
A Simple and Effective Pruning Approach for Large Language Models

Mingjie Sun 1 * Zhuang Liu 2 * Anna Bair 1 J. Zico Kolter 1 3

Abstract
As their size increases, Large Languages Models
(LLMs) are natural candidates for network prun-
ing methods: approaches that drop a subset of
network weights while striving to preserve perfor-
mance. Existing methods require either retrain-
ing, which is rarely affordable for billion-scale
LLMs, or solving a weight reconstruction prob-
lem reliant on second-order information, which
may also be computationally expensive. In this
paper, we introduce a novel, straightforward yet
effective pruning method, termed Wanda (Pruning
by Weights and activations), designed to induce
sparsity in pretrained LLMs. Motivated by the re-
cent observation of emergent large magnitude fea-
tures in LLMs, our approach prune weights with
the smallest magnitudes multiplied by the corre-
sponding input activations, on a per-output basis.
Notably, Wanda requires no retraining or weight
update, and the pruned LLM can be used as is.
We conduct a thorough evaluation of our method
on LLaMA across various language benchmarks.
Wanda significantly outperforms the established
baseline of magnitude pruning and competes fa-
vorably against recent methods involving inten-
sive weight update. Code is available at https:
//github.com/locuslab/wanda.

1. Introduction
Large language models (Touvron et al., 2023; Brown
et al., 2020; OpenAI, 2023) have recently reshaped the
field of NLP with their remarkable performance across a
range of complex language benchmarks (Wei et al., 2022b;
Bubeck et al., 2023). Existing methods for compressing
LLMs (Dettmers et al., 2022; Xiao et al., 2023; Frantar
et al., 2023) mostly focus on model quantization, where pa-
rameters are quantized into lower bit-level representations.

Network pruning (Hassibi et al., 1993; LeCun et al., 1989),
another popular branch of network compression, has re-
ceived little focus in compressing LLMs. This seems to

*Equal contribution 1Carnegie Mellon University 2Meta AI,
FAIR 3Bosch Center for AI.

Work presented at the ES-FoMo Workshop at ICML 2023.

contradict the trend of model compression in the pre-LLM
era. A quick review of existing pruning methods reveals a
possible reason: they typically require retraining (Han et al.,
2015; Blalock et al., 2020; Jonathan & Michael, 2019),
which are limited by the sheer computational resources of
LLMs. A recent LLM pruning approach, SparseGPT (Fran-
tar & Alistarh, 2023), does not require traditional retraining,
but still demands an intensive weight update process.

The argument concerning the need for retraining and weight
update does not fully capture the challenges of pruning
LLMs. One might reasonably expect to obtain a fairly high-
performing initialization point for retraining using existing
popular pruning methods. However, a recent study (Fran-
tar & Alistarh, 2023) finds that magnitude pruning (Han
et al., 2015; Zhu & Gupta, 2017; Gale et al., 2019), a well-
established pruning approach, fails dramatically on LLMs
with relatively low levels of sparsity. Considering the past
success of magnitude pruning on smaller networks, this re-
sult suggests that LLMs, despite having 100 to 1000 times
more parameters, are much more difficult to prune directly.

In this work, we address this challenge by introducing
a straightforward and effective approach, termed Wanda
(Pruning by Weights and activations). This technique suc-
cessfully prunes LLMs to high degrees of sparsity without
any need for modifying the remaining weights. This is in-
spired by insights from a recent study (Dettmers et al., 2022)
observing that a small subset of hidden state features are ex-
ceptionally large in magnitude, a property unique to LLMs.
We introduce a novel pruning metric, where each weight
is evaluated by the product of its magnitude and the norm
of the corresponding input activations, estimated using a
small set of calibration data. Our method uses this metric to
induce sparsity in pretrained LLMs by comparing weights
locally within each output of linear layers and removing
lower priority weights. Our approach is computationally
efficient, able to be executed in a single forward pass, and
requires minimal memory overhead.

We experiment on LLaMA (Touvron et al., 2023), one of
the most effective open-sourced LLM families. Our re-
sults demonstrate Wanda can find efficient sparse networks
directly from pretrained LLMs, without any retraining or
weight update. Wanda outperforms magnitude pruning by
a large margin and also outperforms or matches the perfor-
mance of a recent LLM pruning method (Frantar & Alistarh,
2023), while requiring a lower computational cost.

1

https://github.com/locuslab/wanda
https://github.com/locuslab/wanda

A Simple and Effective Pruning Approach for Large Language Models

Magnitude Pruning Wanda (Ours)

4 0 1 -1

3 -2 -1 -3

-3 1 0 2

4 0 1 1

3 2 1 3

3 1 0 2

4 0 0 0

3 -2 0 -3

-3 0 0 2

4 0 1 -1

3 -2 -1 -3

-3 1 0 2

1 2 8 3

4 0 8 3

3 4 8 9

3 2 0 6

4 0 1 0

0 0 -1 -3

-3 0 0 2

Weights Weight Importance
Weights and activations

Weight ImportancePruned Weights Pruned Weights
grouped per layer grouped per output

Figure 1: Illustration of our proposed method Wanda (Pruning by Weights and activations), compared with the magnitude
pruning approach. Given a weight matrix W and input feature activations X, we compute the weight importance as the
elementwise product between the weight magnitude and the norm of input activations (|W| · ∥X∥2). Weight importance
scores are compared on a per-output basis (within each row in W), rather than globally across the entire matrix.

2. Pruning by Weights and Activations
In this section, we motivate and describe our proposed prun-
ing approach, Wanda (Pruning by Weights and activations).
In Figure 1, we show an overview of our pruning approach.

