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Portrait Eyeglasses
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Single Attribute Transfer Multi Attribute Transfer
Figure 1: Portrait Animation with Attribute Transfer. Given a portrait image and single or multiple
reference images specifying target attributes (e.g., hairstyle, eyeglasses), our method generates a
portrait animation with facial attribute transfer conditioned on a keypoint sequence.

ABSTRACT

We present Durian, the first method for generating portrait animation videos with
cross-identity attribute transfer from one or more reference images to a target
portrait. Training such models typically requires attribute pairs of the same indi-
vidual, which are rarely available at scale. To address this challenge, we propose
a self-reconstruction formulation that leverages ordinary portrait videos to learn
attribute transfer without explicit paired data. Two frames from the same video
act as a pseudo pair: one serves as an attribute reference and the other as an iden-
tity reference. To enable this self-reconstruction training, we introduce a Dual
ReferenceNet that processes the two references separately and then fuses their
features via spatial attention within a diffusion model. To make sure each refer-
ence functions as a specialized stream for either identity or attribute information,
we apply complementary masking to the reference images. Together, these two
components guide the model to reconstruct the original video, naturally learning
cross-identity attribute transfer. To bridge the gap between self-reconstruction
training and cross-identity inference, we introduce a mask expansion strategy and
augmentation schemes, enabling robust transfer of attributes with varying spatial
extent and misalignment. Durian achieves state-of-the-art performance on portrait
animation with attribute transfer. Moreover, its dual reference design uniquely
supports multi-attribute composition and smooth attribute interpolation within a
single generation pass, enabling highly flexible and controllable synthesis.

1 INTRODUCTION

Personalized appearance editing, such as virtually trying on glasses or experimenting with new
hairstyles, is becoming a key feature of virtual styling applications. However, most existing solutions
are highly specialized and limited in scope. Hairstyle preview apps typically rely on fixed templates,
which may look realistic from a single view but fail to adapt to head pose or expression changes.
Glasses try-on systems often depend on pre-scanned 3D product models, restricting users to a
predefined catalog. Furthermore, these systems focus on a single attribute and cannot combine
multiple elements, such as hair, glasses, or hats, within a unified experience.
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A key challenge in building such a system is obtaining suitable training data. Disentangling identity
from attributes ideally requires paired images of the same person with different attributes, which are
rarely available and expensive to collect at scale. This difficulty grows exponentially for multiple
attributes, as capturing all combinations quickly becomes infeasible. For example, Li et al. (2023)
collects multi-view images of subjects wearing different eyeglasses to model realistic glasses try-on,
but the dataset remains too limited to generalize broadly. Zhang et al. (2025) propose a synthetic
pipeline that predicts a bald version of a portrait and generates reference hair images using a pretrained
diffusion model. However, this approach is not easily scalable beyond hair.

This naturally raises the question: can we train a model for portrait animation with attribute
transfer without any explicit attribute-paired data? Motivated by this question, we propose a self-
reconstruction framework that learns this task directly from widely available in-the-wild portrait
videos. During training, we randomly sample two frames from a single video: one as the attribute
reference and the other as the identity reference. The remaining frames are treated as targets to be
generated, conditioned on a keypoint sequence representing the motion of the video. To prevent
identity leakage, we apply complementary masking to the two reference frames so that the network
must disentangle and combine the attribute and identity information to reconstruct the original video.

To enable this framework, we design a Dual ReferenceNet architecture that explicitly encodes the
attribute and portrait references through two separate branches and fuses their disentangled features
for generation via spatial attention. This design enables the network to move beyond simple pose
driving, generating keypoint-driven portrait animations that seamlessly combine the attribute from
one image with the identity from the other. Surprisingly, although the model is trained with only a
single attribute reference at a time, the spatial attention mechanism allows more advanced operations
at inference time. Since different attributes (e.g., hair, glasses, beard, hats) occupy distinct spatial
regions, their features can be jointly injected without conflict, enabling seamless multi-attribute
transfer. Furthermore, by interpolating the features of two attribute references, our model can
achieve attribute interpolation, generating smooth transitions between the attributes. These emergent
capabilities make our framework especially valuable for real-world styling scenarios, where users
may want to explore diverse combinations and gradual transformations of facial attributes.

While self-reconstruction training is effective for learning to separate identity and attributes, it
operates within a single video, leading to a domain gap when the model is applied to cross-identity
inference, where the attribute and portrait come from different individuals. To mitigate this gap, we
introduce a mask expansion strategy and lightweight augmentation schemes. These techniques expose
the model to a broader range of attribute configurations during training, enabling robust transfer
across spatial and structural variations of the attribute region. These designs form a unified framework
capable of robust cross-identity attribute transfer. As a result, our method achieves a versatile system
that generates portrait animations with diverse appearance edits in a zero-shot manner.

We summarize the key contributions of our work, as follows: (1) we propose the first method to
generate keypoint-driven portrait animations with transferred attributes directly from two images,
generalized across diverse facial attributes beyond hair; (2) we design a Dual ReferenceNet architec-
ture that disentangles attribute and identity through two branches fused via spatial attention, enabling
self-reconstruction training directly on uncurated in-the-wild videos without paired data; (3) we
propose a mask expansion strategy and lightweight augmentations to bridge the domain gap for
cross-identity transfer, improving robustness to diverse spatial configurations; and (4) our framework
exhibits an emergent ability to support multi-attribute composition and interpolation in a single
generation pass, without requiring any additional training.

2 RELATED WORK

Face Editing. Generative models have advanced facial editing from unconditional synthesis to
fine-grained manipulation of existing images (Goodfellow et al., 2014; Rezende & Mohamed, 2015;
Ho et al., 2020). Latent-space editing with StyleGAN (Karras et al., 2020) and GAN inversion (Zhu
et al., 2016; Abdal et al., 2019; Richardson et al., 2021) has been extended to video via latent
trajectory modeling (Yao et al., 2021; Tzaban et al., 2022) and 3D-aware editing (Bilecen et al., 2024;
Xu et al., 2024). However, such approaches often rely on attribute classifiers or fixed editing controls.
Diffusion-based models have introduced more flexible editing through prompt-driven (Brooks et al.,
2023) or identity-preserving techniques (Ye et al., 2023; Wang et al., 2024), with extensions to video
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Figure 2: Overview of Training Pipeline. Given an attribute-masked portrait image Ĩport and
an attribute-only image Ĩattr, Durian synthesizes a portrait animation with the transferred attribute.
These inputs are constructed by randomly sampling two frames from a training video and applying
the estimated masks. A sequence of facial keypoints {kτ}Fτ=1 is extracted from the video to guide
the motion. During generation, spatial features from PRNet and ARNet are fused via spatial attention
into the DNet, ensuring identity preservation and attribute consistency in the synthesized video.

improving temporal consistency (Ku et al., 2024; Kim et al., 2023). Still, these methods are limited
to modifying existing content and cannot generate new motions or expressions.

