

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IS ON-POLICY DATA ALWAYS THE BEST CHOICE FOR DIRECT PREFERENCE OPTIMIZATION-BASED LM ALIGNMENT?

Anonymous authors

Paper under double-blind review

ABSTRACT

The alignment of language models (LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization (DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling (i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a $3\times$ effectiveness compared with static data for Llama-3, and a $0.4\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on 5 models (Llama, Zephyr, Phi-2, Qwen, Pythia) and 2 alignment methods (DPO, SLiC-HF) to show the generalizability of alignment stage assumption and the effectiveness of the boundary measurement algorithm.

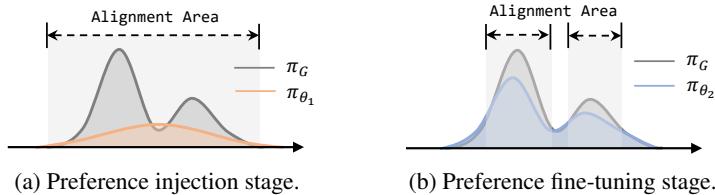


Figure 1: Illustration of our alignment stage assumption and different characteristics of (a) preference injection stage and (b) preference fine-tuning stage. The alignment area indicates the preferred region of preference candidates at corresponding alignment stages. The stage boundary is estimated by the distance between ground truth text distribution (π_G) and simulated text distribution ($\pi_{\theta_1}, \pi_{\theta_2}$).

1 INTRODUCTION

Large language models possess broad world knowledge and strong generalization capabilities in complex tasks under minimal supervision (Brown et al., 2020). However, the powerful models still produce biased (Bender et al., 2021), unfaithful (Ji et al., 2023) and harmful (Bai et al., 2022) responses due to the heterogeneous sources of their pre-training corpora. It is important to ensure models to generate desired responses that conform to humans' ethical standards and quality preferences for building reliable AI systems, which is well known as language model (LM) alignment with human preferences (Ouyang et al., 2022). Generally, the LM alignment problem is formulated as optimizing a policy model π_θ to maximize the expected reward r_ϕ , where the reward r_ϕ reflects human preference regarding the completion y for a given prompt x .

The most widely adopted approach to address the LM alignment problem is through reinforcement learning (RL) in an **on-policy** manner (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). Specifically, the on-policy manner requires π_θ iteratively refines its policy by performing on-policy sampling (i.e., sampling completions generated under its current parameters), ensuring that gradient estimates align with the latest behavior policy. The LM policy is then optimized via RL solutions. However, these approaches incur significant computational cost due to repeated sampling from the LM policy, and are observed to be unstable due to the high variance in estimating the policy gradients or value functions, which potentially worsens sample complexity and thus compromises efficient model convergence (Papini et al., 2018; Anschel et al., 2017).

Direct Preference Optimization (DPO, Rafailov et al. (2023)) was proposed to be a competitive alternative to the RL solutions. Specifically, DPO optimizes π_θ via reward modeling loss on preference candidates following the **off-policy** manner, i.e., the LM policy is optimized on a static dataset without additional sampling during the training loop. It is more resource-efficient, and shares the theoretically equivalent optimization objective with those RL solutions. Despite all the advantages, as an off-policy method, DPO can struggle in out-of-distribution scenarios and result in sub-optimal performance due to the absence of on-policy exploration (Tang et al., 2024).

To tackle these issues, recent works proposed iterative DPO, a method that integrating on-policy sampling into regular DPO training, which is observed to outperform vanilla DPO in several benchmarks (Wu et al., 2024; Zhang et al., 2025a; Rosset et al., 2024). These findings highlight the potential of on-policy sampling for enhancing LM alignment via off-policy methods like DPO. However, the practical recipe of using on-policy data lacks discussion or clear guidelines. Several works choose to train the LM policy on on-policy data directly (Yuan et al., 2024; Liu et al., 2024), while other works choose to train models on off-policy preference candidates first as a cold start phase (Zhang et al., 2025a; Kim et al., 2025). Such discrepancy and arbitrariness indicate an absence of comprehensive understanding about the relationship between LM alignment and preference candidates, which may limit the model performance and sample efficiency. This motivates us to study the following research question: **What is the requirement of preference candidates during the LM alignment process?** In this work, we answer the research question from two aspects, i.e, the qualitative description of the LM alignment process (RQ1) and the actionable insight of the qualitative description of the LM alignment process (RQ2). Through detailed experiments, we reveal a patterned dynamic requirements of preference candidates during the alignment process, and further provide an alignment stage assumption to explain the phenomenon from the perspective of DPO. Based on the assumption, we answer RQs through massive empirical experiments and theoretical-grounded method.

Firstly, we conduct a two-iteration training experiment on Llama-3, Zephyr and Phi-2. The experimental results reveal the existence of a patterned effectiveness discrepancy between the use of on-policy preference candidates (PC_{on}) and off-policy preference candidates (PC_{off}), and models exhibit varying performances and dynamic requirements for preference candidates. Motivated by this observation, we propose the *alignment stage assumption*, which posits that the alignment process can be divided into two stages, i.e., the preference injection stage and the preference fine-tuning stage, as illustrated in Figure 1. Based on the alignment stage assumption, we answer the research questions subsequently. Specifically, we conduct extensive experiments to demonstrate the characteristics of each alignment stage (for RQ1). We find that models in preference injection stage favor data of high preference diversity, while those in preference fine-tuning stage favor data of high preference quality. We propose the boundary measurement algorithm, a measurement to determine which stage the policy is currently in, and perform extensive experiments to show the effectiveness of our algorithm (for RQ2). Moreover, we provide a theoretical perspective to interpret the stage characteristics and the boundary measurement algorithm. Notably, we show that the requirements of preference diversity stems from a more accurate approximation of the ground-truth preference given the Bradley-Terry definition. The goal of selecting preference candidates is to better estimate the general text distribution, which is based on human preferences or the ground-truth reward model used for preference annotation. We also show that our boundary measurement algorithm identifies a better estimation of the general text distribution. Finally, we conduct experiments on more models (Qwen 2.5, Pythia) and more methods (SLiC-HF) to show the generalizability of our conclusions. To provide a clear image, we illustrate the assumption and its subsequent conclusions in Figure 2.

We summarize our contributions in this paper:

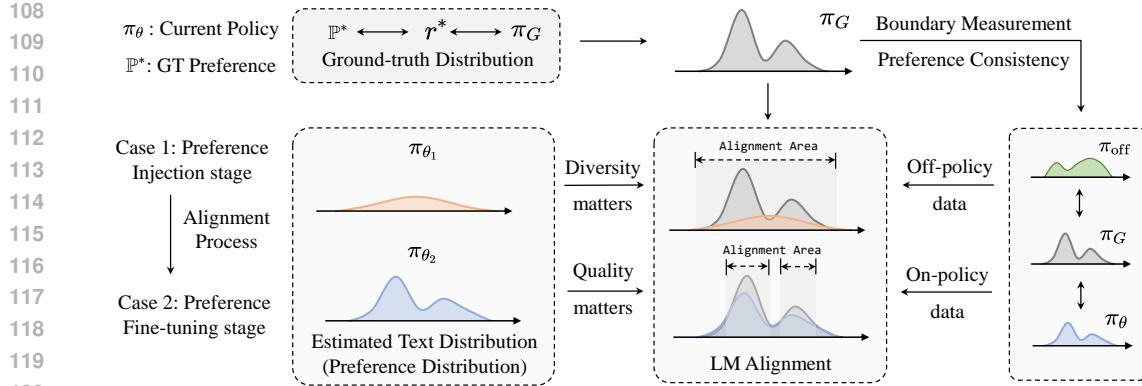


Figure 2: Illustration of the alignment stage assumption. The alignment process is a continuous transition from preference injection stage to preference fine-tuning stage. We demonstrate the characteristics of stages (Case 1 and Case 2). We build up the relationship among preference distribution, reward model and text distribution, which help us understand the alignment process from the perspective of distribution distance and preference consistency. Practically, we propose the boundary measurement, a measurement to decide which stage the policy is currently in by judging which distribution (π_{off} and π_θ) is a better estimation of the ground-truth distribution (π_G).

- We reveal a patterned effectiveness discrepancy between on-policy data and off-policy for different models, and propose the alignment stage assumption (preference injection stage, preference fine-tuning stage) to model the dynamic requirements for preference candidates.
- We analyze the alignment stages through empirical analysis on two characteristics (i.e., diversity and quality), showing that models in preference injection stage favor data with high diversity, while models in preference fine-tuning stage favor data with high quality.
- We provide theoretical insights into the underlying mechanism about the LM alignment process, and propose the boundary measurement algorithm to decide stage boundaries.

2 RELATED WORK

Iterative DPO. Based on vanilla DPO, iterative DPO aims at improving DPO by incorporating on-policy sampling data. Yuan et al. (2024) constructs the preference dataset automatically where both preference candidates and instruction prompts are generated by LM in an on-policy manner. Tajwar et al. (2024) further discusses the requirements of fine-tuning with preference data through extensive experiments and detailed theoretical analysis, showing that approaches that use on-policy sampling are generally more preferred in practice. These works provide theoretical analysis about on-policy sampling. Our work builds on this line by describing the overall alignment process from a systematic and methodological perspective and improving the efficiency and effectiveness of on-policy sampling for model training, rather than selecting preference data manually and empirically, which is neither scalable nor optimal for LM alignment.

Data Diversity. The diversity of preference data can be separated into two sections: preference diversity and candidate diversity, both facts can help improve LM alignment. The former is due to the complexity of values, environments or populations, which result in the mismatch and diversity of preferences among different annotators. Several works model the diverse preference alignment problem as a multi-object optimization problem, addressing the problem using methods like Pareto optimality (Guo et al., 2024; Zhou et al., 2024) or reward ensembling (Lou et al., 2024; Zeng et al., 2024; Ramé et al., 2024). Our work focuses on the latter one, the candidate diversity. It is due to the limited coverage of the general text space given the condition of finite sampling, which results in an insufficient and incomplete preference representation. By labeling preferences using the same reward model, our work introduces the crucial role of candidate diversity at the preference injection stage. It can help models construct the general reward distribution effectively that is aligned with the reward model, and thus achieve more valuable explorations at the preference fine-tuning stage.

162 **3 PRELIMINARIES**

164 In this section, we first formally review the concept and objective of the language model alignment
 165 problem. Then we review existing approaches that are applied to address the alignment problem via
 166 reinforcement learning and direct preference optimization.

168 **3.1 LM ALIGNMENT WITH HUMAN PREFERENCES**

170 Given a vocabulary \mathcal{V} , a language model defines a probability distribution $\pi(x) =$
 171 $\prod_{t=1}^n \pi(x_t|x_1, \dots, x_{t-1})$ over a sequence of tokens $x = (x_1, \dots, x_n)$. We apply π to a text gener-
 172 ation task with input space $\mathcal{X} = \mathcal{V}^m$ and output space $\mathcal{Y} = \mathcal{V}^n$ modeled by $\pi(y|x) = \pi(x, y)/\pi(x)$.

173 A preference dataset $\mathcal{D}^{\text{pref}}$ consists of pairs of responses as the preference candidates, and their
 174 corresponding preferences pre-annotated by humans (Dubey et al., 2024) or strong LMs through
 175 prompting-based techniques (Dubois et al., 2024a). Then, a reward model $r_\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is
 176 learned on $\mathcal{D}^{\text{pref}}$ and trained by minimizing the pair-wise preference loss by its general form:

177
$$\text{eqn : reward}_{\text{equal}} \mathcal{L}(r_\phi) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} [\ell(r_\phi(x, y_w) - r_\phi(x, y_l))], \quad (1)$$

179 where y_w, y_l are the chosen and rejected preference candidates, and ℓ is a function that maps the
 180 difference between the two rewards into a probability; or its specific form:

182
$$\mathcal{L}(r_\phi) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} \left[-\log \frac{e^{r_\phi(x, y_w)}}{e^{r_\phi(x, y_w)} + e^{r_\phi(x, y_l)}} \right], \quad (2)$$

184 where the preference is discretized, i.e., the chosen response y_w is always annotated as better than
 185 the rejected response y_l among different annotators, and the preference formulation is based on
 186 Bradley-Terry (BT) model definition.

