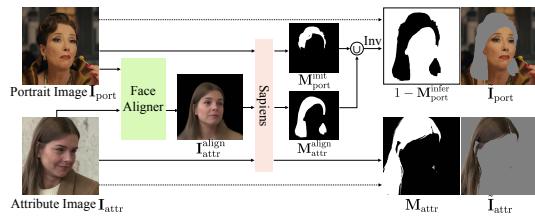
$$292 \quad \mathbf{M}_{\text{port}}^{\text{train}} = \mathbf{M}_{\text{attr}} \cup \mathbf{M}_{\text{gen}}, \quad \tilde{\mathbf{I}}_{\text{attr}} = \mathbf{I} \odot \mathbf{M}_{\text{attr}}, \quad \tilde{\mathbf{I}}_{\text{port}} = \mathbf{I} \odot (1 - \mathbf{M}_{\text{port}}^{\text{train}}), \quad (11)$$

294 where \odot denotes element-wise multiplication. Here, \mathbf{M}_{attr} localizes the original attribute region,
 295 while $\mathbf{M}_{\text{port}}^{\text{train}}$ defines the expanded region into which the attribute will be inserted during generation.
 296 This expansion process is *attribute-aware* as it preserves the intended attribute category while
 297 diversifying its spatial extent. Unlike HairFusion (Chung et al., 2025), which expands masks using
 298 fixed heuristics specific to hair, our approach generalizes across multiple facial attributes and enables
 299 the model to learn spatially flexible yet semantically grounded transfer patterns.

300 **Reference image augmentation.** To address the limited diversity of self-reconstruction setups,
 301 we introduce an augmentation pipeline that improves robustness to pose, alignment, and appearance
 302 variations in attribute–portrait pairs. We perturb both the attribute-only and masked portrait images to
 303 simulate realistic spatial and photometric variations. We apply random affine transformations (trans-
 304 lation, scaling, rotation) to induce spatial misalignment, and use the FLUX outpainting model (Labs,
 305 2024) to inpaint newly exposed regions. Additionally, color jittering on tone, contrast, saturation, and
 306 hue accounts for appearance variations. This strategy exposes the model to diverse configurations,
 307 enabling more robust attribute transfer and animation under real-world variations.

3.4 INFERENCE FRAMEWORK AND EXTENSIONS

310 **Inference pipeline.** At inference time, our
 311 system takes as input a portrait image, an at-
 312 tribute image, and a keypoint sequence. We
 313 first construct two masked reference images:
 314 the attribute-only image $\tilde{\mathbf{I}}_{\text{attr}}$ and the attribute-
 315 masked portrait image $\tilde{\mathbf{I}}_{\text{port}}$, by applying seg-
 316 mentation masks predicted by Sapiens (Khirod-
 317 kar et al., 2024) to the attribute image \mathbf{I}_{attr}
 318 and the portrait image \mathbf{I}_{port} . To improve spa-
 319 tial alignment between the attribute and portrait
 320 inputs, we introduce a *Face Aligner* module,
 321 which repurposes a lightweight image-to-3D avatar
 322 model (Chu & Harada, 2024) solely for alignment.
 323 This module reconstructs a coarse 3D avatar from the attribute image and aligns its shape and pose to
 the portrait using FLAME (Li et al., 2017) parameters (β, θ, ψ) estimated by EMOCA (Daněček
 et al., 2022). From the resulting pose-aligned image $\mathbf{I}_{\text{attr}}^{\text{align}}$, we extract a refined attribute mask $\mathbf{M}_{\text{attr}}^{\text{align}}$



324 **Figure 3: Aligned Attribute Mask Estimation.**
 325 To improve attribute–portrait alignment, we es-
 326 timate an aligned attribute mask via Face Aligner.

324 **Table 1: Quantitative Comparison.** We compare our method with recent approaches that (1)
 325 synthesize portraits with transferred hairstyles, and (2) animate the synthesized portrait image.

326 327 Img.Gen.	328 329 Animation	330 331 Self-Attribute Transfer				332 333 Cross-Attribute Transfer				
		334 335 L ₁ ↓	336 337 PSNR↑	338 339 SSIM↑	340 341 LPIPS↓	342 343 FID↓	344 345 mCLIP-I↑	346 347 mDINO↑	348 349 ID-Sim.↑	350 351 VFID _{3D} ↓
PbE	LivePortrait	0.1059	16.14	0.5641	0.2859	40.63	0.8499	0.6407	0.5630	37.6462
	X-Portrait	0.1180	15.33	0.5270	0.2978	59.20	0.8393	0.5916	0.5458	36.7030
	MegActor-Σ	0.1268	14.82	0.4840	0.3157	62.77	0.8535	0.6266	0.4863	38.2746
HairFusion	LivePortrait	0.1438	13.76	0.4801	0.3792	46.24	0.8741	0.6843	0.6502	30.5632
	X-Portrait	0.1511	13.30	0.4334	0.3733	59.02	0.8809	0.6914	0.6520	30.2570
	MegActor-Σ	0.1650	12.75	0.4138	0.4015	65.59	0.8736	0.6708	0.6044	30.9702
StableHair	LivePortrait	0.1122	15.84	0.5491	0.3041	43.74	0.8831	0.7051	0.6564	29.5014
	X-Portrait	0.1229	15.04	0.5114	0.3117	53.36	0.8895	0.7239	0.6443	28.2627
	MegActor-Σ	0.1301	14.62	0.4706	0.3347	63.47	0.8848	0.7271	0.6130	30.4087
TriplaneEdit	LivePortrait	0.1023	16.52	0.5511	0.2924	57.86	0.8540	0.6163	0.2776	32.5660
	X-Portrait	0.1051	16.05	0.5401	0.2760	60.25	0.8366	0.6216	0.2944	30.6319
	MegActor-Σ	0.1248	15.10	0.4828	0.3293	70.41	0.8210	0.5674	0.2770	32.5679
Ours		0.0744	18.83	0.6527	0.1565	38.00	0.9043	0.7801	0.7098	27.1547

338 using Sapiens. This mask is then merged with the initial portrait mask $\mathbf{M}_{\text{port}}^{\text{init}}$ to define the final
 339 transferable region $\mathbf{M}_{\text{port}}^{\text{infer}} = \mathbf{M}_{\text{port}}^{\text{init}} \cup \mathbf{M}_{\text{attr}}^{\text{align}}$. The updated mask is applied to construct the final
 340 attribute-masked portrait image, $\tilde{\mathbf{I}}_{\text{port}} = \mathbf{I}_{\text{port}} \odot (1 - \mathbf{M}_{\text{port}}^{\text{infer}})$, as illustrated in Fig. 3. Finally, spatial
 341 features $\mathcal{F}_{\text{attr}}$, $\mathcal{F}_{\text{port}}$ and semantic embeddings ϕ_{attr} , ϕ_{port} are extracted from the two masked reference
 342 images. Conditioned on these features and the keypoint sequence, DNet synthesizes a video of
 343 the target identity with the desired attribute through iterative denoising (Eq. (8)).