Diffusion-based Attribute Transfer. Diffusion-based attribute transfer methods typically formulate
editing as masked inpainting, where reference content is inserted into a target image using explicit
masks (Yang et al., 2023; Chen et al., 2024; Mou et al., 2025; Chen et al., 2025; Song et al.,
2025). These approaches have been adapted to domain-specific tasks such as hairstyle (Zhang et al.,
2025; Chung et al., 2025), clothing (Kim et al., 2024a; Li et al., 2024; Chong et al., 2024), and
makeup (Zhang et al., 2024b). While effective for static images, they rely on category labels or mask
annotations. Video extensions (Fang et al., 2024; Tu et al., 2025) apply per-frame inpainting with
post-hoc smoothing, but predefined masks are hard to specify for deformable facial attributes that vary
over time. Recent works have also explored attribute transfer in 3D avatars (Kim et al., 2024b; Nam
et al., 2025; Cha et al., 2024; 2025; Wang et al., 2025; Kim et al., 2025), but such approaches often
require specialized capture setups or are not easily generalizable to in-the-wild scenarios. In contrast,
our model performs attribute transfer and animation jointly in a single forward pass, conditioned only
on a pair of reference images and a facial keypoint sequence. This eliminates the need for per-frame
masks, text prompts, or category labels, enabling zero-shot transfer of diverse facial attributes.

Portrait Animation from a Single Image. Portrait animation aims to generate motion from a
static image, typically guided by facial keypoints, audio, or motion trajectories. Early methods
rely on GANs with implicit keypoint modeling (Guo et al., 2024; Wang et al., 2021), while recent
approaches use diffusion models (Hu, 2024; Zhu et al., 2024; Yang et al., 2025) for improved realism
and temporal stability. These methods primarily focus on reenactment and identity preservation.
Others incorporate paired motion (Xie et al., 2024) or audio (Yang et al., 2025), but require multi-
stage inference or fine-tuning. Our model jointly performs facial attribute transfer and motion
generation, producing photorealistic, identity-preserving videos from diverse attribute references and
keypoint-driven motion in a single pass.

3 METHOD

3.1 OVERVIEW: LEARNING ATTRIBUTE TRANSFER FROM SELF-RECONSTRUCTION

We propose a diffusion-based generative framework for portrait animation with cross-identity attribute
transfer. At a high level, our model generates an F -frame animation sequence V = {Iτ}Fτ=1 as:

V = Durian(Iattr,Mattr, Iport,Mport,K), (1)

3
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conditioned on an attribute image Iattr, a portrait image Iport, and a sequence of driving facial
keypoint images K = {kτ}Fτ=1. Each reference image has a binary mask: Mattr localizes the
attribute region (e.g., hair or glasses) in the reference image, while Mport specifies the candidate
region in the portrait where the attribute will be transferred. Using these masks, we construct two
masked inputs: the attribute-only image Ĩattr = Iattr ⊙ Mattr, where only the attribute region
is preserved, and the attribute-masked portrait image Ĩport = Iport ⊙ (1 − Mport), where the
corresponding region is removed. These masked inputs are fed into the Dual ReferenceNet, consisting
of the Attribute ReferenceNet (ARNet) and Portrait ReferenceNet (PRNet), which extract multi-scale
spatial features. These features are then injected into a diffusion-based generator, the Denoising UNet
(DNet), to synthesize the remaining frames of the video with keypoint guidance K (Section 3.2).

To enable training without requiring explicitly annotated triplets (i.e., combinations of a target attribute
image, an original portrait image, and an edited portrait image), we adopt a self-reconstruction
strategy based on portrait videos (Yu et al., 2023; Xie et al., 2022). Specifically, we simulate attribute
transfer by sampling two frames Iattr and Iport from the same video, treating one as the attribute
reference and the other as the target portrait. We then construct the masked inputs Ĩattr and Ĩport using
the same masking formulation as in inference, based on a segmentation mask of a randomly selected
attribute. Although the two frames come from the same identity, the complementary masking enforces
a clear separation between identity and attribute inputs, encouraging the model to learn meaningful
mappings from these features to output frames without requiring cross-identity supervision. To
enhance the model’s ability to generalize beyond the self-attribute transfer setup, we introduce an
augmentation scheme that improves robustness to spatial and appearance variations(Section 3.3).

At inference time, we estimate refined attribute masks by aligning the attribute image to the portrait
through a lightweight alignment process, mitigating spatial misalignment between them. Conditioned
on the two masked reference images and the driving keypoint sequence, our model then synthesizes
portrait animations with attribute transfer. Notably, our design also supports multi-attribute composi-
tion and smooth interpolation within a single generation pass, without requiring additional training or
post-processing (Section 3.4). Fig. 1 shows our generated portrait animations with attribute transfer.

3.2 MODEL ARCHITECTURE: DUAL REFERENCENET

Inspired by recent approaches (Guo et al., 2023; Hu, 2024; Zhu et al., 2024) that leverage Refer-
enceNet to inject spatial features into diffusion models, we propose a Dual ReferenceNet architecture
tailored for portrait animation with attribute transfer. Unlike previous work, our model includes two
separate encoders: Attribute ReferenceNet (ARNet) and Portrait ReferenceNet (PRNet), each sharing
the same architecture as the Denoising U-Net (DNet) in the diffusion model, excluding the temporal
layers. The networks follow the U-Net (Long et al., 2015) architecture used in latent diffusion
models (Rombach et al., 2022), with each block containing convolutional layers followed by self-
and cross-attention modules. The overall architecture is shown in Fig. 2.