187 Finally, a policy π_θ is learned to maximize the following alignment objective (Ziegler et al., 2019;
 188 Ji et al., 2024)

190
$$\mathcal{L}(\pi_\theta) = \mathbb{E}_{x \sim \mathcal{D}} (\mathbb{E}_{y \sim \pi_\theta(\cdot|x)} [r_\phi(x, y)] - \beta \mathbb{D}_{\text{KL}}[\pi_\theta(y|x) \parallel \pi_{\text{ref}}(y|x)]), \quad (3)$$

192 where \mathcal{D} is a task-specific dataset, π_{ref} is the reference model, which is usually the initial checkpoint
 193 of π_θ , typically a model supervised-finetuned (SFT-ed) on instruction-following datasets. \mathbb{D}_{KL} is the
 194 Kullback-Leibler divergence loss and β is a density coefficient.

195 **3.2 RL FINE-TUNING**

197 One standard approach to optimize the alignment objective Eq. (3) is to use RL algorithms, which is
 198 a consequence of the discrete nature of language generation. Recently, Ziegler et al. (2019) proposed
 199 to search for π_θ that maximizes a KL-regularized reward $r_\phi(x, y) - \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)}$, which can be
 200 achieved by policy gradient methods, such as Proximal Policy Optimization (PPO, Schulman et al.
 201 (2017)) and Group Relative Policy Optimization (GRPO, Shao et al. (2024)).

203 **3.3 DIRECT PREFERENCE OPTIMIZATION**

205 Rafailov et al. (2023) proposed DPO that optimizes π_θ directly from the preference data. Eq. (3)
 206 can be organized as

207
$$\min_{\pi_\theta} \mathbb{E}_{x \sim \mathcal{D}} [\text{KL}(\pi_\theta(y|x) \parallel \pi^*(y|x)) - \log Z(x)], \quad (4)$$

209 where the function $Z(x)$ satisfies $Z(x) = \sum_y \pi_{\text{ref}}(y|x) \exp(\frac{1}{\beta} r_\phi(x, y))$, and the optimal solution
 210 π^* satisfies $\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{init}}(y|x) \exp(\frac{1}{\beta} r_\phi(x, y))$.

212 The optimal solution of Eq. (4) is obtained when $\text{KL}(\pi_\theta \parallel \pi^*)$ is minimized. Let π_θ^* be the opti-
 213 mal solution of Eq. (4), then π_θ^* equals to π^* . The relationship between r_ϕ and π_θ can be further
 214 expressed as:

215
$$r_\phi(x, y) = \beta \log \frac{\pi_\theta^*(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x). \quad (5)$$

216 Then, they proposed to directly optimize the policy π_θ by replacing π_θ^* with π_θ and substituting the
 217 corresponding reward function into a pair-wise preference loss:
 218

$$219 \quad \mathcal{L}_{\text{DPO}}(\pi_\theta) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} \left[-\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right]. \quad (6)$$

221 Our goal is to understand the requirements of preference candidates during the alignment process
 222 when performing alignment methods like DPO. In the following sections, we try to achieve our goal
 223 by answering the following two research sub-questions (**RQs**) empirically and theoretically:
 224

225 **RQ1:** Can we perform a qualitative description of the alignment process, or can we characterize
 226 the requirements of preference candidates through the alignment process?
 227

228 **RQ2:** Is it possible to ensure that the qualitative description of the alignment process has action-
 229 able insight and can help conduct the effective alignment approach?
 230

231 4 EMPIRICAL ANALYSIS

232 4.1 ANALYSIS SETUP

233 **Models.** We use different models including Llama-3-8B-Instruct (AI@Meta, 2024), Zephyr-sft-
 234 full (Tunstall et al., 2023) and Phi-2 (Li et al., 2023) for experiments. We select these models based
 235 on their parameter scales and training stages. We use PairRM (Jiang et al., 2023b) as the ground-
 236 truth preference model in our experiments, acting as a surrogate to expensive human preference for
 237 preference annotation. More details are shown in Appendix C.1.
 238

239 **Dataset.** We use the prompts and preference candidates from UltraFeedback (Cui et al., 2023),
 240 then relabeled the preference by PairRM to get the final off-policy dataset, aiming at ensuring the
 241 identical preference between different preference datasets. More details are shown in Appendix C.2.
 242

243 **Benchmarks.** Following previous works (Meng et al., 2024; Ji et al., 2024), We use AlpacaEval
 244 2.0 (Dubois et al., 2024b) as our evaluation benchmark and report the length-controlled win rate
 245 over the reference responses. More details are shown in Appendix C.3.
 246

247 4.2 MAIN RESULTS: THE EFFECTIVENESS DISCREPANCY BETWEEN 248 OFF-POLICY/ON-POLICY DATA EXISTS

249 Firstly, we propose a two-iteration training framework for each model, incorporating a full combi-
 250 nation of off-policy and on-policy candidates. For each model, we conduct four distinct training
 251 configurations: 1) $\text{PC}_{\text{off} \rightarrow \text{off}}$: Two consecutive iterations using off-policy candidates; 2) $\text{PC}_{\text{off} \rightarrow \text{on}}$:
 252 First iteration with off-policy candidates followed by on-policy candidates; 3) $\text{PC}_{\text{on} \rightarrow \text{off}}$: First iteration
 253 with on-policy candidates followed by off-policy candidates; and 4) $\text{PC}_{\text{on} \rightarrow \text{on}}$: Two iterations
 254 exclusively using on-policy candidates. We provide more details in Appendix C.4.
 255

256 We present our result in Table 1. Our observation and conclusions are as follows. **1) The effectiveness**
 257 **discrepancy between PC_{off} and PC_{on} exists among different models.** For Llama-3, models
 258 trained with PC_{on} consistently outperform those trained with PC_{off} given the same initial model in
 259 every setting ($\Delta < 1$), which suggests PC_{on} generally improve Llama-3 better than PC_{off} . However,
 260 results on Zephyr are observed to be different from those of Llama-3. Models trained with PC_{on}
 261 outperform those with PC_{off} when the initial model has been trained with PC_{off} in the previous
 262 iteration ($\Delta > 1$). In other cases, PC_{on} leads to a worse performance for Zephyr compared with
 263 PC_{off} ($\Delta < 1$). For Phi-2, the results are opposite to those of Llama-3. Model trained with PC_{off}
 264 consistently outperforms that with PC_{on} in all settings ($\Delta > 1$). **2) The alignment process may**
 265 **result in a failure when using PC_{on} .** We observe a slight performance drop for Phi-2 when trained
 266 with PC_{on} , particularly if the initial model is the SFT model or has been trained with PC_{off} in the
 267 previous iteration. **3) The effectiveness of PC_{off} varies within the same model under different**
 268 **circumstances.** We observe varying improvements when optimizing Zephyr by PC_{off} across dif-
 269 ferent training iterations (12.7/3.0/8.5-point increase). The discrepancy between PC_{off} and PC_{on}

270	Iter-1	Iter-2	LC Win Rate	Win Rate	Avg. Len	$\Delta(\times)$	LC Win Rate	Win Rate	Avg. Len	$\Delta(\times)$	LC Win Rate	Win Rate	Avg. Len	$\Delta(\times)$
Llama-3-8B-Instruct														
271	-	-	24.59	24.47	1924	-	8.12	4.25	824	-	5.81	3.72	915	-
272	PC _{off}	-	27.73 _(+3.14)	22.85	1605	0.33	20.77 _(+12.65)	19.99	1903	2.27	5.97 _(+0.16)	3.92	983	$+\infty$
273	PC _{on}	-	34.04 _(+9.45)	34.47	2014	-	13.70 _(+5.58)	9.90	1278	-	4.21 _(-1.60)	2.86	961	-
274	PC _{off}	PC _{off}	27.83 _(+0.10)	24.38	1723	<0.01	23.77 _(+3.00)	21.67	1757	0.24	6.44 _(+0.47)	4.43	1077	$+\infty$
275	PC _{off}	PC _{on}	40.57 _(+12.84)	41.89	2094	-	33.28 _(+12.51)	36.85	2575	-	4.92 _(-1.05)	3.46	995	$+\infty$
276	PC _{on}	PC _{off}	36.36 _(+2.32)	36.58	2010	0.22	22.22 _(+8.52)	19.33	1656	1.56	5.73 _(+1.52)	3.77	991	1.13
277	PC _{on}	PC _{on}	44.52 _(+10.48)	50.57	2473	-	19.16 _(+5.46)	18.05	1746	-	5.55 _(+1.34)	3.68	946	-

Table 1: Results of full-combination two-iteration experiments for all three models. “PC_{on}” and “PC_{off}” refer to on-policy and off-policy preference candidates respectively, “iter” is the abbreviation of “iteration”. As focusing on the length-controlled win rate (LC Win Rate) of the benchmark, the red number shows the relative increase compared to the initial model (i.e., iter-2 compared to iter-1, iter-1 compared to SFT) while the green number shows the relative decrease. Δ shows the ratio relationship of relative increase between models trained with PC_{off} and PC_{on}. “ $+\infty$ ” means there is a performance drop when training on PC_{off} or PC_{on}.

shows that during the alignment process, the requirements of preference candidates are dynamic. This patterned dynamic nature motivates our central proposal: the alignment stage assumption.

We introduce the **alignment stage assumption** to model the dynamic requirements of preference candidates. Specially, the alignment process can be divided into two stages, the preference injection stage and the preference fine-tuning stage. During the preference injection stage, PC_{off} will be more effective; when the model comes into the preference fine-tuning stage, PC_{off} will be less effective than PC_{on}. According to the results in Table 1 and the alignment stage assumption, we note that Llama-3 has been in the preference fine-tuning stage in all settings; after training on PC_{off}, Zephyr is in the preference fine-tuning stage; Phi-2 is in the preference injection stage in all settings.

294 4.3 DIVERSITY AND QUALITY AS THE CHARACTERISTICS OF ALIGNMENT STAGES (RQ1)

To answer **RQ1**, following previous works (Ding et al., 2024; Grillotti et al., 2024), we focus on the two key characteristics of preference data: intra-diversity and answer quality, and perform experiments on Zephyr. We use Zephyr since it shifts from the preference injection stage to the preference fine-tuning stage after training with PC_{off}. To de-confound the effects of data characteristics from their on-policy/off-policy nature, we introduce PC_{llama}, a dataset constructed off-policy with regard to Zephyr by sampling from Llama-3-8B-Instruct, then annotating preferences using PairRM. All prompts of PC_{llama} are the same as PC_{on} and PC_{off}. We provide more details in Appendix C.5.

PC_{llama} is designed to isolate the impact of data characteristics. Through experiments, we show that the preference candidates in PC_{off} have a higher intra-diversity than those in PC_{llama}, and quality of preference candidates in PC_{off} is lower than that in PC_{llama}. We provide experimental details about the comparison between PC_{off} and PC_{llama} in Appendix C.5. Besides results of models trained with PC_{off} and PC_{llama}, we also include the PC_{on} results as references.

