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Abstract

Generative models trained on internet data have revolutionized how text, image,
and video content can be created. Perhaps the next milestone for generative models
is to simulate realistic experience in response to actions taken by humans, robots,
and other interactive agents. Applications of a real-world simulator range from
controllable content creation in games and movies, to training embodied agents
purely in simulation that can be directly deployed in the real world. We explore
the possibility of learning a universal simulator (UniSim) of real-world interaction
through generative modeling. We first make the important observation that natural
datasets available for learning a real-world simulator are often rich along different
axes (e.g., abundant objects in image data, densely sampled actions in robotics
data, and diverse movements in navigation data). With careful orchestration of
diverse datasets, each providing a different aspect of the overall experience, UniSim
can emulate how humans and agents interact with the world by simulating the
visual outcome of both high-level instructions such as “open the drawer” and
low-level controls such as “move by x, y” from otherwise static scenes and objects.
There are numerous use cases for such a real-world simulator. As an example,
we use UniSim to train both high-level vision-language planners and low-level
reinforcement learning policies, each of which exhibit zero-shot real-world transfer
after training purely in a learned real-world simulator. We also show that other
types of intelligence such as video captioning models can benefit from training
with simulated experience in UniSim, opening up even wider applications. Video
demos can be found at universal-simulator.github.io.

1 Introduction

Generative models trained on internet data can now produce highly realistic text [1], speech [2],
image [3], and video [4]. Perhaps the ultimate goal of generative models is to be able to simulate
every aspect of the human experienced world, from how cars are driven on a street to how furniture is
assembled and meals prepared. With a comprehensive real-world simulator, humans can “interact”
with diverse scenes and objects, robots can learn from simulated experience without risking physical
damage, and a vast amount of “real-world” data can be simulated to train other types of machine
intelligence.
One roadblock to building such a real-world simulator lies in the datasets that are available. While
there are billions of texts, images, and video snippets available on the internet, different datasets cover
different information axes, and these have to be brought together to simulate realistic experience of the
world. For instance, paired text-image data contains rich scenes and objects but little movement [5, 6,
7], video captioning and question answering data contain rich high-level activity descriptions but little
low-level movement detail [8, 9], human activity data contains rich human action but little mechanical
motion [10, 11], and robotics data contains rich robot action but are limited in quantity [12, 13].
Since different datasets are curated by different industrial or research communities for different tasks,
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Figure 1: A universal Simulator (UniSim). UniSim is a simulator of the real-world that learns from broad
data rich in different axes including objects, scenes, human activities, motions in navigation and manipulation,
panorama scans, and simulations and renderings.

divergence in information is natural and hard to overcome, posing difficulties to building a real-world
simulator that seeks to capture realistic experience of the world we live in.
In this work, we take the first steps towards building a universal simulator (UniSim) of real-world in-
teraction through generative modeling. Specifically, we propose to combine a wealth of data—ranging
from internet text-image pairs, to motion and action rich data from navigation, manipulation, human
activities, robotics, and data from simulations and renderings—in a conditional video generation
framework. With careful orchestration of data rich along different axes, we show that UniSim can
successfully merge the different axes of experience and generalize beyond the data, enabling rich
interaction through fine-grained motion control of otherwise static scenes and objects. In simulating
long-horizon interactions with UniSim, we develop a fundamental connection between autoregres-
sive video generation during inference and performing rollouts in a partially observable Markov
decision processes (POMDPs) [14, 15]. As a result, UniSim can simulate long-horizon interactions
consistently across video generation boundaries.
While the potential applications of UniSim are vast, we demonstrate a few practical use cases centered
around using simulated experience from UniSim. We first demonstrate how an embodied vision-
language planner can be trained to complete long-horizon goal-conditioned tasks through hindsight
relabeling of simulated experience [16]. In addition to high-level planning, we further illustrate how
UniSim can enable learning low-level control policies by leveraging model-based reinforcement
learning [17]. We show that both the high-level vision-language planner and the low-level control
policy, while trained purely in simulation, can generalize to real robot settings in a zero-shot manner,
achieving one step towards bridging the sim-to-real gap in embodied learning [18, 19, 20]. This is
enabled by using simulators that are nearly visually indistinguishable from the real world. Lastly, we
note that UniSim can be used to simulate rare events where data collection is expensive or dangerous
(e.g., crashes in self-driving cars). Such simulated videos can then be used to improve other machine
intelligence such as rare event detectors, suggesting broad applications of UniSim beyond embodied
learning. The main contributions can be summarized as follows:
• We take the first step toward building a universal simulator (UniSim) of real-world interaction

by combining diverse datasets rich in different axes—such as objects, scenes, actions, motions,
language, and motor controls—in a unified video generation framework.

• We establish the connection between conditional video generation and partially observable Markov
decision process (POMDP), and leverage multi-frame history conditioning to simulate consistent
long-horizon interactions from otherwise static scenes and objects.

• We illustrate how UniSim can simulate realistic experiences for training embodied planners, low-
level control policies, and video captioning models, equipping these other forms of machine
intelligence with the ability to generalize to the real world when trained purely in simulation,
thereby bridging the sim-to-real gap.
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Figure 2: Training and inference of UniSim. UniSim (T ) is a video diffusion model trained to predict the
next (variable length) observation frames (o1) given the noisy version of the previous observation (o0) and
action input (a0). UniSim can handle actions of varying modalities such as motor controls of varying length
(∆x1,∆ω1,∆x2, ...), language descriptions of the action (“wipe table”), and actions extracted from camera
motions and other sources. Dotted arrows add noise to the true video during training or to the previously
generated video during inference to autoregressively rollout observations in supporting long-horizon interactions.