Reference inputs. Given an attribute image Iattr ∈ R3×H×W and a portrait image Iport ∈
R3×H×W , along with their binary masks Mattr ∈ R1×H×W and Mport ∈ R1×H×W , which localize
the attribute region and the candidate transfer region respectively, we construct two masked inputs:
the attribute-only image Ĩattr = Iattr ⊙Mattr, where only the attribute region is preserved, and the
attribute-masked portrait image Ĩport = Iport ⊙ (1 −Mport), where the corresponding candidate
region is removed. We then encode these masked images into latent representations using the
pretrained VAE from the latent diffusion model (Rombach et al., 2022), yielding zattr, zport ∈
Rc×h×w. The corresponding masks Mattr,Mport are downsampled to match the latent resolution,
producingmattr,mport ∈ R1×h×w. These downsampled masks are concatenated with the latents
along the channel dimension to form (c+ 1)-channel inputs z̃attr, z̃port ∈ R(c+1)×h×w as follows:

z̃attr = concatc(zattr,mattr), z̃port = concatc(zport,mport). (2)

Spatial attention. The augmented latents are passed to ARNet Eattr and PRNet Eport to extract
multi-scale feature maps after convolutional layers of each block:

Fattr := {Fl
attr}Ll=1 = Eattr(z̃attr; Θattr), Fport := {Fl

port}Ll=1 = Eport(z̃port; Θport), (3)
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where Θ{attr,port} are the parameters of Dual ReferenceNet. Let Fτ,l
t ∈ Rcl×hl×wl denote the feature

map of the frame τ at the l-th block of the denoising U-Net. While the original denoising U-Net
includes a self-attention layer at each resolution, we replace it with our spatial attention to integrate
identity and attribute features in a spatially-aware manner. We denote width-wise concatenation as
concatw(·), and define our spatial attention SA(·, ·, ·) as:

Fτ,l
ref,t := concatw({Fτ,l

t ,Fl
port,F

l
attr}) ∈ Rcl×hl×3wl , (4)

F̄τ,l
t = SA(Fτ,l

t ,Fl
port,F

l
attr) = Attention(WQF

τ,l
t ,WKFτ,l

ref,t,WV F
τ,l
ref,t), (5)

where F̄τ,l
t ∈ Rcl×hl×wl is the feature map after the spatial attention, Attention(Q,K, V ) =

softmax(QK⊤/
√
d)V is the standard scaled dot-product attention (Vaswani et al., 2017),

WQ,WK ,WV are linear projection layers. This width-wise concatenation preserves spatial resolu-
tion and allows the model to attend across all positions in the combined reference and target features.
As a result, the model can leverage both attribute and portrait guidance at every step.

Cross-attention with semantic embeddings. After applying spatial attention, we further inject
semantic guidance into both the Dual ReferenceNet and the denoising U-Net via cross-attention. For
ARNet, we use the CLIP (Radford et al., 2021) embedding of the attribute-only image Ĩattr as the
attribute embedding ϕattr, which is injected via cross-attention into each block of ARNet. For PRNet
and DNet, we construct a portrait embedding ϕport by combining ArcFace (Deng et al., 2019) and
CLIP embeddings of the attribute-masked portrait image Ĩport following StableAnimator (Tu et al.,
2024). This embedding is injected into both PRNet and DNet to enhance identity preservation. We
define the cross-attention operation CA(·, ·) as:

CA(F̄, ϕ) = Attention(W′
QF̄, W

′
Kϕ, W

′
V ϕ), (6)

where F̄ is the input feature map, ϕ is the conditioning embedding, and W′
Q,W

′
K ,W′

V are learned
linear projections. Let F̄l

attr and F̄l
port be the self-attended features of the l-th block in ARNet and

PRNet, and F̄l
t the spatially attended feature of DNet. Then, the cross-attention updates are given by:

F̃l
{attr,port} = CA(F̄l

{attr,port}, ϕ{attr,port}), F̃τ,l
t = CA(F̄τ,l

t , ϕport), (7)

where F̃l
attr, F̃

l
port, and F̃τ,l

t are the feature maps after cross-attention in ARNet, PRNet, and DNet.

Temporal extension and keypoint guidance. Our model incorporates temporal awareness to
generate coherent portrait animations by inserting temporal self-attention into each U-Net block,
following Hu (2024); Zhu et al. (2024). To control pose and expression, we use a sequence of facial
keypoints K = {kτ}Fτ=1 extracted by Sapiens (Khirodkar et al., 2024). Each keypoint image kτ is
encoded into a spatial feature map Fτ

kpt via a pose encoder and combined with the noisy latent z(τ)t

following Zhu et al. (2024). For each frame τ , DNet ϵθ predicts the added noise ϵ̂
(τ)
t from the noisy

latent z(τ)t at timestep t, using the reference features, semantic embeddings, and keypoint features:

ϵ̂
(τ)
t = ϵθ

(
z
(τ)
t , t, Fattr,Fport,ϕattr,ϕport,F

τ
kpt

)
. (8)

The predicted noise is used to recover the denoised latent z(τ)0 , then decoded by the VAE decoder D
to produce the final video frame as Iτ = D(z

(τ)
0 ) for τ = 1, . . . , F .

3.3 TRAINING STRATEGY

Training loss. To effectively train our model, we adopt a two-stage training scheme following the
previous approaches (Hu, 2024; Zhu et al., 2024). In the first stage, we optimize the entire model
except the temporal attention layers, treating each video frame as an independent training sample. We
define the per-frame conditioning bundle as C := (Fattr,Fport,ϕattr,ϕport) , where Fport,Fattr are
the multi-scale spatial features from PRNet and ARNet and ϕport,ϕattr are the semantic embeddings.
Then, the training objective is the standard denoising diffusion loss:

L(1)
diff = Ez0, ϵ, t

[
∥ϵ− ϵθ (zt, t, C, Fkpt)∥2

]
, (9)
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where zt is the noised latent at diffusion timestep t, ϵ is the sampled noise, and Fkpt is the feature
map of the corresponding facial keypoint image. In the second stage, we freeze all modules except the
temporal attention layers and train them using multi-frame inputs. The temporal objective considers
a sequence of noised latents and corresponding keypoints:

L(2)
diff = E{z(τ)

0 }F
τ=1, ϵ

1:F , t

[∥∥∥ϵ1:F − ϵθ

(
{z(τ)t }Fτ=1, t, C, {Fτ

kpt}Fτ=1

)∥∥∥2] , (10)

where ϵ1:F = {ϵ(τ)}Fτ=1 denotes the per-frame noise sequence. This staged training improves
convergence and allows the temporal attention module to focus on modeling motion dynamics
without disrupting the spatial fidelity learned in the first stage.

