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Multiscale Neural Operators:
Learning Fast and Grid-independent PDE Solvers
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Abstract
Numerical simulations in climate, chemistry,
or astrophysics are computationally too expen-
sive for uncertainty quantification or parameter-
exploration at high-resolution. Reduced-order or
surrogate models are multiple orders of magnitude
faster, but traditional surrogates are inflexible or
inaccurate and pure machine learning (ML)-based
surrogates too data-hungry. We propose a hy-
brid, flexible surrogate model that exploits known
physics for simulating large-scale dynamics and
limits learning to the hard-to-model term, which is
called parametrization or closure and captures the
effect of fine- onto large-scale dynamics. Leverag-
ing neural operators, we are the first to learn grid-
independent, non-local, and flexible parametriza-
tions. Our multiscale neural operator is motivated
by a rich literature in multiscale modeling, has
quasilinear runtime complexity, is more accurate
or flexible than state-of-the-art parametrizations
and demonstrated on the chaotic equation multi-
scale Lorenz96.

1. Introduction
Climate change increases the likelihood of storms, floods,
wildfires, heat waves, biodiversity loss and air pollution [57].
Decision-makers rely on climate models to understand and
plan for changes in climate, but current climate models
are computationally too expensive: as a result, they are
hard to access, cannot predict local changes (< 10km),
fail to resolve local extremes (e.g., rainfall), and do not
reliably quantify uncertainties [97]. For example, run-
ning a global climate model at 1km resolution can take
ten days on a 4888×GPU node supercomputer, consum-
ing the same electricity as a coal power plants generates
in one hour [45]. Similarly, in molecular dynamics [3],
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Figure 1: Multiscale neural operator. Explicitly modeling all
scales of Earth’s weather is too expensive for traditional and
learning-based solvers [97]. Our multiscale neural operator dramat-
ically reduces the computational cost by modeling the large-scale
explicitly and learning the effect of fine- onto large-scale dynam-
ics; such as turbulence slowing down a river stream. We embed
grid-independent neural operators in the large-scale physical simu-
lations as “parametrizations“, conceptually similar to Matryoshka
dolls. Image based on [119]

chemistry [4], biology [139], energy [143], astrophysics or
fluids [41], scientific progress is hindered by the computa-
tional cost of solving partial differential equations (PDEs)
at high-resolution [63]. We are proposing the first PDE
surrogate that quickly computes approximate solutions via
correcting known large-scale simulations with learned, grid-
independent, non-local parametrizations.

Surrogate models are fast, reduced-order, and lightweight
copies of numerical simulations [107] and of significant
interest in physics-informed machine learning [67, 114, 64,
47]. Machine learning (ML)-based surrogates have sim-
ulated PDEs up to 1 − 3 order of magnitude faster than
traditional numerical solvers and are more flexible and accu-
rate than traditional surrogate models [63]. However, pure
ML-based surrogates are too data-hungry [113]; so, hybrid
ML-physics models are created, for example, via incorpo-
rating known symmetries [21, 3] or equations [133]. Most
hybrid models represent the solution at the highest possi-
ble resolution, which becomes computationally infeasible
in multiscale or very high-resolution physics; even with
optimal runtime [103, 104].
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Multiscale Neural Operators

As depicted in Figures 1 and 2, we simulate multiscale
physics by running easy-to-acces large-scale models and fo-
cusing learning on the challenging task: How can we model
the influence of fine- onto large-scale dynamics, i.e., what
is the subgrid parametrization term? The lack of accuracy
in current subgrid parametrizations, also called closure or
residual terms, is one of the major sources of uncertainty in
multiscale systems, such as turbulence or climate [97, 48].
Learning subgrid parametrizations can be combined with
incorporating equations as soft [109] or hard [8] constraints.
Various works learn subgrid parametrizations, but are ei-
ther inaccurate, hard to share or inflexible because they
are local [48], grid-dependent [73], or domain-specific [5],
respectively as detailed in Section 2. We are the first to
formulate the parametrization problem as learning neu-
ral operators [2] to represent non-local, flexible, and grid-
independent parametrizations.

We propose, multiscale neural operator (MNO), a novel
learning-based PDE surrogate for multiscale physics with
the key contributions:

• A learning-based multiscale PDE surrogate that has
quasilinear runtime complexity, leverages known large-
scale physics, is grid-independent, flexible, and does
not require autodifferentiable solvers.

• The first surrogate to approximate grid-independent,
non-local parametrizations via neural operators

• Demonstration of the surrogate on the chaotic, coupled,
multiscale PDE: multiscale Lorenz96

2. Related works
We embed our work in the broader field of physics-informed
machine learning and surrogate modeling. We propose the
first surrogate that corrects a coarse-grained simulation via
learned, grid-independent, non-local parameterizations.

Direct numerical simulation. Despite significant
progress in simulating physics numerically it remains pro-
hibitively expensive to repeatedly solve high-dimensional
partial differential equations (PDEs) [63]. For example,
finite difference, element, volume, and (pseudo-)spectral
methods have to be re-run for every choice of initial or
boundary condition, grid, or parameters [43, 15]. The
issue arises if the chosen method does not have optimal
runtime, i.e., does not scale linearly with the number
of grid points, which renders it infeasibly expensive for
calculating ensembles [15]. Select methods have optimal
or close-to-optimal runtime, e.g., quasi-linear O(N logN),
and outperform machine learning-based methods in runtime
and accuracy, but their implementation often requires
significant problem-specific adaptations; for example

multigrid [20] or spectral methods [15]. We acknowledge
the existence of impressive resarch directions towards
optimal and flexible non-ML solvers, such as the spectral
solver called Dedalus [23], but advocate to simultaneously
explore easy-to-adapt ML methods to create fast, accurate,
and flexible surrogate models.

