
Learning Interactive Real-World Simulators

Mengjiao Yang†,⋄, Yilun Du♮, Kamyar Ghasemipour⋄,
Jonathan Tompson⋄, Dale Schuurmans⋄,‡, Pieter Abbeel†

†UC Berkeley, ⋄Google DeepMind, ♮MIT, ‡University of Alberta
sherryy@{berkeley.edu, google.com}

universal-simulator.github.io

Abstract

Generative models trained on internet data have revolutionized how text, image,
and video content can be created. Perhaps the next milestone for generative models
is to simulate realistic experience in response to actions taken by humans, robots,
and other interactive agents. Applications of a real-world simulator range from
controllable content creation in games and movies, to training embodied agents
purely in simulation that can be directly deployed in the real world. We explore
the possibility of learning a universal simulator (UniSim) of real-world interaction
through generative modeling. We first make the important observation that natural
datasets available for learning a real-world simulator are often rich along different
axes (e.g., abundant objects in image data, densely sampled actions in robotics
data, and diverse movements in navigation data). With careful orchestration of
diverse datasets, each providing a different aspect of the overall experience, UniSim
can emulate how humans and agents interact with the world by simulating the
visual outcome of both high-level instructions such as “open the drawer” and
low-level controls such as “move by x, y” from otherwise static scenes and objects.
There are numerous use cases for such a real-world simulator. As an example,
we use UniSim to train both high-level vision-language planners and low-level
reinforcement learning policies, each of which exhibit zero-shot real-world transfer
after training purely in a learned real-world simulator. We also show that other
types of intelligence such as video captioning models can benefit from training
with simulated experience in UniSim, opening up even wider applications. Video
demos can be found at universal-simulator.github.io.

1 Introduction

Generative models trained on internet data can now produce highly realistic text [1], speech [2],
image [3], and video [4]. Perhaps the ultimate goal of generative models is to be able to simulate
every aspect of the human experienced world, from how cars are driven on a street to how furniture is
assembled and meals prepared. With a comprehensive real-world simulator, humans can “interact”
with diverse scenes and objects, robots can learn from simulated experience without risking physical
damage, and a vast amount of “real-world” data can be simulated to train other types of machine
intelligence.
One roadblock to building such a real-world simulator lies in the datasets that are available. While
there are billions of texts, images, and video snippets available on the internet, different datasets cover
different information axes, and these have to be brought together to simulate realistic experience of the
world. For instance, paired text-image data contains rich scenes and objects but little movement [5, 6,
7], video captioning and question answering data contain rich high-level activity descriptions but little
low-level movement detail [8, 9], human activity data contains rich human action but little mechanical
motion [10, 11], and robotics data contains rich robot action but are limited in quantity [12, 13].
Since different datasets are curated by different industrial or research communities for different tasks,
NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023)

https://universal-simulator.github.io
https://universal-simulator.github.io

Simulated

navigation

Human
manipulation

Internet

scenes

Simulated

manipulation

Real-world

navigation

Internet

robots

Robot

manipulation

Internet texts, images, videos

Panarama

scans

UniSim

Figure 1: A universal Simulator (UniSim). UniSim is a simulator of the real-world that learns from broad
data rich in different axes including objects, scenes, human activities, motions in navigation and manipulation,
panorama scans, and simulations and renderings.

divergence in information is natural and hard to overcome, posing difficulties to building a real-world
simulator that seeks to capture realistic experience of the world we live in.
In this work, we take the first steps towards building a universal simulator (UniSim) of real-world in-
teraction through generative modeling. Specifically, we propose to combine a wealth of data—ranging
from internet text-image pairs, to motion and action rich data from navigation, manipulation, human
activities, robotics, and data from simulations and renderings—in a conditional video generation
framework. With careful orchestration of data rich along different axes, we show that UniSim can
successfully merge the different axes of experience and generalize beyond the data, enabling rich
interaction through fine-grained motion control of otherwise static scenes and objects. In simulating
long-horizon interactions with UniSim, we develop a fundamental connection between autoregres-
sive video generation during inference and performing rollouts in a partially observable Markov
decision processes (POMDPs) [14, 15]. As a result, UniSim can simulate long-horizon interactions
consistently across video generation boundaries.
While the potential applications of UniSim are vast, we demonstrate a few practical use cases centered
around using simulated experience from UniSim. We first demonstrate how an embodied vision-
language planner can be trained to complete long-horizon goal-conditioned tasks through hindsight
relabeling of simulated experience [16]. In addition to high-level planning, we further illustrate how
UniSim can enable learning low-level control policies by leveraging model-based reinforcement
learning [17]. We show that both the high-level vision-language planner and the low-level control
policy, while trained purely in simulation, can generalize to real robot settings in a zero-shot manner,
achieving one step towards bridging the sim-to-real gap in embodied learning [18, 19, 20]. This is
enabled by using simulators that are nearly visually indistinguishable from the real world. Lastly, we
note that UniSim can be used to simulate rare events where data collection is expensive or dangerous
(e.g., crashes in self-driving cars). Such simulated videos can then be used to improve other machine
intelligence such as rare event detectors, suggesting broad applications of UniSim beyond embodied
learning. The main contributions can be summarized as follows:
• We take the first step toward building a universal simulator (UniSim) of real-world interaction

by combining diverse datasets rich in different axes—such as objects, scenes, actions, motions,
language, and motor controls—in a unified video generation framework.

• We establish the connection between conditional video generation and partially observable Markov
decision process (POMDP), and leverage multi-frame history conditioning to simulate consistent
long-horizon interactions from otherwise static scenes and objects.

• We illustrate how UniSim can simulate realistic experiences for training embodied planners, low-
level control policies, and video captioning models, equipping these other forms of machine
intelligence with the ability to generalize to the real world when trained purely in simulation,
thereby bridging the sim-to-real gap.

2

o0 o1 o2 o3

a0
Δx1, Δω1, Δx2, Δω2

a1
wipe table

a2
<camera> 90°, <zoom> 1.5

…

…

TUniSim

Figure 2: Training and inference of UniSim. UniSim (T) is a video diffusion model trained to predict the
next (variable length) observation frames (o1) given the noisy version of the previous observation (o0) and
action input (a0). UniSim can handle actions of varying modalities such as motor controls of varying length
(∆x1,∆ω1,∆x2, ...), language descriptions of the action (“wipe table”), and actions extracted from camera
motions and other sources. Dotted arrows add noise to the true video during training or to the previously
generated video during inference to autoregressively rollout observations in supporting long-horizon interactions.

2 Learning Interactive Real-World Simulators
The major differences between an interactive real-world simulator and typical video generation
models are that a simulator requires support for (1) a diverse set of actions and (2) long-horizon
rollouts. In this section, we first enable action-rich interaction by combining datasets rich in different
axes through joint training, and then enable long-horizon interaction through history conditioning
inspired by rollouts in a POMDP.