Attribute-aware mask expansion. To expose the model to diverse spatial extents of facial attributes
during training, we introduce an attribute-aware mask expansion strategy, illustrated in the top right
of Fig. 2. Given a training frame I, we first select a target attribute (e.g., hair, eyeglasses, beard)
and obtain its binary mask Mattr using Sapiens (Khirodkar et al., 2024). To simulate variation in
the shape and coverage of this attribute, we generate a modified image Igen with SDXL (Podell
et al., 2023) and ControlNet (Zhang et al., 2023), conditioned on the facial keypoints of I and a
text prompt describing an altered appearance (e.g., “long wavy hair”). To enable fully automated
prompt generation without any human intervention, we construct a dictionary of descriptive attribute
modifiers (e.g., long, short, wavy, curly) and randomly sample their combinations to generate prompts
for image generation. A new mask Mgen is then extracted from Igen using Sapiens. The final training
mask is computed as the union of the original and generated masks, and the two masked inputs are
constructed as:

Mtrain
port = Mattr ∪Mgen, Ĩattr = I⊙Mattr, Ĩport = I⊙ (1−Mtrain

port ), (11)

where ⊙ denotes element-wise multiplication. Here, Mattr localizes the original attribute region,
while Mtrain

port defines the expanded region into which the attribute will be inserted during generation.
This expansion process is attribute-aware as it preserves the intended attribute category while
diversifying its spatial extent. Unlike HairFusion (Chung et al., 2025), which expands masks using
fixed heuristics specific to hair, our approach generalizes across multiple facial attributes and enables
the model to learn spatially flexible yet semantically grounded transfer patterns.

Reference image augmentation. To address the limited diversity of self-reconstruction setups,
we introduce an augmentation pipeline that improves robustness to pose, alignment, and appearance
variations in attribute–portrait pairs. We perturb both the attribute-only and masked portrait images to
simulate realistic spatial and photometric variations. We apply random affine transformations (trans-
lation, scaling, rotation) to induce spatial misalignment, and use the FLUX outpainting model (Labs,
2024) to inpaint newly exposed regions. Additionally, color jittering on tone, contrast, saturation, and
hue accounts for appearance variations. This strategy exposes the model to diverse configurations,
enabling more robust attribute transfer and animation under real-world variations.

3.4 INFERENCE FRAMEWORK AND EXTENSIONS

Portrait Image

Attribute Image

Sapiens

Face 
Aligner

∪ Inv

Figure 3: Aligned Attribute Mask Estimation.
To improve attribute-portrait alignment, we esti-
mate an aligned attribute mask via Face Aligner.

Inference pipeline. At inference time, our
system takes as input a portrait image, an at-
tribute image, and a keypoint sequence. We
first construct two masked reference images:
the attribute-only image Ĩattr and the attribute-
masked portrait image Ĩport, by applying seg-
mentation masks predicted by Sapiens (Khirod-
kar et al., 2024) to the attribute image Iattr
and the portrait image Iport. To improve spa-
tial alignment between the attribute and portrait
inputs, we introduce a Face Aligner module,
which repurposes a lightweight image-to-3D avatar model (Chu & Harada, 2024) solely for alignment.
This module reconstructs a coarse 3D avatar from the attribute image and aligns its shape and pose to
the portrait using FLAME (Li et al., 2017) parameters (β,θ,ψ) estimated by EMOCA (Daněček
et al., 2022). From the resulting pose-aligned image Ialignattr , we extract a refined attribute mask Malign

attr
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Table 1: Quantitative Comparison. We compare our method with recent approaches that (1)
synthesize portraits with transferred hairstyles, and (2) animate the synthesized portrait image.

Self-Attribute Transfer Cross-Attribute Transfer

Img.Gen. Animation L1 ↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ mCLIP-I↑ mDINO↑ ID-Sim.↑ VFIDI3D ↓ VFIDResNeXt ↓

PbE
LivePortrait 0.1059 16.14 0.5641 0.2859 40.63 0.8499 0.6407 0.5630 37.6462 3.3868
X-Portrait 0.1180 15.33 0.5270 0.2978 59.20 0.8393 0.5916 0.5458 36.7030 2.9008
MegActor-

∑
0.1268 14.82 0.4840 0.3157 62.77 0.8535 0.6266 0.4863 38.2746 6.2743

HairFusion
LivePortrait 0.1438 13.76 0.4801 0.3792 46.24 0.8741 0.6843 0.6502 30.5632 2.6719
X-Portrait 0.1511 13.30 0.4334 0.3733 59.02 0.8809 0.6914 0.6520 30.2570 4.9184
MegActor-

∑
0.1650 12.75 0.4138 0.4015 65.59 0.8736 0.6708 0.6044 30.9702 5.3037

StableHair
LivePortrait 0.1122 15.84 0.5491 0.3041 43.74 0.8831 0.7051 0.6564 29.5014 3.9495
X-Portrait 0.1229 15.04 0.5114 0.3117 53.36 0.8895 0.7239 0.6443 28.2627 1.5718
MegActor-

∑
0.1301 14.62 0.4706 0.3347 63.47 0.8848 0.7271 0.6130 30.4087 1.4672

TriplaneEdit
LivePortrait 0.1023 16.52 0.5511 0.2924 57.86 0.8540 0.6163 0.2776 32.5660 8.9103
X-Portrait 0.1051 16.05 0.5401 0.2760 60.25 0.8366 0.6216 0.2944 30.6319 2.9315
MegActor-

∑
0.1248 15.10 0.4828 0.3293 70.41 0.8210 0.5674 0.2770 32.5679 2.8542

Ours 0.0744 18.83 0.6527 0.1565 38.00 0.9043 0.7801 0.7098 27.1547 2.4052

using Sapiens. This mask is then merged with the initial portrait mask Minit
port to define the final

transferable region Minfer
port = Minit

port ∪Malign
attr . The updated mask is applied to construct the final

attribute-masked portrait image, Ĩport = Iport ⊙ (1−Minfer
port ), as illustrated in Fig. 3. Finally, spatial

features Fattr,Fport and semantic embeddings ϕattr,ϕport are extracted from the two masked refer-
ence images. Conditioned on these features and the keypoint sequence, DNet synthesizes a video of
the target identity with the desired attribute through iterative denoising (Eq. (8)).