2 Learning Interactive Real-World Simulators
The major differences between an interactive real-world simulator and typical video generation
models are that a simulator requires support for (1) a diverse set of actions and (2) long-horizon
rollouts. In this section, we first enable action-rich interaction by combining datasets rich in different
axes through joint training, and then enable long-horizon interaction through history conditioning
inspired by rollouts in a POMDP.

2.1 Orchestrating Datasets Rich in Different Axes

A realistic world simulator should be able to simulate diverse scenes, objects, human activities,
robot actions, camera motions, other aspects of the world. While this seems difficult, there already
exist billions of text, image, and video samples on the internet, as well as various robotic, 3D,
and navigation datasets scattered across institutions. The main difficulty comes down effectively
extracting information from broad datasets rich in these different axes and fusing this information
into a single learned simulator.
Extracting Information from Broad Data. Although data exists across many different modalities
on the Internet, our focus in this paper will be on visual observations of the world and actions that
cause changes to these visual observations. Note that this choice inevitably misses states that are
not visual (e.g., temperature-dependent friction), but we only focus on problems that can be visually
captured. In such a scenario, if we can express the two modalities in terms of a universal interface
that relates videos and text, we can fuse the information between different datasets by training a
simulator that operates through this universal interface. Thus, the key challenge is to extract then fuse
observations and actions from different types of datasets into a common format, which we describe
below. The datasets we included in this study are as follows (further details of the datasets used to
train UniSim are given in Appendix 9).
• Simulated execution and renderings. While annotating actions for real-world videos is expensive,

simulation engines such as Habitat [21] and Language Table [22] are able to render a wide variety of
actions. We use datasets previously collected from these simulators, i.e., Habitat object navigation
using HM3D [23] and Language Table Data from [24] to train UniSim. We extract text descriptions
as actions when available. For simulated continuous control actions, we encode them via language
embeddings and concatenate the text embeddings with discretized control values.

• Real robot data. An increasing amount of video data of real-robot executions paired with task
descriptions such as the Bridge Data [25, 26] and data that enabled RT-1 and RT-2 [27] are becoming
increasingly available. Despite low-level control actions often being different across robots, the task
descriptions can serve as high-level actions in UniSim. We further include discretize continuous
controls actions when available similar to simulated robotics data.

• Human activity videos. Human activity data such as Ego4D [11], EPIC-KITCHENS [28], and
Something-Something [29] have videos filled with human activities. Different from low-level
robot controls, these activities are high-level actions that humans take to interact with the world.
But these actions are sometimes provided as labels for video classification or activity recognition
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tasks [29]. In this case, we convert the video labels into text actions. In addition, we subsample the
videos to construct chunks of observations at a frame rate that captures meaningful actions.

• Panorama scans. There exists a wealth of 3D scans such as Matterport3D [30]. These static scans
do not contain actions. We construct actions (e.g., turn left) by truncating panorama scans and
utilize information such as change in camera poses between two images.

• Internet text-image data. Paired text-image datasets such as LAION [31] contain rich static
objects without actions. However, even though the images are static, the text labels often contain
motion information such as “a person walking”. In addition, internet text-image data can describe a
richer set of objects than other datasets above, making them good candidates for training UniSim.
To use text-image data in UniSim, we treat individual images as single-frame videos and text labels
as actions.

For each of these datasets, we process text tokens into continuous representations using T5 language
model embeddings [32] to better fuse with continuous actions such as robot controls.
Fuse Information into UniSim. Given the observation and action data extracted from the broad
datasets above, we train a diffusion model (architecture and training details in Appendix 10) to predict
observations conditioned on actions and noisy previous observations as shown in Figure 2. During
training, Gaussian noise with a fixed schedule is added to the true previous observation as a part of
the forward process of the diffusion model [33], then UniSim learns to denoise the previous noisy
observation to the next observation conditioned on the input action. Since the observations from
different environments have all been converted to videos, while actions of different modalities (e.g.,
text descriptions, motor controls, camera angles) have all been converted to continuous embeddings,
UniSim can learn a single world model across all datasets.

2.2 Enabling Long-Horizon Interactions through Rollouts in POMDP
While combining diverse data might enable rich interaction, the true value of a simulator like UniSim
lies in simulating long episodes to enable optimizing decisions through search [34], planning [35],
optimal control [36], or reinforcement learning [37]. In this section, we show that inference in UniSim
is analogous to performing rollouts in a partially observable Markov decision process (POMDP) [14].
This connection enables UniSim to support learning decision making policies with established
algorithms.
Real World as A POMDP. A POMDP can be defined as a tuple M := ⟨S,A,O,R, T , E⟩
consisting of state, action, and observation spaces as well as reward, transition, and observation
emission functions. A POMDP can characterize interactions with the real world, where st ∈ S is the
true state of the world, ot ∈ O contains video frames, and at ∈ A contains actions carried out by
humans or agents, all at interactive step t. A policy π can learn to choose actions that lead to high
rewards through interacting with M.
UniSim as Transition Function. Given an observation ot from M at interaction step t, UniSim can
parametrize the transition function T to sample the next observation ot+1 ∼ T (·|ot, at) conditioned
ot and action input at. Note that the distribution of temporally extended observations can be factorized
into segments:

T (ol|ol−1, al−1) = T (ot, ot+1|ot−1, at−1, at) = T (ot|ot−1, at−1)T (ot+1|ot, at), (1)
where ol = [ot, ot+1], al−1 = [at−1, at], and ol−1 = ot−1. This enables the modeling of dynamics
at any temporal control frequency by chaining together actions, and allows high-level abstract action
descriptions (e.g., “move left”) and low-level motor controls (e.g., ∆x,∆ω) to be jointly modeled
within the same framework. Temporally extended actions have been found to be beneficial in various
settings such as learning hierarchical policies [38, 39], skills, and options [40, 41]. Rolling out a
policy π in M corresponds to generating the next video segment conditioned on the (noisy) previously
generated video and a new action input. As a result, UniSim can simulate arbitrarily long interactions
by conditionally generating each video segment autoregressively. Note that while UniSim only
models T , reward signals R can be extracted from the generated videos for optimizing π, as we
illustrate in Section 4.2 below.
Parametrizing and training UniSim. To instantiate the UniSim method outlined in Figure 2,
we use diffusion models [42, 33] to parametrize T (ot|ot−1, at−1). Specifically, the reverse process
learns a denoising model ϵθ(o

(k)
t , k|ot−1, at−1) that denoises a previous observation into the next

observation using K denoising steps. We concatenate the last four frames from ot−1 with initial
noise samples o(K)

t ∼ N (0, I) channelwise to serve as conditional inputs to the denoising model. To
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Figure 3: Action-rich simulations. UniSim can support manipulation actions such as “cut carrots”, “wash
hands”, and “pickup bowl” from the same initial frame (top left) and other navigation actions.

condition on an action at−1, we leverage classifier-free guidance [43]. The final T (ot|ot−1, at−1) is
parametrized by the variance schedule:

ϵθ(o
(k)
t , k|ot−1, at−1) = (1 + η)ϵθ(o

(k)
t , k|ot−1, at−1)− ηϵθ(ot, k|ot−1), (2)

where η controls action conditioning strength. With this parametrization, we train ϵθ by minimizing

LMSE =
∥∥∥ϵ− ϵθ

(√
1− β(k)ot +

√
β(k)ϵ, k

∣∣∣ot−1, at−1

)∥∥∥2 ,
where ϵ ∼ N (0, I), and β(k) ∈ R are a set of K different noise levels for each k ∈ [1,K].
Given the learned ϵθ, an observation ot can be generated by sampling from the initial distribution
o
(K)
t ∼ N (0, I) and iteratively denoising according to the following process for k from K to 0

o
(k−1)
t = α(k)(o

(k)
t − γ(k)ϵθ(o

(k)
t , k|ot−1, at−1)) + ξ, ξ ∼ N

(
0, σ2

kI
)
, (3)

where γ(k) is the denoising step size, α(k) is a linear decay on the current denoised sample, and σk is
a time varying noise level that depends on α(k) and β(k).

Training Policies using UniSim. With the approximated dynamics model T parametrized by a
denoising model ϵθ, we can then optimize policies using planning, search, or reinforcement learning
algorithms by sampling from T . Using UniSim as an environment to train policies has a few
advantages including unlimited environment access (through parallelizable video servers), real-world
like observations (through photorealistic diffusion outputs), and flexible temporal control frequencies
(through temporally extended actions across low-level robot controls and high-level text actions).

3 Simulating Real-World Interactions
We now demonstrate UniSim in emulating real-world manipulation and navigation environments by
simulating both action-rich and long-horizon interactions for both humans and robots.

3.1 Action-Rich, Long-Horizon, and Diverse Interactions

Action-Rich Simulation. We first demonstrate action-rich interactions with UniSim through natural
language actions. Figure 3 shows simulation of human manipulation and navigation starting from the
same initial observation (left-most column). We can instruct a person in the initial frame to perform
various kitchen tasks (top left), press different switches (top right), or navigate scenes (bottom). We
note that the model only trained on generic internet data, without action-rich manipulation data such
as EPIC-KITCHENS [28], fails to simulate action-rich manipulations (see Appendix 12).
Long-Horizon Simulation. Next, we illustrate 8 sequential interactions with UniSim in Figure 4.
Specifically, we condition the simulation of each interaction on previous observation and new
language action as described in Section 2.2. UniSim successfully preserves objects manipulated
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Figure 4: Long-horizon simulations. UniSim sequentially simulates 8 interactions autoregressively. The
simulated interactions maintain temporal consistency across long-horizon interactions, correctly preserving
objects and locations (can on counter in column 2-7, orange in drawer in column 4-5).

Toothpaste Spider PlateUncover Pen Bottle Pickup 1. Put cup 2. Pen 3. Apple

Figure 5: Diverse and stochastic simulations. On the left, we use text to specify the object being revealed by
suffixing “uncovering” with the object name. On the right, we only specify “put cup” or “put pen”, and cups and
pens of different colors are sampled as a result of the stochastic sampling process during video generation.