344 **Multi-attribute transfer.** Our model supports zero-shot composition of multiple attributes without
 345 additional training, by generalizing the spatial attention formulation in Eq. (5). Instead of using a
 346 single attribute feature, we concatenate multiple attribute feature maps along the width dimension:

$$347 \bar{\mathbf{F}}_t^l = \text{SA} \left(\mathbf{F}_t^l, \mathbf{F}_{\text{port}}^l, \text{concat}_w \left(\mathbf{F}_{\text{attr}}^{l,1}, \mathbf{F}_{\text{attr}}^{l,2}, \dots, \mathbf{F}_{\text{attr}}^{l,N_{\text{attr}}} \right) \right), \quad (12)$$

351 where each $\mathbf{F}_{\text{attr}}^{l,k}$ denotes the feature map extracted from the k -th attribute-only image using the
 352 ARNet. To construct the final attribute-masked portrait in this setting, we also generalize the mask
 353 fusion process by taking the union of all aligned attribute masks:

$$354 \mathbf{M}_{\text{port}}^{\text{infer}} = \mathbf{M}_{\text{port}}^{\text{init}} \cup \bigcup_{k=1}^{N_{\text{attr}}} \mathbf{M}_{\text{attr}}^{\text{align},k}, \quad (13)$$

355 where each $\mathbf{M}_{\text{attr}}^{\text{align},k}$ is the aligned mask extracted from the k -th attribute image. This composite
 356 mask is then used to remove all attribute regions from the portrait image before generation. The rest
 357 of the attention computation remains unchanged, allowing the model to jointly attend to all attributes
 358 and synthesize coherent multi-attribute compositions without retraining.

362 **Attribute interpolation.** Our model enables zero-shot interpolation between two attributes of the
 363 same category (e.g., hairstyle A and B) without fine-tuning (Zhang et al., 2024a; Cha et al., 2025).
 364 Given two attribute-only images, we extract spatially attended features $\bar{\mathbf{F}}_t^{\tau,l,1}$ and $\bar{\mathbf{F}}_t^{\tau,l,2}$ using our
 365 spatial attention, and interpolate them as follows:

$$366 \bar{\mathbf{F}}_t^{\tau,l} = (1 - \alpha) \bar{\mathbf{F}}_t^{\tau,l,1} + \alpha \bar{\mathbf{F}}_t^{\tau,l,2}, \quad (14)$$

369 where $\alpha \in [0, 1]$ controls the interpolation ratio. The interpolated feature $\bar{\mathbf{F}}_t^{\tau,l}$ is then passed to DNet
 370 for generation. This enables smooth and semantically consistent transitions between attributes.

372 4 EXPERIMENTS

374 **Experimental setup.** To address the lack of ground-truth data for cross-identity attribute transfer,
 375 we design two evaluation settings: *self-attribute transfer* and *cross-attribute transfer*. In **self-attribute**
 376 **transfer**, a single video is split into a portrait and an attribute image from different frames of the
 377 same identity, and the model reconstructs the original video. While useful for controlled evaluation,
 this provides only a pseudo ground-truth and mainly reflects reconstruction ability rather than the

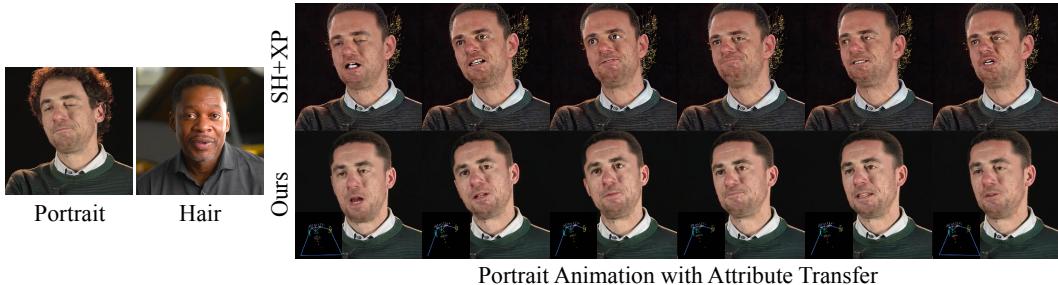


Figure 4: **Qualitative Comparison for Cross-Attribute Transfer.** We compare our method and the baselines that combine X-Portrait (Xie et al., 2024) with StableHair (Zhang et al., 2025) in cross-identity transfer setup. We provide more results in our Supp. Mat.

Figure 5: **Ablation Study.** Omitting components or altering training scheme degrades visual quality.

full complexity of cross-identity transfer. In **cross-attribute transfer**, the portrait and attribute images come from different individuals. Without exact ground-truth, this setting instead evaluates semantic consistency, identity preservation, and temporal realism. Together, the two settings offer a comprehensive evaluation of both low-level fidelity and high-level transfer quality.

Dataset. We train our model on CelebV-Text (Yu et al., 2023), VFHQ (Xie et al., 2022), and Nerensemble (Kirschstein et al., 2023), totaling 2,747 videos. For evaluation, we sample 200 videos for self-attribute transfer and 50 videos for cross-attribute transfer from CelebV-Text and VFHQ, ensuring diverse and unseen identities, head poses, and expressions. The masks for the portrait and attribute frames are generated following the procedure used in each compared method.

Metrics. For self-attribute transfer, we evaluate reconstruction fidelity using L_1 , PSNR, SSIM, and LPIPS, and perceptual quality with FID (Parmar et al., 2022). For cross-attribute transfer, we measure attribute transfer quality with CLIP-I (Radford et al., 2021; Hessel et al., 2021) and DINO (Caron et al., 2021), identity preservation with ArcFace (Deng et al., 2019), and temporal realism with VFID (Fang et al., 2024) using I3D (Carreira & Zisserman, 2017) and ResNeXt (Hara et al., 2018).

4.1 COMPARISON

Baselines. As no prior work directly tackles portrait animation with attribute transfer from in-the-wild reference images, we construct two-stage baselines by combining image-level attribute transfer with video animation methods, resulting in 12 model combinations. For attribute transfer (stage 1), we consider: Paint-by-Example (PbE) (Yang et al., 2023), a mask-conditioned diffusion method for reference image insertion; HairFusion (Chung et al., 2025) and StableHair (Zhang et al., 2025), diffusion-based models for hairstyle transfer with and without masks; and TriplaneEdit (Bilecen et al., 2024), a 3D-aware GAN-based face editor. For portrait animation (stage 2), we use: LivePortrait (Guo et al., 2024), X-Portrait (Xie et al., 2024), and MegActor- \sum (Yang et al., 2025).

Results. As shown in Table 1, our method consistently outperforms all baseline combinations across both fidelity and perceptual quality metrics in self-attribute transfer. Fig. 4 presents a qualitative comparison against baselines using LivePortrait (Guo et al., 2024) as the animation module (stage 2). Our method generates coherent and realistic hairstyle animations that preserve the identity and maintain consistency in spatial extent, shape, and fine details across frames. Please refer to our Supp. Mat. for additional qualitative comparisons with other baseline combinations.

4.2 ABLATION STUDY

Figure 6: **Multi-Attribute Transfer.** Our model supports composition of multiple attributes (e.g., hair, eyeglasses, beard, hat) in a single forward pass without additional training.