2.1 Orchestrating Datasets Rich in Different Axes

A realistic world simulator should be able to simulate diverse scenes, objects, human activities,
robot actions, camera motions, other aspects of the world. While this seems difficult, there already
exist billions of text, image, and video samples on the internet, as well as various robotic, 3D,
and navigation datasets scattered across institutions. The main difficulty comes down effectively
extracting information from broad datasets rich in these different axes and fusing this information
into a single learned simulator.
Extracting Information from Broad Data. Although data exists across many different modalities
on the Internet, our focus in this paper will be on visual observations of the world and actions that
cause changes to these visual observations. Note that this choice inevitably misses states that are
not visual (e.g., temperature-dependent friction), but we only focus on problems that can be visually
captured. In such a scenario, if we can express the two modalities in terms of a universal interface
that relates videos and text, we can fuse the information between different datasets by training a
simulator that operates through this universal interface. Thus, the key challenge is to extract then fuse
observations and actions from different types of datasets into a common format, which we describe
below. The datasets we included in this study are as follows (further details of the datasets used to
train UniSim are given in Appendix 9).
• Simulated execution and renderings. While annotating actions for real-world videos is expensive,

simulation engines such as Habitat [21] and Language Table [22] are able to render a wide variety of
actions. We use datasets previously collected from these simulators, i.e., Habitat object navigation
using HM3D [23] and Language Table Data from [24] to train UniSim. We extract text descriptions
as actions when available. For simulated continuous control actions, we encode them via language
embeddings and concatenate the text embeddings with discretized control values.

• Real robot data. An increasing amount of video data of real-robot executions paired with task
descriptions such as the Bridge Data [25, 26] and data that enabled RT-1 and RT-2 [27] are becoming
increasingly available. Despite low-level control actions often being different across robots, the task
descriptions can serve as high-level actions in UniSim. We further include discretize continuous
controls actions when available similar to simulated robotics data.

• Human activity videos. Human activity data such as Ego4D [11], EPIC-KITCHENS [28], and
Something-Something [29] have videos filled with human activities. Different from low-level
robot controls, these activities are high-level actions that humans take to interact with the world.
But these actions are sometimes provided as labels for video classification or activity recognition

3

tasks [29]. In this case, we convert the video labels into text actions. In addition, we subsample the
videos to construct chunks of observations at a frame rate that captures meaningful actions.

• Panorama scans. There exists a wealth of 3D scans such as Matterport3D [30]. These static scans
do not contain actions. We construct actions (e.g., turn left) by truncating panorama scans and
utilize information such as change in camera poses between two images.

• Internet text-image data. Paired text-image datasets such as LAION [31] contain rich static
objects without actions. However, even though the images are static, the text labels often contain
motion information such as “a person walking”. In addition, internet text-image data can describe a
richer set of objects than other datasets above, making them good candidates for training UniSim.
To use text-image data in UniSim, we treat individual images as single-frame videos and text labels
as actions.

For each of these datasets, we process text tokens into continuous representations using T5 language
model embeddings [32] to better fuse with continuous actions such as robot controls.
Fuse Information into UniSim. Given the observation and action data extracted from the broad
datasets above, we train a diffusion model (architecture and training details in Appendix 10) to predict
observations conditioned on actions and noisy previous observations as shown in Figure 2. During
training, Gaussian noise with a fixed schedule is added to the true previous observation as a part of
the forward process of the diffusion model [33], then UniSim learns to denoise the previous noisy
observation to the next observation conditioned on the input action. Since the observations from
different environments have all been converted to videos, while actions of different modalities (e.g.,
text descriptions, motor controls, camera angles) have all been converted to continuous embeddings,
UniSim can learn a single world model across all datasets.

2.2 Enabling Long-Horizon Interactions through Rollouts in POMDP
While combining diverse data might enable rich interaction, the true value of a simulator like UniSim
lies in simulating long episodes to enable optimizing decisions through search [34], planning [35],
optimal control [36], or reinforcement learning [37]. In this section, we show that inference in UniSim
is analogous to performing rollouts in a partially observable Markov decision process (POMDP) [14].
This connection enables UniSim to support learning decision making policies with established
algorithms.
Real World as A POMDP. A POMDP can be defined as a tuple M := ⟨S,A,O,R, T , E⟩
consisting of state, action, and observation spaces as well as reward, transition, and observation
emission functions. A POMDP can characterize interactions with the real world, where st ∈ S is the
true state of the world, ot ∈ O contains video frames, and at ∈ A contains actions carried out by
humans or agents, all at interactive step t. A policy π can learn to choose actions that lead to high
rewards through interacting with M.
UniSim as Transition Function. Given an observation ot from M at interaction step t, UniSim can
parametrize the transition function T to sample the next observation ot+1 ∼ T (·|ot, at) conditioned
ot and action input at. Note that the distribution of temporally extended observations can be factorized
into segments:

T (ol|ol−1, al−1) = T (ot, ot+1|ot−1, at−1, at) = T (ot|ot−1, at−1)T (ot+1|ot, at), (1)
where ol = [ot, ot+1], al−1 = [at−1, at], and ol−1 = ot−1. This enables the modeling of dynamics
at any temporal control frequency by chaining together actions, and allows high-level abstract action
descriptions (e.g., “move left”) and low-level motor controls (e.g., ∆x,∆ω) to be jointly modeled
within the same framework. Temporally extended actions have been found to be beneficial in various
settings such as learning hierarchical policies [38, 39], skills, and options [40, 41]. Rolling out a
policy π in M corresponds to generating the next video segment conditioned on the (noisy) previously
generated video and a new action input. As a result, UniSim can simulate arbitrarily long interactions
by conditionally generating each video segment autoregressively. Note that while UniSim only
models T , reward signals R can be extracted from the generated videos for optimizing π, as we
illustrate in Section 4.2 below.
Parametrizing and training UniSim. To instantiate the UniSim method outlined in Figure 2,
we use diffusion models [42, 33] to parametrize T (ot|ot−1, at−1). Specifically, the reverse process
learns a denoising model ϵθ(o

(k)
t , k|ot−1, at−1) that denoises a previous observation into the next

observation using K denoising steps. We concatenate the last four frames from ot−1 with initial
noise samples o(K)

t ∼ N (0, I) channelwise to serve as conditional inputs to the denoising model. To

4

Wash
hands

Pick up
bowl

Dry
hand

Cut
carrots

Press
left

Press
middle

Plug in
cable

Press
right

Left

Right

Zoom
out

Up

Left

Right

Zoom
in

Down

Figure 3: Action-rich simulations. UniSim can support manipulation actions such as “cut carrots”, “wash
hands”, and “pickup bowl” from the same initial frame (top left) and other navigation actions.