Surrogate modeling. Surrogate models are approxima-
tions, lightweight copies, or reduced-order models of PDE
solutions, often fit to data, and used for parameter explo-
ration or uncertainty quantificiation [118, 107]. Surrogate
models via SVD/POD [31], Eigendecompositions/KLE [46],
Koopman operators/DMD [135], take simplying assump-
tions to the dynamics, e.g., linearizing the equations,
which can break down in high-dimensional or nonlinear
regimes [107]. Our work leverages the expressiveness of
neural operators as universal approximations [35] to learn
fast high-dimensional surrogates that are accurate in non-
linear regimes [87, 141, 38, 93]. Pure ML-based surro-
gate models have shown impressive sucess in approximat-
ing dynamical systems from ground-truth simulation data –
for example with neural ODEs [108, 34, 55], GNNs [16,
25], CNNs [121], neural operators [76, 2, 102, 86, 60],
RNNs [62, 113], GPs [29], reservoir computing [100, 93],
or transformers [32] – but, without incorporating physi-
cal knowlege become data-hungry and poor at generaliza-
tion [63, 9].

Physics-informed machine learning. Two main ap-
proaches of incorporating physical knowledge into ML
systems is via known symmetries [21] or equations [63].
Our approach leverages known equations for computing a
coarse-grid prior; which is complementary to using known
equations as soft [109, 74, 142, 137, 144, 139] or hard con-
straints [50, 89, 8, 39, 7, 61] as these methods can still be
used to constrain the learned parametrization. In terms
of symmetry, our approach exploits translational equiv-
ariance via Fourier transformations [76], but can be ex-
tended to other frameworks that exploit in- or equivariance
of PDEs [95] to rotational [44, 124], Galilean [136, 105],
scale [9], translational [123], reflectional [37] or permuta-
tional [145] transformations.

The field of physics-informed machine learning is very
broad, as reviewed most recently in [133] and [63, 28, 65].
We focus on the task of learning fast and accurate sur-
rogate models of fine-scale models when a fast and ap-
proximate coarse-grained simulation is availabe. This task
differs from other interesting research areas in equation
discovery or symbolic regression [22, 82, 83, 80, 106],
downscaling or superresolution [138, 13, 72, 122, 128, 51],
design space exploration or data synthesis [36, 30], con-
trols [11] or interpretability [126, 90]. Our work is
complementary to data assimilation or parameter calibra-
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Multiscale Neural Operators

tion [58, 59, 66, 143, 14] which fit to observational data
instead of models and differs from inverse modeling and
parameter estimation [99, 53, 140, 81] which fit parametriza-
tions that are independent of the previous state.

Correcting coarse-grid simulations via parametrizations.
Problems with large domains are often solved via multiscale
methods [103]. Multiscale methods simulate the dynamics
on a coarse-grid and capture the effects of small-scale dy-
namics that occur within a grid cell via additive terms, called
subgrid parametrizations, closures, or residuals [103, 91].
Existing subgrid parametrizations for many equations are
still inaccurate [131] and ML outperformed them by learn-
ing parametrizations directly from high-resolution simula-
tions; for example in turbulence [41], climate [48], chem-
istry [54], biology [104], materials [79], or hydrology [6].
The majority of ML-based parametrizations, however, is
local [48, 94, 17, 18, 19, 141, 26, 6, 54, 79, 105, 78, 99,
136, 110], i.e., the in- and output are variables of single grid
points, which assumes perfect scale separation, for example,
in isotropic homogeneous turbulent flows [96]. However, lo-
cal parametrizations are inaccurate; for example in the case
of anisotropic nonhomogeneous dynamics [96, 129], for cor-
recting global error for coarse spectral discretizations [15],
or in large-scale climate models [40, 100]. More recent
works propose non-local parametrizations, but their formu-
lations either rely on a fixed-resolution grid [129, 12, 73, 33],
an autodifferentiable solver [127, 117], or are formulated
for a specific domain [5]. A single work proposes non-local
and grid-independent parametrizations [101], but requires
the explicit representation of a high-resolution state which is
computationally infeasible for large domains, such as in cli-
mate modeling. We are the first to propose grid-independent
and non-local parametrizations via neural operators to create
fast and accurate surrogate models of fine-scale simulations.

Neural operators for grid-independent, non-local
parametrizations. Most current learning-based non-local
parametrizations rely on FCNNs, CNNs [73], or RNNs [33],
which are mappings between finite-dimensional spaces
and thus grid-dependent. In comparison, neural operators
learn mappings in between infinite-dimensional function
spaces [71] such as the Laplacian, Hessian, gradient, or
Jacobian. Typically, neural operators lift the input into a
grid-independent state such as Fourier [76], Eigen- [10],
graph kernel [75, 2] or other latent [86] modes and learn
weights in the lifted domain. We are the first to formulate
neural operators for learning parametrizations.

3. Approach
We propose multiscale neural operator (MNO): a surro-
gate model with quasilinear runtime complexity that ex-
ploits know coarse-grained simulations and learns a grid-

independent, non-local parametrization.