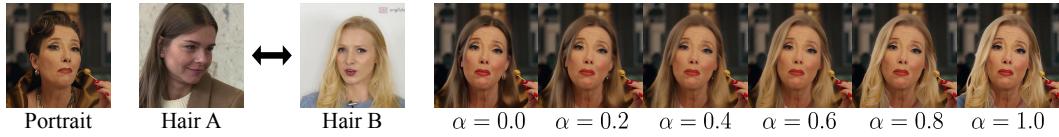


Figure 7: **Attribute Interpolation.** Our model enables smooth and consistent transitions between hair attributes by varying the interpolation parameter α . More examples are in our Supp. Mat.

We evaluate the contributions of key components in our model and training strategy. Table 2 presents quantitative results, and Fig. 5 shows corresponding qualitative comparisons. “**single ReferenceNet**” replaces the dual-branch architecture with a shared encoder that receives the portrait and attribute images concatenated along the channel dimension, following CAT-VTON (Chong et al., 2024). This setup fails to separate the roles of the two inputs, resulting in undesired blending of attribute and identity cues. “**w/o mask expansion**” omits the attribute-aware augmentation that simulates variations in spatial extent. Without this strategy, the model tends to rely on the default shape of the portrait’s original attribute mask, making it less capable of handling diverse attribute shapes during inference. “**w/o ref. image aug.**” disables spatial and photometric augmentations applied to the reference images during training. As a result, the model fails to accurately transfer the desired attribute with misaligned reference images. “**w/o ref. mask input**” removes the binary mask concatenation from the inputs to the ReferenceNets. This weakens spatial localization and often leads to artifacts or residual traces of the original attribute in the output. “**full ref. image input**” uses unmasked portrait and attribute images during training. Interestingly, this variant achieves the best quantitative scores in Table 2, which evaluates the self-attribute transfer setting, since full images simplify the task by allowing the model to copy content more easily. However, as shown in Fig. 5, this model fails to disentangle identity and attribute roles, leading to visible identity leakage during cross-identity transfer. **Ours** achieves spatially consistent, identity-preserving results, and quantitatively outperforms all other ablated variants except the full reference image variant.

4.3 APPLICATION

Multi-attribute transfer. Our model supports the composition of multiple attributes (e.g., glasses, hat, hairstyle) in a single generation pass by extending the spatial attention mechanism as described in Eq. (12). Fig. 6 show qualitative results where multiple attributes are simultaneously transferred from different reference images. Remarkably, our model not only combines multiple attributes seamlessly but also handles interactions between overlapping regions, such as between hair and a hat. Despite the reference images exhibiting diverse lighting conditions and spatial alignments, the model successfully integrates all attributes into the portrait image while maintaining a coherent and natural appearance.

Table 2: **Ablation Study.** Bold indicates the best, underline the second.

Variant	$L_1 \downarrow$	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
single ReferenceNet	0.0813	17.95	0.6314	0.1973
w/o mask expansion	0.0881	17.16	0.5915	0.2073
w/o ref. image aug.	0.0900	16.97	0.5973	0.2248
w/o ref. mask input	0.0747	18.60	0.6511	0.1670
full ref. image input	0.0670	19.47	0.6698	0.1310
Ours	<u>0.0744</u>	<u>18.83</u>	<u>0.6527</u>	<u>0.1565</u>

486 **5 DISCUSSION**

487

488 We present Durian, a zero-shot framework for portrait animation with cross-identity attribute transfer,
 489 given a portrait image and one or more reference images specifying the target attributes. Our diffusion
 490 model, equipped with a Dual ReferenceNet, learns attribute transfer directly from uncurated portrait
 491 videos through a self-reconstruction training strategy, eliminating the need for triplet supervision.
 492 This is further enhanced by our attribute-aware mask expansion and augmentation scheme. Moreover,
 493 Durian naturally extends to multi-attribute composition and attribute interpolation within a single
 494 generation pass, without requiring any additional training.

495

496 **REFERENCES**

497

498 Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
 499 stylegan latent space? In *Proceedings of the IEEE International Conference on Computer Vision*,
 500 2019.

501 Bahri Batuhan Bilecen, Yigit Yalin, Ning Yu, and Aysegul Dundar. Reference-based 3d-aware image
 502 editing with triplanes. *arXiv preprint arXiv:2404.03632*, 2024.

503

504 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 505 editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 506 *Recognition*, 2023.

507

508 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 509 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
 510 *IEEE International Conference on Computer Vision*, 2021.

511 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
 512 dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 513 2017.

514

515 Hyunsoo Cha, Byungjun Kim, and Hanbyul Joo. Pegasus: Personalized generative 3d avatars with
 516 composable attributes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 517 *Pattern Recognition*, 2024.

518 Hyunsoo Cha, Inhee Lee, and Hanbyul Joo. Perse: Personalized 3d generative avatars from a single
 519 portrait. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 520 2025.

521

522 Lan Chen, Qi Mao, Yuchao Gu, and Mike Zheng Shou. Edit transfer: Learning image editing via
 523 vision in-context relations. *arXiv preprint arXiv:2503.13327*, 2025.

524 Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-
 525 shot object-level image customization. In *Proceedings of the IEEE/CVF Conference on Computer*
 526 *Vision and Pattern Recognition*, 2024.

527

528 Zheng Chong, Xiao Dong, Haoxiang Li, Shiyue Zhang, Wenqing Zhang, Xujie Zhang, Hanqing
 529 Zhao, Dongmei Jiang, and Xiaodan Liang. Catvton: Concatenation is all you need for virtual
 530 try-on with diffusion models. *arXiv preprint arXiv:2407.15886*, 2024.

531

532 Xiangeng Chu and Tatsuya Harada. Generalizable and animatable gaussian head avatar. *Advances in*
 533 *Neural Information Processing Systems*, 2024.

534 Chaeyeon Chung, Sunghyun Park, Jeongho Kim, and Jaegul Choo. What to preserve and what to
 535 transfer: Faithful, identity-preserving diffusion-based hairstyle transfer. In *Proceedings of the*
 536 *AAAI Conference on Artificial Intelligence*, 2025.

537

538 Radek Daněček, Michael J Black, and Timo Bolkart. Emoca: Emotion driven monocular face capture
 539 and animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 540 *Recognition*, 2022.

540 Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
 541 loss for deep face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 542 and *Pattern Recognition*, 2019.

543

544 Zixun Fang, Wei Zhai, Aimin Su, Hongliang Song, Kai Zhu, Mao Wang, Yu Chen, Zhiheng Liu,
 545 Yang Cao, and Zheng-Jun Zha. Vivid: Video virtual try-on using diffusion models. *arXiv preprint*
 546 *arXiv:2405.11794*, 2024.

547 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 548 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in Neural Information*
 549 *Processing Systems*, 2014.

550 Jianzhu Guo, Dingyun Zhang, Xiaoqiang Liu, Zhizhou Zhong, Yuan Zhang, Pengfei Wan, and
 551 Di Zhang. Liveportrait: Efficient portrait animation with stitching and retargeting control. *arXiv*
 552 *preprint arXiv:2407.03168*, 2024.