condition on an action at−1, we leverage classifier-free guidance [43]. The final T (ot|ot−1, at−1) is
parametrized by the variance schedule:

ϵθ(o
(k)
t , k|ot−1, at−1) = (1 + η)ϵθ(o

(k)
t , k|ot−1, at−1)− ηϵθ(ot, k|ot−1), (2)

where η controls action conditioning strength. With this parametrization, we train ϵθ by minimizing

LMSE =
∥∥∥ϵ− ϵθ

(√
1− β(k)ot +

√
β(k)ϵ, k

∣∣∣ot−1, at−1

)∥∥∥2 ,
where ϵ ∼ N (0, I), and β(k) ∈ R are a set of K different noise levels for each k ∈ [1,K].
Given the learned ϵθ, an observation ot can be generated by sampling from the initial distribution
o
(K)
t ∼ N (0, I) and iteratively denoising according to the following process for k from K to 0

o
(k−1)
t = α(k)(o

(k)
t − γ(k)ϵθ(o

(k)
t , k|ot−1, at−1)) + ξ, ξ ∼ N

(
0, σ2

kI
)
, (3)

where γ(k) is the denoising step size, α(k) is a linear decay on the current denoised sample, and σk is
a time varying noise level that depends on α(k) and β(k).

Training Policies using UniSim. With the approximated dynamics model T parametrized by a
denoising model ϵθ, we can then optimize policies using planning, search, or reinforcement learning
algorithms by sampling from T . Using UniSim as an environment to train policies has a few
advantages including unlimited environment access (through parallelizable video servers), real-world
like observations (through photorealistic diffusion outputs), and flexible temporal control frequencies
(through temporally extended actions across low-level robot controls and high-level text actions).

3 Simulating Real-World Interactions
We now demonstrate UniSim in emulating real-world manipulation and navigation environments by
simulating both action-rich and long-horizon interactions for both humans and robots.

3.1 Action-Rich, Long-Horizon, and Diverse Interactions

Action-Rich Simulation. We first demonstrate action-rich interactions with UniSim through natural
language actions. Figure 3 shows simulation of human manipulation and navigation starting from the
same initial observation (left-most column). We can instruct a person in the initial frame to perform
various kitchen tasks (top left), press different switches (top right), or navigate scenes (bottom). We
note that the model only trained on generic internet data, without action-rich manipulation data such
as EPIC-KITCHENS [28], fails to simulate action-rich manipulations (see Appendix 12).
Long-Horizon Simulation. Next, we illustrate 8 sequential interactions with UniSim in Figure 4.
Specifically, we condition the simulation of each interaction on previous observation and new
language action as described in Section 2.2. UniSim successfully preserves objects manipulated

5

1. Pick up can
and put on top

2. Close
bottom drawer

3. Open
middle drawer

4. Put orange in
middle drawer

5. Close
middle drawer

6. Open top
drawer

7. Put can in
top drawer

8. Close top
drawer

Figure 4: Long-horizon simulations. UniSim sequentially simulates 8 interactions autoregressively. The
simulated interactions maintain temporal consistency across long-horizon interactions, correctly preserving
objects and locations (can on counter in column 2-7, orange in drawer in column 4-5).

Toothpaste Spider PlateUncover Pen Bottle Pickup 1. Put cup 2. Pen 3. Apple

Figure 5: Diverse and stochastic simulations. On the left, we use text to specify the object being revealed by
suffixing “uncovering” with the object name. On the right, we only specify “put cup” or “put pen”, and cups and
pens of different colors are sampled as a result of the stochastic sampling process during video generation.

Condition FID ↓ FVD ↓ IS ↑ CLIP ↑
1 frame 59.47 315.69 3.03 22.55
4 distant 34.89 237 3.43 22.62
4 recent 34.63 211.3 3.52 22.63

Table 1: Ablations of history conditioning using
FVD, FID, and Inception score, and CLIP score on
Ego4D. Conditioning on multiple frames is better
than on a single frame, and recent history has an edge
over distant history.

Habitat:
navigate

to TV

Navigate
to TV

Figure 6: Simulations of low-data domains using the
Habitat object navigation using HM3D dataset [23] with
only 700 training examples. Prefixing language actions
with dataset identifier leads to videos that completes the
action (top).

by previous instructions (e.g., the orange and can are preserved in the drawers in Columns 4, 5,
7, 8 after being put in the drawers). Additional results on long-horizon interaction are included in
Appendix 8.1.

Diversity and Stochasticity in UniSim In addition to supporting action-rich and long-horizon
interactions, UniSim can also support highly diverse and stochastic environment transitions, such as
diversity in objects being revealed after removing the towel on top (Figure 5 left), diversity in object
colors and locations (cups and pens in Figure 5 right), and real-world variabilities such as wind and
change in camera angles. We can use language actions to specify the appearance of diverse objects,
and leverage the stochastic sampling process of video generation to support environment stochasticity
such as wind and camera angles. Since diffusion models are flexible in capturing multi-modal
distributions, they can generate diverse samples representing highly stochastic environments. Note
that stochasticity associated with the sampling process cannot be directly controlled by users, which
corresponds to the uncontrollable environment stochasticity from Dichotomy of Control [44] that is
ubiquitous in real-world environments (e.g., wind).

6

3.2 Ablation and Analysis

Frame Conditioning Ablations. We ablate over choices of past frames to condition on (detailed in
Section 2.2) using the Ego4D dataset [11], which contains egocentric movement requiring proper
handling of observation history. We compare UniSim trained by conditioning on a different number
of past frames and report generative modeling metrics (e.g., FID, FVD) in Table 1. We observe
that conditioning on more frames from the past is better than conditioning on a single frame, but
conditioning on history that is too far in the past (4 frames with exponentially increasing distances)
can hurt performance. We found increasing the number of conditioning frames beyond 4 did not
further improve performance on Ego4D, but it could be helpful for applications that require memory
from distant past (e.g., navigation for retrieval).
Simulating Low-Data Domains. During joint training of UniSim on diverse data, we found that
naïvely combining datasets of highly varying size can result in low generation quality in low-data
domains. While we can increase the weight of these domains in the data mixture during training,
we found that attaching a domain identifier such as the name of the dataset to the actions being
conditioned on improves generation quality in low-data domains, as shown in Figure 6.

4 Applications of UniSim
Having learned a realistic simulator of the real world, we now demonstrate how UniSim can be used
to train other types of machine intelligence such as embodied planners, reinforcement learning agents,
and vision-language models through simulating highly realistic experiences.