We present our results in Table 2. Our observations and conclusions are as follows. **1) High diversity is more effective for models in the preference injection stage.** Compared with the SFT baseline, model trained with PC_{off} achieves a 12.7-point performance increase. In contrast, model trained with PC_{llama} achieves a 5.4-point performance increase, which is similar to the model trained with PC_{on} that achieves a 5.6-point performance increase. However, when Zephyr has been in the preference fine-tuning stage, PC_{off} achieves a relatively smaller performance increase, which is 3.0 points, compared with PC_{llama} and PC_{on}, which are 8.6 points and 12.5 points, respectively. Similar results are also observed from experiments in § 4.2, where PC_{off} attributes to slight improvement for Llama-3. **2) High quality will be more effective for models in the preference fine-tuning stage.** For the model in the preference fine-tuning stage, being trained with PC_{llama} achieves a 8.6-point increase. However, the relative performance increase is only 5.4 points when trained with PC_{llama} for model

Table 2: Results of Zephyr-7B for RQ1.

Iter-1	Iter-2	LC Win Rate	Win Rate
-	-	8.12	4.25
PC _{off}	-	20.77 _(+12.65)	19.99
PC _{llama}	-	13.53 _(+5.41)	10.15
PC _{on}	-	13.70 _(+5.58)	9.90
PC _{off}	PC _{off}	23.77 _(+3.00)	21.67
PC _{off}	PC _{llama}	29.32 _(+8.55)	37.03
PC _{off}	PC _{on}	33.28 _(+12.51)	36.85

324 in the preference injection stage. As PC_{llama} being a dataset with off-policy preference candidates
 325 with regard to Zephyr-7B, the dynamic effectiveness is attributed to the dynamic requirements for
 326 models in different stages, where we conclude that quality matters at the second stage.
 327

328 The narrative explanation of different stage characteristics is through dynamic alignment goals.
 329 Model in the preference injection stage performs poorly and lacks knowledge about ground-truth
 330 preference and its corresponding high-reward region. The exploration will be low-effective since
 331 the high-reward region can hardly be explored. Data with high diversity aims at injecting preference
 332 knowledge into policy models. For the models in the preference fine-tuning stage, it is low-effective
 333 to perform large-scale preference injection, and the alignment goal shifts to explore high-reward
 334 region, sampling responses that are of high quality.
 335

336 5 BOUNDARY MEASUREMENT ALGORITHM THAT DETERMINES THE 337 BOUNDARY BETWEEN ALIGNMENT STAGES (RQ2)

338 In this section, we analyze the requirements of preference data from a theoretical perspective. We
 339 show the equivalence between the DPO objective and the alignment optimization objective (§5.1)
 340 and conclude that we are finding a better text distribution estimation to general text distribution
 341 defined by ground-truth preference model when choosing preference candidates (§5.1). To find a
 342 better text distribution, we introduce the preference consistency, which is the sufficient condition
 343 of identical distributions between some text distribution π and general text distribution π_G (§5.2).
 344 Finally, we propose the **boundary measurement algorithm**, a practical estimation of the preference
 345 consistency measurement (§5.3). **We illustrate the relationship between text distribution estimation**
 346 **and boundary measurement algorithm in Figure 4, Appendix D.** All proofs are shown in Appendix E.
 347

348 **Notation.** Generally, let π be a policy that represents a text distribution. Following the notation
 349 in §3.1, let $\mathbb{P} : \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$ be the preference distribution that satisfies Bradley-Terry
 350 definition with respect to reward model r . The output $\mathbb{P}(y_1 \succ y_2 | x)$ represents the preference of
 351 y_1 outperforming y_2 . Specifically, let π_G be the general policy and the general text distribution,
 352 π_{off} be an abstract policy that generates the candidates of PC_{off} , π_θ be the policy that generates the
 353 preference candidates of PC_{on} , π^* be an optimal solution of π . \mathbb{P}^* is the ground-truth preference
 354 distribution derived from the ground-truth reward model r^* . \mathbb{P}_θ is the parameterized preference
 355 distribution derived from r_ϕ , which is the analytical solution of Eq. (5) given π_θ and π_{ref} .
 356

357 5.1 OPTIMIZATION CONSISTENCY ANALYSIS

358 Eq. (5) establishes a one-way mapping between the reward model and policy model that for every
 359 reward model r_ϕ , there exists a policy π_θ^* that satisfies Eq. (5) and π_θ^* is the optimal solution of
 360 Eq. (3). First of all, we show that the one-way mapping is reversible, i.e., Eq. (5) satisfies for every
 361 π_θ when optimizing through Eq. (6).

362 **Theorem 5.1.** (Bijection between reward function and policy) *Under mild assumption, for any*
 363 *policy π_θ and the static reference model π_{ref} , there exists a unique reward model r_ϕ satisfying π_θ*
 364 *being the optimal solution of Eq. (3).*

365 Theorem 5.1 indicates that the optimization objective of Eq. (6) and the alignment objective Eq. (3)
 366 are theoretically equivalent. We then discuss the condition that achieves the optimal solution of
 367 Eq. (3) via Eq. (6).

368 **Theorem 5.2.** (The Necessary condition of the optimal solution of Eq. (3)) *The optimal solution of*
 369 *Eq. (3) can only be achieved if the preference dataset D^{pref} has infinite preference data.*

370 Theorem 5.2 indicates that **1) The optimal solution of the general alignment objective is practically intractable**, as it is impossible to construct a preference dataset with infinite preference candidates. Given limited preference candidates, the optimization objective is the preference consistency between \mathbb{P}^* and \mathbb{P}_θ within the limited dataset. **2) The alignment process will be more effective if the limited preference dataset is a well-defined proxy of the infinite-sample preference dataset.** Assuming that the preference candidates, i.e., text-based responses of the infinite-sample preference dataset, are sampled from the general text distribution, then we are estimating general text distribution when selecting preference candidates.

378 5.2 THE GENERAL TEXT DISTRIBUTION ESTIMATION
379

380 In this section, we aim at finding a measurement that can estimate the distance between the general
381 text distribution π_G and the parameterized text distribution π_θ . Regular distance measurement like
382 KL divergence does not work since both text distributions are intractable. Instead, we aim to measure
383 the consistency of the preference distributions between \mathbb{P}^* and \mathbb{P}_θ , which we will show to be a
384 sufficient condition of π_G and π_θ being identical. First of all, we formally introduce the definition
385 of π_G and \mathbb{P}_θ in Definition 5.3.

386 **Definition 5.3.** The general text distribution π_G is defined by the ground-truth \mathbb{P}^* that satisfies

$$387 \mathbb{P}^*(y_1 \succ y_2|x) = \sigma(\log \pi_G(y_1|x) - \log \pi_G(y_2|x)), \quad (7)$$

388 and the parameterized preference given π_θ is defined as

$$389 \mathbb{P}_\theta(y_1 \succ y_2|x) = \sigma(\log \pi_\theta(y_1|x) - \log \pi_\theta(y_2|x)). \quad (8)$$

390 We note that Definition 5.3 is not related with the optimal condition defined in Eq. (3) and Eq. (5).
391 That is because we will not introduce any assumptions premised on optimizing Eq. (3), and the
392 general text distribution should be irrelevant to hyper-parameter β and reference model π_{ref} .

393 **Theorem 5.4.** (The uniqueness of π_G) *There exists a unique π_G under Definition 5.3 given a well-defined \mathbb{P}^* .*

394 Theorem 5.4 and Definition 5.3 indicate that \mathbb{P}^* and π_G form a pair of bijections, which allows
395 us to estimate π_G by estimating \mathbb{P}^* . We can thus measure the distance between two preference
396 distributions that are derived from π_G and π_θ respectively as a proxy of the estimation between text
397 distributions. First of all, we provide the definition of preference consistency in Definition 5.5.

398 **Definition 5.5.** Given preference distribution \mathbb{P}_1 and \mathbb{P}_2 based on BT definition, the consistency
399 between \mathbb{P}_1 and \mathbb{P}_2 is defined by the following formula:

$$400 \mathbb{E}_{x,y_1,y_2} [\mathbb{I}[\mathbb{P}_1(y_1 \succ y_2|x)] \odot \mathbb{I}[\mathbb{P}_2(y_1 \succ y_2|x)]] \quad (9)$$

401 where $\mathbb{I} : [0, 1] \rightarrow \{0, 1\}$ is the indicator function that maps values in the interval $[0, 0.5]$ into 0 and
402 values in $(0.5, 1]$ into 1. \odot is the XNOR operator.

403 The preference consistency defined in Definition 5.5 achieves its maximum when
404 $\mathbb{I}[\mathbb{P}_1(y_1 \succ y_2|x)] = \mathbb{I}[\mathbb{P}_2(y_1 \succ y_2|x)]$ satisfies for any $\{x, y_1, y_2\}$, which is a sufficient condition
405 of two identical preference distributions. In other words, preference consistency is to determine if
406 probabilities of identical samples exhibit identical rank orders for both text distributions.

413 5.3 PRACTICAL ESTIMATION OF PREFERENCE CONSISTENCY
414

415 Given on-policy distribution π_θ and off-policy distribution π_{off} , we perform the preference con-
416 sistency measurement between these distributions and the general text distribution π_G . Let
417 $\{y_1^i\}_m, \{y_2^i\}_n$ be the responses sampled from π_θ and π_{off} given prompt x with size m and n , re-
418 spectively. For each prompt x , We estimate the preference consistency by responses sampled from
419 both π_θ and π_{off} to reduce sampling variance:

$$420 \frac{1}{mn} \sum_{y_1^i}^m \sum_{y_2^j}^n \mathbb{I}[\mathbb{P}^*(y_1^i \succ y_2^j|x)] \odot \mathbb{I}[\mathbb{P}_\theta(y_1^i \succ y_2^j|x)], \quad (10)$$

423 which measures the consistency between \mathbb{P}^* and \mathbb{P}_θ , and

$$424 \frac{1}{mn} \sum_{y_1^i}^m \sum_{y_2^j}^n \mathbb{I}[\mathbb{P}^*(y_1^i \succ y_2^j|x)] \odot \mathbb{I}[\mathbb{P}_{\text{off}}(y_1^i \succ y_2^j|x)], \quad (11)$$

427 which measures the consistency between \mathbb{P}^* and \mathbb{P}_{off} . Practically, we assume that π_θ and π_{off} are
428 highly divergent text distributions and responses are sampled from largely distinct regions of the
429 vast text space, which allows that $\mathbb{I}[\mathbb{P}_\theta(y_1^i \succ y_2^j|x)] = 1$ and $\mathbb{I}[\mathbb{P}_{\text{off}}(y_1^i \succ y_2^j|x)] = 0$, an assumption
430 empirically supported in Appendix F.1. This allows the preference consistency between \mathbb{P}^* and
431 $\mathbb{P}_\theta, \mathbb{P}_{\text{off}}$ to be simplified into $\frac{1}{mn} \sum_{y_1^i}^m \sum_{y_2^j}^n \mathbb{I}[\mathbb{P}^*(y_1^i \succ y_2^j|x)]$ and $\frac{1}{mn} \sum_{y_1^i}^m \sum_{y_2^j}^n \mathbb{I}[\mathbb{P}^*(y_2^j \succ y_1^i|x)]$,

432	Iter-1	Iter-2	LC Win Rate	Win Rate	BS (initial)	$\Delta(x)$	LC Win Rate	Win Rate	BS (initial)	$\Delta(x)$	LC Win Rate	Win Rate	BS (initial)	$\Delta(x)$
Llama-3-8B-Instruct														
433	-	-	24.59	24.47	-	-	8.12	4.25	-	-	5.81	3.72	-	-
434	PC _{off}	-	27.73 _(-3.14)	22.85	0.62	0.33	20.77 _(+12.65)	19.99	0.40	2.27	5.97 _(+0.16)	3.92	0.23	$+\infty$
435	PC _{on}	-	34.04 _(-9.45)	34.47	-	-	13.70 _(+5.58)	9.90	-	-	4.21 _(-1.60)	2.86	-	-
436	PC _{off}	PC _{off}	27.83 _(-0.10)	24.38	0.66	<0.01	23.77 _(+3.00)	21.67	0.66	0.24	6.44 _(+0.47)	4.43	0.25	$+\infty$
437	PC _{off}	PC _{on}	40.57 _(+12.84)	41.89	-	-	33.28 _(+12.51)	36.85	-	-	4.92 _(-1.05)	3.46	-	-
438	PC _{on}	PC _{off}	36.36 _(-2.32)	36.58	0.69	0.22	22.22 _(+8.52)	19.33	0.58	1.56	5.73 _(+1.52)	3.77	0.23	1.13
439	PC _{on}	PC _{on}	44.52 _(+10.48)	50.57	-	-	19.16 _(+5.46)	18.05	-	-	5.55 _(+1.34)	3.68	-	-

Table 3: Results of full-combination two-iteration experiments. The “BS (initial)” denotes the relative boundary score of each initial policy, calculated as $V_{\text{off}}/(V_{\text{off}} + V_{\text{on}})$ from the results of the boundary measurement algorithm shown in Algorithm 1. A score less than 0.5 indicates the policy in the preference injection stage and thus dataset with better intra-diversity will be more efficient ($\Delta > 1$). Otherwise, it is in preference fine-tuning stage and thus the quality matters ($\Delta < 1$).

respectively. Under mild assumptions, these equations indicate that it is possible to select a better proxy of π_G from π_θ and π_{off} by comparing preference consistency of π_θ and π_{off} regarding to \mathbb{P}^* .