553

554 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
 555 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models
 556 without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

557 Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history
 558 of 2d cnns and imagenet? In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 559 *Pattern Recognition*, 2018.

560

561 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
 562 free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

563 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 564 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in Neural*
 565 *Information Processing Systems*, 2017.

566

567 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 568 *Neural Information Processing Systems*, 2020.

569

570 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

571

572 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 573 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF Conference on*
 574 *Computer Vision and Pattern Recognition*, 2020.

575

576 Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik,
 577 Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. In *European*
 578 *Conference on Computer Vision*, 2024.

579

580 Byungjun Kim, Shunsuke Saito, Giljoo Nam, Tomas Simon, Jason Saragih, Hanbyul Joo, and
 581 Junxuan Li. Haircup: Hair compositional universal prior for 3d gaussian avatars. *arXiv preprint*
 582 *arXiv:2507.19481*, 2025.

583

584 Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, and Eunho Yang. Diffusion
 585 video autoencoders: Toward temporally consistent face video editing via disentangled video encod-
 586 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 2023.

587

588 Jeongho Kim, Guojung Gu, Minho Park, Sunghyun Park, and Jaegul Choo. Stableviton: Learning
 589 semantic correspondence with latent diffusion model for virtual try-on. In *Proceedings of the*
 590 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024a.

591

592 Taeksoo Kim, Byungjun Kim, Shunsuke Saito, and Hanbyul Joo. Gala: Generating animatable
 593 layered assets from a single scan. In *Proceedings of the IEEE/CVF Conference on Computer*
 594 *Vision and Pattern Recognition*, 2024b.

595

596 Tobias Kirschstein, Shenhan Qian, Simon Giebenhain, Tim Walter, and Matthias Nießner. Nerensemble:
 597 Multi-view radiance field reconstruction of human heads. *ACM Transactions on Graphics*, 2023.

594 Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhui Chen. Anyv2v: A tuning-free framework
 595 for any video-to-video editing tasks. *arXiv preprint arXiv:2403.14468*, 2024.

596

597 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

598

599 Junxuan Li, Shunsuke Saito, Tomas Simon, Stephen Lombardi, Hongdong Li, and Jason Saragih.
 600 Megane: Morphable eyeglass and avatar network. In *Proceedings of the IEEE/CVF Conference on
 Computer Vision and Pattern Recognition*, 2023.

601

602 Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning a model of facial
 603 shape and expression from 4d scans. *ACM Transactions on Graphics*, 2017.

604

605 Yuhan Li, Hao Zhou, Wenxiang Shang, Ran Lin, Xuanhong Chen, and Bingbing Ni. Anyfit:
 606 Controllable virtual try-on for any combination of attire across any scenario. *arXiv preprint
 arXiv:2405.18172*, 2024.

607

608 Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
 609 segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, 2015.

610

611 Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio Cesari, and Rita Cucchiara.
 612 Dress code: High-resolution multi-category virtual try-on. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, 2022.

613

614 Chong Mou, Yanze Wu, Wenzu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei
 615 Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization.
 616 *arXiv preprint arXiv:2504.16915*, 2025.

617

618 Hyeongjin Nam, Donghwan Kim, Jeongtaek Oh, and Kyoung Mu Lee. Decloth: Decomposable 3d
 619 cloth and human body reconstruction from a single image. In *Proceedings of the Computer Vision
 and Pattern Recognition Conference*, pp. 5636–5645, 2025.

620

621 OpenAI. Chatgpt: Large language model. <https://chat.openai.com/>, 2025. Accessed:
 622 2025-09-25.

623

624 Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
 625 gan evaluation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, 2022.

626

627 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 628 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 629 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

630

631 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 632 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 633 models from natural language supervision. In *Proceedings of the International Conference on
 Machine Learning*, 2021.

634

635 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Proceedings
 of the International Conference on Machine Learning*, 2015.

636

637 Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel
 638 Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In *Proceedings
 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021.

639

640 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 641 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 642 ence on Computer Vision and Pattern Recognition*, 2022.

643

644 Wensong Song, Hong Jiang, Zongxing Yang, Ruijie Quan, and Yi Yang. Insert anything: Image
 645 insertion via in-context editing in dit. *arXiv preprint arXiv:2504.15009*, 2025.

646

647 Shuyuan Tu, Zhen Xing, Xintong Han, Zhi-Qi Cheng, Qi Dai, Chong Luo, and Zuxuan Wu. Stableani-
 648 mator: High-quality identity-preserving human image animation. *arXiv preprint arXiv:2411.17697*,
 2024.

648 Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, and Hengshuang Zhao. Videoanydoor:
 649 High-fidelity video object insertion with precise motion control. *arXiv preprint arXiv:2501.01427*,
 650 2025.

651 Rotem Tzaban, Ron Mokady, Rinon Gal, Amit Bermano, and Daniel Cohen-Or. Stitch it in time:
 652 Gan-based facial editing of real videos. In *ACM Transactions on Graphics (Proc. SIGGRAPH*
 653 *Asia)*, 2022.

654 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 655 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing*
 656 *Systems*, 2017.

657 Cong Wang, Di Kang, Heyi Sun, Shenhan Qian, Zixuan Wang, Linchao Bao, and Song-Hai Zhang.
 658 Mega: Hybrid mesh-gaussian head avatar for high-fidelity rendering and head editing. In *Proceed-
 659 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

660 661 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 662 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 663 2024.

664 Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan
 665 Catanzaro. Video-to-video synthesis. *arXiv preprint arXiv:1808.06601*, 2018.

666 Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis
 667 for video conferencing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 668 *Pattern Recognition*, 2021.

669 Liangbin Xie, Xintao Wang, Honglun Zhang, Chao Dong, and Ying Shan. Vfhq: A high-quality
 670 dataset and benchmark for video face super-resolution. In *Proceedings of the IEEE/CVF Conference*
 671 *on Computer Vision and Pattern Recognition*, 2022.

672 You Xie, Hongyi Xu, Guoxian Song, Chao Wang, Yichun Shi, and Linjie Luo. X-portrait: Expressive
 673 portrait animation with hierarchical motion attention. In *ACM Transactions on Graphics (Proc.*
 674 *SIGGRAPH)*, 2024.

675 Yiran Xu, Zhixin Shu, Cameron Smith, Seoung Wug Oh, and Jia-Bin Huang. In-n-out: Faithful 3d
 676 gan inversion with volumetric decomposition for face editing. In *Proceedings of the IEEE/CVF*
 677 *Conference on Computer Vision and Pattern Recognition*, 2024.

678 Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang
 679 Wen. Paint by example: Exemplar-based image editing with diffusion models. In *Proceedings of*
 680 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.

681 Shurong Yang, Huadong Li, Juhao Wu, Minhao Jing, Linze Li, Renhe Ji, Jiajun Liang, Haoqiang Fan,
 682 and Jin Wang. Megactor-sigma: Unlocking flexible mixed-modal control in portrait animation
 683 with diffusion transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2025.

684 Xu Yao, Alasdair Newson, Yann Gousseau, and Pierre Hellier. A latent transformer for disentangled
 685 face editing in images and videos. In *Proceedings of the IEEE International Conference on*
 686 *Computer Vision*, 2021.