4.1 Training Long-Horizon Embodied Planner through Hindsight Labeling.

One of the recent advances in learning embodied agents has been the adoption of language models
or vision language models (VLM) as policies or planners that can operate in image or text based
observation and action spaces [45, 46, 47]. One major challenge in learning such agents lies in
the need for large amounts of data from the real world. The labor intensity in data collection only
increases as tasks increase in horizon and complexity. Below, we demonstrate how UniSim can
generate large amounts of training data for VLM policies through hindsight relabeling.
Setup and Baseline. We use data from the Language Table environment [22] for learning geometric
rearrangements of blocks on a table. The dataset consists of 160k simulated trajectories and 440k
real trajectories where each trajectory contains a language instruction (e.g., “move blue cube to the
right”), a sequence of visuomotor controls, and a sequence of image frames corresponding to the
execution of the task. The original trajectories have short horizons (e.g., only moving one block). We
train an image-goal conditioned VLM policy to predict language instructions and the motor controls
from the start and goal images using the PALM-E architecture [46] (See details in Appendix 11.1).
For the baseline, the goal is set to the last frame of the original short-horizon trajectories. During
each evaluation run, we set the goal by modifying the location of 3-4 blocks in the Language Table
Simulation environment, and measure the blocks’ distance to their goal states after executing 5
instructions using the VLM policy. We define the reduction in distance to goal (RDG) metric as

RDG =
∥s0 − sgoal∥2 − ∥sT − sgoal∥2

∥s0 − sgoal∥2
, (4)

where sT represents the underlying block locations after executing the policy, s0 and sgoal represents
the initial and goal block locations.
Generating Hindsight Data with UniSim. To use UniSim for long-horizon tasks, we draw
inspiration from hindsight relabeling [48]. Specifically, we create a total of 10k long-horizon
trajectories from UniSim by doing rollouts in UniSim 3-5 times per trajectory, where each rollout
corresponds to one scripted language instruction similar to the original dataset. We then use the
final frame from each long-horizon rollout as a goal input and the scripted language instructions as
supervision for training the VLM policy.
Results on Zero-shot Real-World Transfer. The true value of UniSim lies in simulating the real
world. Figure 7 shows that the language plans produced by the VLM, the generated videos from
UniSim according to the language plans, and the executions on the real robot. The policy purely
trained in UniSim can directly perform long-horizon tasks in the real world in a zero-shot manner.
See additional sim-to-real results with zero-shot real-world transfer in Appendix 8.2.
Results on Simulated Evaluation. In addition to testing real-world transfer, we also conduct
simulator based evaluation to compare the reduction in distance to goal (RDG) of the VLM policy

7

Move the blue cube
to the bottom right

Slide the green circle
to the top left

Move the yellow circle
to the bottom left

Start Goal

Real-robot execution

Simulated video plans from UniSim

Language plans generated by the VLM policy

Figure 7: Long-horizon plans from UniSim. A VLM poliy generates high-level language plans (first row)
which are executed in UniSim (middle row) similar to how they are executed in the real world (bottom row)
using the Language Table robot. The VLM trained on data from UniSim can plan for long-horizon tasks by
successfully moving three blocks (blue, green, yellow) to match their target location in the goal image.

RDG (moved) RDG (all)

VLM-BC 0.11 ± 0.13 0.07 ± 0.11
UniSim-Hindsight 0.34 ±0.13 0.34 ± 0.13

Table 2: Evaluation of long-horizon plans. Reduc-
tion in distance to goal (RDG) defined in Equation 4
across 5 evaluation runs of VLM trained in UniSim
simulated long-horizon data (bottom row) compared to
VLM trained on original short-horizon data (top row).
Using UniSim performs much better both in RGD of
moved blocks (left) and RGD in all blocks (right).

Succ. rate (all) Succ. rate (pointing)

VLA-BC 0.58 0.12
UniSim-RL 0.81 0.71

Table 3: Evaluation of RL policy. Percentage of suc-
cessful simulated rollouts (out of 48 tasks) using the
VLA policy with and without RL finetuning on Lan-
guage Table (assessed qualitatively using video rollouts
in UniSim). UniSim-RL improves the overall perfor-
mance, especially in pointing-based tasks which con-
tain limited expert demonstrations.

trained on UniSim’s generated long-horizon data to the VLM policy trained on the original short-
horizon data in Table 2. The VLM trained using long-horizon data generated by UniSim performs
3-4 times better than the VLM trained on original short-horizon data in completing long-horizon
goal-conditioned tasks.

4.2 Real-World Simulator for Reinforcement Learning

Reinforcement learning (RL) has achieved superhuman performance on difficult tasks such as playing
Go and Atari games [34, 49], but has limited real world applications due to the lack of a realistic
environment simulator [50]. We investigate whether UniSim can enable effective training of RL
agents by providing the agent with a realistic simulator that can be accessed in parallel.

Setup. We finetune the PaLI 3B vision-language model [51] to predict low-level control actions
(joint movements in ∆x,∆y) from an image observation and a task description (e.g., “move the blue
cube to the right”) using the behavioral cloning (BC) loss to serve as the low-level control policy and
the baseline, which we call the vision-language-action (VLA) policy similar to [47]. Because UniSim
can take low-level control actions as input, we can directly conduct model-based rollouts in UniSim
using control actions outputted by VLA policy. To acquire reward information, we use the number of
steps-to-completion from the training data as a proxy reward to train a model that maps the current
observation to learned reward. We then use the REINFORCE algorithm [52] to optimize the VLA
policy, treating the rollouts from UniSim as the on-policy rollouts from the real environment and use
the learned reward model to predict rewards from simulated rollouts. See details of RL training in
Appendix 11.2.

Results. We first assess the quality of UniSim in simulating real-robot executions by applying
low-level control actions (e.g., ∆x = 0.05, δy = 0.05) repeatedly for 20-30 environment steps to
move the endpoint left, right, down, up, and diagonally in Figure 8 (top two rows). We see that the
simulated rollouts capture both the endpoint movements and the physics of collision. To compare
the RL policy trained in UniSim to the BC policy, we qualitatively assessed the simulated rollouts
in UniSim. Table 3 shows that RL training significantly improves the performance of the VLA
policy across a wide set of tasks, especially in tasks such as “point to blue block”. We then directly
deploy the RL policy trained in UniSim onto the real robot in zero-shot, and observe successful task
executions as shown in Figure 8 (bottom row). Additional results on zero-shot transfer to real robot
can be found in Appendix 8.3.

8

Real-robot execution
of “move blue cube to

green circle”

Simulated rollout
from moving
left, right, down, up

Δx, Δy

Simulated rollout
from

moving diagonally
Δx, Δy

Figure 8: [Top] Simulation from low-level controls. UniSim supports low-level control actions as inputs to
move endpoint horizontally, vertically, and diagonally. [Bottom] Real-robot execution of an RL policy trained
in UniSim and zero-shot onto the real Language Table task. The RL policy can successfully complete the task of
“moving blue cube to green circle”.