Algorithm 1 Boundary Measurement Algorithm

```

1: Input Preference datasets PCon, PCoff, Preference model  $\mathbb{P}$ .
2:  $V_{\text{on}}, V_{\text{off}} \leftarrow 0, 0$ 
3: for  $(x, y_1, y_2) \sim \text{PC}_{\text{on}}$  do
4:   Sample the paired responses  $(y'_1, y'_2)$  from PCoff where the input of paired responses  $x'$  is equal to  $x$ .
5:   for  $y, y'$  where  $y \in \{y_1, y_2\}, y' \in \{y'_1, y'_2\}$  do
6:     Update  $V_{\text{on}} \leftarrow V_{\text{on}} + 1$  if  $\mathbb{P}$  prefers  $y$  better than  $y'$  given  $x$ . Otherwise, update  $V_{\text{off}}$ .
7:   end for
8: end for
9: if  $V_{\text{off}} > V_{\text{on}}$  then
10:  return Model is in the preference injection stage, PCoff.
11: else
12:  return Model is in the preference fine-tuning stage, PCon.
13: end if

```

We then provide the boundary measurement algorithm in Algorithm 1, which is the preference consistency measurement when letting $m = n = 2$. The algorithm shows that alignment stages are decided by preference dataset and preference model jointly. In other words, one initial policy can be in preference injection stage and preference fine-tuning stage at the same time given different off-policy preference candidates and preference models. However, once the preference model and off-policy preference dataset are given, we can decide the alignment stage that model is currently in, and thus optimizing preference data for policy models.

5.4 EXPERIMENTS OF THE BOUNDARY MEASUREMENT ALGORITHM

Following the experiment settings in §4, we perform experiments on three base models to verify the effectiveness of the boundary measurement algorithm. We present our result in Table 3. For Llama-3, the results fit the stage assumption well. The boundary scores are greater than 0.5 for all initial models, indicating that Llama-3 is in preference fine-tuning stage. The results for Phi-2 also align with the stage assumption, as the boundary scores are less than 0.5 for all initial models, showing that the model is in preference injection stage. For Zephyr, the results fit the assumption well given the SFT model or the model trained with PC_{off} as the initial models. We notice that the model trained with PC_{on} has a positive score (0.58), but the follow-up training with PC_{off} (an 8.5-point increase) is still more effective than PC_{on} (a 5.5-point increase). We attribute it to the lower quality of PC_{on} relative to PC_{off}. We measure the quality of PC_{on} following the comparison method used in Appendix C.5. The result shows that that the length-controlled win rate of PC_{on} compared with PC_{off} is 0.46, indicating that the quality of PC_{on} is lower than that of PC_{off}.

6 GENERALIZABILITY ANALYSIS

In this section, we further extend the experiments on two models (Qwen2.5-1.5B (Yang et al., 2024) and Pythia-6.9B (Biderman et al., 2023)) and another LM alignment method (SLiC-HF (Zhao et al., 2023)) to verify the generalizability of our conclusions.

486	Iter-1	Iter-2	LC Win Rate	Win Rate	BS (initial)	$\Delta(\times)$	LC Win Rate	Win Rate	BS (initial)	$\Delta(\times)$
Qwen2.5-1.5B										
488	-	-	5.41	3.00	-	-	1.81	1.06	-	-
489	PC _{off}	-	7.24 _(+1.83)	8.78	0.35	$+\infty$	1.28 _(-0.53)	2.45	0.22	-
490	PC _{on}	-	4.85 _(-0.56)	2.69	-	-	1.02 _(-0.79)	1.48	-	-
491	PC _{off}	PC _{off}	9.27 _(+3.86)	10.06	0.47	9.41	2.51 _(+1.23)	4.72	0.26	1.68
492	PC _{off}	PC _{on}	7.65 _(+0.41)	11.12	-	-	2.01 _(+0.73)	3.25	-	-
493	PC _{on}	PC _{off}	7.08 _(+2.23)	8.58	0.38	2.48	2.79 _(+1.77)	3.46	0.24	1.49
494	PC _{on}	PC _{on}	5.75 _(+0.90)	3.45	-	-	2.21 _(+1.19)	3.12	-	-

Table 4: Results of two-iteration experiments in Qwen2.5-1.5B and Pythia-6.9B.

Generalizability Analysis on Additional LMs. We further extend experiments on Qwen2.5-1.5B (Yang et al., 2024) and Pythia-6.9B (Biderman et al., 2023). We follow the experiment settings in §4 and train the models on UltraChat for one epoch first. We report the results in Table 4. The results show that the effectiveness discrepancy between PC_{on} and PC_{off} exists. Specifically, the boundary score shows that the initial checkpoints of the two models, i.e., the SFT checkpoint and the checkpoints trained on PC_{on} and PC_{off} in the first iteration are all in the preference injection stage. As shown in the results, the performance of models trained on PC_{off} outperforms those trained on PC_{on} given the same initial checkpoint among different models, which fit the our conclusions well.

Generalizability Analysis on SLiC-HF. Though the empirical analysis of the two-stage assumption and the theoretical analysis of the boundary measurement are based on DPO, we show that the assumption and our conclusions can be further extended to other LM alignment methods. In this section, We perform experiments on SLiC-HF (Zhao et al., 2023).

We report the result in Table 5. The results show a similar trend as those aligning with DPO, where we observe the effectiveness discrepancy between PC_{on} and PC_{off} for different models. By performing the alignment stage assumption for these models and performing the boundary measurement, we observe a similar result as those aligning with DPO, which shows that the effectiveness discrepancy exists, and we can apply the two-stage assumption and judge the boundary between stages via the boundary measurement we proposed in Algorithm 1.

517	Iter-1	Iter-2	LC Win Rate	Win Rate	BS (initial)	$\Delta(\times)$	LC Win Rate	Win Rate	BS (initial)	$\Delta(\times)$	LC Win Rate	Win Rate	BS (initial)	$\Delta(\times)$
Llama-3-BB-Instruct														
518	-	-	24.59	24.47	-	-	8.12	4.25	-	-	5.81	3.72	-	-
519	PC _{off}	-	28.88 _(+4.38)	27.51	0.62	0.68	17.73 _(+9.61)	16.94	0.40	1.35	5.97 _(+0.16)	4.68	0.23	$+\infty$
520	PC _{on}	-	31.06 _(+6.47)	39.68	-	-	15.26 _(+7.14)	10.44	-	-	5.32 _(-0.49)	4.32	-	-
521	PC _{off}	PC _{off}	28.18 _(-0.70)	23.71	0.66	-	21.59 _(+3.86)	20.18	0.65	0.38	8.55 _(+2.58)	9.64	0.40	1.43
522	PC _{off}	PC _{on}	12.66 _(-11.93)	5.12	-	-	25.32 _(+7.59)	28.81	-	-	7.77 _(+1.80)	6.11	-	-
523	PC _{on}	PC _{off}	32.63 _(+1.57)	30.38	0.71	0.19	19.84 _(+4.58)	15.18	0.60	0.98	6.38 _(+1.06)	5.83	0.35	1.54
523	PC _{on}	PC _{on}	39.46 _(+8.40)	51.67	-	-	19.93 _(+4.67)	17.70	-	-	6.01 _(+0.69)	3.63	-	-

Table 5: Results of full-combination two-iteration experiments performed with SLiC-HF loss. The boundary score can be a good measurement to decide the boundary between each alignment stage.

Though the result matches the assumption and algorithm in most cases, we also observe a model collapse phenomenon for Llama-3 trained with PC_{off} and PC_{on} subsequently, where a very serious performance degradation is observed. It may result in the difference between DPO and SLIC-HF, as a similar performance degradation is not observed when aligning with DPO as shown in Table 3.

7 CONCLUSION AND LIMITATION

In this work, we reveal the effectiveness discrepancy between on-policy data and off-policy data for different models, and propose the alignment stage assumption when performing LM alignment through DPO. We characterize each alignment stage through analyzing the discrepancy by diversity and quality. We provide the boundary measurement algorithm, a theoretical-grounded method to decide the alignment stages. Though being an effective simplified abstraction of alignment process, the alignment stage assumption inspires exploration of smoother and more adaptive data blending strategies rather than a rigid switch, which is not included and we leave for future research.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our work and to facilitate a clearer understanding of our contribu-
543 tions, we provide extensive supporting materials. In the main text, we describe the models, bench-
544 mark and training parameters we used in our experiment in §4. In Appendix C, we provide further
545 detailed information, including model details, evaluation details, data details and training details.
546 Our work is based on open-sourced models, open-sourced dataset and open-sourced benchmark,
547 which ensures our results are reproducible.

548
549 REFERENCES
550

551 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

553 Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
554 for deep reinforcement learning. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the
555 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
556 August 2017, volume 70 of Proceedings of Machine Learning Research*, pp. 176–185. PMLR,
557 2017. URL <http://proceedings.mlr.press/v70/anschel17a.html>.

558 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
559 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jack-
560 son Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
561 nandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
562 Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin
563 Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning
564 from human feedback. *CoRR*, abs/2204.05862, 2022. doi: 10.48550/ARXIV.2204.05862. URL
565 <https://doi.org/10.48550/arXiv.2204.05862>.

566 Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
567 dangers of stochastic parrots: Can language models be too big? In Madeleine Clare Elish,
568 William Isaac, and Richard S. Zemel (eds.), *FAccT '21: 2021 ACM Conference on Fairness,
569 Accountability, and Transparency, Virtual Event / Toronto, Canada, March 3-10, 2021*, pp. 610–
570 623. ACM, 2021. doi: 10.1145/3442188.3445922. URL <https://doi.org/10.1145/3442188.3445922>.

572 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien,
573 Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
574 Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
575 language models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun
576 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
577 on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
578 *Proceedings of Machine Learning Research*, pp. 2397–2430. PMLR, 2023. URL <https://proceedings.mlr.press/v202/biderman23a.html>.

580 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
581 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
582 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
583 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
584 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
585 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
586 learners. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
587 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual
588 Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
589 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>.

591 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
592 Xie. SFT or r1? an early investigation into training r1-like reasoning large vision-language models.
593 *CoRR*, abs/2504.11468, 2025. doi: 10.48550/ARXIV.2504.11468. URL <https://doi.org/10.48550/arXiv.2504.11468>.