We first start with a motivating example. Consider a neuron
with two inputs and corresponding weights: y = w1x1 +
w2x2, where |w1| ≤ |w2|. Now suppose the goal is to
select one weight for removal while incurring less change
on the output. The standard approach of magnitude pruning
would always remove weight w1, which may be a good
strategy if input features x1 and x2 have similar magnitudes.
However, as recently observed in LLMs (Dettmers et al.,
2022), the two input features can differ significantly in scale.
For instance, it is possible that |x1| ≫ |x2|, and as a result,
|w1x1| ≫ |w2x2|. In this case, we should remove weight
w2 instead, because this clearly exerts a smaller influence
on the neuron output y than removing weight w1.

This motivating example with the simplest linear layer hints
at a major limitation of magnitude pruning: it does not
take into account input activations, which could play an
equally important role as weight magnitudes in determining
the neuron output. For pruning LLMs, this is especially
critical considering the emergent large magnitude features
found within them. Thus, as the first part of our method, we
propose a new pruning metric to handle such a limitation,
while also maintaining the simplicity of magnitude pruning.

Pruning Metric. Consider a fully connected layer with
weight W of shape (Cout, Cin). For language models, this
linear layer takes in input activations X with a shape of (N×
L,Cin), where N and L are batch and sequence dimensions
respectively. For each individual weight, we propose to
evaluate its importance by the product of its magnitude and
the corresponding input feature norm. Specifically, the score
for the current weight Wij is defined by:

Sij = |Wij | · ∥Xj∥2 (1)

where | · | represents the absolute value operator, ∥Xj∥2
evaluates the ℓ2 norm of jth features aggregated across

Algorithm 1 PyTorch code for Wanda
W: weight matrix (C_out, C_in);
X: input matrix (N * L, C_in);
s: desired sparsity, between 0 and 1;

def prune(W, X, s):
metric = W.abs() * X.norm(p=2, dim=0)

_, sorted_idx = torch.sort(metric, dim=1)
pruned_idx = sorted_idx[:,:int(C_in * s)]
W.scatter_(dim=1, index=pruned_idx, src=0)

return W

N × L different tokens, and the final score is computed by
the product of these two scalar values. We find that ℓ2 norm
tends to work better than other norm functions in measuring
activation magnitudes, for instance, ℓ1 and ℓ∞ norm. We
hypothesize this is likely because ℓ2 is generally a smoother
metric (Cortes et al., 2009; Lewkowycz & Gur-Ari, 2020).

Pruning Granularity. We argue that carefully chosen prun-
ing granularity, i.e. the set of weights among which to
compare, has an important role in pruning LLMs. Despite
the common practice of comparing weights per layer or
globally, we suggest that pruning LLMs should benefit from
more local granularity levels. In our method, we compare
weights per output neuron. Specifically, for a weight Wij

that connects input j to output i inside the linear layer, the
group of comparison for this weight is defined as all weights
connecting to output i:

Gij = {Wuv |u = i} (2)

Under this granularity, for a pre-defined sparsity ratio s%,
we eliminate s% of the weights connected to each output.
This practice may seem counter-intuitive, since we are ba-
sically pruning under a stricter sparsity pattern. However,
we find that it is consistently better than layer-wise pruning
for LLMs. A possible reason is that removing weights at a
uniform ratio per output helps prevent imbalanced pruning
across different output features.

2

A Simple and Effective Pruning Approach for Large Language Models

Method Fine-tuning Weight Update Calibration Data Pruning Metric Sij Complexity
Magnitude ✗ ✗ ✗ |Wij| O(1)
SparseGPT ✗ ✓ ✓

[
|W|2/diag

[
(XXT + λI)−1

]]
ij

O(d3hidden)

Wanda ✗ ✗ ✓ |Wij| · ∥Xj∥2 O(d2hidden)

Table 1: Properties of practical LLM pruning algorithms.

LLaMA

Method Weight Update Sparsity 7B 13B 30B 65B
Dense - 0% 5.68 5.09 4.77 3.56
Magnitude ✗ 50% 17.29 20.21 7.54 5.90
SparseGPT ✓ 50% 7.22 6.21 5.31 4.57
Wanda ✗ 50% 7.26 6.15 5.24 4.57
Magnitude ✗ 4:8 16.84 13.84 7.62 6.36
SparseGPT ✓ 4:8 8.61 7.40 6.17 5.38
Wanda ✗ 4:8 8.57 7.40 5.97 5.30
Magnitude ✗ 2:4 42.13 18.37 9.10 7.11
SparseGPT ✓ 2:4 11.00 9.11 7.16 6.28
Wanda ✗ 2:4 11.53 9.58 6.90 6.25

Table 2: WikiText validation perplexity of pruning methods for LLaMA model family.

Procedure. Wanda can be implemented and integrated
seamlessly within a single forward pass of the LLM model,
where feature norm statistics ∥Xj∥2 are estimated with a
set of calibration data. We provide the PyTorch code of
our approach in Algorithm 1. Given a pretrained LLM,
we compute our pruning metric from the initial to the final
layers of the network. After pruning a preceding layer, the
subsequent layer receives updated input activations, based
on which its pruning metric will be computed. A recent
method for pruning LLMs, SparseGPT (Frantar & Alistarh,
2023), requires iterative weight update with a sophisticated
procedure in the gradual pruning process, while Wanda
requires no weight update. The sparse LLM after pruning is
ready to use without further training or weight adjustment.
Last, Wanda can also be easily extended to structured N:M
Sparsity (see Appendix C for details).

A comparison of LLM pruning methods are in Table 1.
Overall, our pruning approach Wanda has several attractive
properties as an approach for pruning LLMs:

1. It maintains the simplicity of magnitude pruning in
the pre-LLM era, requiring no gradient computation
via back-propagation or any second-order Hessian in-
verses, but is also highly effective in discovering sparse
networks in pretrained LLMs.

2. Wanda can be done with a single forward pass of the
LLM. At each layer, pruned weights can be decided
in one shot without an iterative procedure. In prac-
tice, Wanda can be 300 times faster in pruning LLMs
compared with SparseGPT (Frantar & Alistarh, 2023).