4.3 Realistic Simulator for Broader Vision-Language Tasks.

UniSim can generate training data for other machine intelligence such as detectors of rare events.
This is especially useful when natural data is rare or difficult to collect (e.g., footage of crimes
or accidents). We provide such a proof-of-concept by training vision-language models on purely
generated data from UniSim, and observe significant performance benefits in video captioning tasks.

Activity MSR-VTT VATEX SMIT

No finetune 15.2 21.91 13.31 9.22
Activity 54.90 24.88 36.01 16.91
UniSim 46.23 27.63 40.03 20.58

Table 4: VLM trained in UniSim to perform video
captioning tasks. CIDEr scores for PaLI-X fine-
tuned only on simulated data from UniSim com-
pared to no finetuning and finetuning on true video
data from ActivityNet Captions. Finetuning only
on simulated data has a large advantage over no
finetuning and transfers better to other tasks than
finetuning on true data.

Setup. We finetune PaLI-X [53], a VLM with 55B
parameters pretrained on a broad set of image, video,
and language tasks, to caption a set of videos gen-
erated by UniSim using texts from the training split
of ActivityNet Captions [9]. We measure the CIDEr
score of the finetuned model on the test split of Ac-
tivityNet Captions as well as other captioning tasks
following the same setup as [53]. See finetuning
details of PaLI-X in Appendix 11.3.
Results. We compare PaLI-X finetuned on purely
generated videos to PaLI-X without finetuning and
PaLI-X finetuned on original ActivityNet Captions
in Table 4. Purely finetuning on generated data drastically improves the captioning performance from
no finetuning at all on ActivityNet (15.2 to 46.23), while achieving 84% performance of finetuning on
true data. Furthermore, PaLI-X finetuned on generated data transfers better to other captioning tasks
such as MSR-VTT [8], VATEX [54], and SMIT [55] than PaLI-X finetuned on true data, which tends
to overfit to ActivityNet. These results suggest that UniSim can serve as an effective data generator
for improving broader vision-language models.

5 Related Work
Internet-Scale Generative Models. Language models trained on internet text succeed at text-
based tasks [1, 56] but not physical tasks, which requires perception and control. Internet-scale
generative models can synthesize realistic images and videos [57, 4, 58, 59], but have mostly been
applied to generative media [60] as opposed to empowering sophisticated agents capable of multi-turn
interactions. [61] shows video generation can serve as policies, but the major bottleneck for policy
learning often lies in limited access to real-world environments [50]. We focus on this exact bottleneck
by learning universal simulators of the real world, enabling realistic and unlimited “environment”
access for training sophisticated agents interactively.
Learning World Models. Learning an accurate world model in reaction to control inputs has been
a long-standing challenge in model-based planning, optimization, and reinforcement learning [17, 62,
36]. Most systems choose to learn dynamics models in lower dimensional state spaces as opposed
to in the pixel space [63, 64, 65, 66], which limits knowledge sharing across systems. With large
transformer architectures, learning image-based world models became plausible [67, 68, 69, 70,
71, 72], but mostly in games or simulated domains with visually simplistic and abundant data. In
video generation, previous works have leveraged text prompts [73, 74], driving videos [75, 76], 3D
geometries [77, 78], physical simulations [79], frequency information [80], and user annotations [81]
to introduce movements into videos. However, they focus on generating domain specific videos as
opposed to building a universal simulator that can further improve other agents as in UniSim.

9

6 Limitations and Conclusion
We have shown it is possible to learn a universal simulator of the real world in response to various
action inputs ranging from texts to robot controls. UniSim can simulate highly realistic experiences
for interacting with humans and training autonomous agents. UniSim requires large compute to train
similar to other modern foundation models. Despite this disadvantage, we hope UniSim will instigate
broad interest in learning and applying real-world simulators to improve machine intelligence.

7 Acknowledgements
We thank Hanjun Dai and Doina Precup for reviewing this manuscript. We gratefully acknowledges
the support of a Canada CIFAR AI Chair, NSERC and Amii, NSF GRFP, and the support from
Berkeley BAIR industrial consortion.

References
[1] OpenAI. Gpt-4 technical report, 2023. 1, 9

[2] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt
Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm:
a language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2023. 1

[3] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022. 1

[4] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022. 1, 9,
22

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014. 1

[6] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022. 1

[7] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12104–12113, 2022. 1, 23

[8] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for
bridging video and language. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5288–5296, 2016. 1, 9

[9] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-
captioning events in videos. In Proceedings of the IEEE international conference on computer
vision, pages 706–715, 2017. 1, 9, 24

[10] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. Howto100m: Learning a text-video embedding by watching hundred million
narrated video clips. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 2630–2640, 2019. 1

[11] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world
in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18995–19012, 2022. 1, 3, 7, 21

10

[12] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
arXiv preprint arXiv:1910.11215, 2019. 1

[13] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform
for robotic skill learning through imitation. In Conference on Robot Learning, pages 879–893.
PMLR, 2018. 1

[14] George E Monahan. State of the art—a survey of partially observable markov decision processes:
theory, models, and algorithms. Management science, 28(1):1–16, 1982. 2, 4

[15] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-
Hall, Inc., One Lake Street, Upper Saddle River, NJ, United States, January 1987. 2

[16] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems. 2017. 2

[17] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 1988. 2, 9

[18] Andrei A Rusu, Matej Večerík, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on robot
learning, pages 262–270. PMLR, 2017. 2

[19] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pages 737–744. IEEE, 2020. 2

[20] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Crossing the reality
gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE
Access, 9:153171–153187, 2021. 2

[21] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339–9347, 2019. 3

[22] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured
data. arXiv preprint arXiv:2005.07648, 2020. 3, 7, 21

[23] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexan-
der Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X
Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d):
1000 large-scale 3d environments for embodied AI. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2021. 3, 6, 21

[24] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch,
Travis Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE
Robotics and Automation Letters, 2023. 3

[25] Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis,
Kostas Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of
robotic skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021. 3, 21

[26] Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, et al. Bridgedata v2: A dataset for robot
learning at scale. arXiv preprint arXiv:2308.12952, 2023. 3

[27] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022. 3, 21, 26

11

[28] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling
egocentric vision: The epic-kitchens dataset. In Proceedings of the European conference on
computer vision (ECCV), pages 720–736, 2018. 3, 5, 21

[29] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The" something something" video database for learning and evaluating visual common
sense. In Proceedings of the IEEE international conference on computer vision, pages 5842–
5850, 2017. 3, 4, 21