594 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 595 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 596 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.
 597

598 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
 599 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foun-
 600 dation model post-training. *CoRR*, abs/2501.17161, 2025. doi: 10.48550/ARXIV.2501.17161.
 601 URL <https://doi.org/10.48550/arXiv.2501.17161>.
 602

603 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 604 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. *CoRR*,
 605 abs/2310.01377, 2023. doi: 10.48550/ARXIV.2310.01377. URL <https://doi.org/10.48550/arXiv.2310.01377>.
 606

607 Li Ding, Jenny Zhang, Jeff Clune, Lee Spector, and Joel Lehman. Quality diversity through hu-
 608 man feedback: Towards open-ended diversity-driven optimization. In *Forty-first International*
 609 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=9z1ZuAAb08>.
 610

611 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
 612 Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversa-
 613 tions. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Con-
 614 ference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, De-
 615 cember 6-10, 2023*, pp. 3029–3051. Association for Computational Linguistics, 2023. doi:
 616 10.18653/V1/2023.EMNLP-MAIN.183. URL <https://doi.org/10.18653/v1/2023.emnlp-main.183>.
 617

618 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 619 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
 620 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
 621 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
 622 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
 623 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
 624 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
 625 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
 626 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
 627 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
 628 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
 629 revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
 630 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vrane, Jason Park, Jay Ma-
 631 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
 632 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
 633 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Al-
 634 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 635 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
 636 <https://doi.org/10.48550/arXiv.2407.21783>.
 637

638 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
 639 alpacaeval: A simple way to debias automatic evaluators. *CoRR*, abs/2404.04475, 2024a. doi: 10.
 640 48550/ARXIV.2404.04475. URL <https://doi.org/10.48550/arXiv.2404.04475>.
 641

642 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
 643 pacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024b.
 644

645 Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn
 646 Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL <https:///bair.berkeley.edu/blog/2023/04/03/koala/>.
 646

647 Luca Grillotti, Maxence Faldor, Borja G. León, and Antoine Cully. Quality-diversity actor-critic:
 648 Learning high-performing and diverse behaviors via value and successor features critics. *CoRR*,

648 abs/2403.09930, 2024. doi: 10.48550/ARXIV.2403.09930. URL <https://doi.org/10.48550/arXiv.2403.09930>.

649

650

651 Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Zexu Sun, Bowen Sun, Huimin Chen, Ruobing Xie,
652 Jie Zhou, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Controllable preference optimization: To-
653 ward controllable multi-objective alignment. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
654 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
655 Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024*, pp. 1437–1454. Associa-
656 tion for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.emnlp-main.85>.

657

658 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
659 pre-training with gradient-disentangled embedding sharing. In *The Eleventh International Confer-
660 ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,
661 2023. URL <https://openreview.net/forum?id=sE7-XhLxHA>.

662

663 Shengding Hu, Yifan Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, and Maosong Sun. Won't
664 get fooled again: Answering questions with false premises. In Anna Rogers, Jordan L. Boyd-
665 Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association
666 for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
667 2023*, pp. 5626–5643. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
668 ACL-LONG.309. URL <https://doi.org/10.18653/v1/2023.acl-long.309>.

669

670 Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, and Minlie Huang.
671 Towards efficient exact optimization of language model alignment. In *ICML*. OpenReview.net,
672 2024.

673

674 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
675 Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM Comput.
676 Surv.*, 55(12):248:1–248:38, 2023. doi: 10.1145/3571730. URL <https://doi.org/10.1145/3571730>.

677

678 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
679 Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
680 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
681 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *CoRR*, abs/2310.06825, 2023a.
682 doi: 10.48550/ARXIV.2310.06825. URL <https://doi.org/10.48550/arXiv.2310.06825>.

683

684 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
685 with pairwise ranking and generative fusion. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
686 Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational
687 Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023*, pp. 14165–
688 14178. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/2023.ACL-LONG.
689 792. URL <https://doi.org/10.18653/v1/2023.acl-long.792>.

690

691 Dongyoung Kim, Kimin Lee, Jinwoo Shin, and Jaehyung Kim. Spread preference annotation: Direct
692 preference judgment for efficient LLM alignment. In *The Thirteenth International Conference on
693 Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.
694 URL <https://openreview.net/forum?id=BPgK5XW1Nb>.

695

696 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
697 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer
698 Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen,
699 and Alexander Mattick. Openassistant conversations - democratizing large language model align-
700 ment. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
701 Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference
702 on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, De-
703 cember 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html.

702 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 703 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
 704 Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyyvind Tafjord, Chris Wilhelm,
 705 Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
 706 Pushing frontiers in open language model post-training. *CoRR*, abs/2411.15124, 2024. doi: 10.
 707 48550/ARXIV.2411.15124. URL <https://doi.org/10.48550/arXiv.2411.15124>.

708 Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative
 709 judge for evaluating alignment. In *The Twelfth International Conference on Learning Rep-
 710 resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 711 <https://openreview.net/forum?id=gtkFw6sZGS>.

712 Yanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
 713 Textbooks are all you need II: phi-1.5 technical report. *CoRR*, abs/2309.05463, 2023. doi: 10.
 714 48550/ARXIV.2309.05463. URL <https://doi.org/10.48550/arXiv.2309.05463>.

715 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic hu-
 716 man falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Pro-
 717 ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
 718 ume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022*, pp. 3214–3252. Asso-
 719 ciation for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.229. URL
 720 <https://doi.org/10.18653/v1/2022.acl-long.229>.

721 Jie Liu, Zhanhui Zhou, Jiaheng Liu, Xingyuan Bu, Chao Yang, Hansen Zhong, and Wanli Ouyang.
 722 Iterative length-regularized direct preference optimization: A case study on improving 7b lan-
 723 guage models to GPT-4 level. *CoRR*, abs/2406.11817, 2024. doi: 10.48550/ARXIV.2406.11817.
 724 URL <https://doi.org/10.48550/arXiv.2406.11817>.

725 Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
 726 Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through SFT and RL
 727 synergy. *CoRR*, abs/2506.13284, 2025. doi: 10.48550/ARXIV.2506.13284. URL <https://doi.org/10.48550/arXiv.2506.13284>.

728 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
 729 Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data
 730 and methods for effective instruction tuning. In Andreas Krause, Emma Brunskill, Kyunghyun
 731 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Confer-
 732 ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume
 733 202 of *Proceedings of Machine Learning Research*, pp. 22631–22648. PMLR, 2023. URL
 734 <https://proceedings.mlr.press/v202/longpre23a.html>.

735 Xingzhou Lou, Junge Zhang, Jian Xie, Lifeng Liu, Dong Yan, and Kaiqi Huang. SPO:
 736 multi-dimensional preference sequential alignment with implicit reward modeling. *CoRR*,
 737 abs/2405.12739, 2024. doi: 10.48550/ARXIV.2405.12739. URL <https://doi.org/10.48550/arXiv.2405.12739>.

738 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 739 reference-free reward. In *NeurIPS*, 2024.

740 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 741 URL <https://doi.org/10.48550/arXiv.2303.08774>.

742 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 743 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
 744 Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
 745 Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
 746 back. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
 747 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
 748 mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
 749 9, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

756 Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
 757 Stochastic variance-reduced policy gradient. In Jennifer G. Dy and Andreas Krause (eds.),
 758 *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
 759 holmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine
 760 Learning Research*, pp. 4023–4032. PMLR, 2018. URL <http://proceedings.mlr.press/v80/papini18a.html>.

761

762 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 763 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 764 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 765 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 766 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 767 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

768

769 Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
 770 Bachem, and Johan Ferret. WARM: on the benefits of weight averaged reward models.
 771 In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
 772 July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=s7RDnNUJy6>.

773

774 Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 775 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with gen-
 776 eral preferences. *CoRR*, abs/2404.03715, 2024. doi: 10.48550/ARXIV.2404.03715. URL
 777 <https://doi.org/10.48550/arXiv.2404.03715>.

778

779 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 780 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

781

782 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 783 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 784 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 785 <https://doi.org/10.48550/arXiv.2402.03300>.

786

787 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 788 Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. *CoRR*,
 789 abs/2009.01325, 2020. URL <https://arxiv.org/abs/2009.01325>.

790

791 Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
 792 fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
 793 suboptimal, on-policy data. *CoRR*, abs/2404.14367, 2024. doi: 10.48550/ARXIV.2404.14367.
 794 URL <https://doi.org/10.48550/arXiv.2404.14367>.

795

796 Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
 797 Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, and Will Dabney. Understanding
 798 the performance gap between online and offline alignment algorithms. *CoRR*, abs/2405.08448,
 799 2024. doi: 10.48550/ARXIV.2405.08448. URL <https://doi.org/10.48550/arXiv.2405.08448>.

800

801 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 802 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
 803 Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
 804 2023.

805

806 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 807 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 808 Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 809 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
 2023*. doi: 10.18653/V1/2023.ACL-LONG.754. URL <https://doi.org/10.18653/v1-2023.acl-long.754>.

810 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
 811 preference optimization for language model alignment. *CoRR*, abs/2405.00675, 2024. doi: 10.
 812 48550/ARXIV.2405.00675. URL <https://doi.org/10.48550/arXiv.2405.00675>.

813 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
 814 wei Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models to fol-
 815 low complex instructions. In *The Twelfth International Conference on Learning Representa-
 816 tions, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=CfXh93NDgH>.

817 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 818 Learning to reason under off-policy guidance. *CoRR*, abs/2504.14945, 2025. doi: 10.48550/
 819 ARXIV.2504.14945. URL <https://doi.org/10.48550/arXiv.2504.14945>.

820 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 821 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 822 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 823 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 824 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 825 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 826 2024. doi: 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.

827 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 828 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 829 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 830 Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 831 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 832 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 833 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yingger Zhang,
 834 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 835 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388. URL
 836 <https://doi.org/10.48550/arXiv.2505.09388>.

837 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 838 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 839 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 840 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 841 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-
 842 source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025. doi: 10.
 843 48550/ARXIV.2503.14476. URL <https://doi.org/10.48550/arXiv.2503.14476>.

844 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
 845 Weston. Self-rewarding language models. *CoRR*, abs/2401.10020, 2024. doi: 10.48550/ARXIV.
 846 2401.10020. URL <https://doi.org/10.48550/arXiv.2401.10020>.

847 Dun Zeng, Yong Dai, Pengyu Cheng, Longyue Wang, Tianhao Hu, Wanshun Chen, Nan Du, and
 848 Zenglin Xu. On diversified preferences of large language model alignment. In Yaser Al-Onaizan,
 849 Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Lin-
 850 guistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 9194–9210. Asso-
 851 ciation for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.findings-emnlp.538>.

852 Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang
 853 Wang, Hany Hassan Awadalla, and Zhaoran Wang. Self-exploring language models: Active
 854 preference elicitation for online alignment. *Trans. Mach. Learn. Res.*, 2025, 2025a. URL
 855 <https://openreview.net/forum?id=FoQK84nwY3>.

856 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
 857 and Jingren Zhou. On-policy RL meets off-policy experts: Harmonizing supervised fine-tuning
 858 and reinforcement learning via dynamic weighting. *CoRR*, abs/2508.11408, 2025b. doi: 10.
 859 48550/ARXIV.2508.11408. URL <https://doi.org/10.48550/arXiv.2508.11408>.

864 Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu. Slic-hf:
865 Sequence likelihood calibration with human feedback. *CoRR*, abs/2305.10425, 2023. doi: 10.
866 48550/ARXIV.2305.10425. URL <https://doi.org/10.48550/arXiv.2305.10425>.