3. Our approach entails no weight updates on pruned net-
works, suggesting that LLMs have effective and exact

sparse sub-networks, instead of them merely existing
in the neighborhood of the original weights.

3. Experiments
We evaluate our approach on LLaMA (Touvron et al., 2023)
and compare against two baselines listed in Table 1 (see Ap-
pendix A for more details on experimental setup). We pro-
vide results for representative LLM model families released
before LLaMA in Appendix E.5. We provide additional
results for pruning image classifiers in Appendix F.

3.1. Language Modeling

Unstructured Sparsity. For each of the LLaMA models,
we prune it to unstructured 50% sparsity for all methods.
Results are shown in Table 2. Without any weight update,
Wanda outperforms the established pruning approach of
magnitude pruning by a large margin. For instance, for
LLaMA-7B, Wanda is able to find sparse networks with a
perplexity of 7.26, significantly better than the magnitude
pruning baseline 17.29. Our method also performs on par
with or in most cases better than the prior reconstruction-
based method SparseGPT.

Structured N:M Sparsity. We now turn our eyes to struc-
tured N:M sparsity. Note that N:M sparsity by definition is
a more restrictive sparsity pattern than unstructured sparsity.
Thus, it is expected that such structured sparsity patterns
would lead to worse results. Results for structured 4:8 and
2:4 sparsity are shown in the lower parts of Table 2. We
can see that Wanda can be easily generalized to structured
N:M sparsity. Across 4:8 and 2:4 sparsity, our method

3

A Simple and Effective Pruning Approach for Large Language Models

consistently finds highly effective sparse sub-networks, out-
performing baseline approaches in most cases, especially
for larger models (e.g. 30B and 65B).

Remark. Note that in certain cases, Wanda obtains re-
sults slightly better than but somewhat close to those of
SparseGPT. This may be related to the fact that our prun-
ing metric shares an implicit connection to the OBS recon-
struction error in Equation 3, as identified and explained in
Appendix D. While perplexity improvements in these cases
over SparseGPT may not be considered substantial, Wanda
is much simpler and more computationally efficient.

3.2. Ablation Study

Pruning Configuration. Our method differs from previous
pruning methods in two aspects: the pruning metric and the
pruning granularity. While we achieve superior performance
over prior approaches, it is not clear what the real source of
success is. Thus we revisit the configurations of magnitude
pruning, SparseGPT, and our method. We identify a total of
three pruning metrics and three pruning granularities. Note
that SparseGPT compares weights locally within a block of
128 consecutive columns, which we denote as ‘col, 128’.
Similarly, we refer to our granularity as ‘row, 1’.

Pruning Granularity

Pruning Metric layer col, 128 row, 1
|Wij | 17.29 16.82 13.41[

|W|2/diag(H−1)
]
ij

7.91 8.02 7.41
|Wij | · ∥Xj∥ 7.95 8.12 7.26

Table 3: Ablation on pruning configuration.

A pruning configuration with a specified metric and granular-
ity uniquely defines a pruning algorithm. Thus we consider
9 unique pruning configurations obtained by the combina-
tion of 3 metrics and 3 granularities. To isolate the effect
of OBS based weight update, we simply zero out pruned
weights for this ablation. The results are shown in Table 3,
where we highlight the configuration of our approach. We
can see that our pruning configuration is indeed the optimal.

Robustness to Calibration Samples. We vary the number
of calibration samples by selecting different sample sizes
ranging between 1 and 256. Results are summarized in
Figure 2. We see a clear difference in trend as the size of
calibration data changes, where Wanda is much more robust
with few calibration samples. Notably, even with a single
sample, pruned networks from Wanda have a perplexity of
7.66. This may be because input norm statistics ∥Xj∥ could
be much easier to estimate than the full inverse hessian H−1

of the local layer-wise reconstruction problem.

Weight Update. We test if we could obtain better pruned
models by incorporating the OBS weight update process
proposed in SparseGPT (Frantar & Alistarh, 2023). We
apply the OBS weight update procedure used in SparseGPT
on the kept weights produced by both magnitude pruning

1 2 8 16 32 64 128 256
Calibration Samples

7.5

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

LLaMA-7B

SparseGPT
Wanda

Figure 2: Ablation on calibration samples.

and our approach Wanda. We evaluate the perplexity on both
the calibration data and the validation data from WikiText.

Results are summarized in Table 4. The result on magni-
tude pruning does validate the effectiveness of the weight
update procedure, where it improves perplexity significantly
on both data splits. However, when the pruned model is
obtained by our method Wanda, it no longer brings improve-
ment but leads to an increase of perplexity (from 7.26 to
7.32) on validation data, suggesting that in this case the
updated model may overfit to the calibration samples.

Weight Update

Method Data Split ✗ ✓

Magnitude Calibration 22.13 13.45
Validation 17.59 12.56

Wanda Calibration 8.62 8.38
Validation 7.26 7.32

Table 4: Ablation on OBS based weight update.

Results are summarized in Table 4. The result on magnitude
pruning does validate the effectiveness of OBS based weight
update, where it improves perplexity significantly on both
data splits. However, when the pruning mask is initially
good, i.e. obtained by our method Wanda, the weight update
procedure no longer brings improvement but leads to an
increase of perplexity (from 7.26 to 7.32) on validation data,
suggesting that in this case the updated pruned networks are
overfitted to the calibration samples.

4. Conclusion
In this work, we propose a simple and effective method
for pruning Large Language Models (LLMs). Inspired by
the recent discovery of emergent large features in LLMs,
our approach, termed Wanda (Pruning by Weights and
activations), removes weights with the smallest magnitudes
multiplied by the corresponding input activation norms, on
a per-output basis. Without the need for any retraining or
weight update procedures, Wanda is able to identify effective
sparse networks within pretrained LLMs. Wanda could be
used as a general pruning approach beyond LLMs. We hope
our work contributes to a better understanding of sparsity in
LLMs.