687 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 688 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

689 Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. Celebv-text: A
 690 large-scale facial text-video dataset. In *Proceedings of the IEEE/CVF Conference on Computer*
 691 *Vision and Pattern Recognition*, 2023.

692 Kaiwen Zhang, Yifan Zhou, Xudong Xu, Bo Dai, and Xingang Pan. Diffmorpher: Unleashing the
 693 capability of diffusion models for image morphing. In *Proceedings of the IEEE/CVF Conference*
 694 *on Computer Vision and Pattern Recognition*, 2024a.

695 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 696 diffusion models. In *Proceedings of the IEEE International Conference on Computer Vision*, 2023.

697 701

702 Yuxuan Zhang, Lifu Wei, Qing Zhang, Yiren Song, Jiaming Liu, Huaxia Li, Xu Tang, Yao Hu, and
703 Haibo Zhao. Stable-makeup: When real-world makeup transfer meets diffusion model. *arXiv*
704 *preprint arXiv:2403.07764*, 2024b.

705 Yuxuan Zhang, Qing Zhang, Yiren Song, Jichao Zhang, Hao Tang, and Jiaming Liu. Stable-hair:
706 Real-world hair transfer via diffusion model. In *Proceedings of the AAAI Conference on Artificial*
707 *Intelligence*, 2025.

709 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipulation
710 on the natural image manifold. In *European Conference on Computer Vision*, 2016.

711 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
712 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
713 parametric guidance. In *European Conference on Computer Vision*, 2024.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A IMPLEMENTATION DETAILS**
757758 **A.1 TRAINING DETAILS**
759760 We adopt the two-stage training strategy following Zhu et al. (2024). In the first stage, we resize all
761 videos to a uniform resolution of 512×512 pixels and train with a global batch size of 8 for 60,000
762 steps. During this phase, all layers except the temporal attention layers are set to be trainable, as
763 the latter are not yet incorporated into the UNet. In the second stage, we insert temporal attention
764 layers into the Denoising UNet (DNet) and train only these newly added layers. This stage uses
765 24-frame inputs, a global batch size of 8, and also runs for 60,000 steps. For both stages, we fix the
766 learning rate at $1e-5$, with each stage requiring approximately three days of training. We train our
767 model using 8 NVIDIA RTX A6000 GPUs. As initialization, we use the UNet checkpoint from Yang
768 et al. (2023), while the temporal attention layers are initialized from Guo et al. (2023). Our training
769 dataset consists of 2,747 samples drawn from CelebV-Text (Yu et al., 2023), VFHQ (Xie et al., 2022),
770 and Nerensemble (Kirschstein et al., 2023). Our method focuses on four attribute categories, with
771 the following distribution: **Hair** – 886 samples from CelebV-Text, 935 from Nerensemble, and 265
772 from VFHQ (total 2,086); **Beard** – 253 samples from CelebV-Text; **Eyeglasses** – 279 samples from
773 CelebV-Text; **Hat** – 129 samples from CelebV-Text. On average, each video contains 292 frames.
774775 **A.2 EVALUATION DETAILS**
776777 For self-attribute transfer, we randomly sample 200 videos from CelebV-Text (Yu et al., 2023) and
778 VFHQ (Xie et al., 2022), ensuring that these videos contain unseen identities, facial poses, and
779 expressions relative to the training dataset. For cross-attribute transfer, we additionally sample 50
780 videos. Masks required for image editing baselines are constructed following the procedures provided
781 by the respective authors. To construct cross-attribute transfer pairs, we use the 50 sampled identities
782 and randomly select corresponding face images from VFHQ and CelebV-Text that do not overlap
783 with the training dataset.784 We evaluate the results using several metrics. mCLIP-I (masked CLIP-I (Radford et al., 2021; Hessel
785 et al., 2021)) and mDINO (Caron et al., 2021) (masked DINO) assess whether the target attribute is
786 accurately transferred into the generated portrait animation video. To this end, we fill the background
787 of attribute-only images with white and segment the target attribute region from the generated portrait
788 animation video using Sapiens (Khirodkar et al., 2024). We then fill the segmented background
789 with white and compute frame-wise cosine similarity embeddings with CLIP-I and DINO. ID-Sim
790 evaluates identity preservation. Specifically, we mask attribute regions in portrait images by filling
791 them with black, segment the target attribute regions in the generated videos with Sapiens, and replace
792 them with black before computing frame-wise cosine similarity embeddings with ArcFace. Finally,
793 VFID (Video Fréchet Inception Distance) (Heusel et al., 2017; Wang et al., 2018) extends FID to the
794 video domain. Following Fang et al. (2024), we adopt VFID to measure temporal consistency and
795 overall video quality.796 **A.3 KEYPOINT GUIDANCE GENERATION**
797798 Our model generates portrait animations using a guidance video composed of facial keypoints, as
799 shown in Fig. 2 of our main paper. These keypoints encode entangled facial shape information, such
800 as interocular distance and the relative positions of eyes, nose, and ears. While this rich representation
801 supports accurate animation in self-attribute transfer scenarios, we observe that, in cross-attribute
802 settings, the generated animation tends to follow the facial shape of the guidance video rather than
803 the portrait image. **Also, in these real-world scenarios, significant shape and scale discrepancies**
804 **between the source and the driver can degrade the model’s performance.** To address this, we propose
805 a method that preserves the portrait’s facial shape while transferring only the motion from a different
806 identity. Specifically, we employ LivePortrait (Guo et al., 2024) to generate an animation of the
807 portrait image that maintains its original shape while being driven by the motion in the guidance video.
808 We then extract a facial keypoint guidance video from this animation using Sapiens (Khirodkar et al.,
809 2024), effectively creating a self-reenactment-like scenario that allows our model to operate more
810 reliably. **Note that for all quantitative results reported in our paper and tables, we follow the standard**
811 **self-reenactment setting (Kim et al., 2024; Morelli et al., 2022). The facial keypoint guidance is**
812 **extracted directly from the ground-truth videos, not generated by LivePortrait.**

816 **Figure 8: Ablation Study for Face Aligner.** Omitting Face Aligner at inference time degrades the
817 visual quality of the generated animation.

825 **Figure 9: Sensitivity Analysis of the Attribute Mask.** We present an analysis showing how output
826 quality changes with mask quality by applying erosion and dilation to the attribute mask derived from
827 the Sapiens Mask.

830 B ADDITIONAL RESULTS

832 B.1 ADDITIONAL ABLATION STUDY FOR FACE ALIGNER

834 We perform an ablation study on our Face Aligner, as described in Section 3.4 and illustrated in Fig. 3
835 of the main paper. As shown in Fig. 8, removing Face Aligner still allows the long blonde hair from
836 the attribute image to be transferred to the portrait’s target attribute region. However, the generation
837 becomes unstable, with the left hair strand intermittently appearing and disappearing. In contrast,
838 ours, which applies the face aligner at inference time, enables stable transfer, ensuring that the long
839 blonde hair remains consistently preserved throughout the animation.