Condition FID ↓ FVD ↓ IS ↑ CLIP ↑
1 frame 59.47 315.69 3.03 22.55
4 distant 34.89 237 3.43 22.62
4 recent 34.63 211.3 3.52 22.63

Table 1: Ablations of history conditioning using
FVD, FID, and Inception score, and CLIP score on
Ego4D. Conditioning on multiple frames is better
than on a single frame, and recent history has an edge
over distant history.

Habitat: 
navigate 

to TV

Navigate 
to TV

Figure 6: Simulations of low-data domains using the
Habitat object navigation using HM3D dataset [23] with
only 700 training examples. Prefixing language actions
with dataset identifier leads to videos that completes the
action (top).

by previous instructions (e.g., the orange and can are preserved in the drawers in Columns 4, 5,
7, 8 after being put in the drawers). Additional results on long-horizon interaction are included in
Appendix 8.1.

Diversity and Stochasticity in UniSim In addition to supporting action-rich and long-horizon
interactions, UniSim can also support highly diverse and stochastic environment transitions, such as
diversity in objects being revealed after removing the towel on top (Figure 5 left), diversity in object
colors and locations (cups and pens in Figure 5 right), and real-world variabilities such as wind and
change in camera angles. We can use language actions to specify the appearance of diverse objects,
and leverage the stochastic sampling process of video generation to support environment stochasticity
such as wind and camera angles. Since diffusion models are flexible in capturing multi-modal
distributions, they can generate diverse samples representing highly stochastic environments. Note
that stochasticity associated with the sampling process cannot be directly controlled by users, which
corresponds to the uncontrollable environment stochasticity from Dichotomy of Control [44] that is
ubiquitous in real-world environments (e.g., wind).
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3.2 Ablation and Analysis

Frame Conditioning Ablations. We ablate over choices of past frames to condition on (detailed in
Section 2.2) using the Ego4D dataset [11], which contains egocentric movement requiring proper
handling of observation history. We compare UniSim trained by conditioning on a different number
of past frames and report generative modeling metrics (e.g., FID, FVD) in Table 1. We observe
that conditioning on more frames from the past is better than conditioning on a single frame, but
conditioning on history that is too far in the past (4 frames with exponentially increasing distances)
can hurt performance. We found increasing the number of conditioning frames beyond 4 did not
further improve performance on Ego4D, but it could be helpful for applications that require memory
from distant past (e.g., navigation for retrieval).
Simulating Low-Data Domains. During joint training of UniSim on diverse data, we found that
naïvely combining datasets of highly varying size can result in low generation quality in low-data
domains. While we can increase the weight of these domains in the data mixture during training,
we found that attaching a domain identifier such as the name of the dataset to the actions being
conditioned on improves generation quality in low-data domains, as shown in Figure 6.

4 Applications of UniSim
Having learned a realistic simulator of the real world, we now demonstrate how UniSim can be used
to train other types of machine intelligence such as embodied planners, reinforcement learning agents,
and vision-language models through simulating highly realistic experiences.

4.1 Training Long-Horizon Embodied Planner through Hindsight Labeling.

One of the recent advances in learning embodied agents has been the adoption of language models
or vision language models (VLM) as policies or planners that can operate in image or text based
observation and action spaces [45, 46, 47]. One major challenge in learning such agents lies in
the need for large amounts of data from the real world. The labor intensity in data collection only
increases as tasks increase in horizon and complexity. Below, we demonstrate how UniSim can
generate large amounts of training data for VLM policies through hindsight relabeling.
Setup and Baseline. We use data from the Language Table environment [22] for learning geometric
rearrangements of blocks on a table. The dataset consists of 160k simulated trajectories and 440k
real trajectories where each trajectory contains a language instruction (e.g., “move blue cube to the
right”), a sequence of visuomotor controls, and a sequence of image frames corresponding to the
execution of the task. The original trajectories have short horizons (e.g., only moving one block). We
train an image-goal conditioned VLM policy to predict language instructions and the motor controls
from the start and goal images using the PALM-E architecture [46] (See details in Appendix 11.1).
For the baseline, the goal is set to the last frame of the original short-horizon trajectories. During
each evaluation run, we set the goal by modifying the location of 3-4 blocks in the Language Table
Simulation environment, and measure the blocks’ distance to their goal states after executing 5
instructions using the VLM policy. We define the reduction in distance to goal (RDG) metric as

RDG =
∥s0 − sgoal∥2 − ∥sT − sgoal∥2

∥s0 − sgoal∥2
, (4)

where sT represents the underlying block locations after executing the policy, s0 and sgoal represents
the initial and goal block locations.
Generating Hindsight Data with UniSim. To use UniSim for long-horizon tasks, we draw
inspiration from hindsight relabeling [48]. Specifically, we create a total of 10k long-horizon
trajectories from UniSim by doing rollouts in UniSim 3-5 times per trajectory, where each rollout
corresponds to one scripted language instruction similar to the original dataset. We then use the
final frame from each long-horizon rollout as a goal input and the scripted language instructions as
supervision for training the VLM policy.
Results on Zero-shot Real-World Transfer. The true value of UniSim lies in simulating the real
world. Figure 7 shows that the language plans produced by the VLM, the generated videos from
UniSim according to the language plans, and the executions on the real robot. The policy purely
trained in UniSim can directly perform long-horizon tasks in the real world in a zero-shot manner.
See additional sim-to-real results with zero-shot real-world transfer in Appendix 8.2.
Results on Simulated Evaluation. In addition to testing real-world transfer, we also conduct
simulator based evaluation to compare the reduction in distance to goal (RDG) of the VLM policy
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Figure 7: Long-horizon plans from UniSim. A VLM poliy generates high-level language plans (first row)
which are executed in UniSim (middle row) similar to how they are executed in the real world (bottom row)
using the Language Table robot. The VLM trained on data from UniSim can plan for long-horizon tasks by
successfully moving three blocks (blue, green, yellow) to match their target location in the goal image.