4

A Simple and Effective Pruning Approach for Large Language Models

Acknowledgments. We thank Yonghao Zhuang for valu-
able discussions. Mingjie Sun and Anna Bair were sup-
ported by funding from the Bosch Center for Artificial In-
telligence.

References
Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,

O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L., and
van der Wal, O. Pythia: A suite for analyzing large lan-
guage models across training and scaling. arXiv preprint
arXiv:2304.01373, 2023.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the state of neural network pruning? In Proceedings of
Machine Learning and Systems (MLSys), 2020.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. arXiv:2109.12948, 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,
Y. Sparks of artificial general intelligence: Early ex-
periments with gpt-4. arXiv preprint arXiv:2303.12712,
2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cortes, C., Mohri, M., and Rostamizadeh, A. L2 regulariza-
tion for learning kernels. In Conference on Uncertainty
in Artificial Intelligence, 2009.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
LLM.int8(): 8-bit matrix multiplication for transformers
at scale. In Advances in Neural Information Processing
Systems, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. In Interna-
tional Conference on Learning Representations, 2020.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Stabilizing the lottery ticket hypothesis. In International
Conference on Machine Learning, 2020.

Frantar, E. and Alistarh, D. Spdy: Accurate pruning with
speedup guarantees. In International Conference on Ma-
chine Learning, 2022.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774, 2023.

Frantar, E., Singh, S. P., and Alistarh, D. Optimal Brain
Compression: A framework for accurate post-training
quantization and pruning. In Advances in Neural Infor-
mation Processing Systems, 2022.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
GPTQ: Accurate post-training compression for genera-
tive pretrained transformers. In International Conference
on Learning Representations, 2023.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. In International Conference on
Machine Learning, 2019.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff,
N., Phang, J., Reynolds, L., Tang, E., Thite, A., Wang,
B., Wang, K., and Zou, A. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
In Advances in Neural Information Processing Systems,
2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. In International Con-
ference on Learning Representations, 2016.

5

A Simple and Effective Pruning Approach for Large Language Models

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain sur-
geon and general network pruning. In IEEE International
Conference on Neural Networks, 1993.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2021.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, S.,
and Soudry, D. Accelerated sparse neural training: A
provable and efficient method to find N:M transposable
masks. In Advances in Neural Information Processing
Systems, 2021.

Jonathan, F. and Michael, C. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,
Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight
reparameterization for learnable sparsity. In International
Conference on Machine Learning, 2020.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. In Advances in Neural Information
Processing Systems, 2022.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in Neural Information Processing
Systems, 1989.

Lewkowycz, A. and Gur-Ari, G. On the training dynamics
of deep networks with l2 regularization. In Advances in
Neural Information Processing Systems, 2020.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. Learning efficient convolutional networks through
network slimming. In International Conference on Com-
puter Vision, 2017.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations, 2019.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Conference on
Computer Vision and Pattern Recognition, 2022.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l0 regularization. In Inter-
national Conference on Learning Representations, 2018.

Luo, Z., Kulmizev, A., and Mao, X. Positional artefacts
propagate through masked language model embeddings.
In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing,
August 2021.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic,
D., Venkatesh, G., Yu, C., and Micikevicius, P. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource effi-
cient inference. In International Conference on Learning
Representations, 2017.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Pool, J. and Yu, C. Channel permutations for n:m sparsity.
In Advances in Neural Information Processing Systems,
2021.

Puccetti, G., Rogers, A., Drozd, A., and Dell’Orletta, F.
Outliers dimensions that disrupt transformers are driven
by frequency. arXiv preprint arXiv:2205.11380, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
2020.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. In Interna-
tional Conference on Learning Representations, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. arXiv preprint arXiv:1907.10641, 2019.

Sanh, V., Wolf, T., and Rush, A. M. Movement pruning:
Adaptive sparsity by fine-tuning. In Advances in Neural
Information Processing Systems, 2020.

6

A Simple and Effective Pruning Approach for Large Language Models

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? arXiv
preprint arXiv:2304.15004, 2023.

Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-
order approximation for neural network compression.
In Advances in Neural Information Processing Systems,
2020.

Timkey, W. and Schijndel, M. v. All bark and no bite: Rogue
dimensions in transformer language models obscure rep-
resentational quality. arXiv:2109.04404, 2021.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image trans-
formers & distillation through attention. In International
Conference on Machine Learning, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. LLaMA: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Sharzeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polusukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., and Fedus, W. Emergent abilities of large
language models. In Transactions on Machine Learning
Research, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems,
2022b.

Xia, M., Artetxe, M., Zhou, C., Victoria Lin, X., Pasunuru,
R., Chen, D., Zettlemoyer, L., and Stoyanov, V. Train-
ing trajectories of language models across scales. arXiv
preprint arXiv:2212.09803, 2022a.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In Association for Compu-
tational Linguistics (ACL), 2022b.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, 2023.

Xiuying, W., Zhang, Y., Zhang, X., Gong, R., Zhang, S.,
Zhang, Q., Yu, F., and Liu, X. Outlier suppression: Push-
ing the limit of low-bit transformer language models.
In Advances in Neural Information Processing Systems,
2022.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al.
OPT: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun,
W., and Li, H. Learning N:M fine-grained structured
sparse neural networks from scratch. In International
Conference on Learning Representations, 2021.

Zhu, F., Pool, J., Andersch, M., Appleyard, J., and Xie,
F. Sparse persistent rnns: Squeezing large recurrent net-
works on-chip. In International Conference on Learning
Representations, 2018.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

7

A Simple and Effective Pruning Approach for Large Language Models

A. Experimental Details
A.1. Setup for Pruning LLMs

Our experiments are conducted on NVIDIA RTX A6000 GPUs with 50 GB memory. For pruning LLaMA models, we
first load these models onto GPUs in 16-bit floating-point format. All subsequent procedures (e.g. pruning) are conducted
directly on GPUs. For zero-shot tasks, we use the evaluation framework from https://github.com/EleutherAI/
lm-evaluation-harness/.