843 B.2 SENSITIVITY ANALYSIS OF THE ATTRIBUTE MASK

845 We show a mask sensitivity analysis by systematically eroding and dilating the hair masks M_{attr}
846 in Fig. 9. When the mask is eroded, it no longer fully covers the target hair region, resulting in a
847 spatially shorter transferred hairstyle. Nonetheless, the model still produces a visually plausible hair
848 transfer video. Conversely, moderate mask dilation has little impact on the overall visual quality,
849 indicating robustness to typical boundary uncertainties in real-world segmentation.

851 B.3 ADDITIONAL QUALITATIVE COMPARISON

853 **Qualitative comparison of self-attribute transfer.** We additionally provide qualitative results with
854 other baseline combinations in a self-attribute transfer setup. Note that we generate portraits with
855 transferred hair attributes using recent image insertion and face editing methods (Chung et al., 2025;
856 Yang et al., 2023; Zhang et al., 2025; Bilecen et al., 2024), and compare the resulting animation
857 videos produced by applying recent animation techniques (Guo et al., 2024; Xie et al., 2024; Yang
858 et al., 2025) with those generated by our method, as shown in Fig. 10.

859 **Qualitative comparison of cross-attribute transfer.** We extend the comparison in Fig. 4 of the
860 main paper and present results in Fig. 11 against 12 baselines for cross-attribute transfer setup.
861 Our method best preserves the identity of the portrait image while most accurately transferring the
862 hairstyle from the attribute image. Furthermore, our results are perceived as the most natural and
863 visually coherent.

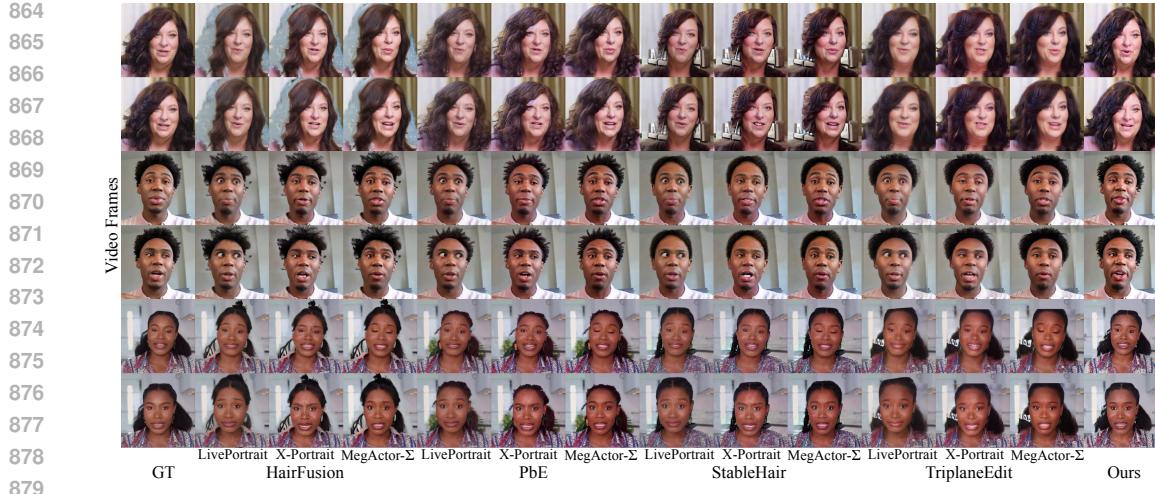


Figure 10: **Qualitative Comparison of Self-Attribute Transfer in the Hair Category.** We compare our method and the baselines that combine portrait animation method with image or hairstyle editing methods. Our results show the highest quality closest to the ground truth, while other methods produce artifacts or unnatural appearances.

Figure 11: **Qualitative Comparison of Cross-Attribute Transfer in the Hair Category.** We compare our method with the baselines that combine image editing and portrait animation. Our results best preserve the identity of the portrait image while most effectively transferring the hairstyle.

B.4 ADDITIONAL QUANTITATIVE COMPARISON

As shown in Fig. 12 and Table 3, we compare TriplaneEdit (Bilecen et al., 2024)+LivePortrait (Guo et al., 2024) with our method, since TriplaneEdit also supports transfer for eyeglasses. Our method consistently outperforms the baseline across all self-attribute transfer metrics. Moreover, it produces results that are closer to the ground truth and more natural than the baseline.

B.5 USER STUDY

We conduct a user study to evaluate portrait animations generated using portrait and attribute inputs from different identities, as shown in Table 4. Each of the 100 participants viewed 9 randomly selected videos from a pool of 44 and rated how well each output preserved the hairstyle of the attribute image and the identity of the portrait image. Our method achieves the highest user preference, demonstrating superior performance in cross-identity transfer. Participants were asked: “*Which video most naturally combines the face from the ‘face’ image with the hairstyle from the ‘hair’ image?*”

Figure 12: **Qualitative Comparison of Self-Attribute Transfer in the Eyeglasses Category.** TE represents TriplaneEdit and LP denotes LivePortrait. In the self-attribute transfer setting on the eyeglasses category, we compare our results with baseline. Our method produces portrait animations most similar to the ground truth while remaining the most natural.

Table 3: **Quantitative Comparison on Eyeglasses Category.** Our method outperforms this baseline on every evaluation metric.

Img. Gen.	Animation	$L_1 \downarrow$	$PSNR \uparrow$	$SSIM \uparrow$	$LPIPS \downarrow$	$FID \downarrow$
TriplaneEdit	LivePortrait	0.151	13.53	0.433	0.435	106.28
Ours		0.078	18.19	0.627	0.181	75.59

B.6 ADDITIONAL RESULTS

Single-attribute transfer. We extend the results of Fig. 1 in the main paper and present in Fig. 18 animations generated by transferring a single attribute to the portrait. Our method preserves the identity of the portrait image while faithfully transferring the attribute from the attribute image, resulting in natural portrait animations with attribute transfer.

Multi-attribute transfer. In Fig. 19 and Fig. 20, we present portrait animations generated by simultaneously transferring two and three attributes in a single stage under the zero-shot setting. Through various combinations of the four supported categories (beard, eyeglasses, hair, hat), our method produces portrait animations where attributes are transferred naturally and with high quality, without any additional optimization.

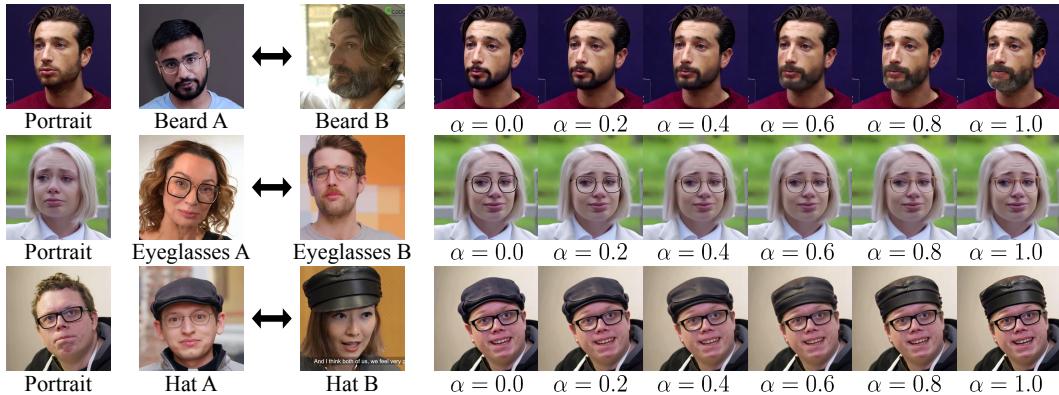
Attribute interpolation. We extend the results of Fig. 7 in the main paper and present additional attribute interpolation results in Fig. 13. Our method generates zero-shot, single-stage portrait animations with interpolated attributes, even for rigid objects such as hats and eyeglasses. The animations interpolate naturally according to the α values.