RDG (moved) RDG (all)

VLM-BC 0.11 ± 0.13 0.07 ± 0.11
UniSim-Hindsight 0.34 ±0.13 0.34 ± 0.13

Table 2: Evaluation of long-horizon plans. Reduc-
tion in distance to goal (RDG) defined in Equation 4
across 5 evaluation runs of VLM trained in UniSim
simulated long-horizon data (bottom row) compared to
VLM trained on original short-horizon data (top row).
Using UniSim performs much better both in RGD of
moved blocks (left) and RGD in all blocks (right).

Succ. rate (all) Succ. rate (pointing)

VLA-BC 0.58 0.12
UniSim-RL 0.81 0.71

Table 3: Evaluation of RL policy. Percentage of suc-
cessful simulated rollouts (out of 48 tasks) using the
VLA policy with and without RL finetuning on Lan-
guage Table (assessed qualitatively using video rollouts
in UniSim). UniSim-RL improves the overall perfor-
mance, especially in pointing-based tasks which con-
tain limited expert demonstrations.

trained on UniSim’s generated long-horizon data to the VLM policy trained on the original short-
horizon data in Table 2. The VLM trained using long-horizon data generated by UniSim performs
3-4 times better than the VLM trained on original short-horizon data in completing long-horizon
goal-conditioned tasks.

4.2 Real-World Simulator for Reinforcement Learning

Reinforcement learning (RL) has achieved superhuman performance on difficult tasks such as playing
Go and Atari games [34, 49], but has limited real world applications due to the lack of a realistic
environment simulator [50]. We investigate whether UniSim can enable effective training of RL
agents by providing the agent with a realistic simulator that can be accessed in parallel.

Setup. We finetune the PaLI 3B vision-language model [51] to predict low-level control actions
(joint movements in ∆x,∆y) from an image observation and a task description (e.g., “move the blue
cube to the right”) using the behavioral cloning (BC) loss to serve as the low-level control policy and
the baseline, which we call the vision-language-action (VLA) policy similar to [47]. Because UniSim
can take low-level control actions as input, we can directly conduct model-based rollouts in UniSim
using control actions outputted by VLA policy. To acquire reward information, we use the number of
steps-to-completion from the training data as a proxy reward to train a model that maps the current
observation to learned reward. We then use the REINFORCE algorithm [52] to optimize the VLA
policy, treating the rollouts from UniSim as the on-policy rollouts from the real environment and use
the learned reward model to predict rewards from simulated rollouts. See details of RL training in
Appendix 11.2.

Results. We first assess the quality of UniSim in simulating real-robot executions by applying
low-level control actions (e.g., ∆x = 0.05, δy = 0.05) repeatedly for 20-30 environment steps to
move the endpoint left, right, down, up, and diagonally in Figure 8 (top two rows). We see that the
simulated rollouts capture both the endpoint movements and the physics of collision. To compare
the RL policy trained in UniSim to the BC policy, we qualitatively assessed the simulated rollouts
in UniSim. Table 3 shows that RL training significantly improves the performance of the VLA
policy across a wide set of tasks, especially in tasks such as “point to blue block”. We then directly
deploy the RL policy trained in UniSim onto the real robot in zero-shot, and observe successful task
executions as shown in Figure 8 (bottom row). Additional results on zero-shot transfer to real robot
can be found in Appendix 8.3.
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Figure 8: [Top] Simulation from low-level controls. UniSim supports low-level control actions as inputs to
move endpoint horizontally, vertically, and diagonally. [Bottom] Real-robot execution of an RL policy trained
in UniSim and zero-shot onto the real Language Table task. The RL policy can successfully complete the task of
“moving blue cube to green circle”.

4.3 Realistic Simulator for Broader Vision-Language Tasks.

UniSim can generate training data for other machine intelligence such as detectors of rare events.
This is especially useful when natural data is rare or difficult to collect (e.g., footage of crimes
or accidents). We provide such a proof-of-concept by training vision-language models on purely
generated data from UniSim, and observe significant performance benefits in video captioning tasks.

Activity MSR-VTT VATEX SMIT

No finetune 15.2 21.91 13.31 9.22
Activity 54.90 24.88 36.01 16.91
UniSim 46.23 27.63 40.03 20.58

Table 4: VLM trained in UniSim to perform video
captioning tasks. CIDEr scores for PaLI-X fine-
tuned only on simulated data from UniSim com-
pared to no finetuning and finetuning on true video
data from ActivityNet Captions. Finetuning only
on simulated data has a large advantage over no
finetuning and transfers better to other tasks than
finetuning on true data.