Models. We evaluate Wanda on the LLaMA (Touvron et al., 2023) model family, a series of Transformer language models
at various parameter levels, often referred to as LLaMA-7B/13B/30B/65B. We apply our pruning method to all four LLaMA
models. We note that our approach is not limited to LLaMA, but is applicable to any architectures that consist of many
linear layers, including other Transformer-based LLMs. We provide results for other LLM families in Appendix E.

Evaluation. We first measure the performance of pruned networks by their language modeling ability: perplexity computed
on a held-out validation set. Following previous works on LLM compression (Xiao et al., 2023; Frantar & Alistarh, 2023;
Frantar et al., 2023), we report the perplexity metric on WikiText (Merity et al., 2016) validation set. While perplexity has
been shown to be a stable and robust metric for language models (Xia et al., 2022a), we also evaluate their zero-shot ability.
We use the public evaluation benchmark EleutherAI LM Harness (Gao et al., 2021). For zero-shot performance, we evaluate
on seven common sense benchmarks: BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2019), ARC Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al.,
2018). We report the accuracy on each benchmark as well as the overall mean accuracy.

Baselines. We compare our method Wanda to two prior pruning methods:

• Magnitude pruning (Han et al., 2015) is a simple and strong baseline in which weights are discarded based on their
magnitudes. We follow the previous practice of magnitude pruning on Transformers (Gale et al., 2019; Sanh et al.,
2020), where weights are compared locally among the current linear layer. Magnitude pruning has been demonstrated to
outperform many other pruning methods (Gale et al., 2019; Blalock et al., 2020).

• SparseGPT (Frantar & Alistarh, 2023) is a second-order pruning method based on solving a layer-wise reconstruction
problem. To scale existing second-order based approaches (Frantar et al., 2022) to LLMs, an efficient weight update
procedure was proposed that iterates between weight removal and weight update at each layer. To our knowledge, it is the
only pruning method so far that has been demonstrated to work with LLMs.

Both Wanda and SparseGPT require calibration data to estimate certain input statistics (see Table 1). To control this variable
factor, we use the exact same set of calibration data as SparseGPT, which consists of 128 sequences (2048 tokens each)
sampled from the first shard of the C4 training data (Raffel et al., 2020).

Sparsity. For all pruning methods, we follow the setup of SparseGPT (Frantar & Alistarh, 2023), where a uniform sparsity
is imposed for all layers and there is no subsequent retraining. We skip the first embedding layer and the final classification
head, as is common in pruning Transformers (Sanh et al., 2020; Frantar & Alistarh, 2023). Our primary approach to induce
sparsity is through unstructured pruning. Considering the potential need for practical speedup, we also conduct evaluations
on structured N:M sparsity (Zhou et al., 2021; Hubara et al., 2021). Specifically, we provide comparisons on 4:8 and 2:4
sparsity patterns. The magnitude pruning baseline is extended to structured N:M sparsity in a similar spirit to our method
which is described in the previous section.

A.2. Setup for Additional Analysis

Pruning Image Classifiers. We use the pretrained ConvNeXt-B model available at https://github.
com/facebookresearch/ConvNeXt. For ViT, we use the DeiT-B model from https://github.com/
facebookresearch/deit. The ConvNeXt-B and DeiT-B classifiers have 89M and 86M parameters respectively.
As described in Section F, we focus on pruning linear layers, which comprise the majority of the parameters in these two
architectures. For ConvNeXt, the 1×1 convolutions in the its blocks can be viewed as linear layers, which account for
approximately 95% of the total model parameters. For calibration data on ImageNet, we sample 4096 images from the
training set, using them as the calibration set for our entire analysis. We find 4096 samples leads to a stable result for our
pruning metric, beyond which we notice only marginal effect.

LoRA Fine-tuning. We adopt the LoRA fine-tuning code on LLaMA available at https://github.com/tloen/
alpaca-lora. Our fine-tuning objective is the pretraining autoregressive language modeling objective. For the LoRA
adapter, we update two weight matrices, Wq and Wv , in the self-attention module with a rank of 8. The fine-tuning process

8

https://github.com/EleutherAI/lm-evaluation-harness/
https://github.com/EleutherAI/lm-evaluation-harness/
https://github.com/facebookresearch/ConvNeXt
https://github.com/facebookresearch/ConvNeXt
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora

A Simple and Effective Pruning Approach for Large Language Models

is conducted on the C4 training set, operating within a restricted computational budget that involves a single A6000 GPU
and a time constraint of 5 hours.

B. Preliminaries
Magnitude Pruning (Han et al., 2015; 2016) is a standard pruning technique to induce sparsity in neural networks. Different
from structured pruning approaches (Xia et al., 2022b; Liu et al., 2017), magnitude pruning removes individual weights
based on their magnitudes, where weights with magnitudes below a certain threshold are removed. In practice, this threshold
is typically determined by comparing weights globally (Liu et al., 2019) or layer-wise (Zhu & Gupta, 2017). Despite its
simplicity, magnitude pruning has been used to find extremely sparse networks (Jonathan & Michael, 2019; Zhu & Gupta,
2017) and now stands out as a strong baseline approach (Gale et al., 2019; Blalock et al., 2020; Hoefler et al., 2021) for
neural network sparsification.

Emergent Large Magnitude Features is a property specific to Transformer (Vaswani et al., 2017) based large language
models. Once models reach a certain scale (in practice, around 6B parameters), a small set of hidden state features emerges
with significantly larger magnitudes than the remaining ones. The existence of these outlier features in large language
models is demonstrated in Dettmers et al. (2022). These outlier features exhibit several intriguing characteristics. First,
they have very large magnitudes, about 100 times larger than typical hidden state values (Xiao et al., 2023). Second, they
are usually sparse and exist in certain feature dimensions. Finally, these outlier features are essential for the predictive
capability of LLMs: zeroing out these features at inference time results in significant degradation of language modeling
performance (Dettmers et al., 2022).