[30] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. arXiv preprint arXiv:1709.06158, 2017. 4

[31] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton
Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open
dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021. 4,
21

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020. 4, 21

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, 2020. 4

[34] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815. 4, 8

[35] Michael Montemerlo and Sebastian Thrun. FastSLAM: A scalable method for the simultaneous
localization and mapping problem in robotics, volume 27. Springer, 2007. 4

[36] Shengwei Wang and Xinqiao Jin. Model-based optimal control of vav air-conditioning system
using genetic algorithm. Building and Environment, 35(6):471–487, 2000. 4, 9

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 4

[38] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the
now. In 2011 IEEE International Conference on Robotics and Automation, pages 1470–1477.
IEEE, 2011. 4

[39] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018. 4

[40] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-
2):181–211, 1999. 4

[41] George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement learning
domains using skill chaining. Advances in neural information processing systems, 22, 2009. 4

[42] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015. 4

[43] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022. 5

12

[44] Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control:
Separating what you can control from what you cannot. arXiv preprint arXiv:2210.13435, 2022.
6

[45] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023. 7

[46] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023. 7, 23

[47] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023. 7, 8, 23

[48] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Jürgen Schmidhuber. Hindsight policy
gradients. In International Conference on Learning Representations, 2019. 7

[49] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015. 8

[50] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019. 8, 9

[51] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled
multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022. 8, 23

[52] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992. 8, 24

[53] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu,
Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023. 9, 24

[54] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. Vatex:
A large-scale, high-quality multilingual dataset for video-and-language research. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4581–4591, 2019. 9

[55] Mathew Monfort, SouYoung Jin, Alexander Liu, David Harwath, Rogerio Feris, James Glass,
and Aude Oliva. Spoken moments: Learning joint audio-visual representations from video
descriptions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14871–14881, 2021. 9

[56] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023. 9

[57] Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and
Nan Duan. Godiva: Generating open-domain videos from natural descriptions. arXiv preprint
arXiv:2104.14806, 2021. 9

[58] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu,
Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without
text-video data. arXiv preprint arXiv:2209.14792, 2022. 9

[59] Mengjiao Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B Tenenbaum, and Pieter Abbeel.
Probabilistic adaptation of text-to-video models. arXiv preprint arXiv:2306.01872, 2023. 9

[60] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image
diffusion model in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023. 9

13

[61] Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B Tenenbaum, Dale
Schuurmans, and Pieter Abbeel. Learning universal policies via text-guided video generation,
2023. URL https://arxiv. org/abs/2302.00111, 2023. 9, 23

[62] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998. 9

[63] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision
processes. In UAI, volume 4, pages 162–169, 2004. 9

[64] Alessandro Achille and Stefano Soatto. A separation principle for control in the age of deep
learning. Annual Review of Control, Robotics, and Autonomous Systems, 1:287–307, 2018. 9

[65] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State
representation learning for control: An overview. Neural Networks, 108:379–392, 2018. 9

[66] Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10069–10076, 2020. 9

[67] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020. 9

[68] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022. 9

[69] Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
action-free pre-training from videos. In International Conference on Machine Learning, pages
19561–19579. PMLR, 2022. 9

[70] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world
models. arXiv preprint arXiv:2209.00588, 2022. 9

[71] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsuper-
vised visual dynamics simulation with object-centric models. arXiv preprint arXiv:2210.05861,
2022. 9

[72] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023. 9

[73] Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
projected latent space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18456–18466, 2023. 9

[74] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
Efficient video generation with latent diffusion models. arXiv preprint arXiv:2211.11018, 2022.
9

[75] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. Ani-
mating arbitrary objects via deep motion transfer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2377–2386, 2019. 9

[76] Yaohui Wang, Di Yang, Francois Bremond, and Antitza Dantcheva. Latent image animator:
Learning to animate images via latent space navigation. arXiv preprint arXiv:2203.09043, 2022.
9

[77] Chung-Yi Weng, Brian Curless, and Ira Kemelmacher-Shlizerman. Photo wake-up: 3d character
animation from a single photo. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5908–5917, 2019. 9

[78] Tianfan Xue, Jiajun Wu, Katherine L Bouman, and William T Freeman. Visual dynamics:
Stochastic future generation via layered cross convolutional networks. IEEE transactions on
pattern analysis and machine intelligence, 41(9):2236–2250, 2018. 9

14

[79] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian Curless, David H Salesin, and
Richard Szeliski. Animating pictures with stochastic motion textures. In ACM SIGGRAPH
2005 Papers, pages 853–860. 2005. 9

[80] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image
dynamics, 2023. 9

[81] Zekun Hao, Xun Huang, and Serge Belongie. Controllable video generation with sparse trajec-
tories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7854–7863, 2018. 9

[82] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3674–3683, 2018. 21

[83] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pages 4904–4916.
PMLR, 2021. 21

[84] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference,
Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pages 424–432. Springer, 2016.
22

[85] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022. 22

[86] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Dara Bahri, Tal Schuster, Steven Zheng, et al. Ul2: Unifying language learning
paradigms. In The Eleventh International Conference on Learning Representations, 2022. 23

[87] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018. 23

[88] Teng Wang, Ruimao Zhang, Zhichao Lu, Feng Zheng, Ran Cheng, and Ping Luo. End-to-end
dense video captioning with parallel decoding. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6847–6857, 2021. 24

15

Appendix
In this Appendix we provide additional qualitative results on long-horizon simulation of human
and robot interactions (Section 8.1), zero-shot sim-to-real transfer results on long-horizon planning
(Section 8.2), and zero-shot sim-to-real transfer of the RL policy (Section 8.3). We also provided
details on the dataset used to train UniSim in Section 9, the model architecture and training details of
UniSim in Section 10, and the details of the three experimental setups for applications of UniSim in
Section 11. Finally, we provide failed examples when UniSim is not jointly trained on broad datasets
(Section 12). Video demos can be found at anonymous-papers-submissions.github.io

8 Additional Results
8.1 Additional Long-Horizon Interaction

1. Close
bottom drawer

4. Close top
drawer

3. Put bottle in
drawer

2. Open top
drawer

1. Move sponge
close to chips

3. Knock
can over

2. Move can
close to chips

Figure 9: Additional results on long-horizon interaction with humans and robots similar to Figure 4. UniSim can
generate consistent video rollouts across 3-4 high-level language actions.

16

https://anonymous-papers-submissions.github.io/

8.2 Additional Real-Robot Results for Long-Horizon Planning

Move the blue cube
to the bottom left

Slide the green circle
to the top left

Move the yellow circle
to the top right

Start Goal

Real-robot executions

Simulated Video plans from UniSim

Language plans generated by the VLM policy

Move the blue cube
to the bottom left

Slide the green circle
to the top left

Start Goal

Real-robot executions

Language plans generated by the VLM policy

Simulated video plans from UniSim

Figure 10: Additional results (similar to Figure 7) on applying UniSim to train vision-language planners to
complete long-horizon tasks. VLM finetuned with hindsight labeled data is able to generate long-horizon
instructions that moves two or three blocks successfully to match their location in the goal image.