3.1. Multiscale neural operator

Partial differential equations. We focus on partial differ-
ential equations (PDEs) that can be written as initial value
problem (IVP) via the method of lines [134]. The PDEs in
focus have one temporal dimension, t ∈ [0, T ] =: Dt, and
(multiple) spatial dimensions, x = [x1, ..., xd]

T ∈ Dx, and
can be written in the iterative, explicit, symbolic form [43]:

δu

δt
−N (u) = 0 with t, x ∈ [0, T ]×Dx

u(0, x) = u0(x), B[u](t, x) = 0 with x ∈ Dx,

(t, x)∈[0, T ]×δDx

(1)

In our case, the (non-)linear operator, N , encodes the
known physical equations; for example a combination of
Laplacian, integral, differential, etc. operators. Further,
u : Dt × Dx → Du is the solution to the initial values,
u0 : Dx → Du, and Dirichlet, BD[u] = u − bD, or Neu-
mann boundary conditions, BN [u] = nT δxu − bN , with
outward facing normal on the boundary, n⊥δB.

Scale separation. We transfer a concept from the rich
and mathematical literature in multiscale modeling [103] to
consider a filter kernel operator, G∗, that creates the large-
scale solution, ū(x) = u(x) + u′(x), where u′ are the
small-scale deviations and ·̄ denotes the filtered variable,
ϕ̄(x) = G ∗ ϕ =

∫
Dx

G(x, x′)ϕ(x′)dx′. Assuming the
kernel, G, preserves constant fields, ā = a, commutes with
differentiation, [G∗, δ

δs ], s = x, t, is linear, ϕ+ ψ = ϕ̄ +
ψ̄ [96], we can rewrite (1) to:

G ∗ δu
δt

=
δū

δt
= G ∗ N (u)

= N (ū) + [G∗,N ](u)
(2)

where [G∗,N ](u) = G∗N (u)−N (G∗u) is the filter subgrid
parametrization, closure term, or commutation error, i.e.,
the error introduced through propagating the coarse-grained
solution.

Approximations of the subgrid parametrization as an op-
erator that acts on ū require significant domain expertise
and are derived on a problem-specific basis. In the case of
isotropic homogeneous turbulence, for example, the sub-
grid parametrization can be approximated as the spatial
derivative of the subgrid stress tensor, [G∗,N ](ū)turbulence ≈
δτij
δxj

=
δu′

iu
′
j

δxj
[96]. Many works approximate the subgrid

stress tensor with physics-informed ML [105, 78, 99, 136],
but are domain-specific, local, or require a differentiable
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Multiscale Neural Operator

Large-scale 

model

Neural 

Operator

Figure 2: Left: Model Architecture. A physics-based model, N , can quickly propagate the state, ūt, at a large-scale, but will accumulate
the error, h = N (u)−N ū. A neural operator, Kθ , wraps the computational and implementation complexities of unmodeled fine-scale
dynamics into a non-local and grid-independent term, ĥ, that iteratively corrects the large-scale model. Right: Multiscale Lorenz96.
We demonstrate multiscale neural operator (MNO) on the multiscale Lorenz96 equation, a model for chaotic atmospheric dynamics.
Image: [110]

solver or fixed-grid. We propose a general purpose method
to approximating the subgrid parametrization, independent
of the grid, domain, isotropy, and underlying solver.

Multiscale neural operator. We aim to approximate the
filter commutation error, [G∗,N ] ≈: h, via learning a neural
operator on high-resolution training data. Let Kθ be a neural
operator that approximates the commutation error:

[G∗,N ] ≈ Kθ : Ū(Dx;Rdu) → H(Dx;Rdu) (3)

where θ are the learned parameters and Ū ,H are separa-
ble Banach spaces of all continuous functions taking val-
ues, Rdu , defined on the bounded, open set, Dx ⊂ Rdx ,
with norm ||f ||Ū = ||f ||H = maxx∈Dx

|f(x)|. We embed
the neural operator as an autoregressive model with fixed
time-discretization, ∆t, such that the final multiscale neural
operator (MNO) model is:

ū(t+∆t) = f(t, ū,
δū

δx
,
δ2ū

δx2
, . . . ) +Kθ(ū) (4)

where f(t, ū, δūδx ,
δ2ū
δx2 ) =

∫ t+∆t

t
N (ū)dτ is the known

large-scale tendency, i.e. one-step solution. MNO is fit
using MSE with the loss function:

L = EtEū|u(t)∼p(t) (L(Kθ(ū(t)), [G∗,N ](u(t))) (5)

where the ground-truth data, u(t) ∼ p(t), is generated by
integrating a high-resolution simulation with varying param-
eters, initial or boundary conditions and uniformly sampling
time snippets according to the distribution p(t). Similar to
problems in superresolution, there exist multiple realizations
of the learned commutation error, [G∗,N ](ū), for a given
ground-truth, [G∗,N ](u); using MSE will learn a smooth
average and future work will explore adversarial losses [49]
or an intersection between neural operators and normalizing
flows [115] or diffusion-based models [120] to account for
the stochasticity [132]. During training, the model input is

generated via ū(t) = G ∗ (u(t)) and the target via

htarget = N (u)−N (ū). (6)

During inference MNO is initialized with a large-scale state
and integrates the dynamics in time via coupling the neural
operator and a large-scale simulation.