C. Structured N:M Sparsity.
While our method Wanda so far has been developed for unstructured sparsity, it can be easily extended to structured N:M
sparsity (Zhou et al., 2021; Hubara et al., 2021; Pool & Yu, 2021). N:M sparsity requires that at most N out of every M
contiguous weights to be non-zero. It can leverage NVIDIA’s sparse tensor cores (Mishra et al., 2021) to accelerate matrix
multiplication in practice. Wanda can be naturally extended to structured N:M sparsity, where we only need to compare
weights using the same metric among every M consecutive weights, for all weights connected to an output.

D. Connection to SparseGPT (Frantar & Alistarh, 2023)
We discuss Wanda’s connection with a few existing works. SparseGPT (Frantar & Alistarh, 2023) formalizes the problem
of pruning LLMs by solving a local layer-wise reconstruction problem, where their pruning metric and weight update
procedure is inspired from Optimal Brain Surgeon (OBS) (Hassibi et al., 1993). The pruning metric in SparseGPT is:

Sij =
[
|W|2/diag

(
(XTX+ λI)−1

)]
ij

(3)

Here XTX + λI in the denominator is the Hessian H for the layer-wise reconstruction problem and λ is the Hessian
dampening factor to avoid the collapse of inverse computation. With careful inspection, we observe that our metric in
Equation 1 is similar to the above when λ is 0 and only the diagonal elements of the Hessian matrix XTX + λI are
retained. This is because the diagonal of XTX+ λI is diag(∥Xj∥22), and the denominator in Equation 3 is now simplified
to (∥Xj∥22)−1. The resulting metric is the square of our proposed metric. This simplification substantially reduces the
required computation of weight importance, eliminating the need for computing any matrix inverses.

In the 1980s, LeCun et al. (LeCun et al., 1989) have set up a pioneering framework for neural network pruning named
Optimal Brain Damage (OBD). It uses second-order information but ignores off-diagonal elements in Hessians for faster
approximation. Later, Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) develops upon OBD partly by taking into
account the off-diagonal elements. Wanda can be seen as a renaissance of the pioneering work of Optimal Brain Damage
(OBD) (LeCun et al., 1989) – it may be viewed as applying a process similar to OBD to each neuron, with local output
reconstruction as the objective function, whereas the original OBD uses the global training objective.

E. Additional Results
E.1. Varying Sparsity Levels

We conduct experiments with varying levels of sparsity for unstructured pruning, the results of which are depicted in
Figure 3. It can be seen that Wanda and SparseGPT show similar trends of perplexity increase as the sparsity level gets

9

A Simple and Effective Pruning Approach for Large Language Models

higher. However, magnitude pruning displays a considerably more severe degradation trend.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sparsity

5

10

15

20

25

Pe
rp

le
xi

ty

LLaMA-30B

Magnitude
SparseGPT
Wanda

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sparsity

4

6

8

10

12

Pe
rp

le
xi

ty

LLaMA-65B

Magnitude
SparseGPT
Wanda

Figure 3: Results of the two largest LLaMA models with varying sparsity levels, where we compare the degradation trend of
pruned networks between our approach Wanda and baseline approaches.

E.2. Zero-Shot Tasks

We evaluate pruned models on downstream zero-shot tasks via prompting. Results are summarized in Table 5, where models
are pruned to unstructured 50% sparsity. Averaging the accuracy over the 7 tasks under consideration, the Wanda method is
able to identify effective pruned networks, showing competitiveness with baseline methods. Note that as the model gets
larger in size, the accuracy drop compared to the original dense model keeps getting smaller. For task-wise performance, we
observe that there are certain tasks where our approach Wanda gives consistently better results across all LLaMA models,
i.e. HellaSwag, ARC-c and OpenbookQA, while among the remaining tasks, there is not a fixed superior between the two
methods.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 71.7 53.4 58.3 68.0 67.7 38.6 28.0 55.1

Magnitude 53.5 56.3 44.6 54.5 53.7 32.3 21.6 45.2
SparseGPT 71.5 56.8 52.7 65.8 64.3 36.0 25.0 53.2

Wanda 70.3 53.3 52.9 64.7 64.1 37.0 26.4 52.7

13B

Dense 68.3 65.3 60.8 70.0 73.6 44.0 30.6 58.9

Magnitude 62.1 45.8 44.3 58.9 49.8 33.1 27.4 45.9
SparseGPT 66.7 52.0 55.1 70.9 66.9 39.2 26.0 53.8

Wanda 67.1 61.0 56.6 71.7 68.4 41.7 28.0 56.4

30B

Dense 66.9 61.4 64.8 72.4 75.3 46.9 29.4 59.6

Magnitude 66.6 53.4 49.7 63.4 68.8 40.0 26.2 52.6
SparseGPT 71.0 61.4 61.1 72.0 73.9 46.0 31.2 59.5

Wanda 70.3 66.8 62.3 71.1 74.8 46.5 32.4 60.6

65B

Dense 81.8 71.8 65.2 76.9 75.4 47.2 36.4 65.0

Magnitude 79.8 66.8 62.5 70.3 70.4 46.7 31.4 61.1
SparseGPT 81.2 70.4 62.5 74.1 74.8 44.7 32.2 62.8

Wanda 82.2 69.1 64.5 73.9 74.6 45.9 32.8 63.3

Table 5: Accuracies (%) for 7 zero-shot tasks with unstructured 50% sparsity.

