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ABSTRACT

The alignment of language models (LMs) with human preferences is critical for
building reliable Al systems. The problem is typically framed as optimizing an
LM policy to maximize the expected reward that reflects human preferences. Re-
cently, Direct Preference Optimization (DPO) was proposed as a LM alignment
method that directly optimize the policy from static preference data, and further
improved by incorporating on-policy sampling (i.e., preference candidates gener-
ated during the training loop) for better LM alignment. However, we show on-
policy data is not always optimal, with systematic effectiveness difference emerg-
ing between static and on-policy preference candidates. For example, on-policy
data can result in a 3x effectiveness compared with static data for Llama-3, and
a 0.4x effectiveness for Zephyr. To explain the phenomenon, we propose the
alignment stage assumption, which divides the alignment process into two dis-
tinct stages: the preference injection stage, which benefits from diverse data, and
the preference fine-tuning stage, which favors high-quality data. Through theoret-
ical and empirical analysis, we characterize these stages and propose an effective
algorithm to identify the boundaries between them. We perform experiments on
5 models (Llama, Zephyr, Phi-2, Qwen, Pythia) and 2 alignment methods (DPO,
SLiC-HF) to show the generalizability of alignment stage assumption and the ef-
fectiveness of the boundary measurement algorithm.
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(a) Preference injection stage. (b) Preference fine-tuning stage.

Figure 1: Illustration of our alignment stage assumption and different characteristics of (a) prefer-
ence injection stage and (b) preference fine-tuning stage. The alignment area indicates the preferred
region of preference candidates at corresponding alignment stages. The stage boundary is estimated
by the distance between ground truth text distribution (7 ) and simulated text distribution (g, , 79, ).

1 INTRODUCTION

Large language models possess broad world knowledge and strong generalization capabilities in
complex tasks under minimal supervision (Brown et al.,[2020). However, the powerful models still
produce biased (Bender et al., 2021), unfaithful (J1 et al., 2023) and harmful (Bai et al., 2022) re-
sponses due to the heterogeneous sources of their pre-training corpora. It is important to ensure
models to generate desired responses that conform to humans’ ethical standards and quality pref-
erences for building reliable Al systems, which is well known as language model (LM) alignment
with human preferences (Ouyang et al., [2022). Generally, the LM alignment problem is formulated
as optimizing a policy model 7y to maximize the expected reward 74, where the reward ¢ reflects
human preference regarding the completion y for a given prompt x.
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The most widely adopted approach to address the LM alignment problem is through reinforcement
learning (RL) in an on-policy manner (Ziegler et al., 2019; |Stiennon et al., [2020; Ouyang et al.,
2022). Specifically, the on-policy manner requires 7y iteratively refines its policy by performing on-
policy sampling (i.e., sampling completions generated under its current parameters), ensuring that
gradient estimates align with the latest behavior policy. The LM policy is then optimized via RL
solutions. However, these approaches incur significant computational cost due to repeated sampling
from the LM policy, and are observed to be unstable due to the high variance in estimating the policy
gradients or value functions, which potentially worsens sample complexity and thus compromises
efficient model convergence (Papini et al., 2018; /Anschel et al., 2017).

Direct Preference Optimization (DPO, Rafailov et al.| (2023)) was proposed to be a competitive
alternative to the RL solutions. Specifically, DPO optimizes 7y via reward modeling loss on prefer-
ence candidates following the off-policy manner, i.e., the LM policy is optimized on a static dataset
without additional sampling during the training loop. It is more resource-efficient, and shares the
theoretically equivalent optimization objective with those RL solutions. Despite all the advantages,
as an off-policy method, DPO can struggle in out-of-distribution scenarios and result in sub-optimal
performance due to the absence of on-policy exploration (Tang et al.| 2024)).

To tackle these issues, recent works proposed iterative DPO, a method that integrating on-policy
sampling into regular DPO training, which is observed to outperform vanilla DPO in several bench-
marks (Wu et al., 2024; |[Zhang et al., 2025a; Rosset et al.l [2024). These findings highlight the
potential of on-policy sampling for enhancing LM alignment via off-policy methods like DPO.
However, the practical recipe of using on-policy data lacks discussion or clear guidelines. Sev-
eral works choose to train the LM policy on on-policy data directly (Yuan et al., [2024; [Liu et al.,
2024), while other works choose to train models on off-policy preference candidates first as a cold
start phase (Zhang et al., 2025a; [Kim et al. [2025). Such discrepancy and arbitrariness indicate an
absence of comprehensive understanding about the relationship between LM alignment and prefer-
ence candidates, which may limit the model performance and sample efficiency. This motivates us
to study the following research question: What is the requirement of preference candidates during
the LM alignment process? In this work, we answer the research question from two aspects, i.e, the
qualitative description of the LM alignment process (RQ1) and the actionable insight of the quali-
tative description of the LM alignment process (RQ2). Through detailed experiments, we reveal a
patterned dynamic requirements of preference candidates during the alignment process, and further
provide an alignment stage assumption to explain the phenomenon from the perspective of DPO.
Based on the assumption, we answer RQs through massive empirical experiments and theoretical-
grounded method.