Our approach does not need access to the high-resolution
simulator or equations; it only requires a precomputed high-
resolution dataset, which are increasingly available [56, 24],
and allows the user to incorporate existing easy-to-access
solvers of large-scale equations. There is no requirement
for the large-scale solver to be autodifferentiable which
significantly simplifies the implementation for large-scale
models, such as in climate. If desired, our loss function can
easily be augmented with a physics-informed loss [109] on
the large-scale dynamics or parametrization term.

Choice of neural operator. Our formulation is gen-
eral enough to allow the use of many operators, such as
Fourier [76], PCA-based [10], low-rank [69], Graph [75]
operators, or DeepOnet [130, 86]. Because DeepONet [86]
focuses on interpolation and assumes fixed-grid sensor data,
we decided to modify Fourier Neural Operator (FNO) [76]
for our purpose. FNO is a universal approximator of nonlin-
ear operators [71, 35], grid-independent and can be formu-
lated as autoregressive model [76]. As there exist significant
knowledge on symmetries and conservation properties of
the commutation error [96], MNO’s explicit formulation
increases interpretability and ease of incorporating symme-
tries and constraints. With FNO, we exploit approximate
translational symmetries in the data and leave novel oppor-
tunities for neural operators that exploit the full range of
known equi- and invariances of the subgrid parametrization
term, such as Galilean invariance [105], for future work.

3.2. Illustration of MNO via multiscale Lorenz96

We illustrate the idea of MNO on a canonical model
of atmospheric dynamics, the multiscale Lorenz96 equa-
tion [84, 125]. This PDE is multiscale, chaotic, time-
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continuous, space-discretized, 2D (space+time), nonlin-
ear, displayed in Figure 2-right and detailed in Appendix
A.3. Most importantly, the large- and small-scale solu-
tions, Xk ∈ R, Yj,k ∈ R ∀ j ∈ {0, ..., J}, k ∈ {0, ...,K},
demonstrate the curse of dimensionality: the number of
the small-scale states grows exponentially with scale and
explicit modeling becomes computationally expensive, for
example, quadratic for two-scales: O(N2) = O(JK). The
PDE writes:

δXk

δt
=Xk−1(Xk+1−Xk−2)−Xk+F−

hsc

b

J−1∑
j=0

Yj,k(Xk),

δYj,k
δt

=−cbYj+1,k(Yj+2,k−Yj−1,k)−cYj,k+
hsc

b
Xk.

(7)
where F is the forcing, hs the coupling strength, b the rel-
ative magnitude of scales, and c the evolution speed. With
the multiscale framework from Section 3.1, we define:

u(x) = [X0, Y0,0, Y1,0, ..., YJ,0, X1, Y0,1, ...

, XK , ..., YJ,K ]x ∀x∈Dx={0, ...,K(J + 1)}

N (u)(x) =

{
δXk

δt if x=k(J+1) ∀k∈{0, . . . ,K}
δYj,k

δt otherwise,

G(x, x′) =

{
1 if x′ = k(J + 1) ∀k ∈ {0, . . . ,K}
0 otherwise,

with the solution, u, operator, N , and kernel, G.

MNO learns the parametrization term via a neural operator,
Kθ = ĥ ≈ h, and then models:

δX̂k

δt
=
δX̂k

δt
+Kθ(X̂0:K)(k) (8)

where the known large-scale dynamics are abbreviated with
δX̂k

δt = X̂k−1(X̂k+1 − X̂k−2)− X̂k + F and ground-truth
parametrization is h(x) = {−hsc

b

∑J−1
j=0 Yj,k(Xk) if x =

k(J + 1) ∀k ∈ {0, . . . ,K} and 0 otherwise}. See Ap-
pendix A.4 for all terms.

The parametrization, Kθ, accepts inputs that are sam-
pled anywhere inside the spatial domain, which differs
from previous local [110] or grid-dependent [33] Lorenz96
parametrizations.

We create the ground-truth data via randomly sampled
initial conditions, periodic boundary conditions, and in-
tegrating the coupled equation with a 4th-order Runge-
Kutta solver. After a Lyapunov timescale the state is in-
dependent of initial conditions and we extract 4K snippets
with T/∆t = 400steps length for 1-step training. This
model is run autoregressively on 1K test samples of length
T/∆t = 400steps, which correspond to 10 Earth days, as
detailed in Appendix A.3.

Figure 3: MNO is faster than direct numerical simulation. Our
proposed multiscale neural operator (orange) can propagate mul-
tiscale PDE dynamics in quasilinear complexity, O(N logN).
For a grid with K = 215, MNO is ∼ 1000-times faster than di-
rect numerical simulation (black) which has quadratic complexity,
O(N2)

4. Results
Our results demonstrate that multiscale neural operator
(MNO) is faster than direct numerical simulation, gener-
ates stable solutions, and is more accurate than current
parametrizations. We now proceed to discussing each of
these in more detail.

4.1. Runtime Complexity: MNO is faster than
traditional PDE solvers

MNO (orange in Figure 3) has quasilinear, O(N logN),
runtime complexity in the number of large-scale grid points,
N=K, in the multiscale Lorenz96 equation. The runtime is
dominated by a lifting operation, here a fast Fourier trans-
form (FFT), which is necessary to learn spatial correla-
tions in a grid-independent space. In comparison, the direct
numerical simulation (black) has quadratic runtime com-
plexity, O(N2), because of the explicit representation of
N2=JK small-scale states. Both models are linear in time,
O(T ). Local parametrizations can achieve optimal runtime,
O(N), but it is an open question if there exists a decom-
position that replaces FFT to yield an optimal, non-local,
grid-independent model.