E.3. Pruning Speed

The theoretical computational complexity of Wanda is lower than SparseGPT (Table 1). Here we compare their empirical
pruning speed. We measure the total pruning time only (excluding the forward pass process shared by both methods) on
NVIDIA A6000 GPUs. We present the results in Table 6. Wanda incurs negligible time overhead compared with SparseGPT.
The fast speed is particularly useful when pruning needs to be performed on a real-time basis, e.g., processing different
samples with different sparsity levels.

10

A Simple and Effective Pruning Approach for Large Language Models

LLaMA

Method 7B 13B 30B 65B
SparseGPT 203.1 339.0 810.3 1353.4
Wanda 0.54 0.91 2.9 5.6

Table 6: Comparison of time overhead (in seconds) between Wanda and SparseGPT, excluding the shared forward pass
process.

E.4. Pruning Configuration

Wanda differs from previous methods in both the pruning metric and the pruning granularity. We conduct experiments on a
variety of pruning metrics and grnularities to ablate their effectiveness. The three pruning metrics can be found in Table 1.
SparseGPT adopts a local granularity level inside a layer, where weights connected to 128 consecutive input channels form a
group. Wanda groups weights connected with a single output channel. Therefore, we ablate two blocksize options (128 and
1) and the input/output choice. For simplicity, we use (input/output, blocksize) to denote the local pruning granularity level,
e.g., (input, 1). For this experiment, we do not perform weight update for SparseGPT to focus on metric and granularity.

Pruning Granularity

Pruning Metric layer (input, 1) (input, 128) (output, 1) (output, 128)
Magnitude: |Wij | 17.29 8.86 16.82 13.41 17.47
SparseGPT:

[
|W|2/diag(H−1)

]
ij

7.91 8.86 8.02 7.41 7.74

Wanda: |Wij | · ∥Xj∥ 7.95 8.86 8.12 7.26 7.71

Table 7: Ablation on pruning metric and granularity. Bold results denote the best granularity found for each pruning metric.
Underscored results indicate the default granularity used by each method.

The results are shown in Table 7. Wanda’s default configuration delivers the best pruned model (perplexity 7.26). Interestingly,
for the magnitude metric, comparing weights of the same input neuron (input, 1) yields a perplexity of 8.86, significantly
better than other granularity options. Three methods also produce equivalent pruning results as under this granularity – the
input is the same, thus weight ranking only depends on weight magnitude. This finding further highlights the importance of
using a proper pruning granularity for pruning LLMs, even for the classical magnitude pruning.

E.5. Pythia and OPT

While prior public LLM models may not be as powerful as LLaMA, we test the generality of our approach by evaluating it
on two representative LLM families before the release of LLaMA, namely Pythia (Biderman et al., 2023) and OPT (Zhang
et al., 2022). We select two models with approximately the same level of total parameters: Pythia-12b 1 and OPT-13b 2. The
results (unstructured sparsity) are shown in Table 8. We can see that magnitude pruning deteriorates significantly faster on
Pythia-12b and OPT-13b in comparison to LLaMA models. For instance, even a sparsity ratio of 20% pushes the perplexity
of pruned models to a meaningless level (greater than 1000). In contrast, our method Wanda consistently finds exact and
effective sparse networks within both pretrained LLMs.

F. Analysis
In this section, we first study whether Wanda can be a general pruning approach beyond LLMs. Next, we show exploratory
results on using parameter efficient fine-tuning techniques to recover performance drop during the pruning procedure.

While the main focus of this work is on pruning LLMs, the surprising effectiveness of Wanda leads to a clear question: how
would Wanda perform against magnitude pruning on tasks where the latter has been widely used? We thus conduct a study
on ImageNet-1K (Deng et al., 2009), a standard image classification task where magnitude pruning has been extensively
studied and accepted as a strong baseline (Gale et al., 2019; Blalock et al., 2020).

We consider two modern vision architectures: ConvNeXt (Liu et al., 2022) and Vision Transformer (ViT) (Dosovitskiy et al.,

1https://huggingface.co/EleutherAI/pythia-12b
2https://huggingface.co/facebook/opt-13b

11

A Simple and Effective Pruning Approach for Large Language Models

Sparsity

Model Dense Pruning Method Weight Update 10% 20% 30% 40% 50%

Pythia-12b 8.59
Magnitude ✗ 127.76 2e5 7e5 2e5 3e5
SparseGPT ✓ 8.59 8.65 8.86 9.39 11.02

Wanda ✗ 8.59 8.60 8.85 9.31 11.27

OPT-13b 10.13
Magnitude ✗ 14.45 9e3 1e4 1e4 1e4
SparseGPT ✓ 10.11 10.10 10.12 10.35 11.19

Wanda ✗ 10.09 10.07 10.09 10.63 11.42

Table 8: Results for pruning Pythia and OPT models, where we show the perplexity evaluation on WikiText. Notice that
magnitude pruning fails catastropically even at low sparsity levels (e.g. 20%) for both models.

2021). We choose these two architectures mainly for two reasons: first, as LLMs are based on Transformers (Vaswani et al.,
2017), we would like to test if our observations on LLMs so far still hold on Transformers for other tasks; second, as we are
evaluating on image classification, we are interested in examining how they work with ConvNet models, with ConvNeXt
being a representative architecture.

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

ConvNeXt

Magnitude
Wanda

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80
A

cc
ur

ac
y

ViT

Magnitude
Wanda

Figure 4: Results for pruning image classification models.

We use two ImageNet-1K pretrained models: ConvNeXt-B and ViT-B, which have a top-1 accuracy of 83.8% and
81.8% (Touvron et al., 2021) respectively. We prune the linear layers only (for ConvNeXt, this includes equivalent 1×1
convolution layers). We find that for both models, pruning uniformly on a per layer basis is consistently better than a per
output basis. We thus compare our proposed metric and the standard magnitude metric by pruning on a per layer basis.
Results are shown in Figure 4. Our novel pruning metric leads to better results than magnitude pruning, especially at high
sparsities (e.g. 70%, 80%). However, we find differences in the accuracy of pruned networks can easily be mitigated via
retraining for a few epochs, indicating that Wanda might be more suitable for cases where retraining is not computationally
feasible, such as in LLMs.