Multi-attribute transfer. Our model supports zero-shot composition of multiple attributes without
additional training, by generalizing the spatial attention formulation in Eq. (5). Instead of using a
single attribute feature, we concatenate multiple attribute feature maps along the width dimension:

F̄l
t = SA

(
Fl

t,F
l
port, concatw

(
Fl,1

attr,F
l,2
attr, · · · ,F

l,Nattr

attr

))
, (12)

where each Fl,k
attr denotes the feature map extracted from the k-th attribute-only image using the

ARNet. To construct the final attribute-masked portrait in this setting, we also generalize the mask
fusion process by taking the union of all aligned attribute masks:

Minfer
port = Minit

port ∪
Nattr⋃
k=1

Malign,k
attr , (13)

where each Malign,k
attr is the aligned mask extracted from the k-th attribute image. This composite

mask is then used to remove all attribute regions from the portrait image before generation. The rest
of the attention computation remains unchanged, allowing the model to jointly attend to all attributes
and synthesize coherent multi-attribute compositions without retraining.

Attribute interpolation. Our model enables zero-shot interpolation between two attributes of the
same category (e.g., hairstyle A and B) without fine-tuning (Zhang et al., 2024a; Cha et al., 2025).
Given two attribute-only images, we extract spatially attended features F̄τ,l,1

t and F̄τ,l,2
t using our

spatial attention, and interpolate them as follows:

F̄τ,l
t = (1− α) F̄τ,l,1

t + α F̄τ,l,2
t , (14)

where α ∈ [0, 1] controls the interpolation ratio. The interpolated feature F̄τ,l
t is then passed to DNet

for generation. This enables smooth and semantically consistent transitions between attributes.

4 EXPERIMENTS

Experimental setup. To address the lack of ground-truth data for cross-identity attribute transfer,
we design two evaluation settings: self-attribute transfer and cross-attribute transfer. In self-attribute
transfer, a single video is split into a portrait and an attribute image from different frames of the
same identity, and the model reconstructs the original video. While useful for controlled evaluation,
this provides only a pseudo ground-truth and mainly reflects reconstruction ability rather than the
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Portrait Hair
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Portrait Animation with Attribute Transfer

Figure 4: Qualitative Comparison for Cross-Attribute Transfer. We compare our method and
the baselines that combine X-Portrait (Xie et al., 2024) with StableHair (Zhang et al., 2025) in
cross-identity transfer setup. We provide more results in our Supp. Mat.

Single 
ReferenceNet

w/o ref.  
mask input

full ref.  
image input OursPortrait Hair w/o mask 

expansion
w/o ref.  

image aug.

Figure 5: Ablation Study. Omitting components or altering training scheme degrades visual quality.

full complexity of cross-identity transfer. In cross-attribute transfer, the portrait and attribute
images come from different individuals. Without exact ground-truth, this setting instead evaluates
semantic consistency, identity preservation, and temporal realism. Together, the two settings offer a
comprehensive evaluation of both low-level fidelity and high-level transfer quality.

Dataset. We train our model on CelebV-Text (Yu et al., 2023), VFHQ (Xie et al., 2022), and
Nersemble (Kirschstein et al., 2023), totaling 2,747 videos. For evaluation, we sample 200 videos
for self-attribute transfer and 50 videos for cross-attribute transfer from CelebV-Text and VFHQ,
ensuring diverse and unseen identities, head poses, and expressions. The masks for the portrait and
attribute frames are generated following the procedure used in each compared method.

Metrics. For self-attribute transfer, we evaluate reconstruction fidelity using L1, PSNR, SSIM, and
LPIPS, and perceptual quality with FID (Parmar et al., 2022). For cross-attribute transfer, we measure
attribute transfer quality with CLIP-I (Radford et al., 2021; Hessel et al., 2021) and DINO (Caron
et al., 2021), identity preservation with ArcFace (Deng et al., 2019), and temporal realism with
VFID (Fang et al., 2024) using I3D (Carreira & Zisserman, 2017) and ResNeXt (Hara et al., 2018).

4.1 COMPARISON

Baselines. As no prior work directly tackles portrait animation with attribute transfer from in-the-
wild reference images, we construct two-stage baselines by combining image-level attribute transfer
with video animation methods, resulting in 12 model combinations. For attribute transfer (stage 1),
we consider: Paint-by-Example (PbE) (Yang et al., 2023), a mask-conditioned diffusion method
for reference image insertion; HairFusion (Chung et al., 2025) and StableHair (Zhang et al., 2025),
diffusion-based models for hairstyle transfer with and without masks; and TriplaneEdit (Bilecen et al.,
2024), a 3D-aware GAN-based face editor. For portrait animation (stage 2), we use: LivePortrait (Guo
et al., 2024), X-Portrait (Xie et al., 2024), and MegActor-

∑
(Yang et al., 2025).

Results. As shown in Table 1, our method consistently outperforms all baseline combinations across
both fidelity and perceptual quality metrics in self-attribute transfer. Fig. 4 presents a qualitative
comparison against baselines using LivePortrait (Guo et al., 2024) as the animation module (stage
2). Our method generates coherent and realistic hairstyle animations that preserve the identity and
maintain consistency in spatial extent, shape, and fine details across frames. Please refer to our Supp.
Mat. for additional qualitative comparisons with other baseline combinations.

4.2 ABLATION STUDY
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Portrait Portrait Animation with Attribute TransferHair Glasses Beard Hat

Figure 6: Multi-Attribute Transfer. Our model supports composition of multiple attributes (e.g.,
hair, eyeglasses, beard, hat) in a single forward pass without additional training.

Portrait Hair A Hair B

Figure 7: Attribute Interpolation. Our model enables smooth and consistent transitions between
hair attributes by varying the interpolation parameter α. More examples are in our Supp. Mat.

Table 2: Ablation Study. Bold indicates
the best, underline the second.