B.7 TEXT-TO-IMAGE GENERATED ATTRIBUTE TRANSFER FOR PORTRAIT ANIMATION

Our method generates a portrait animation video with attribute transfer given an image containing the desired attribute. We extend this capability by synthesizing the attribute image directly from a text prompt, enabling text-driven control over the target attribute, as illustrated in Fig. 14. Specifically, we leverage the FLUX (Labs, 2024) text-to-image model to generate realistic attribute images, which are then transferred to the portrait image to produce the final attribute-transferred portrait animation.

972
973 **Table 4: User Study.** We conduct a user study on two baseline methods that achieve strong
974 performance in both self-attribute transfer and cross-attribute transfer. Our approach receives the
975 highest preference among participants.

976	Img.Gen.	Animation	User Study(%)↑
977	TriplaneEdit	LivePortrait	4.45
978	PbE	LivePortrait	19.04
979	Ours		76.50



982
983 **Figure 13: Attribute Interpolation.** We demonstrate smooth and consistent interpolation of addi-
984 tional attributes such as beard, eyeglasses, and hat according to the α values, extending beyond the
985 hair interpolation results shown in the main paper.

1001 B.8 GENERALIZATION ON CARTOON DOMAIN

1003 We present cartoon-style result in Fig. 15. Despite being trained exclusively on real human video
1004 data, our Durian shows strong generalization to the cartoon domain without additional fine-tuning,
1005 benefiting from the pretrained diffusion prior.

1008 B.9 FAILURE CASES

1010 **Conflicting Lighting** We present an animation with hair transfer result using a portrait image
1011 captured under extremely dark, blue-tinted lighting, while the target hairstyle is taken from a subject
1012 photographed outdoors under bright daylight with a white-colored hair appearance. In the resulting
1013 animation as shown in Fig. 16, the white hairstyle is transferred accurately; however, the hair
1014 appearance does not fully adapt to the portrait’s low-light illumination. Nonetheless, we observe that
1015 back lighting is partially reflected in the synthesized hair, indicating that the model captures some
1016 lighting cues even under severe illumination mismatch.

1017
1018 **Occlusion** We conduct qualitative experiment on occluded face input as shown in Fig. 17. We
1019 demonstrate hair transfer with animation using a portrait image in which part of the face is occluded
1020 by a hand with complex manicure patterns. In the resulting animation, minor artifacts appear around
1021 the nose region, likely due to the challenging occlusion. Nevertheless, the hair transfer and the
1022 generation of the occluded mouth region are successful, and the mouth motion aligns well with the
1023 keypoint guidance video, indicating that the model can robustly synthesize motion-consistent facial
1024 regions even under partial occlusion.

Figure 14: **Text-to-Image Generated Attribute Transfer for Portrait Animation.** We generate a portrait animation with attribute transfer from a textual description by using FLUX (Labs, 2024) to synthesize a high-quality portrait image with the desired hair attribute.

Figure 15: **Generalization on Cartoon Domain.** We present our Durian's portrait animation with hat transfer results generated from a cartoon portrait image and a cartoon hat image.

C DISCUSSION

C.1 EVALUATION IN THE SELF-ATTRIBUTE TRANSFER SCENARIO

In an ideal evaluation, one would use ground-truth videos that contain before and after versions of the attribute transfer. Since such paired data does not exist, the commonly used alternative in attribute transfer and VTON literature is the self-attribute(or garment) transfer setting (Kim et al., 2024a; Chung et al., 2025; Zhang et al., 2025). In this setup, we take a ground-truth video and select two arbitrary frames as the portrait image and the attribute image. The generated video is then compared against the original ground truth video using reconstruction metrics such as L1, PSNR, SSIM, and LPIPS, as reported in Table 1 and Table 2. Although this setting cannot directly evaluate genuine cross-identity transfer, it still provides useful information because the attribute region in the portrait image and the identity region in the attribute image are masked out (see the inputs in Fig. 2). This forces the model to combine complementary cues in order to reconstruct the video.



1086
1087
1088
1089

Figure 16: **Failure Case under Conflicting Lighting Conditions.** We present a failure case under large lighting discrepancies. Although the white hairstyle is correctly transferred, its color does not adapt to the portrait lighting.

1096
1097
1098
1099
1100

Figure 17: **Failure Case under Portrait Occlusion.** We present a failure case when the portrait image contains occlusions. Artifacts appear around the nose region

C.2 REGARDING FULL REF. IMAGE INPUT VARIANT IN ABLATION STUDY

We provide additional clarification regarding the full reference image input variant presented in the ablation study. The ablation study shown in Table 2 is via self-attribute transfer setting. However, in the “full ref. image input” ablation where masks are not used, the model can simply copy either the portrait or the attribute input because both already contain the required face and attribute cues. As a result, the model can obtain strong reconstruction metrics in Table 2 without learning true disentanglement. Importantly, this shortcut is specific to this variant: for all other ablations, the identity region in the attribute image and the attribute region in the portrait image are masked out, preventing such leakage and ensuring a fair and meaningful comparison. The limitation of the unmasked shortcut becomes evident in cross-attribute transfer, where the model fails to separate identity and attribute cues when the two inputs come from different sources, as shown in Fig. 5. We therefore suggest interpreting Fig. 5 together with Table 2 to understand this contrast.

USE OF LARGE LANGUAGE MODELS (LLMs)

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we disclose that ChatGPT (OpenAI, 2025) (an LLM developed by OpenAI) was used during the preparation of this manuscript. The model was employed exclusively for sentence-level grammar checking and minor style corrections.

No parts of the research ideas, methodology, experimental design, or conclusions were generated by the LLM. All scientific contributions are solely attributable to the authors.