We ran MNO up to a resolution of K = 224, which would
equal 75cm/px in a global 1D (space) climate model and
only took ≈ 2s on a single CPU. MNO is three orders
of magnitude (1000-times) faster than DNS, at a resolu-
tion of K = 215 or 200m/px. For 2D or 3D simulations
the gains of using MNO vs. DNS are even higher with
O(N2 logN) vs. O(N4) and O(N3 logN) vs. O(N6),
respectively [68].
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Method RMSE

Climatology 6.902
Traditional parametrizations 2.326
ML-based parametrization [112] 2.053
MNO (ours) 0.5067

Figure 4: Left: MNO is more accurate than traditional
parametrizations. A sample plot shows, that our proposed multi-
scale neural operator (yellow/orange-dotted) can accurately fore-
cast the large-scale physics (black-solid), Xk=0(t). In comparison,
ML-based blue-dotted) and traditional (red-dotted) parametriza-
tions quickly start to diverge. Note that the system is chaotic
and small deviations are rapidly amplified; even inserting the
exact parametrizations in float32 instead of float64 quickly di-
verges. Right: Accuracy. MNO is more accurate than tradi-
tional parametrizations as measured by the root mean-square error
(RMSE).

The runtimes have been calculated by choosing the best of
1-100k runs depending on grid size on a single-threaded
Intel Xeon Gold 6248 CPU@2.50GHz with 164Gb RAM.
We time a one step update which, for DNS, is the calculation
of (7) and for MNO the calculation of (8), i.e., the sum of a
large-scale step and a pass through the neural operator.

In Figure 3, MNO and DNS plateau at low-resolution
(K < 29), because runtime measurement is dominated
by grid-independent operations. DNS plateaus at a lower
runtime, because MNO contains several fixed-cost matrix
transformations. The runtime of DNS has a slight discon-
tinuity at K ≈ 29 due to extending from cache to RAM
memory. We focus on a runtime comparison, but MNO also
has significant savings in memory: representing the state
at K = 217 in double precision occupies 64GB RAM for
DNS and 0.5MB for MNO.

4.2. MNO is more accurate than traditional
parametrizations

Figure 4-left shows a forecasted trajectory of a sample at
the left boundary, k = 0, where MNO (orange-dotted) ac-
curately forecasts the large-scale dynamics, X0(t), (black-
solid) while current ML-based (blue-dotted) [48] and tradi-
tional parametrizations (red-dotted) quickly diverge. The
quantitive comparison of RMSE and a mean/std plot Fig-

ure 7 over 1K samples and 200steps or 10days (∆t =
0.005 = 36min) confirms that MNO is the most accurate
in comparison to ML-based parametrizations, traditional
parametrizations, and a mean forecast (climatology). Note,
the difficulty of the task: when forecasting chaotic dynamics
even numerical errors rapidly amplify [96].

ML-based parametrizations is a state-of-the-art (SoA)
model in learning parametrizations and trains a ResNet to
forecast a local, grid-independent parametrization, hk =
NN(Xk), similar to [48]. The traditional parametriza-
tions (trad. param.) are often used in practice and use linear
regression to learn a local, grid-independent parametriza-
tion [91]. It was suggested that multiscale Lorenz96 is too
easy as a test-case for comparing offline models because
traditional parametrizations already perform well [111], but
the significant difference between MNO and Trad. Params.
during online evaluation suggests otherwise. The clima-
tology forecasts the mean of the training dataset, Xk(t) =

1/T
∑T

t=0 1/N
∑N

i=0Xk,i(t). The full list of hyperparam-
eters and model parameters can be found in Appendix A.5.2.
For fairness, we only compare against grid-independent
methods that do not require an autodifferentiable solver;
models with soft or hard constraints, e.g., PINNs [109] or
DC3 [39], are complementary to MNO.

4.3. MNO is stable

Figure 5 shows that predicting large-scale dynamics with
MNO is stable. We first plot a randomly selected sample
of the first large-scale state, Xk=0(t) (left-black), to illus-
trate that the prediction is bounded. The MNO prediction
(left-yellow) follows the ground-truth up to an approximate
horizon of, t = 1.8 or 9 days, then diverges from the ground-
truth solution, but stays within the bounds of the ground-
truth prediction and does not diverge to infinity. The RMSE
over time in Figure 5 shows that MNO (yellow) is approx-
imately more accurate than current ML-based (blue) and
traditional (red) parametrizations for ≈ 100%-longer time,
measuring the time to intersect with climatology. Despite
the difficulty in predicting chaotic dynamics, the RMSE of
MNO reaches a plateau, which is slightly above the optimal
plateau given by the climatology (black).

The RMSE over time is calculated as:

RMSE(t) =
1

K

K∑
k=0

√
(
1

N

N∑
i=0

(X̂k,i(t)−Xk,i(t))
2).