867
868 Zhanhui Zhou, Jie Liu, Jing Shao, Xiangyu Yue, Chao Yang, Wanli Ouyang, and Yu Qiao.
869 Beyond one-preference-fits-all alignment: Multi-objective direct preference optimization. In
870 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for*
871 *Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-*
872 *16, 2024*, pp. 10586–10613. Association for Computational Linguistics, 2024. doi: 10.
873 18653/V1/2024.FINDINGS-ACL.630. URL <https://doi.org/10.18653/v1/2024.findings-acl.630>.

874
875 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.
876 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *CoRR*,
877 abs/1909.08593, 2019. URL <http://arxiv.org/abs/1909.08593>.

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A THE USE OF LARGE LANGUAGE MODELS
919920 In this work, we utilized LLMs solely for the purpose of polishing writing. The LLMs were not
921 used for content generation, and all research, analysis, and conclusions presented are the result of
922 our own work and independent thought.
923924 B FURTHER DISCUSSION
925926 B.1 COMPUTATIONAL COST OF ALGORITHM 1
927928 The boundary measurement algorithm requires a one-time comparison on a subset of the data, which
929 requires performing on-policy sampling by current policy to acquire PC_{on} . In our experiments, we
930 use 2,000 prompts in the “test_prefs” split of UltraFeedback (binarized) dataset for this measure-
931 ment. Specifically, we compare the on-policy samples generated by current policy and the off-policy
932 samples derived from the “test_prefs” split of the UltraFeedback (binarized) dataset, using PairRM
933 as the preference model. Compared to full DPO training on the 61,135-sample dataset, the com-
934 putational overhead of our boundary measurement is negligible, estimated to be 3.2% of a single
935 training epoch. This demonstrates that our method is not only effective but also highly efficient and
936 practical for real-world application.
937938 B.2 DEPENDENCY OF PREFERENCE MODEL
939940 A key aspect of our boundary measurement is its reliance on a given preference model \mathbb{P} to define
941 the ground truth for the stage decision. This means the resulting stage boundary is relative to the
942 preference model \mathbb{P} . If \mathbb{P} is weak or biased, the boundary decision might be suboptimal for alignment
943 towards true human preferences, but it will still be optimal for aligning towards the world view of
944 \mathbb{P} . This highlights the importance of the choice of the preference model, a factor common to all
945 preference-based alignment methods.
946947 B.3 CONNECTION WITH EXPLORATION-EXPLOITATION
948949 Our two-stage assumption can be viewed as a simplified instantiation of the classic exploration-
950 exploitation trade-off in reinforcement learning within the context of LM alignment. While tradi-
951 tional reinforcement learning focuses on exploration in state-action space, our work suggests that
952 for LM alignment via preference-based alignment methods like DPO, exploration happens in the
953 space of preference candidates. Choosing preference candidates with high diversity can be regarded
954 as a form of exploration, where the model seeks to learn broadly about the reward landscape defined
955 by preference model; while choosing high-quality preference candidates can be regarded as a form
956 of exploitation, where the model refines its policy within high-reward regions defined by preference
957 model. Our boundary measurement algorithm, therefore, acts as an adaptive switch between the
958 exploration phrase and the exploitation phrase.
959960 B.4 DISCUSSION ABOUT DISTRIBUTION SHIFT THEORY
961962 One possible confusion about the empirical analysis about stage characteristics we introduced
963 in §4.3 lies in the contradiction between stage characteristics and distribution shift theory. Different
964 from quantifying preference candidates by diversity and quality, PC_{on} is an “in-domain” dataset, as
965 its preference candidates are sampled from the current policy, while PC_{off} is an “out-of-domain”
966 dataset, as its preference candidates are sampled from models different from the current policy. As
967 a consequence, the effectiveness of PC_{on} may lie in its sharing the identical sampling distribution
968 during the alignment process with regard to current policy. We alleviate the influence of distribution
969 shift from two aspects.
970971 First of all, the distribution shift theory posits that on-policy data is always superior to off-policy
972 data. However, our results in §4.2 showing that optimizing models based on preference candidates
973 sampled from their identical distribution is not always effective, which indicates that distribution
974 shift is not the sole, or even the primary factor towards LM alignment. For example, for Phi-2,
975 training with PC_{on} leads to a performance drop, while training with PC_{off} , whose samples are from

972 a more distant distribution, leads to a performance increase. Secondly, we de-confound the effects of
 973 data characteristics (i.e., diversity and quality) from their on-policy/off-policy natures. Specifically,
 974 we use PC_{llama} in §4.3, whose preference candidates are sampled from another model (i.e., Llama-
 975 3-8B-Instruct) that is distant to current policy (i.e., Zephyr-7B). Through empirical analysis about
 976 PC_{off} and PC_{llama} introduced in §C.5, we quantify the characteristics of PC_{off} and PC_{llama} . This
 977 allows us to isolate the impact of data characteristics.

978 B.5 DISCUSSION ABOUT IMPORTANCE OF PREFERENCE DATA SELECTION

981 As the field of LLMs matures beyond the primary pursuit of scale, the central challenges have
 982 shifted towards efficiency, reliability, and cost-effective customization. The decision of how to con-
 983 struct the effective dataset lies at the heart of this new paradigm. On-policy data generation, while
 984 providing highly relevant samples, introduces significant computational and financial overhead, act-
 985 ing as a major bottleneck for the widespread adoption and specialized fine-tuning of models. Our
 986 work addresses this challenge by moving the data selection process from an empirical art to a prin-
 987 cipled, stage-aware science. In an era increasingly focused on Data-Centric AI, instead of simply
 988 assuming on-policy data is superior, off-policy data can be more effective than on-policy data in
 989 some cases. By introducing the same LM inference overhead to construct the on-policy preference
 990 candidates and then optimizing LLMs, the model will achieve better performance when it has been
 991 in the preference fine-tuning stage. Our work provides a diagnostic framework to understand the
 992 model alignment stage and to strategically choose data that maximizes efficiency. Our research of-
 993 fers a critical methodology for building better-aligned models more efficiently and reliably, a core
 994 necessity for the next generation of AI systems.

995 B.6 ADDITIONAL RELATED WORK ABOUT OPTIMIZATION VIA ON-POLICY AND 996 OFF-POLICY CURRICULUM

997 On-policy reinforcement learning encourages LMs to perform active exploration during the optimi-
 998 zation process, which enhances their generalization ability by learning from feedback on their
 999 own sampled outputs (Chen et al., 2025; Chu et al., 2025). However, on-policy sampling is expen-
 1000 sive and time-consuming, and can result in policy degradation caused by entropy collapse or over-
 1001 exploitation of sub-optimal responses (Yu et al., 2025). Relatively, optimizing LMs via off-policy
 1002 data is cheap and stable, while it struggles with limited exploration and learning from novel, self-
 1003 generated responses. To this end, several works focus on the optimizing LMs via both on-policy
 1004 and off-policy data in an empirical and straight-forward way. LUFFY incorporates off-policy re-
 1005 sponds in Group Relative Policy Optimization method (GRPO, Shao et al. (2024)) by adding them
 1006 directly to the group of on-policy responses (Yan et al., 2025). Qwen3 utilizes a weak-to-strong
 1007 curriculum strategy during the optimization process, training models in off-policy responses and
 1008 on-policy responses subsequently in a supervised fine-tuning manner to improve the reasoning ca-
 1009 pability of LMs (Yang et al., 2025). Other works aim at incorporating off-policy data and on-policy
 1010 data in a sequential *SFT-then-RL* paradigm, either utilizing multi-task learning to balance SFT loss
 1011 and RL objective at the same time (Zhang et al., 2025b) or performing SFT first, then RL (Lambert
 1012 et al., 2024; Liu et al., 2025). In LM alignment scenario, our work reveals a patterned effectiveness
 1013 discrepancy between off-policy data and on-policy data across different models, and proposes the
 1014 alignment stage assumption to model the dynamic data requirements during the alignment process.
 1015 Our work is aligned with findings in Reinforcement Learning from Verifiable Reward (RLVR) and
 1016 offline RL sencarios, and can provide valuable and actionable discoveries for these fields.

1017 C TRAINING AND EVALUATION DETAILS

1019 C.1 MODEL DETAILS

1021 Llama-3-8B-Instruct is a large language model with 8B parameter size, and has been aligned with
 1022 human preferences for helpfulness and safety through supervised fine-tuning (SFT) and reinfor-
 1023 cement learning from human feedback (RLHF). Zephyr-sft-full is a large language model with 7B
 1024 parameter size, and is an aligned version of Mistral-7B (Jiang et al., 2023a) that has previously su-
 1025 pervised fine-tuned on UltraChat (Ding et al., 2023) dataset. Phi-2 is a pretrained language model
 with 2.7B parameter size, and has not been fine-tuned or aligned on downstream tasks. Following

1026 the setup process and training settings of Zephyr-sft-full, we conduct supervised fine-tuning on Phi-
 1027 2 on UltraChat for one epoch to get the fine-tuned checkpoint for alignment experiments. These
 1028 models vary on the model scale and training stage, which will result in different behavior in the
 1029 subsequent experiments and be helpful for our analysis. We use PairRM (Jiang et al., 2023b) as the
 1030 ground-truth preference model in our experiments, an efficient pair-wise preference model of size
 1031 0.4B. PairRM is based on DeBERTA-V3 (He et al., 2023) and has been fine-tuned on high-quality
 1032 preference datasets. Results on benchmarks like Auto-J Pairwise dataset (Li et al., 2024) show that
 1033 PairRM outperforms most of the model-based reward models and performs comparably with larger
 1034 reward models like UltraRM-13B (Cui et al., 2023). The reference model π_{ref} we used in different
 1035 experiment is the initial checkpoint of the corresponding policy model.

1036

1037 C.2 DATASET DETAILS

1038

1039 UltraFeedback (Cui et al., 2023) is a large-scale, fine-grained, diverse preference dataset for LM
 1040 alignment. UltraFeedback consists of 63,967 prompts from diverse sources (including Ultra-
 1041 Chat (Ding et al., 2023), ShareGPT (Chiang et al., 2023), Evol-Instruct (Xu et al., 2024), Truth-
 1042 fulQA (Lin et al., 2022), FalseQA (Hu et al., 2023), and FLAN (Longpre et al., 2023)). For each
 1043 prompt, the authors query multiple LLMs to generate 4 different responses, then the responses are
 1044 scored and ranked by GPT-4 (OpenAI, 2023) based on criterion including instruction-following,
 1045 truthfulness, honesty and helpfulness. To construct the UltraFeedback (binarized) dataset, the re-
 1046 sponse with the highest overall score is selected as the “chosen” completion, and one of the remain-
 1047 ing 3 responses at random as the “rejected” one, thus constructing the preference pairs.

1047

1048 We sample two answers by the current policy to acquire on-policy preference candidates. Specifi-
 1049 cally, we use all of the prompts derived from UltraFeedback, sample two responses as the preference
 1050 candidates, then annotate the preference between the preference candidates by PairRM. We called
 1051 “blender.compare_conversations” method to annotate the preference between preference candidates,
 1052 which is the official method provided by the authors of PairRM. To ensure the consistency of prefer-
 1053 ence annotators between off-policy preference dataset (whose preferences are annotated by GPT-4)
 1054 and on-policy preference dataset (whose preferences are annotated by PairRM), We relabeled the
 1055 preference of preference candidates in UltraFeedback (binarized) dataset by PairRM in the same
 1056 way as labeling the preference in the on-policy preference dataset.