Setup. We finetune PaLI-X [53], a VLM with 55B
parameters pretrained on a broad set of image, video,
and language tasks, to caption a set of videos gen-
erated by UniSim using texts from the training split
of ActivityNet Captions [9]. We measure the CIDEr
score of the finetuned model on the test split of Ac-
tivityNet Captions as well as other captioning tasks
following the same setup as [53]. See finetuning
details of PaLI-X in Appendix 11.3.
Results. We compare PaLI-X finetuned on purely
generated videos to PaLI-X without finetuning and
PaLI-X finetuned on original ActivityNet Captions
in Table 4. Purely finetuning on generated data drastically improves the captioning performance from
no finetuning at all on ActivityNet (15.2 to 46.23), while achieving 84% performance of finetuning on
true data. Furthermore, PaLI-X finetuned on generated data transfers better to other captioning tasks
such as MSR-VTT [8], VATEX [54], and SMIT [55] than PaLI-X finetuned on true data, which tends
to overfit to ActivityNet. These results suggest that UniSim can serve as an effective data generator
for improving broader vision-language models.

5 Related Work
Internet-Scale Generative Models. Language models trained on internet text succeed at text-
based tasks [1, 56] but not physical tasks, which requires perception and control. Internet-scale
generative models can synthesize realistic images and videos [57, 4, 58, 59], but have mostly been
applied to generative media [60] as opposed to empowering sophisticated agents capable of multi-turn
interactions. [61] shows video generation can serve as policies, but the major bottleneck for policy
learning often lies in limited access to real-world environments [50]. We focus on this exact bottleneck
by learning universal simulators of the real world, enabling realistic and unlimited “environment”
access for training sophisticated agents interactively.
Learning World Models. Learning an accurate world model in reaction to control inputs has been
a long-standing challenge in model-based planning, optimization, and reinforcement learning [17, 62,
36]. Most systems choose to learn dynamics models in lower dimensional state spaces as opposed
to in the pixel space [63, 64, 65, 66], which limits knowledge sharing across systems. With large
transformer architectures, learning image-based world models became plausible [67, 68, 69, 70,
71, 72], but mostly in games or simulated domains with visually simplistic and abundant data. In
video generation, previous works have leveraged text prompts [73, 74], driving videos [75, 76], 3D
geometries [77, 78], physical simulations [79], frequency information [80], and user annotations [81]
to introduce movements into videos. However, they focus on generating domain specific videos as
opposed to building a universal simulator that can further improve other agents as in UniSim.
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6 Limitations and Conclusion
We have shown it is possible to learn a universal simulator of the real world in response to various
action inputs ranging from texts to robot controls. UniSim can simulate highly realistic experiences
for interacting with humans and training autonomous agents. UniSim requires large compute to train
similar to other modern foundation models. Despite this disadvantage, we hope UniSim will instigate
broad interest in learning and applying real-world simulators to improve machine intelligence.
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Appendix
In this Appendix we provide additional qualitative results on long-horizon simulation of human
and robot interactions (Section 8.1), zero-shot sim-to-real transfer results on long-horizon planning
(Section 8.2), and zero-shot sim-to-real transfer of the RL policy (Section 8.3). We also provided
details on the dataset used to train UniSim in Section 9, the model architecture and training details of
UniSim in Section 10, and the details of the three experimental setups for applications of UniSim in
Section 11. Finally, we provide failed examples when UniSim is not jointly trained on broad datasets
(Section 12). Video demos can be found at anonymous-papers-submissions.github.io

8 Additional Results
8.1 Additional Long-Horizon Interaction

1. Close 
bottom drawer

4. Close top 
drawer

3. Put bottle in 
drawer

2. Open top 
drawer

1. Move sponge 
close to chips

3. Knock 
can over

2. Move can 
close to chips

Figure 9: Additional results on long-horizon interaction with humans and robots similar to Figure 4. UniSim can
generate consistent video rollouts across 3-4 high-level language actions.
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8.2 Additional Real-Robot Results for Long-Horizon Planning

Move the blue cube 
to the bottom left

Slide the green circle 
to the top left

Move the yellow circle 
to the top right

Start Goal

Real-robot executions

Simulated Video plans from UniSim

Language plans generated by the VLM policy

Move the blue cube 
to the bottom left

Slide the green circle 
to the top left

Start Goal

Real-robot executions

Language plans generated by the VLM policy

Simulated video plans from UniSim

Figure 10: Additional results (similar to Figure 7) on applying UniSim to train vision-language planners to
complete long-horizon tasks. VLM finetuned with hindsight labeled data is able to generate long-horizon
instructions that moves two or three blocks successfully to match their location in the goal image.
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8.3 Additional Results on Learning RL Policy in UniSim
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Simulated last observation of each trajectory