Variant L1 ↓ PSNR↑ SSIM↑ LPIPS↓

single ReferenceNet 0.0813 17.95 0.6314 0.1973
w/o mask expansion 0.0881 17.16 0.5915 0.2073
w/o ref. image aug. 0.0900 16.97 0.5973 0.2248
w/o ref. mask input 0.0747 18.60 0.6511 0.1670
full ref. image input 0.0670 19.47 0.6698 0.1310

Ours 0.0744 18.83 0.6527 0.1565

We evaluate the contributions of key components in our
model and training strategy. Table 2 presents quantitative
results, and Fig. 5 shows corresponding qualitative com-
parisons. “single ReferenceNet” replaces the dual-branch
architecture with a shared encoder that receives the portrait
and attribute images concatenated along the channel di-
mension, following CAT-VTON (Chong et al., 2024). This
setup fails to separate the roles of the two inputs, resulting
in undesired blending of attribute and identity cues. “w/o
mask expansion” omits the attribute-aware augmentation
that simulates variations in spatial extent. Without this strategy, the model tends to rely on the default
shape of the portrait’s original attribute mask, making it less capable of handling diverse attribute
shapes during inference. “w/o ref. image aug.” disables spatial and photometric augmentations
applied to the reference images during training. As a result, the model fails to accurately transfer
the desired attribute with misaligned reference images. “w/o ref. mask input” removes the binary
mask concatenation from the inputs to the ReferenceNets. This weakens spatial localization and
often leads to artifacts or residual traces of the original attribute in the output. “full ref. image input”
uses unmasked portrait and attribute images during training. Interestingly, this variant achieves
the best quantitative scores in Table 2, which evaluates the self-attribute transfer setting, since full
images simplify the task by allowing the model to copy content more easily. However, as shown in
Fig. 5, this model fails to disentangle identity and attribute roles, leading to visible identity leakage
during cross-identity transfer. Ours achieves spatially consistent, identity-preserving results, and
quantitatively outperforms all other ablated variants except the full reference image variant.

4.3 APPLICATION

Multi-attribute transfer. Our model supports the composition of multiple attributes (e.g., glasses,
hat, hairstyle) in a single generation pass by extending the spatial attention mechanism as described in
Eq. (12). Fig. 6 show qualitative results where multiple attributes are simultaneously transferred from
different reference images. Remarkably, our model not only combines multiple attributes seamlessly
but also handles interactions between overlapping regions, such as between hair and a hat. Despite the
reference images exhibiting diverse lighting conditions and spatial alignments, the model successfully
integrates all attributes into the portrait image while maintaining a coherent and natural appearance.

Attribute interpolation. Our model enables attribute interpolation by linearly blending the refer-
ence features of two attributes, as in Eq. (14). Fig. 7 shows hair results with smooth transitions in
shape and appearance. The interpolations exhibit smooth changes in visual attributes, demonstrating
that our model effectively captures semantically meaningful directions in the attribute feature space.
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5 DISCUSSION

We present Durian, a zero-shot framework for portrait animation with cross-identity attribute transfer,
given a portrait image and one or more reference images specifying the target attributes. Our diffusion
model, equipped with a Dual ReferenceNet, learns attribute transfer directly from uncurated portrait
videos through a self-reconstruction training strategy, eliminating the need for triplet supervision.
This is further enhanced by our attribute-aware mask expansion and augmentation scheme. Moreover,
Durian naturally extends to multi-attribute composition and attribute interpolation within a single
generation pass, without requiring any additional training.
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A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

We adopt the two-stage training strategy following Zhu et al. (2024). In the first stage, we resize all
videos to a uniform resolution of 512× 512 pixels and train with a global batch size of 8 for 60,000
steps. During this phase, all layers except the temporal attention layers are set to be trainable, as
the latter are not yet incorporated into the UNet. In the second stage, we insert temporal attention
layers into the Denoising UNet (DNet) and train only these newly added layers. This stage uses
24-frame inputs, a global batch size of 8, and also runs for 60,000 steps. For both stages, we fix the
learning rate at 1e-5, with each stage requiring approximately three days of training. We train our
model using 8 NVIDIA RTX A6000 GPUs. As initialization, we use the UNet checkpoint from Yang
et al. (2023), while the temporal attention layers are initialized from Guo et al. (2023). Our training
dataset consists of 2,747 samples drawn from CelebV-Text (Yu et al., 2023), VFHQ (Xie et al., 2022),
and Nersemble (Kirschstein et al., 2023). Our method focuses on four attribute categories, with
the following distribution: Hair – 886 samples from CelebV-Text, 935 from Nersemble, and 265
from VFHQ (total 2,086); Beard – 253 samples from CelebV-Text; Eyeglasses – 279 samples from
CelebV-Text; Hat – 129 samples from CelebV-Text. On average, each video contains 292 frames.

A.2 EVALUATION DETAILS

For self-attribute transfer, we randomly sample 200 videos from CelebV-Text (Yu et al., 2023) and
VFHQ (Xie et al., 2022), ensuring that these videos contain unseen identities, facial poses, and
expressions relative to the training dataset. For cross-attribute transfer, we additionally sample 50
videos. Masks required for image editing baselines are constructed following the procedures provided
by the respective authors. To construct cross-attribute transfer pairs, we use the 50 sampled identities
and randomly select corresponding face images from VFHQ and CelebV-Text that do not overlap
with the training dataset.

We evaluate the results using several metrics. mCLIP-I (masked CLIP-I (Radford et al., 2021; Hessel
et al., 2021)) and mDINO (Caron et al., 2021) (masked DINO) assess whether the target attribute is
accurately transferred into the generated portrait animation video. To this end, we fill the background
of attribute-only images with white and segment the target attribute region from the generated portrait
animation video using Sapiens (Khirodkar et al., 2024). We then fill the segmented background
with white and compute frame-wise cosine similarity embeddings with CLIP-I and DINO. ID-Sim
evaluates identity preservation. Specifically, we mask attribute regions in portrait images by filling
them with black, segment the target attribute regions in the generated videos with Sapiens, and replace
them with black before computing frame-wise cosine similarity embeddings with ArcFace. Finally,
VFID (Video Fréchet Inception Distance) (Heusel et al., 2017; Wang et al., 2018) extends FID to the
video domain. Following Fang et al. (2024), we adopt VFID to measure temporal consistency and
overall video quality.