1056

1057

1058 C.3 EVALUATION DETAILS

1059

1060 AlpacaEval 2.0 (Dubois et al., 2024a) is a leading benchmark that assesses LLMs’ instruction-
 1061 following ability and alignment with human preference. To construct the AlpacaEval test set, the
 1062 authors combine a variety of instruction-following datasets like self-instruct (Wang et al., 2023),
 1063 open-assistant (Köpf et al., 2023), vicuna (Chiang et al., 2023), koala (Geng et al., 2023) and hh-
 1064 rlhf (Bai et al., 2022), and finally construct a dataset with 805 samples. It calculates the probability
 1065 that an LLM-based evaluator (gpt-4-1106-preview) prefers the model output over the response gen-
 1066 erated by GPT-4, which provides an affordable and replicable alternative to human preference an-
 1067 notation. The win rate over the GPT-4 baseline is computed as the expected preference probability.
 1068 The length-controlled win rate is a modified version that reduces the length bias, which alleviates
 1069 reward hacking and prevents flawed judgment. We report the length-controlled win rate as it corre-
 1070 lates best with Chatbot Arena (Dubois et al., 2024b), the real-world alignment benchmark based on
 1071 human evaluation.

1071

1072

C.4 EXPERIMENT DETAILS

1073

1074 For each training iterations, we use the initial checkpoint of current policy as the reference model.
 1075 For on-policy experiments, we sample two answers from the current policy, using prompts same as
 1076 UltraFeedback, then annotate the preference by PairRM. The hyper-parameters when training mod-
 1077 els are shown in Table 7. The hyper-parameters when generating on-policy preference candidates
 1078 are shown in Table 6.

1079

In practice, we seldom see researchers perform the third approach (i.e., $\text{PC}_{\text{on} \rightarrow \text{off}}$) which may be
 because the goal of on-policy sampling is to alleviate the out-of-distribution problem that training

Parameter	Value	
	SFT	DPO
Epochs	1	1
Learning Rate	2.0×10^{-5}	5.0×10^{-7}
Batch size (per device)	4	4
Gradient Accumulation Steps	8	8
β	-	0.01
warmup ratio	0.1	0.1
scheduler	cosine	cosine
GPUs	$4 \times \text{A100}$	$4 \times \text{A100}$

Table 6: Training hyper-parameters (SFT and DPO).

Parameter	Value
top_k	50
top_p	0.9
temperature	0.7

Table 7: Inference hyper-parameters (sampling on-policy preference candidates).

on off-policy data solely suffers, but the third approach can not handle it empirically for its end up training on off-policy data. We include this setting for the completeness of the experimental setup.

C.5 DETAILS ABOUT PC_{llama}

Data Construction To construct PC_{llama} , we use the raw Llama-3-8B-Instruct model to generate a pair of on-policy reference candidates, following the settings introduced in Appendix C.2 and Appendix C.4. Specifically, we use the prompts same as PC_{off} , which are derived from Ultra-Feedback, and annotate the preference of on-policy preference candidates by PairRM. PC_{llama} and PC_{off} have identical prompts but different preference candidates. We abstract the core difference between PC_{llama} and PC_{off} into two key characteristics, the intra-diversity and the answer quality, as introduced in §4.3. We then analysis the characteristics.

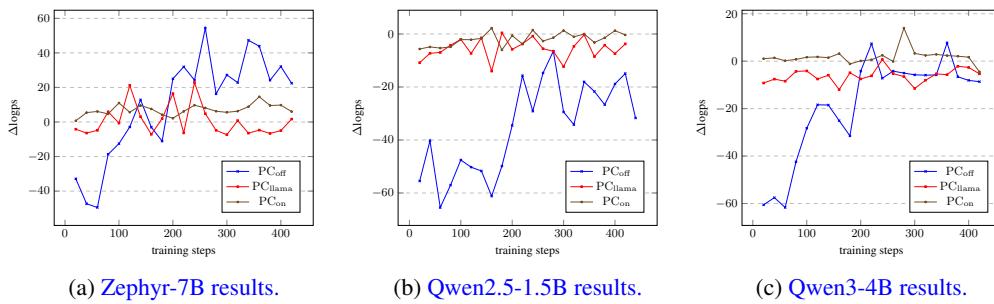


Figure 3: The intra-diversity between PC_{off} and PC_{llama} that is defined by the difference(Δ) of log probabilities between the chosen and the rejected answer **cross different models, inclding Zephyr-7B, Qwen2.5-1.5B and Qwen3-4B**. The curves of PC_{on} are also included as reference.

Diversity This section discusses the intra-diversity between preference pairs. We define the intra-diversity as the difference between generation probability of preference pairs by a given model, operationalized by the log-probability difference between paired responses as follows:

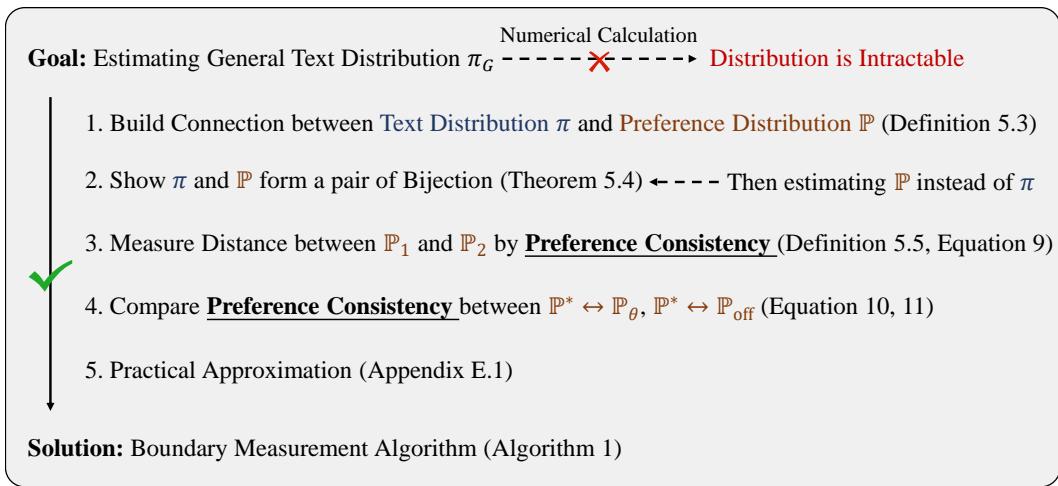
$$Div_{\text{intra}} = \frac{1}{N} \sum_i^N (\log \pi_\theta(y_1^i|x) - \log \pi_\theta(y_2^i|x)), \quad (12)$$

1134 where y_1^i and y_2^i are the chosen and the rejected answer for the i_{th} sample respectively. To compare
 1135 the intra-diversity between preference pairs that derived from PC_{off} and PC_{llama} , we record the
 1136 log probabilities of preference pairs individually when training on **Zephyr-7B**, **Qwen2.5-1.5B**, and
 1137 **Qwen3-4B**, and present the result in Figure 3. As shown in the figure, during the training procedure,
 1138 the difference in log probabilities of PC_{off} has a larger fluctuation range but the difference in log
 1139 probabilities of PC_{llama} remains stable and close to zero. The results show that PC_{off} is more
 1140 diverse than PC_{llama} . **The log probabilities of preferences pairs derived from PC_{on} are also included**
 1141 **in Figure 3 as reference.** As shown in the result, PC_{on} and PC_{llama} share similar trend during the
 1142 training process. It indicates that though PC_{llama} is an off-policy preference dataset for models
 1143 except for Llama-3, it still holds the low intra-diversity characteristics as an on-policy preference
 1144 dataset for different models. As a result, it is a reasonable dataset for conducting comparative
 1145 experiments on comparing data characteristics including intra-diversity and answer quality while
 1146 avoiding their on-policy/off-policy nature.

1147
 1148 **Quality** We define answer quality as the degree of alignment with human preference. We compare
 1149 the quality by measuring the preference labeled by the ground-truth preference model between an-
 1150 swers sampled from PC_{off} and PC_{llama} . Specifically, we followed the official recipe of AlpacaEval
 1151 benchmark and annotate the preference using GPT-4-turbo. The preference candidates are one ran-
 1152 domly sampled answer from the preference candidates of PC_{llama} and the chosen answer of PC_{off} ,
 1153 then report the result of length-controlled win rate on 805 cases that were randomly sampled from
 1154 the training set. Our results show that the length-controlled (LC) win rate that answers of PC_{llama}
 1155 being preferred is 58.84. The result shows that the quality of PC_{llama} is higher than that of PC_{off} .

1156
 1157
 1158 **D ILLUSTRATING THE RELATIONSHIP BETWEEN TEXT DISTRIBUTION**
 1159 **ESTIMATION (§5.2) AND ALGORITHM 1 (§5.3)**

1160
 1161
 1162 We illustrate the relationship between the general text distribution estimation and our purposed
 1163 boundary measurement algorithm in Figure 4.



1181
 1182
 1183 Figure 4: **Illustration of the relationship between the general text distribution estimation and our**
 1184 **boundary measurement algorithm discussed in §5.2 and §5.3.** The boundary measurement algorithm
 1185 is derived from preference consistency measurement. The preference consistency measurement is
 1186 purposed for estimating the consistency between two preference distributions, which are defined as
 1187 proxies towards the intractable text distribution.

1188 E PROOFS AND DEVIATIONS
11891190 E.1 PROOF OF THEOREM 5.1
1191

1192 *Proof.* Eq. (5) shows that given any reward model r_ϕ , there is a unique policy π_θ that π_θ is the
1193 optimal solution under Eq. (3). Then, we prove that given any policy π_θ , the corresponding reward
1194 model is unique, too.

1195 Given π_θ as the optimal solution and π_{ref} is fixed, we can transform Eq. (5) into:
1196

$$1197 f(x, y) = r_\phi(x, y) - \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)} - \beta \log Z(x), \quad (13)$$

1198 where $f(x, y)$ is always equals to zero. For some given x_0, y_0 , we rewrite f as a function of
1199 $r_\phi(x_0, y_0)$:

$$1200 \begin{aligned} f_{x_0, y_0}(r_\phi(x_0, y_0)) \\ 1201 &= r_\phi(x_0, y_0) - \beta \frac{\pi_\theta(y_0|x_0)}{\pi_{\text{ref}}(y_0|x_0)} - \beta \log Z(x_0). \end{aligned} \quad (14)$$

1204 Let $r_\phi(x_0, y_0)$ be an independent variable with range \mathcal{R} , we can calculate the partial derivative of f
1205 with respect to $r_\phi(x_0, y_0)$:

$$1206 \begin{aligned} &\frac{\partial f_{x_0, y_0}(r_\phi(x_0, y_0))}{\partial r_\phi(x_0, y_0)} \\ 1207 &= \frac{\partial r_\phi(x_0, y_0)}{\partial r_\phi(x_0, y_0)} - 0 - \beta \frac{1}{Z(x_0)} \frac{\partial Z(x_0)}{\partial r_\phi(x_0, y_0)} \\ 1208 &= 1 - \beta \frac{1}{Z(x_0)} \pi_{\text{ref}}(y_0|x_0) \frac{\partial \exp(\frac{1}{\beta} r_\phi(x_0, y_0))}{\partial r_\phi(x_0, y_0)} \\ 1209 &= \left(1 - \frac{\pi_{\text{ref}}(y_0|x_0) \exp(\frac{1}{\beta} r_\phi(x_0, y_0))}{Z(x_0)}\right) \frac{\partial r_\phi(x_0, y_0)}{\partial r_\phi(x_0, y_0)} \\ 1210 &= 1 - \frac{\pi_{\text{ref}}(y_0|x_0) \exp(\frac{1}{\beta} r_\phi(x_0, y_0))}{Z(x_0)}. \end{aligned} \quad (15)$$

1218 The partial derivative of f with respect to $r_\phi(x_0, y_0)$ is always greater than or equal to zero. Due to
1219 its monotonicity, there is at most one value $r_\phi(x_0, y_0)$ that can satisfy $f(x_0, y_0) = 0$. If π_{ref} is not
1220 a one-hot distribution (i.e., $\pi_{\text{ref}}(y_0|x_0) = 1$ and $\pi_{\text{ref}}(y|x_0) = 0$ for any $y \neq y_0$), then the range of
1221 f is \mathcal{R} because the domain of r_ϕ is \mathcal{R} , there will be an $r_\phi(x_0, y_0)$ that satisfies $f(x_0, y_0) = 0$. In
1222 other words, for any given π_θ , there exists an r_ϕ that satisfies Eq. (5), and completes the proof of
1223 Theorem 5.1.