Real first observation of each trajectory

Place your hand  
above the blue cube

Push the red circle  
towards center right

Slice yellow hexagon  
a bit right

Move the red star  
towards the red circle

Move the red star  
right and up a bit

Push the blue cube  
closer to the red circle

Push the yellow heart  
above the blue triangle

Slightly move the green circle 
downwards

Place your arm to the  
left of the red star

Separate the green circle  
from green star

Push the yellow heart  
at the bottom of the green star

Move the red circle  
into the green star

Move the yellow hexagon to 
the top left of the board

Place the green circle to  
the bottom of the blue cube

Separate the red star  
from the red circle

Separate the green circle  
from green star

Place your hand  
above the blue cube

Push the red circle  
towards center right

Slice yellow hexagon  
a bit right

Move the red star  
towards the red circle

Move the red star  
right and up a bit

Push the blue cube  
closer to the red circle

Push the yellow heart  
above the blue triangle

Slightly move the green circle 
downwards

Place your arm to the  
left of the red star

Separate the green circle  
from green star

Push the yellow heart  
at the bottom of the green star

Move the red circle  
into the green star

Move the yellow hexagon to 
the top left of the board

Place the green circle to  
the bottom of the blue cube

Separate the red star  
from the red circle

Separate the green circle  
from green star

Figure 11: First real observations and last simulated observations of rolling out the RL policy trained in UniSim.
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Real-robot last observation of each trajectory

Real first observation of each trajectory

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Learned reward model output

Figure 12: First real observations and last real observations of executing the RL policy trained from UniSim in
the real world in zero-shot. Middle plot also shows the output of the learned reward model (steps-to-completion)
during policy execution, where step 0 corresponds to the top plot (initial observation) and step 70 corresponds to
the bottom plot (final observation).
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9 Datasets
We provide the datasets used to train UniSim below, including dataset name, number of training
examples (approximate), and weight in the data mixture. Miscellaneous data are collections of
datasets that have not been published. Some of these datasets have been processed into train and
validation split, hence the number of training examples may differ from the original data size. When
text are available in the original dataset, we use T5 language model embeddings [32] to preprocess
the text into continuous representations. When low-level controls are available in the original dataset,
we encode them both as text and normalize then discretize them into 4096 bins contatenated with
language embeddings (if present). The choice of mixture weights are either 0.1 or 0.05 without
careful tuning. How data mixture weights affect simulation performance is an interesting line of
future work.

Dataset # Examples Weight

Simulation
Habitat HM3D [23] 710 0.1
Language Table sim [22] 160k 0.05

Real Robot

Bridge Data [25] 2k 0.05
RT-1 data [27] 70k 0.1
Language Table real [22] 440k 0.05
Miscellaneous robot videos 133k 0.05

Human activities

Ego4D [11] 3.5M 0.1
Something-Something V2 [29] 160k 0.1
EPIC-KITCHENS [28] 25k 0.1
Miscellaneous human videos 50k 0.05

Panorama scan Matterport Room-to-Room scans [82] 3.5M 0.1

Internet text-image
LAION-400M [31] 400M 0.05
ALIGN [83] 400M 0.05

Internet video Miscellaneous videos 13M 0.05
Table 5: Dataset name, number of training examples, and mixture weights used for training UniSim.

21



10 Architecture and Training
We the 3D U-Net architecture [84, 85] to parametrize the UniSim video model. We apply the
spatial downsampling pass followed by the spatial upsampling pass with skip connections to the
downsampling pass activations with interleaved 3D convolution and attention layers as in the standard
3D U-Net. The video models in UniSim consist of one history conditioned video prediction model as
the base and two additional spatial super-resolution models similar to [4]. The history conditioned
base model operates at temporal and spatial resolution [16, 24, 40], and the two spatial super-resolution
models operate at spatial resolution [24, 40] → [48, 80] and [48, 80] → [192, 320], respectively. To
condition the base video model on the history, we take 4 frames from the previous video segment
and concatenate them channelwise to the noise samples inputted to the U-Net. We employ temporal
attention for the forward model to allow maximum modeling flexibility but temporal convolution to the
super-resolution models for efficiency reasons similar to [4]. The model and training hyperparamters
of UniSim are summarized in Table 6.

Hyperparameter Value
Base channels 1024
Optimizer Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers 1, 2, 4
Learning rate 0.0001
Blocks per resolution 3
Batch size 256
Attention resolutions 6, 12, 24
Num attention heads 16, 16, 8
Conditioning embedding dimension 4096
Conditioning embedding MLP layers: 4
Conditioning token length 64
EMA 0.9999
Dropout 0.1
Training hardware 512 TPU-v3 chips
Training steps 1000000
Diffusion noise schedule cosine
Noise schedule log SNR range [-20, 20]
Sampling timesteps 256
Sampling log-variance interpolation γ = 0.1
Weight decay 0.0
Prediction target ϵ

Table 6: Hyperparameters for training the UniSim diffusion model.
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11 Details of Experimental Setups
11.1 Details of Long-Horizon Planning
PALM-E VLM Policy. We modify the original PALM-E 12B model [46] to condition on a goal
image as additional input before decoding the text actions. The VLM is finetuned on either the
original short horizon data or the long horizon simulated data using 64 TPUv3 chips for 1 day.
The supervision for short-horizon baseline is the single step language instruction in the original
data, whereas the supervision for long-horizon UniSim data is the scripted long-horizon language
instructions chained together that generated the video data. Other model architecture and training
details follow [46].
Simulated evaluation. In setting up goal in the simulated environments, a subset of 3-4 blocks
(randomly selected) are moved by 0.05, 0.1, or 0.2 along the x,y axes (randomly selected). The
original observation space has x ∈ [0.15, 0.6] and y ∈ [−0.3048, 0.3048]. So the modification of
goal location corresponds to meaningful block movements. For executing the long-horizon VLM
policy trained on UniSim data, we first sample one language instruction from the VLM, predict a
video of 16 frames, and use a separately trained inverse dynamics model similar to [61] to recover
the low-level control actions, which we found to slightly outperform directly regressing on control
actions from language outputs of the VLM. We execute 5 instructions in total, and measure the final
distance to goal according to the ground truth simulator state. We 5 evaluations each with a different
random seed for sampling the initial state and resetting the goal, and report the mean and standard
error in Table 2.