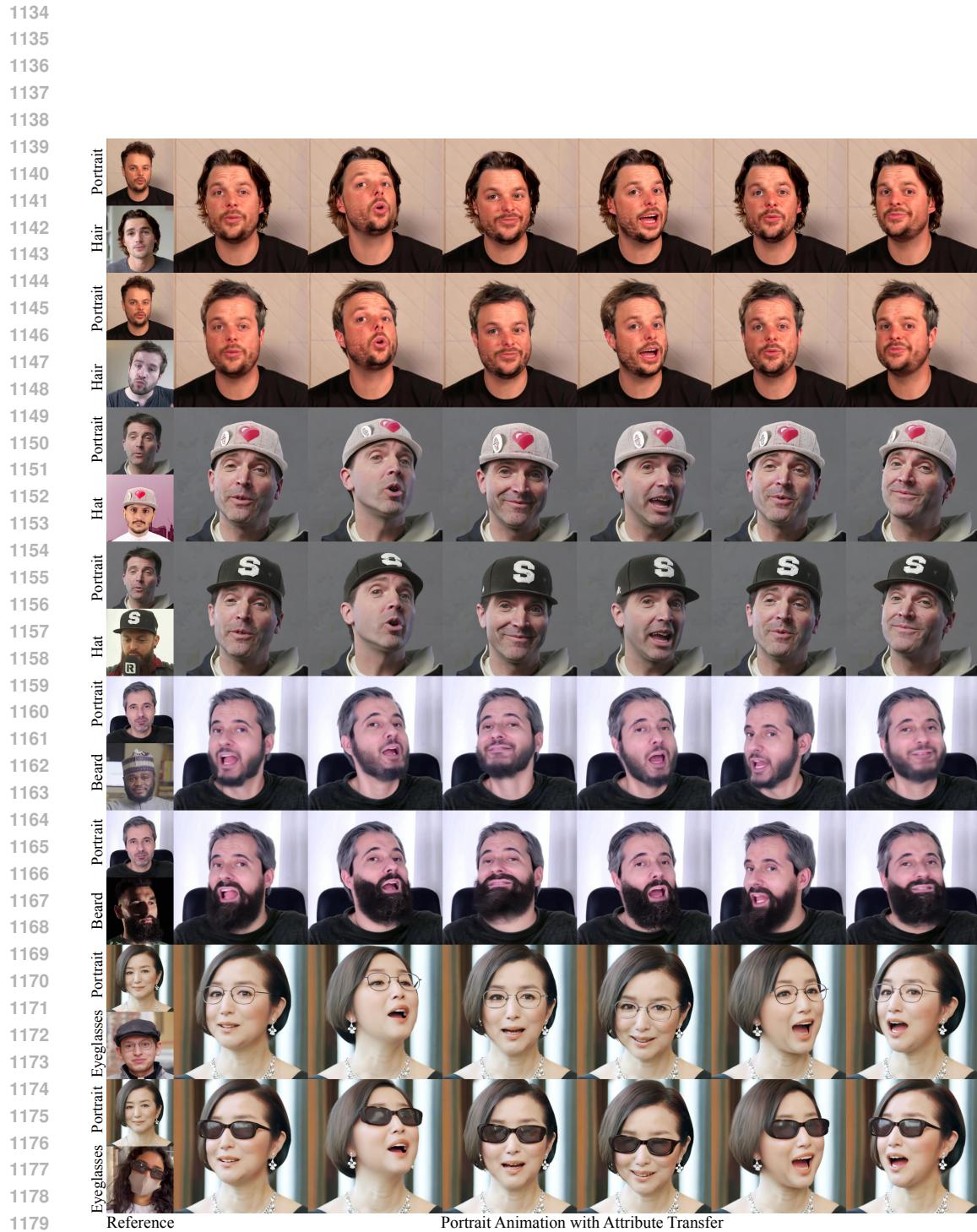


Figure 18: Qualitative Results for Single-Attribute Transfer. We present additional results on hair, hat, eyeglasses, and beard attribute transfer for portrait animation. Our method preserves the fine details of the original portrait while achieving natural and seamless attribute transfer.

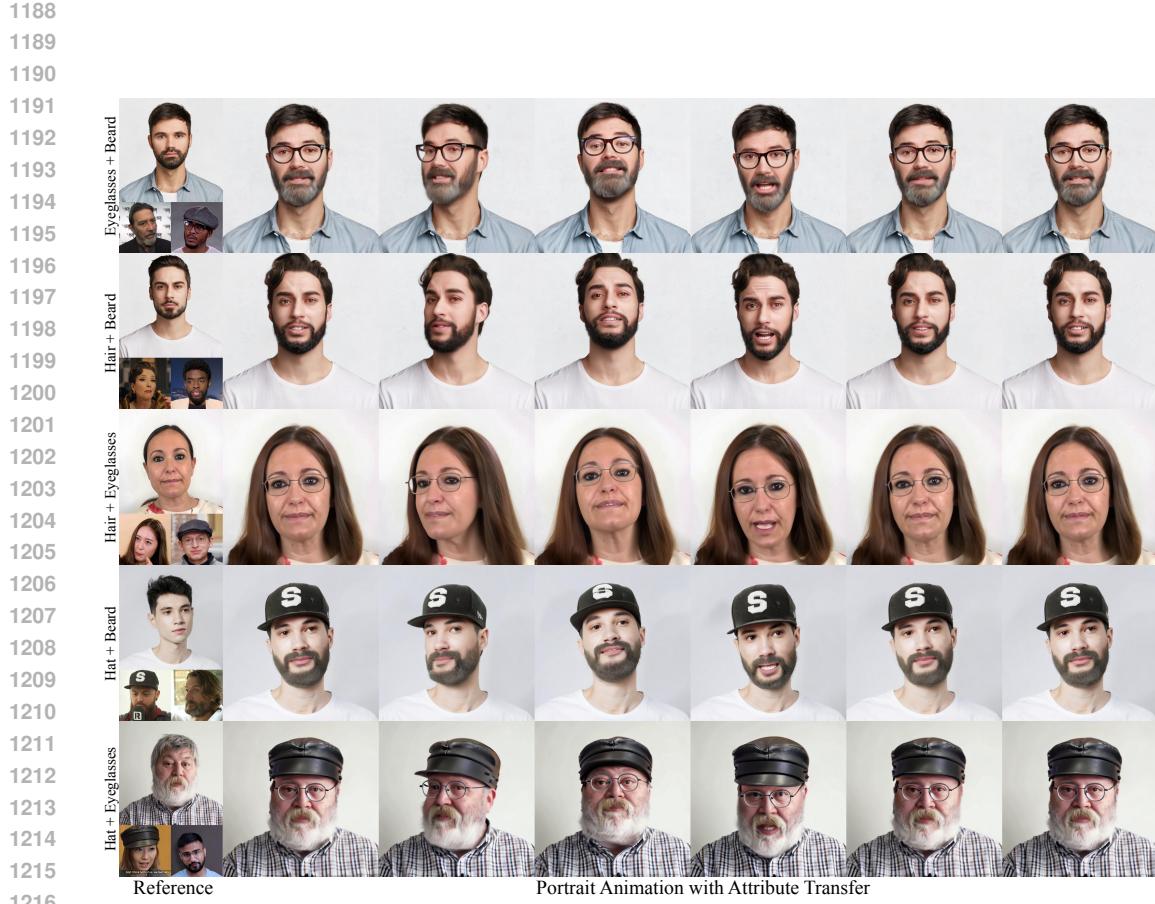


Figure 19: **Qualitative Results for Dual-Attribute Transfer.** We demonstrate the results of simultaneously transferring two attributes for portrait animation.

Figure 20: **Qualitative Results for Triple-Attribute Transfer.** We present the results of simultaneously transferring three attributes. In each example, the image in the top-left corner indicates the target portrait.