□

1224 E.2 PROOF OF THEOREM 5.2
1225

1226 *Proof.* Let $\mathbb{P}(y_1, y_2, x) \in [0, 1]$ be the generalized form of preference that y_1 is preferred than y_2
1227 given prompt x . First of all, we prove that the optimal solution of Eq. (6) satisfies for each
1228 $(x, y_1, y_2) \sim \mathcal{D}$, we have $\mathbb{P}_\theta(y_1, y_2, x) = \mathbb{P}^*(y_1, y_2, x)$. Eq. (6) can be rewritten into the following
1229 format:
1230

$$1231 \min_{\phi} \mathbb{E}_{(x, y_1, y_2) \sim \mathcal{D}} [D_{\text{kl}}(\mathbb{P}_\phi(y_1, y_2, x) \| \mathbb{P}^*(y_1, y_2, x)]. \quad (16)$$

1232 Given that the KL divergence between two Bradley-Terry (BT) models has an exact calculation, it
1233 implies that the optimal solution for each preference pair in \mathcal{D} satisfies $\mathbb{P}_\theta(y_1, y_2, x) = \mathbb{P}^*(y_1, y_2, x)$.
1234 However, we will demonstrate that $\mathbb{P}_\theta = \mathbb{P}^*$ holds only under the assumption of infinite data.
1235 Suppose that \mathbb{P}_θ is the optimal solution of Eq. (6) obtained from dataset \mathcal{D} . For any sample
1236 $(x, y_1, y_2) \sim \mathcal{D}$, the optimal solution ensures that $\mathbb{P}_\theta(y_1 \succ y_2|x) = \mathbb{P}^*(y_1 \succ y_2|x)$. Conversely, for
1237 any $(x, y_1, y_2) \sim \mathcal{D}'$ where $\mathcal{D}' \cap \mathcal{D} = \emptyset$, there is no guarantee that this equality persists, as \mathbb{P}^* is un-
1238 constrained for such out-of-distribution samples. Nevertheless, under the infinite data assumption,
1239 \mathcal{D} achieves full coverage of the sample space, making \mathcal{D}' an empty set. Consequently, $\mathbb{P}_\theta = \mathbb{P}^*$
1240 holds for any (x, y_1, y_2) , which completes the proof of Theorem 5.2.

□

1242 E.3 PROOF OF THEOREM 5.4
12431244 *Proof.* We can rewrite the equation in Definition 5.3 with the following form:
1245

1246
$$\mathbb{P}^*(y_1 \succ y_2|x) = \sigma(\log \frac{\pi_G(y_1|x)}{\pi_G(y_2|x)}) \quad (17)$$

1247

1248 Let \mathcal{X} be the state space and \mathcal{A} be the action space, define $f(x, y_1, y_2) : \mathcal{X} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ be the
1249 cocycle that for each (x, y_1, y_2) , the following equation holds:
1250

1251
$$f(x, y_1, y_2) = \frac{\pi_G(y_1|x)}{\pi_G(y_2|x)}. \quad (18)$$

1252

1253 Then f is a fixed function given π_G . We then prove that π_θ which satisfies Eq. (18) does not exist
1254 unless $\pi_\theta = \pi_G$. Without loss of generality, assume there exists π_θ that satisfies
1255

1256
$$f(x, y_1, y_2) = \frac{\pi_\theta(y_1|x)}{\pi_\theta(y_2|x)}, \quad (19)$$

1257

1258 which is equivalence to
1259

1260
$$\pi_\theta(y_1|x) = f(x, y_1, y_2)\pi_\theta(y_2|x). \quad (20)$$

1261

1262 Let y_2 be a static point that has a specific value, sum y_1 on both sides of the equation, we have
1263

1264
$$\sum_{y_1} \pi_\theta(y_1|x) = \sum_{y_1} f(x, y_1, y_2)\pi_\theta(y_2|x). \quad (21)$$

1265

1266 Since π_θ is a text distribution, we have $\sum_y \pi_\theta(y|x) = 1$. Substitute the equivalence into the above
1267 equation then simplify the above formula, we have
1268

1269
$$\pi_\theta(y_2|x) = \frac{1}{\sum_{y_1} f(x, y_1, y_2)}. \quad (22)$$

1270

1271 The right hand side can be accurately calculated since the f function is determined. The left hand
1272 side, which is $\pi_\theta(y_2|x)$, can be uniquely determined. And thus we prove $\pi_\theta(y_2|x) = \pi_G(y_2|x)$.
1273 Applying the result to all y_2 , we have $\pi_\theta = \pi_G$, and completes the proof of Theorem 5.4.
1274 \square 1275 F FURTHER EMPIRICAL ANALYSIS
12761277 F.1 REASONABLENESS OF THE DISTINCT ASSUMPTION
12781279 In this section, we compare the sampling probability between on-policy preference candidates and
1280 off-policy preference candidates. Since π_{off} is intractable, we verify $\mathbb{I}[\mathbb{P}_\theta(y_1^i \succ y_2^j|x)] = 1$ and
1281 extend the result to $\mathbb{I}[\mathbb{P}_{\text{off}}(y_1^i \succ y_2^j|x)] = 0$. Specifically, we sample 2,000 prompts from Ultra-
1282 Feedback, as well as their corresponding off-policy preference candidates and their corresponding
1283 on-policy preference candidates. For each prompt, we compare the sampling probability between
1284 one off-policy preference candidate and one on-policy preference candidate by performing a lan-
1285 guage modeling task using the corresponding policy. As for each prompt, we have two off-policy
1286 preference candidates and two on-policy preference candidates, we perform four comparisons each
1287 time, then performing a macro average and report the final win rate. The win rate is calculated as
1288 on-policy preference candidate having a higher probability than off-policy preference candidate for
1289 all the initial policy we used in our previous experiments. We provide the comparison results in
1290 Table 8. The results show that, compared to off-policy samples, initial policies assign higher proba-
1291 bilities to the on-policy candidates in all cases. Notably, the win rate is 84.3% ~ 96.5% for different
1292 models, indicating that our assumption is reasonable in most cases.
12931294 G FURTHER VISUALIZATION RESULTS
12951296 G.1 SYSTEM PROMPT OF GPT-4 EVALUATION IN ALPACAEVAL
12971298 We follow the standard recipe of the authors of AlpacaEval, where the system prompt is illustrated
1299 in Table 9.
1300

	Iter-1	Iter-2	Win Rate
Llama-3-8B-Instruct			
1299	-	-	91.06
1300	PC _{off}	-	93.97
1301	PC _{on}	-	91.11
Zephyr-7B			
1303	-	-	88.80
1304	PC _{off}	-	89.56
1305	PC _{on}	-	96.50
Phi-2-2.7B			
1307	-	-	86.96
1308	PC _{off}	-	84.32
1309	PC _{on}	-	85.89

Table 8: Results of the comparison between the sampling probability between PC_{off} and PC_{on} for different initial models. The win rate getting close to 1 shows that the initial policies assign higher probabilities to on-policy candidates.

G.2 CASE FOR ALPACAEVAL

We provide a case from the AlpacaEval generated by Zephyr in Table 10. Though this case is neither cherry-picked nor lemon-picked, it is not randomly selected as we choose this case by its relatively short prompt length and generation length for better visualization effect.

```

1350
1351
1352
1353
1354
1355
1356
1357 <|im_start|>system
1358 You are a highly efficient assistant, who evaluates and rank
1359 large language models (LLMs) based on the quality of their
1360 responses to given prompts. This process will create a
1361 leaderboard reflecting the most accurate and human-preferred
1362 answers.
1363 <|im_end|>
1364 <|im_start|>user
1365 I require a leaderboard for various large language models.
1366 I'll provide you with prompts given to these models and
1367 their corresponding responses. Your task is to assess these
1368 responses, ranking the models in order of preference from a
1369 human perspective. Once ranked, please output the results
1370 in a structured JSON format for the make_partial_leaderboard
1371 function.

1372     ## Prompt
1373     {
1374         "instruction": """{instruction}""",
1375     }
1376
1377     ## Model Outputs
1378
1379 Here are the unordered outputs from the models. Each output is
1380 associated with a specific model, identified by a unique model
1381 identifier.
1382     [
1383         {
1384             "model": "m",
1385             "output": """{output_1}"""
1386         },
1387         {
1388             "model": "M",
1389             "output": """{output_2}"""
1390         }
1391     ]
1392
1393     ## Task
1394
1395     Evaluate and rank the models based on the quality and relevance
1396     of their outputs. The ranking should be such that the model
1397     with the highest quality output is ranked first.
1398 <|im_end|>

```

Table 9: Prompt for GPT-4 evaluation in the Alpaca Eval configuration file. Texts in blue can be substituted by the real data.

```

1398
1399
1400
1401
1402
1403

```

1404

1405

1406

1407

Instruction

1408

Complete the sentence by providing an appropriate word.

1409

She was wearing a ____ dress.

1410

Reference Output

1411

The word "red" would be an appropriate word to fill in the blank in the sentence "She was
1412
wearing a [___] dress."

1413

Zephyr (SFT)

1414

Red

1415

Zephyr (PC_{off})

1416

floral (adjective) dress (noun)

1417

Confidence: 95%

1418

Zephyr (PC_{on})

1419

Cocktail dress. She was wearing a cocktail dress.

1420

Zephyr (PC_{off→off})

1421

1. Flowery (if the dress had floral designs)
2. Red (if the dress was the color red)
3. Sequined (if the dress had sequins)
4. Lace (if the dress was made of lace)
5. Vintage (if the dress was from an older time period)
6. Off-shoulder (if the dress had an off-shoulder design)
7. Maxi (if the dress was very long)
8. Little black (if the dress was a simple, black, versatile dress)
9. Bohemian (if the dress had a loose, flowing style)
10. Cocktail (if the dress was appropriate for a formal event)

1422

Zephyr (PC_{off→on})

1423

1. Flowery: She was wearing a **floral** dress - with intricate patterns of blooming flowers.

1424

2. Sequined: She was wearing a **sequined** dress - adorned with sparkling rhinestones and tiny beads.

1425

(omit for 6 lines)

1426

9. Bold-printed: She was wearing a **bold-printed** dress - featuring a striking, eye-catching pattern, such as stripes, polka dots, or abstract designs.

1427

10. Off-shoulder: She was wearing an **off-shoulder** dress - a dress style with the neckline falling off one or both shoulders, often featuring a halter-style strap or spaghetti straps.

1428

Hope these suggestions help! Let me know if you need more context or specificity.

1429

Zephyr (PC_{on→off})

1430

She was wearing a flowyairysheerdiaphanous (adjectives indicating a light and transparent fabric) maxi dress.

1431

(Alternatively, you could also use: She was wearing a chiffonsilklaceorganza dress, depending on the specific fabric used.)

1432

Zephyr (PC_{on→on})

1433

Cocktail dress

1434

Alternatively:

1435

- Little black dress (if it was a black, form-fitting dress suitable for a formal or semi-formal occasion)

1436

(omit for 7 lines)

1437

- A-line dress (if the skirt flared out from the waist in a triangular shape)

1438

1439

Table 10: Responses generated by Zephyr-7b under different training iterations and trained with different preference data. We omit the outputs of **Zephyr (PC_{off→on})** and **Zephyr (PC_{on→off})**.

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457