(9)

5. Limitations and Future Work
We demonstrated the accuracy, speed, and stability of
MNO on the chaotic multiscale Lorenz96 equation. Fu-
ture work, can extend MNO towards higher-dimensional or
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(a) Long-term sample forecast, X0(t)

(b) Error over time

Figure 5: MNO is stable. MNO can propagate a sample state,
Xk=0(t), over a long time horizon without diverging to infinity
(left). The right plot shows that the RMSE of MNO plateaus for
long-term forecasts, further confirming stability. Further, MNO
(yellow) maintains accuracy longer than ML-based parametriza-
tions (blue) and a climatology (black).

time-irregular systems and further integrate symmetries or
constraints:

The results show promise to extend MNO to higher-
dimensional, chaotic, multiscale, multiphysics problems
and improve parametrizations in anisotropic turbulence pre-
dictions [96], Rayleigh-Bénard Convection (see Appenix
A.1.) or clouds of global atmospheric models [129, 97].
Lightweight climate surrogate models could dramatically
improve uncertainties [88] or decision-exploration [116] in
climate.

MNO is grid-independent in space but not in time which
could be alleviated via integrations with Neural ODEs [34].
MNO is a myopic model which might suffice for chaotic
dynamics [77], but could be combined with LSTMs [92]
or reservoir computing [100] to contain a memory. Fur-
ther, we leveraged global Fourier decompositions to exploit
grid-independent periodic spatial correlations, but future
work could also capture local discontinuities, e.g., along
coastlines [60] with multiwavelets [52], or incorporate non-
periodic boundaries via Chebyshev polynomials.

Lastly, MNO can be combined with Geometric deep learn-
ing, PINNs, or hard constraint models. This avenue of

research is particularly exciting with MNO as there exist
many known symmetries for the paramtrization term [105].

6. Conclusion
We proposed a hybrid physics-ML surrogate of multi-
scale PDEs that is quasilinear, accurate, and stable. The
surrogate limits learning to the influence of fine- onto
large-scale dynamics and is the first to use neural oper-
ators for a grid-independent, non-local corrective term
of large-scale simulations. We demonstrated that multi-
scale neural operator (MNO) is faster than direct numeri-
cal simulation (O(N logN) vs. O(N2) and more accurate
(≈ 100% longer prediction horizon) than state-of-the-art
parametrizations on the chaotic, multiscale equations mul-
tiscale Lorenz96. With the dramatic reduction in runtime,
MNO could enable rapid parameter exploration and robust
uncertainty quantification in complex climate models.

7. Ethical and Societal Implications of the
proposed work

Climate change is the defining challenge of our time. En-
vironmental disasters will become more frequent: from
storms, floods, wildfires and heat waves to biodiversity
loss and air pollution [57]. The impacts of climate change
will not only be severe, but also unjustly distributed: is-
land states, minority populations, and the Global South are
already facing the most severe consequences of climate
change, while the Global North is responsible for the most
emissions since the industrial revolution [1]. Decision-
makers require better tools to understand and plan for
changes in climate and limit the economic, human, and
environmental impact [97]. We propose a faster differential
equation solver to improve the underlying climate models.
Because fast differential equations can be leveraged in ethi-
cally questionable fields, such as missile development, we
are applying our methods to climate modeling to demon-
strate our work towards positive impact.
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A. Appendix
A.1. Rayleigh-Bénard Convection

We plan to extend the multiscale neural operator to higher-dimensional systems; starting with the Rayleigh-Bénard
Convectione equations, as displayed in Figure 6.

(a) Ground-truth

Figure 6: We are planning to extend MNO to Rayleigh-Bénard Convection. We depicted a sample plot for ground-truth training data
of the 2D RBC.

A.1.1. DETAILS AND INTERPRETATION

Rayleigh-Bénard Convection (RBC) is one of the simplest turbulent, chaotic, convection-dominated flows. The equation
finds applications in fluid dynamics, atmospheric dynamics, radiation, phase changes, magnetic fields, and more [98].

So far, we have generated a ground-truth dataset that we implemented with the 2D turbulent Rayleigh-Bénard Convenction
equations with Dedalus spectral solver [23] similar to [98]:

δu

δt
+ u · ∇u =

√
Pr
Ra

∇2u−∇p+ b

δT

δt
+ u · ∇T =

1√
RaPr

∇2T

∇ · u = 0

(10)

with temperature/buoyancy, T , Rayleigh number, Ra = gα∆TH3/(νκ), Prandtl number, Pr = ν/κ, thermal expansion
coefficient, α, kinematic viscosity, ν, thermal diffusivity, κ = 1√

RaPr
, acceleration due to gravity, g, temperature difference,

∆T , unit vector, e, pressure, p, Nusselt number, Nu =
√

Pr
Ra , Reynolds number, Re =

√
⟨∇2u⟩V,t Ra

Pr , and full volume-time
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average, ⟨·⟩V,t, cell length, Lx. The equations have been non-dimensionalized with the free-fall velocity, Uf =
√
gα∆H ,

and cell height, H . In the horizontal direction, x, we use periodic boundary conditions and in the vertical direction, z, we use
no-slip boundary conditions for the velocity, u(z = 0) = u(z = Lz) = 0, and fixed temperatures, T (z = 0) = Lz, T (z =
Lz) = 0. The inital conditions are sampled randomly, b(z, t = 0) = Lz + z + z(Lz − z)ω, with ω ∼ N (0, 1× 10−3.

We chose: Ra = 2× 106, Pr = 1, Lx = 4, H = 1.