17

8.3 Additional Results on Learning RL Policy in UniSim

18

Simulated last observation of each trajectory

Real first observation of each trajectory

Place your hand
above the blue cube

Push the red circle
towards center right

Slice yellow hexagon
a bit right

Move the red star
towards the red circle

Move the red star
right and up a bit

Push the blue cube
closer to the red circle

Push the yellow heart
above the blue triangle

Slightly move the green circle
downwards

Place your arm to the
left of the red star

Separate the green circle
from green star

Push the yellow heart
at the bottom of the green star

Move the red circle
into the green star

Move the yellow hexagon to
the top left of the board

Place the green circle to
the bottom of the blue cube

Separate the red star
from the red circle

Separate the green circle
from green star

Place your hand
above the blue cube

Push the red circle
towards center right

Slice yellow hexagon
a bit right

Move the red star
towards the red circle

Move the red star
right and up a bit

Push the blue cube
closer to the red circle

Push the yellow heart
above the blue triangle

Slightly move the green circle
downwards

Place your arm to the
left of the red star

Separate the green circle
from green star

Push the yellow heart
at the bottom of the green star

Move the red circle
into the green star

Move the yellow hexagon to
the top left of the board

Place the green circle to
the bottom of the blue cube

Separate the red star
from the red circle

Separate the green circle
from green star

Figure 11: First real observations and last simulated observations of rolling out the RL policy trained in UniSim.

19

Real-robot last observation of each trajectory

Real first observation of each trajectory

Put the red star
towards the blue cube

Move the blue cube
next to the green circle

Put the yellow pentagon
towards the blue cube

Move the blue cube
close to the green circle

Slide the red circle
next to the yellow pentagon

Put the yellow pentagon
 to the blue cube

Move the blue cube
close to the green circle

Slide the red circle
next to the yellow pentagon

Put the yellow pentagon
 to the blue cube

Put the red star
towards the blue cube

Move the blue cube
next to the green circle

Put the yellow pentagon
towards the blue cube

Move the blue cube
close to the green circle

Slide the red circle
next to the yellow pentagon

Put the yellow pentagon
 to the blue cube

Put the red star
towards the blue cube

Move the blue cube
next to the green circle

Put the yellow pentagon
towards the blue cube

Learned reward model output

Figure 12: First real observations and last real observations of executing the RL policy trained from UniSim in
the real world in zero-shot. Middle plot also shows the output of the learned reward model (steps-to-completion)
during policy execution, where step 0 corresponds to the top plot (initial observation) and step 70 corresponds to
the bottom plot (final observation).

20

9 Datasets
We provide the datasets used to train UniSim below, including dataset name, number of training
examples (approximate), and weight in the data mixture. Miscellaneous data are collections of
datasets that have not been published. Some of these datasets have been processed into train and
validation split, hence the number of training examples may differ from the original data size. When
text are available in the original dataset, we use T5 language model embeddings [32] to preprocess
the text into continuous representations. When low-level controls are available in the original dataset,
we encode them both as text and normalize then discretize them into 4096 bins contatenated with
language embeddings (if present). The choice of mixture weights are either 0.1 or 0.05 without
careful tuning. How data mixture weights affect simulation performance is an interesting line of
future work.

Dataset # Examples Weight

Simulation
Habitat HM3D [23] 710 0.1
Language Table sim [22] 160k 0.05

Real Robot

Bridge Data [25] 2k 0.05
RT-1 data [27] 70k 0.1
Language Table real [22] 440k 0.05
Miscellaneous robot videos 133k 0.05

Human activities

Ego4D [11] 3.5M 0.1
Something-Something V2 [29] 160k 0.1
EPIC-KITCHENS [28] 25k 0.1
Miscellaneous human videos 50k 0.05

Panorama scan Matterport Room-to-Room scans [82] 3.5M 0.1

Internet text-image
LAION-400M [31] 400M 0.05
ALIGN [83] 400M 0.05

Internet video Miscellaneous videos 13M 0.05
Table 5: Dataset name, number of training examples, and mixture weights used for training UniSim.

21

10 Architecture and Training
We the 3D U-Net architecture [84, 85] to parametrize the UniSim video model. We apply the
spatial downsampling pass followed by the spatial upsampling pass with skip connections to the
downsampling pass activations with interleaved 3D convolution and attention layers as in the standard
3D U-Net. The video models in UniSim consist of one history conditioned video prediction model as
the base and two additional spatial super-resolution models similar to [4]. The history conditioned
base model operates at temporal and spatial resolution [16, 24, 40], and the two spatial super-resolution
models operate at spatial resolution [24, 40] → [48, 80] and [48, 80] → [192, 320], respectively. To
condition the base video model on the history, we take 4 frames from the previous video segment
and concatenate them channelwise to the noise samples inputted to the U-Net. We employ temporal
attention for the forward model to allow maximum modeling flexibility but temporal convolution to the
super-resolution models for efficiency reasons similar to [4]. The model and training hyperparamters
of UniSim are summarized in Table 6.

Hyperparameter Value
Base channels 1024
Optimizer Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers 1, 2, 4
Learning rate 0.0001
Blocks per resolution 3
Batch size 256
Attention resolutions 6, 12, 24
Num attention heads 16, 16, 8
Conditioning embedding dimension 4096
Conditioning embedding MLP layers: 4
Conditioning token length 64
EMA 0.9999
Dropout 0.1
Training hardware 512 TPU-v3 chips
Training steps 1000000
Diffusion noise schedule cosine
Noise schedule log SNR range [-20, 20]
Sampling timesteps 256
Sampling log-variance interpolation γ = 0.1
Weight decay 0.0
Prediction target ϵ

Table 6: Hyperparameters for training the UniSim diffusion model.