11.2 Details of RL Policy Training
Stage 1 (Supervised Learning)
Model Architecture The PaLI 3B model trained on Language-Table uses a Vision Transformer
architecture G/14 [7] to process images, and the encoder-decoder architecture of UL2 language
model [86] for encoding task descriptions and decoding tokens which can represent language, control
actions, or other values of interest (described below).
Objectives In the first stage of training, using a dataset of demonstrations, we finetune the pretrained
PaLI 3B vision language model checkpoint [51] with the following tasks:

• Behavioral Cloning: Given observations and task instruction, predict the demonstration
action. The continuous actions of the Language-Table domain are discretized into the form
“+1 -5", and represented using extra tokens from the PaLI model’s token vocabulary. As an
example, “+1 -5" is represented by the token sequence (<extra_id_65>, <extra_id_1>,
<extra_id_66>, <extra_id_5>).

• Timestep to Success Prediction: Given observations and task instruction, predict how
many timesteps are left until the end of episode (i.e. success). Similar to actions, the number
of steps remaining is represented via extra tokens from the PaLI model’s token vocabulary.

• Instruction Prediction: Given the first and last frame of an episode, predict the task
instruction associated with that episode.

We use learning rate 0.001, dropout rate 0.1, and batch size 128 to finetune the PaLI 3B model for
300k gradient steps with 1k warmup steps on both the simulated and real Language Table dataset
similar to RT-2 [47].
Stage 2 (RL Training)
Reward Definition As mentioned above, during Stage 1, given an observation and goal, the PaLI
model is finetuned to predict how many timesteps are left until the demonstration episode reaches a
success state. Let us denote this function by d(o, g). The reward we use during RL training is defined
as r(ot, at, ot+1, g) = −[d(ot+1, g)− d(ot, g)] · C, where C > 0 is a small constant used to stabilize
training (C = 5e− 2 in this work). Intuitively, this reward tracks if from timestep t to t+1 the policy
arrived closer to accomplishing the desired goal. Before starting Stage 2, we make a copy of the
Stage 1 model checkpoint and keep it frozen to use as the reward model for RL training.
Environment Definition To implement video generation as environment transitions, we expose
the inference interface of the video generation model through remote procedure call, and use the
DeepMind RL Environment API (also known as DM Env API) [87] to wrap the remote procedure
call in the step function of the environment. When the environment is reset to start a new episode, a
goal instruction is randomly sampled from the ones available in the dataset of demonstrations used in
Stage 1.
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RL Method We initialize the RL trained policy using the Stage 1 checkpoint, which as mentioned
was also trained with a Behavioral Cloning objective. A collection of actor processes perform
policy rollouts in the video generation environment, and add rewards to the trajectories using the
reward model defined above. The policy is updated using the REINFORCE [52] objective, i.e.
∇πL(ot, at, g) = ∇π log π(at|ot, g) ·

[∑T
i=t γ

i−t · r(oi, ai, oi+1, g)
]
, where L(ot, at, g) represents

the loss associated with the observation-action pair (ot, at) in an episode with the goal g. The
actors are rate limited to prevent generated trajectories from being very off-policy. We report the
hyperparameters associated with RL training in Table 7.

Hyperparameter Value
Max steps per episode 100
Number of actor processes 64
Number of image history stack 2
Learner batch size 64
Discounting factor γ 0.9

Table 7: Hyperparameters for training the VLA RL policy using the ACME framework.

11.3 Details of Video Captioning
Note that even though UniSim is a video based simulator trained to condition on past history, we can
achieve text-only conditioning by inputting placeholder frames such as white images while increasing
the classifier-free guidance strength on text. We found this to work well in generating videos purely
from captions of ActivityNet Captions. For generating data to train VLMs, we take the training
split of ActivityNet Captions which consists of 30,740 text-video examples after the 50/25/25%
train/val1/val2 split as in [53]. For each of the 30,740 text, we generate 4 videos from UniSim, and
use the text labels as supervision in finetuning PaLI-X. As a result, we have 4X amount of the original
training data (in terms the number of videos). In addition, we found the generated videos to generally
align better semantically than the original ActivityNet Captions videos, which could contain noise
and ambiguous videos that could be labeled differently. We use ground truth temporal proposals at
evaluation following [53] and [9]. Following [53] and [88], we use the val1 split for validation and
val2 split for testing.
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12 Failed Simulations without Joint Training

Figure 13: Failed environment simulation from the action “uncover bottle” without training on broad data as in
UniSim. Top two videos are generated from only training on SSV2. Bottom two videos are generated from only
training on generic internet data (without SSV2, EpicKitchen, Ego4D, and various robotics dataset).
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Figure 14: When the text-to-video model behind UniSim is only trained on data from [27] as opposed incorpo-
rating broad data from the internet and other manipulation datasets, long-horizon interaction simulations fail half
of the time (red text).
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