A.2. Fourier Neural Operator

Our neural operator for learning subgrid parametrizations is based on Fourier neural operators [76]. Intuitively, the neural
operator learns a parameter-to-solution mapping by learning a global convolution kernel. In detail, it learns the operator
to transforms the current large-scale state, X(x0:K , t) ∈ RK×dX to the subgrid parametrization, f̂

x
(x0:K , t) := X0:K ∈

RK×dX with number of grid points, K, and input dimensionality, dX , according to the following equations:

v0 = X0:KP
T + 1K×1bP

vi+1 = σ

(
viW

T +

∫
Dx

κϕ(x, x
′)vi(x

′)dx′
)

≈ σ
(
viW

T + 1nv×1bW + F−1(Rϕ · Fvi)
)

f̂x,0:K = vnd
QT + 1K×1bQ

(11)

First, MNO lifts the input via a linear transform with matrix, P ∈ Rnv×dX , bias, bP ∈ R1×nv , vector of ones, 1K×1, and
number of channels, nv . The linear transform is local in space, i.e., the same transform is applied to each grid point.

Second, multiple nonlinear “Fourier layers” are applied to the encoded/lifted state. The encoded/lifted state’s, vi ∈ RK×nv ,
spatial dimension is transformed into the Fourier domain via a fast Fourier transform. We implement the FFT as a
multiplication with the pre-built forward and inverse Type-I DST matrix, F ∈ Ckmax×K and F−1 ∈ CK×kmax , respectively,
returning the vector, Fvi ∈ Ckmax×nv .

The dynamics are learned via convoluting the encoded state with a weight matrix. In Fourier space, convolution is a
multiplication, hence each frequency is multiplied with a complex weight matrix across the channels, such that R ∈
Ckmax×nv×nv . In parallel to the convolution with R, the encoded state is multiplied with the linear transform, W ∈ Rnv×nv ,
and bias, bW ∈ R1×nv . From a representation learning-perspective, the Fourier decomposition as a fast and interpretable
feature extraction method that extracts smooth, periodic, and global features. The linear transform can be interpreted as
residual term concisely capturing nonlinear residuals.

So far, we have only applied linear transformations. To introduce nonlinearities, we apply a nonlinear activation function,
σ, at the end of each Fourier layer. While the non-smoothness of the activation function ReLu, σ(z) = max(0, z), could
introduce unwanted discontinuities in the solution, we choose it resulted in more accurate models than smoother activation
functions such as tanh or sigmoid.

Finally, the transformed state, vnd
, is projected back onto solution space via another linear transform, Q ∈ RdX×nv , and

bias, bQ.

The values of all trainable parameters, P,R,W,Q, b∗, are found by using a nonlinear optimization algorithm, such as
stochastic gradient descent or, here, Adam [70]. We have used MSE between the predicted, f̂x, and ground-truth, fx, subgrid
parametrizations as loss. The neural operator is implemented in pytorch, but does not require an autodifferentiable PDE
solver to generate training data. During implementation, we used the DFT which assumes a uniformly spaced grids, but can
be exchanged with non-uniform DFTs (NUDFT) to transform non-uniform grids [42].

A.3. Multiscale Lorenz96

A.3.1. DETAILS AND INTERPRETATION

The equation contains K variables, Xk ∈ R, and JK small-scale variables, Yj,k ∈ R that represent large-scale or small-
scale atmospheric dynamics such as the movement of storms or formation of clouds, respectively. At every time-step each
large-scale variable, Xk, influences and is influenced by J small-scale variables, Y0:J,k. The coupling could be interpreted
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as Xk causing static instability and Yj,k causing drag from turbulence or latent heat fluxes from cloud formation. The
indices k, j are both interpreted as latitude, while k ∈ {0, ...,K−1} indexes boxes of latitude and j ∈ {0, ..., J−1} indexes
elements inside the box. Illustrated on a 1D Earth with a circumference of 360◦ that is discretized with K = 36, J = 10,
one a spatial step in k, j would equal 10◦, 1◦, respectively [84]; we choose K = J = 4. A time step with ∆t = 0.005
would equal 36 minutes [84].

We choose a large forcing, F > 10, for which the equation becomes chaotic. The last terms in each equation capture
the interaction between small- and large-scale, fx,k = −hc

b

∑J
j=0 Yj,k(Xk), fy. The scale interaction is defined by the

parameters where h = 0.5 is the coupling strength between spatial scales (with no coupling if h would be zero), b = 10
is the relative magnitude, and c = 8 the evolution speed of X − Y . The linear, −Xk, and quadratic terms, X2

∗ , model
dissipative and advective (e.g., moving) dynamics, respectively.

The equation assumes perfect “scale separation” which means that small-scale variables of different grid boxes, k, are
independent of each other at a given timestep, Yj1,k2

(t)⊥Yj2,k1
(t) ∀t, j1, j2, k1 ̸= k2. The separation of small- and

large-scale variables can be along the same or different domain and the discretized variables would then be y ∈ [0,∆x] or
y ∈ [y0, yend], respectively. The equation wraps around the full large- or small-scale domain by using periodic boundaries,
X−k:=XK−k, XK+k:=Xk, Y−j,k:=YJ−j,k, YJ+j,k:=Yj,k. Note that having periodic boundary conditions in the small-
scale domanin allows for superparametrization, i.e., independent simulation of the small-scale dynamics [27] and differs
from the three-tier Lorenz96 where variables at the borders of the small-scale domain depend on small-scale variables of the
neighbouring k [125].