22

11 Details of Experimental Setups
11.1 Details of Long-Horizon Planning
PALM-E VLM Policy. We modify the original PALM-E 12B model [46] to condition on a goal
image as additional input before decoding the text actions. The VLM is finetuned on either the
original short horizon data or the long horizon simulated data using 64 TPUv3 chips for 1 day.
The supervision for short-horizon baseline is the single step language instruction in the original
data, whereas the supervision for long-horizon UniSim data is the scripted long-horizon language
instructions chained together that generated the video data. Other model architecture and training
details follow [46].
Simulated evaluation. In setting up goal in the simulated environments, a subset of 3-4 blocks
(randomly selected) are moved by 0.05, 0.1, or 0.2 along the x,y axes (randomly selected). The
original observation space has x ∈ [0.15, 0.6] and y ∈ [−0.3048, 0.3048]. So the modification of
goal location corresponds to meaningful block movements. For executing the long-horizon VLM
policy trained on UniSim data, we first sample one language instruction from the VLM, predict a
video of 16 frames, and use a separately trained inverse dynamics model similar to [61] to recover
the low-level control actions, which we found to slightly outperform directly regressing on control
actions from language outputs of the VLM. We execute 5 instructions in total, and measure the final
distance to goal according to the ground truth simulator state. We 5 evaluations each with a different
random seed for sampling the initial state and resetting the goal, and report the mean and standard
error in Table 2.

11.2 Details of RL Policy Training
Stage 1 (Supervised Learning)
Model Architecture The PaLI 3B model trained on Language-Table uses a Vision Transformer
architecture G/14 [7] to process images, and the encoder-decoder architecture of UL2 language
model [86] for encoding task descriptions and decoding tokens which can represent language, control
actions, or other values of interest (described below).
Objectives In the first stage of training, using a dataset of demonstrations, we finetune the pretrained
PaLI 3B vision language model checkpoint [51] with the following tasks:

• Behavioral Cloning: Given observations and task instruction, predict the demonstration
action. The continuous actions of the Language-Table domain are discretized into the form
“+1 -5", and represented using extra tokens from the PaLI model’s token vocabulary. As an
example, “+1 -5" is represented by the token sequence (<extra_id_65>, <extra_id_1>,
<extra_id_66>, <extra_id_5>).

• Timestep to Success Prediction: Given observations and task instruction, predict how
many timesteps are left until the end of episode (i.e. success). Similar to actions, the number
of steps remaining is represented via extra tokens from the PaLI model’s token vocabulary.

• Instruction Prediction: Given the first and last frame of an episode, predict the task
instruction associated with that episode.

We use learning rate 0.001, dropout rate 0.1, and batch size 128 to finetune the PaLI 3B model for
300k gradient steps with 1k warmup steps on both the simulated and real Language Table dataset
similar to RT-2 [47].
Stage 2 (RL Training)
Reward Definition As mentioned above, during Stage 1, given an observation and goal, the PaLI
model is finetuned to predict how many timesteps are left until the demonstration episode reaches a
success state. Let us denote this function by d(o, g). The reward we use during RL training is defined
as r(ot, at, ot+1, g) = −[d(ot+1, g)− d(ot, g)] · C, where C > 0 is a small constant used to stabilize
training (C = 5e− 2 in this work). Intuitively, this reward tracks if from timestep t to t+1 the policy
arrived closer to accomplishing the desired goal. Before starting Stage 2, we make a copy of the
Stage 1 model checkpoint and keep it frozen to use as the reward model for RL training.
Environment Definition To implement video generation as environment transitions, we expose
the inference interface of the video generation model through remote procedure call, and use the
DeepMind RL Environment API (also known as DM Env API) [87] to wrap the remote procedure
call in the step function of the environment. When the environment is reset to start a new episode, a
goal instruction is randomly sampled from the ones available in the dataset of demonstrations used in
Stage 1.

23

RL Method We initialize the RL trained policy using the Stage 1 checkpoint, which as mentioned
was also trained with a Behavioral Cloning objective. A collection of actor processes perform
policy rollouts in the video generation environment, and add rewards to the trajectories using the
reward model defined above. The policy is updated using the REINFORCE [52] objective, i.e.
∇πL(ot, at, g) = ∇π log π(at|ot, g) ·

[∑T
i=t γ

i−t · r(oi, ai, oi+1, g)
]
, where L(ot, at, g) represents

the loss associated with the observation-action pair (ot, at) in an episode with the goal g. The
actors are rate limited to prevent generated trajectories from being very off-policy. We report the
hyperparameters associated with RL training in Table 7.

Hyperparameter Value
Max steps per episode 100
Number of actor processes 64
Number of image history stack 2
Learner batch size 64
Discounting factor γ 0.9

Table 7: Hyperparameters for training the VLA RL policy using the ACME framework.

11.3 Details of Video Captioning
Note that even though UniSim is a video based simulator trained to condition on past history, we can
achieve text-only conditioning by inputting placeholder frames such as white images while increasing
the classifier-free guidance strength on text. We found this to work well in generating videos purely
from captions of ActivityNet Captions. For generating data to train VLMs, we take the training
split of ActivityNet Captions which consists of 30,740 text-video examples after the 50/25/25%
train/val1/val2 split as in [53]. For each of the 30,740 text, we generate 4 videos from UniSim, and
use the text labels as supervision in finetuning PaLI-X. As a result, we have 4X amount of the original
training data (in terms the number of videos). In addition, we found the generated videos to generally
align better semantically than the original ActivityNet Captions videos, which could contain noise
and ambiguous videos that could be labeled differently. We use ground truth temporal proposals at
evaluation following [53] and [9]. Following [53] and [88], we use the val1 split for validation and
val2 split for testing.

24

12 Failed Simulations without Joint Training

Figure 13: Failed environment simulation from the action “uncover bottle” without training on broad data as in
UniSim. Top two videos are generated from only training on SSV2. Bottom two videos are generated from only
training on generic internet data (without SSV2, EpicKitchen, Ego4D, and various robotics dataset).

25

Pick up can
and put on

top

Close
bottom
drawer

Open
middle
drawer

Put orange
in middle

drawer

Close
middle
drawer

Open
top

drawer

Put can
in top
drawer

Close
top

drawer

Figure 14: When the text-to-video model behind UniSim is only trained on data from [27] as opposed incorpo-
rating broad data from the internet and other manipulation datasets, long-horizon interaction simulations fail half
of the time (red text).

26

	Introduction
	Learning Interactive Real-World Simulators
	Orchestrating Datasets Rich in Different Axes
	Enabling Long-Horizon Interactions through Rollouts in POMDP

	Simulating Real-World Interactions
	Action-Rich, Long-Horizon, and Diverse Interactions
	Ablation and Analysis

	Applications of UniSim
	Training Long-Horizon Embodied Planner through Hindsight Labeling.
	Real-World Simulator for Reinforcement Learning
	Realistic Simulator for Broader Vision-Language Tasks.

	Related Work
	Limitations and Conclusion
	Acknowledgements
	Additional Results
	Additional Long-Horizon Interaction
	Additional Real-Robot Results for Long-Horizon Planning
	Additional Results on Learning RL Policy in UniSim

	Datasets
	Architecture and Training
	Details of Experimental Setups
	Details of Long-Horizon Planning
	Details of RL Policy Training
	Details of Video Captioning

	Failed Simulations without Joint Training