A.3 KEYPOINT GUIDANCE GENERATION

Our model generates portrait animations using a guidance video composed of facial keypoints, as
shown in Fig. 2 of our main paper. These keypoints encode entangled facial shape information, such
as interocular distance and the relative positions of eyes, nose, and ears. While this rich representation
supports accurate animation in self-attribute transfer scenarios, we observe that, in cross-attribute
settings, the generated animation tends to follow the facial shape of the guidance video rather than
the portrait image. Also, in these real-world scenarios, significant shape and scale discrepancies
between the source and the driver can degrade the model’s performance. To address this, we propose
a method that preserves the portrait’s facial shape while transferring only the motion from a different
identity. Specifically, we employ LivePortrait (Guo et al., 2024) to generate an animation of the
portrait image that maintains its original shape while being driven by the motion in the guidance video.
We then extract a facial keypoint guidance video from this animation using Sapiens (Khirodkar et al.,
2024), effectively creating a self-reenactment-like scenario that allows our model to operate more
reliably. Note that for all quantitative results reported in our paper and tables, we follow the standard
self-reenactment setting (Kim et al., 2024a; Morelli et al., 2022). The facial keypoint guidance is
extracted directly from the ground-truth videos, not generated by LivePortrait.
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Face Aligner Enabled (Ours)Face Aligner DisabledPortrait Attribute

Figure 8: Ablation Study for Face Aligner. Omitting Face Aligner at inference time degrades the
visual quality of the generated animation.

Sapiens (Ours) Dilate 50Portrait Attribute Dilate 20Erode 50 Erode 20

Figure 9: Sensitivity Analysis of the Attribute Mask. We present an analysis showing how output
quality changes with mask quality by applying erosion and dilation to the attribute mask derived from
the Sapiens Mask.

B ADDITIONAL RESULTS

B.1 ADDITIONAL ABLATION STUDY FOR FACE ALIGNER

We perform an ablation study on our Face Aligner, as described in Section 3.4 and illustrated in Fig. 3
of the main paper. As shown in Fig. 8, removing Face Aligner still allows the long blonde hair from
the attribute image to be transferred to the portrait’s target attribute region. However, the generation
becomes unstable, with the left hair strand intermittently appearing and disappearing. In contrast,
ours, which applies the face aligner at inference time, enables stable transfer, ensuring that the long
blond hair remains consistently preserved throughout the animation.

B.2 SENSITIVITY ANALYSIS OF THE ATTRIBUTE MASK

We show a mask sensitivity analysis by systematically eroding and dilating the hair masks Mattr

in Fig. 9. When the mask is eroded, it no longer fully covers the target hair region, resulting in a
spatially shorter transferred hairstyle. Nonetheless, the model still produces a visually plausible hair
transfer video. Conversely, moderate mask dilation has little impact on the overall visual quality,
indicating robustness to typical boundary uncertainties in real-world segmentation.

B.3 ADDITIONAL QUALITATIVE COMPARISON

Qualitative comparison of self-attribute transfer. We additionally provide qualitative results with
other baseline combinations in a self-attribute transfer setup. Note that we generate portraits with
transferred hair attributes using recent image insertion and face editing methods (Chung et al., 2025;
Yang et al., 2023; Zhang et al., 2025; Bilecen et al., 2024), and compare the resulting animation
videos produced by applying recent animation techniques (Guo et al., 2024; Xie et al., 2024; Yang
et al., 2025) with those generated by our method, as shown in Fig. 10.

Qualitative comparison of cross-attribute transfer. We extend the comparison in Fig. 4 of the
main paper and present results in Fig. 11 against 12 baselines for cross-attribute transfer setup.
Our method best preserves the identity of the portrait image while most accurately transferring the
hairstyle from the attribute image. Furthermore, our results are perceived as the most natural and
visually coherent.
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Figure 10: Qualitative Comparison of Self-Attribute Transfer in the Hair Category. We compare
our method and the baselines that combine portrait animation method with image or hairstyle editing
methods. Our results show the highest quality closest to the ground truth, while other methods
produce artifacts or unnatural appearances.
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Figure 11: Qualitative Comparison of Cross-Attribute Transfer in the Hair Category. We
compare our method with the baselines that combine image editing and portrait animation. Our
results best preserve the identity of the portrait image while most effectively transferring the hairstyle.

B.4 ADDITIONAL QUANTITATIVE COMPARISON

As shown in Fig. 12 and Table 3, we compare TriplaneEdit (Bilecen et al., 2024)+LivePortrait (Guo
et al., 2024) with our method, since TriplaneEdit also supports transfer for eyeglasses. Our method
consistently outperforms the baseline across all self-attribute transfer metrics. Moreover, it produces
results that are closer to the ground truth and more natural than the baseline.

B.5 USER STUDY

We conduct a user study to evaluate portrait animations generated using portrait and attribute inputs
from different identities, as shown in Table 4. Each of the 100 participants viewed 9 randomly selected
videos from a pool of 44 and rated how well each output preserved the hairstyle of the attribute image
and the identity of the portrait image. Our method achieves the highest user preference, demonstrating
superior performance in cross-identity transfer. Participants were asked: “Which video most naturally
combines the face from the ‘face’ image with the hairstyle from the ‘hair’ image?”
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Figure 12: Qualitative Comparison of Self-Attribute Transfer in the Eyeglasses Category. TE
represents TriplaneEdit and LP denotes LivePortrait. In the self-attribute transfer setting on the
eyeglasses category, we compare our results with baseline. Our method produces portrait animations
most similar to the ground truth while remaining the most natural.

Table 3: Quantitative Comparison on Eyeglasses Category. Our method outperforms this baseline
on every evaluation metric.

Img.Gen. Animation L1 ↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
TriplaneEdit LivePortrait 0.151 13.53 0.433 0.435 106.28

Ours 0.078 18.19 0.627 0.181 75.59

B.6 ADDITIONAL RESULTS

Single-attribute transfer. We extend the results of Fig. 1 in the main paper and present in Fig. 18
animations generated by transferring a single attribute to the portrait. Our method preserves the
identity of the portrait image while faithfully transferring the attribute from the attribute image,
resulting in natural portrait animations with attribute transfer.

Multi-attribute transfer. In Fig. 19 and Fig. 20, we present portrait animations generated by
simultaneously transferring two and three attributes in a single stage under the zero-shot setting.
Through various combinations of the four supported categories (beard, eyeglasses, hair, hat), our
method produces portrait animations where attributes are transferred naturally and with high quality,
without any additional optimization.

Attribute interpolation. We extend the results of Fig. 7 in the main paper and present additional
attribute interpolation results in Fig. 13. Our method generates zero-shot, single-stage portrait
animations with interpolated attributes, even for rigid objects such as hats and eyeglasses. The
animations interpolate naturally according to the α values.