A.3.2. SIMULATION

The initial conditions are sampled uniformly from a set of integers, X(t0) ∼ U(−5,−4, ..., 5, 6), as a mean-zero unit-
variance Gaussian Y (t0) ∼ N (0, 1), and lower scale Gaussian Z(t0) ∼ 0.05N (0, 1). The train and test set contains 4k and
1k samples, respectively. Each sample is T = 1 model time unit (MTU) or 200 (=T/∆t) time-steps long, which corresponds
to 5 Earth days (= T/∆t ∗ 36min with ∆t = 0.005) [84]. Hence, our results test the generalization towards different
initial conditions, but not robustness to extrapolation or different choices of parameters, c, b, h, F . The sampling starts after
T = 10. warmup time. The dataset uses double precision.

We solve the equation by fourth order Runge-Kutta in time with step size ∆t = 0.005, similar to [85]. For a PDE that is
discretized with fixed time step, ∆t, the ground-truth train and test data, hx,0:K(t), is constructed by integrating the coupled
large- and small-scale dynamics.

Note, that the neural operator only takes in the current state of the large-scale dynamics. Hence, , i.e., it uses the full
large-scale spatial domain as input, which exploits spatial correlations and learns parametrizations that are independent of
the large-scale spatial discretization.

Our method can be queried for infinite time-steps into the future as it does not use time as input.

We are incorporating the prior knowledge from physics by calculating the large-scale dynamics, dXLS,0:K . Note that the
small-scale physics do not need to be known. Hence, MNO could be applied to any fixed time-step dataset for which an
approximate model is known.

A.4. Appendix to Illustration of MNO via multiscale Lorenz96

The other large-scale (LS) and fine-scale (FS) terms are

filtered FS dynamics, N (u)(x) =

{
δXk

δt if x = k(J + 1) ∀k ∈ {0, . . . ,K}
0 otherwise

LS dynamics, N (ū)(x) =

{
δX̄k

δt if x = k(J + 1) ∀k ∈ {0, . . . ,K}
0 otherwise

with abbreviation,
δX̄k

δt
:= Xk−1(Xk+1 −Xk−2)−Xk + F

LS state, ū(x) = G ∗ u(x) = [X0, 0, ..., 0, X1, 0, ..., XK ]

(12)
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Multiscale Neural Operators

Figure 7: Mean accuracy. MNO (orange) most accuracy forecasts the mean (solid) and standard deviation (dotted) of the ground-truth
DNS (blue) in comparison to ML-based parametrizations (green) and climatology (red).

.

A.5. Appendix to Results

A.5.1. ACCURACY

Figure 7 shows that the predicted mean and standard deviation of MNO (orange) closely follows the ground-truth (blue). The
ML-based parametrization (green) follows the ground-truth only for a few time steps (until ∼ t = 0.125). The climatology
(red) depicts the average prediction in the training dataset.

A.5.2. MODEL CONFIGURATION

Multiscale Lorenz96: MNO As hyperparameters we chose the number of channels, nv = 64, number of retained modes,
kmax = 3, number of Fourier layers, nd = 3, and no batch norm layer. The time-series modeling task uses a history of only
one time step to learn chaotic dynamics [77]. We are using ADAM optimizer with learning rate, λ = 0.001, step size, 20,
number of epochs, ne = 2, and an exponential learning rate scheduler with gamma, γ = 0.9 [70]. Training took 1 : 50min
on a single core Intel i7-7500U CPU@2.70GHz.

Multiscale Lorenz96: ML-based parametrization The ML-based parametrizations uses a ResNet with nlayers = 2
residual layers that contain a fully connected network with nunits = 32 units. The model is optimized with Adam [70] with
learning rate 0.01, β = (0.9, 0.999), ϵ = 1 ∗ 10−8, trained for 20nepochs = 20.

Multiscale Lorenz96: Traditional parametrization The traditional parametrization uses least-squares to find the best
linear fit. The weight matrix is computed with A = (XTX)−1XTY , where X and Y are the concatenation of input
large-scale features and target parametrizations, respectively. Inference is conducted with ŷ = Ax.

A.6. Neural networks vs. neural operators

Most work in physics-informed machine learning relies on fully-connected neural networks (FCNNs) or convolutional
neural networks [63]. FCNNs however are mappings between finite-dimensional spaces and learn mappings for single
equation instances rather than learning the PDE solver. In our case FCNNs only learn mappings on fixed spatial grids. We
leverage the recently formulated neural operators to extend the formulation to arbitrary grids. The key distinction is that
the FCNN learns a parameter-dependent set of weights, Φay

, that has to be retrained for every new parameter setting. The
neural operator is a learned function mapping with parameter-independent weights, Θ, that takes parameter settings as input
and returns a function over the spatial domain, GΘ(ay). In comparison, the forcing term is approximated by an FCNN as
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f̂x,Φ(xk; ay) = gΦay
(xk) and by a neural operator as f̂x,Θ(xk; ay) = GΘ(ay)(xk). The mappings are given by:

FCNN: gΦay
: Dx → RdX ,

NO: GΘ : Hay
(Dx;Rday ) → HX(Dx;RdX ).

(13)

Hay
is a function space (Banach) of PDE parameter functions, ay , that map the spatial domain, Dy , onto day

dimensional
parameters, such as ICs, BCs, parameters, or forcing terms. HX is the function space of residuals that map the spatial
domain, Dx, onto the space of dX -dimensional residuals, RdX .