We now present detailed results on pruning image classifiers in Figure 5, where we report the accuracy of pruned models
without any subsequent fine-tuning. For clarification purposes, in our analysis, we use Magnitude and Wanda to refer to
the magnitude metric and our proposed metric in Equation 1, respectively. We can see that for both ConvNeXt and DeiT,
pruning in a layerwise fashion is better than pruning per output (denoted as ‘row’ in the figure legend).

In addition, we extend our analysis to a ViT model from the original paper Dosovitskiy et al. (2021): ViT-L trained on
ImageNet-1K with a top-1 accuracy 78.9%. To differentiate from DeiT, we refer to this pretrained model as original ViT.
Results are shown in Figure 6. Interestingly, in this case, we observe that pruning on a per output basis is superior to
layerwise pruning, implying that the choice of pruning granularity may be different for different models.

Notably, we also find that the accuracy differences between Wanda and magnitude pruning in pruning image classifiers can
be effectively mitigated by fine-tuning for a few epochs.

F.1. LoRA Fine-tuning

We explore using parameter efficient fine-tuning (PEFT) techniques to recover performance of pruned LLM models. We
use a popular PEFT method LoRA (Hu et al., 2021), which has been widely adopted for task specific fine-tuning of LLMs.

12

A Simple and Effective Pruning Approach for Large Language Models

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y
ConvNeXt

Magnitude, layer
Magnitude, row

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

ConvNeXt

Wanda, layer
Wanda, row

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

DeiT

Magnitude, layer
Magnitude, row

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

DeiT

Wanda, layer
Wanda, row

Figure 5: Results for pruning two image classifiers: ConvNeXt-B and DeiT-B.

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

vanilla ViT

Magnitude, layer
Magnitude, row

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

vanilla ViT

Wanda, layer
Wanda, row

Figure 6: Results for pruning the image classifier ViT-L in Dosovitskiy et al. (2021).

However, here we are interested in recovering the performance loss of LLMs during pruning, thus we perform a more
general “fine-tuning” where the pruned networks are trained with an autoregressive objective on C4 dataset. We enforce a
limited computational budget (1 GPU and 5 hours). We find that we are able to restore performance of pruned LLaMA-7B
(unstructured 50% sparsity) with a non-trivial amount, reducing zero-shot WikiText perplexity from 7.26 to 6.87. The
additional parameters introduced by LoRA is only 0.06%, leaving the total sparsity level still at around 50% level.

G. Related Work
Network Pruning and Sparsity. Pruning is a popular technique for compressing neural networks through the elimination
of weights, yielding sparse networks (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015; Liu et al., 2019; Zhu et al.,
2018). Pruning methods can be broadly categorized into structured and unstructured approaches. Structured pruning
methods (Xia et al., 2022b; Liu et al., 2017; Molchanov et al., 2017; Fan et al., 2020) remove entire structured components of
a network, facilitating efficient GPU speedups, while unstructured methods like magnitude pruning operate at the individual
weight level, maintaining performance even at higher sparsity levels. Existing pruning methods usually require either
modifications to the training procedure (Louizos et al., 2018; Sanh et al., 2020; Gale et al., 2019; Kusupati et al., 2020),
retraining the pruned networks to regain accuracy (Han et al., 2015; 2016; Liu et al., 2019), or an even more computationally
intensive iterative retraining process (Jonathan & Michael, 2019; Zhu & Gupta, 2017; Renda et al., 2020; Frankle et al.,

13

A Simple and Effective Pruning Approach for Large Language Models

2020). However, scaling these methods to LLMs with billions of parameters presents a challenge, as the required training
process demands substantial computational resources (Touvron et al., 2023; Zhang et al., 2022).

Pruning with Limited Data. Most related to our approach is a recent line of work on pruning with limited data (Hubara
et al., 2021; Frantar et al., 2022; Frantar & Alistarh, 2022; Kwon et al., 2022). Such methods require no modification to
the original training procedure and also no retraining of the pruned networks on the full training dataset. The primary
aim of these methods is to preserve performance during the pruning procedure, assuming access to a limited and small
amount of data, also referred to as the calibration data. In order to mitigate the accuracy drop, a layer-wise reconstruction
problem (Hubara et al., 2021) is solved to minimize the change of output evaluated on the calibration data. Existing popular
solvers (Frantar et al., 2022; Singh & Alistarh, 2020) for the layer-wise reconstruction problem rely on heavy computation
of second-order Hessian inverses, which do not scale to the large hidden state size of LLMs. SparseGPT (Frantar & Alistarh,
2023) develops an efficient weight update procedure for LLMs via synchronized second-order Hessian updates.

Emergent Properties of LLMs. Our work is also related to recent studies on the existence of large magnitude outlier
features in Transformer-based language models (Timkey & Schijndel, 2021; Bondarenko et al., 2021; Xiuying et al., 2022;
Luo et al., 2021; Puccetti et al., 2022). Dettmers et al. (2022) demonstrates that when LLMs exceed a certain parameter
scale (e.g. 6B), large magnitude features start to emerge and strongly affect all layers, which is considered as one of the
emergent properties of LLMs (Dettmers et al., 2022; Wei et al., 2022a; Schaeffer et al., 2023). They further identify these
emergent features as the cause of existing quantization methods’ failures. This observation has spurred the development
of various quantization schemes (Dettmers et al., 2022; Xiao et al., 2023; Lin et al., 2023; Dettmers et al., 2023) tailored
specifically for LLMs to manage these outlier features. Our work extends this understanding, demonstrating that these
emergent large magnitude features should also serve as pivotal indicators for determining which weights to prune in LLMs.

14