B.7 TEXT-TO-IMAGE GENERATED ATTRIBUTE TRANSFER FOR PORTRAIT ANIMATION

Our method generates a portrait animation video with attribute transfer given an image containing the
desired attribute. We extend this capability by synthesizing the attribute image directly from a text
prompt, enabling text-driven control over the target attribute, as illustrated in Fig. 14. Specifically, we
leverage the FLUX (Labs, 2024) text-to-image model to generate realistic attribute images, which are
then transferred to the portrait image to produce the final attribute-transferred portrait animation.
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Table 4: User Study. We conduct a user study on two baseline methods that achieve strong
performance in both self-attribute transfer and cross-attribute transfer. Our approach receives the
highest preference among participants.

Img.Gen. Animation User Study(%)↑
TriplaneEdit LivePortrait 4.45
PbE LivePortrait 19.04

Ours 76.50

Portrait Beard A Beard B

Portrait Eyeglasses A Eyeglasses B

Portrait Hat A Hat B

Figure 13: Attribute Interpolation. We demonstrate smooth and consistent interpolation of addi-
tional attributes such as beard, eyeglasses, and hat according to the α values, extending beyond the
hair interpolation results shown in the main paper.

B.8 GENERALIZATION ON CARTOON DOMAIN

We present cartoon-style result in Fig. 15. Despite being trained exclusively on real human video
data, our Durian shows strong generalization to the cartoon domain without additional fine-tuning,
benefiting from the pretrained diffusion prior.

B.9 FAILURE CASES

Conflicting Lighting We present an animation with hair transfer result using a portrait image
captured under extremely dark, blue-tinted lighting, while the target hairstyle is taken from a subject
photographed outdoors under bright daylight with a white-colored hair appearance. In the resulting
animation as shown in Fig. 16, the white hairstyle is transferred accurately; however, the hair
appearance does not fully adapt to the portrait’s low-light illumination. Nonetheless, we observe that
back lighting is partially reflected in the synthesized hair, indicating that the model captures some
lighting cues even under severe illumination mismatch.

Occlusion We conduct qualitative experiment on occluded face input as shown in Fig. 17. We
demonstrate hair transfer with animation using a portrait image in which part of the face is occluded
by a hand with complex manicure patterns. In the resulting animation, minor artifacts appear around
the nose region, likely due to the challenging occlusion. Nevertheless, the hair transfer and the
generation of the occluded mouth region are successful, and the mouth motion aligns well with the
keypoint guidance video, indicating that the model can robustly synthesize motion-consistent facial
regions even under partial occlusion.
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Figure 14: Text-to-Image Generated Attribute Transfer for Portrait Animation. We generate a
portrait animation with attribute transfer from a textual description by using FLUX (Labs, 2024) to
synthesize a high-quality portrait image with the desired hair attribute.

Portrait Animation with Hair TransferPortrait Attribute

Figure 15: Generalization on Cartoon Domain. We present our Durian’s portrait animation with
hat transfer results generated from a cartoon portrait image and a cartoon hat image.

C DISCUSSION

C.1 EVALUATION IN THE SELF-ATTRIBUTE TRANSFER SCENARIO

In an ideal evaluation, one would use ground-truth videos that contain before and after versions of the
attribute transfer. Since such paired data does not exist, the commonly used alternative in attribute
transfer and VTON literature is the self-attribute(or garment) transfer setting (Kim et al., 2024a;
Chung et al., 2025; Zhang et al., 2025). In this setup, we take a ground-truth video and select two
arbitrary frames as the portrait image and the attribute image. The generated video is then compared
against the original ground truth video using reconstruction metrics such as L1, PSNR, SSIM, and
LPIPS, as reported in Table 1 and Table 2. Although this setting cannot directly evaluate genuine
cross-identity transfer, it still provides useful information because the attribute region in the portrait
image and the identity region in the attribute image are masked out (see the inputs in Fig. 2). This
forces the model to combine complementary cues in order to reconstruct the video.
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Portrait Animation with Hair TransferPortrait Attribute

Figure 16: Failure Case under Conflicting Lighting Conditions. We present a failure case under
large lighting discrepancies. Although the white hairstyle is correctly transferred, its color does not
adapt to the portrait lighting.

Portrait Animation with Hair TransferPortrait Attribute

Figure 17: Failure Case under Portrait Occlusion. We present a failure case when the portrait
image contains occlusions. Artifacts appear around the nose region

C.2 REGARDING FULL REF. IMAGE INPUT VARIANT IN ABLATION STUDY

We provide additional clarification regarding the full reference image input variant presented in the
ablation study. The ablation study shown in Table 2 is via self-attribute transfer setting. However,
in the “full ref. image input” ablation where masks are not used, the model can simply copy either
the portrait or the attribute input because both already contain the required face and attribute cues.
As a result, the model can obtain strong reconstruction metrics in Table 2 without learning true
disentanglement. Importantly, this shortcut is specific to this variant: for all other ablations, the
identity region in the attribute image and the attribute region in the portrait image are masked out,
preventing such leakage and ensuring a fair and meaningful comparison. The limitation of the
unmasked shortcut becomes evident in cross-attribute transfer, where the model fails to separate
identity and attribute cues when the two inputs come from different sources, as shown in Fig. 5. We
therefore suggest interpreting Fig. 5 together with Table 2 to understand this contrast.

USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we disclose that
ChatGPT (OpenAI, 2025) (an LLM developed by OpenAI) was used during the preparation of this
manuscript. The model was employed exclusively for sentence-level grammar checking and minor
style corrections.

No parts of the research ideas, methodology, experimental design, or conclusions were generated by
the LLM. All scientific contributions are solely attributable to the authors.
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Reference Portrait Animation with Attribute Transfer

Figure 18: Qualitative Results for Single-Attribute Transfer. We present additional results on hair,
hat, eyeglasses, and beard attribute transfer for portrait animation. Our method preserves the fine
details of the original portrait while achieving natural and seamless attribute transfer.
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Figure 19: Qualitative Results for Dual-Attribute Transfer. We demonstrate the results of
simultaneously transferring two attributes for portrait animation.
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Reference Portrait Animation with Attribute Transfer

Figure 20: Qualitative Results for Triple-Attribute Transfer. We present the results of simulta-
neously transferring three attributes. In each example, the image in the top-left corner indicates the
target portrait.
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