Firstly, we conduct a two-iteration training experiment on Llama-3, Zephyr and Phi-2. The ex-
perimental results reveal the existence of a patterned effectiveness discrepancy between the use of
on-policy preference candidates (PC,,;,) and off-policy preference candidates (PC,g), and models
exhibit varying performances and dynamic requirements for preference candidates. Motivated by
this observation, we propose the alignment stage assumption, which posits that the alignment pro-
cess can be divided into two stages, i.e., the preference injection stage and the preference fine-tuning
stage, as illustrated in Figure [I] Based on the alignment stage assumption, we answer the research
questions subsequently. Specifically, we conduct extensive experiments to demonstrate the char-
acteristics of each alignment stage (for RQ1). We find that models in preference injection stage
favor data of high preference diversity, while those in preference fine-tuning stage favor data of high
preference quality. We propose the boundary measurement algorithm, a measurement to determine
which stage the policy is currently in, and perform extensive experiments to show the effectiveness
of our algorithm (for RQ2). Moreover, we provide a theoretical perspective to interpret the stage
characteristics and the boundary measurement algorithm. Notably, we show that the requirements
of preference diversity stems from a more accurate approximation of the ground-truth preference
given the Bradley-Terry definition. The goal of selecting preference candidates is to better estimate
the general text distribution, which is based on human preferences or the ground-truth reward model
used for preference annotation. We also show that our boundary measurement algorithm identifies
a better estimation of the general text distribution. Finally, we conduct experiments on more mod-
els (Qwen 2.5, Pythia) and more methods (SLiC-HF) to show the generalizability of our conclusions.
To provide a clear image, we illustrate the assumption and its subsequent conclusions in Figure

We summarize our contributions in this paper:



Under review as a conference paper at ICLR 2026

mg : Current Policy P 7 TG | TG Boundary Measurement
P*: GT Preference |  Ground-truth Distribution ! Preference Consistency

Case 1: Preference f/ o, v . ! oL enencfarea) i . ' Toff |
Injection stage ! : Diversity i Off-policy | _oa\ |

1 H—— g D ——— d

Alignment f ! matters | /\ AN i data ! :
Process é 7{'92 H E Alignment Area E é ! 5 QWG E

f ! Quality ! [l i Oon-policy :

1 e— e 7 |

Case 2: Preference 5 ! matters : data g I - :
Fine-tuning stage ! . RS ! ' ! ,
gstag i Estimated Text Distribution | ! ] LS,

i (Preference Distribution) i LM Alignment ; ! ]

Figure 2: Illustration of the alignment stage assumption. The alignment process is a continuous
transition from preference injection stage to preference fine-tuning stage. We demonstrate the char-
acteristics of stages (Case 1 and Case 2). We build up the relationship among preference distribution,
reward model and text distribution, which help us understand the alignment process from the per-
spective of distribution distance and preference consistency. Practically, we propose the boundary
measurement, a measurement to decide which stage the policy is currently in by judging which dis-
tribution (7 and my) is a better estimation of the ground-truth distribution (7).

* We reveal a patterned effectiveness discrepancy between on-policy data and off-policy for
different models, and propose the alignment stage assumption (preference injection stage,
preference fine-tuning stage) to model the dynamic requirements for preference candidates.

* We analyze the alignment stages through empirical analysis on two characteristics (i.e.,
diversity and quality), showing that models in preference injection stage favor data with
high diversity, while models in preference fine-tuning stage favor data with high quality.

* We provide theoretical insights into the underlying mechanism about the LM alignment
process, and propose the boundary measurement algorithm to decide stage boundaries.

2 RELATED WORK

Iterative DPO. Based on vanilla DPO, iterative DPO aims at improving DPO by incorporating
on-policy sampling data. |Yuan et al.[|(2024)) constructs the preference dataset automatically where
both preference candidates and instruction prompts are generated by LM in an on-policy manner.
Tajwar et al.| (2024) further discusses the requirements of fine-tuning with preference data through
extensive experiments and detailed theoretical analysis, showing that approaches that use on-policy
sampling are generally more preferred in practice. These works provide theoretical analysis about
on-policy sampling. Our work builds on this line by describing the overall alignment process from
a systematic and methodological perspective and improving the efficiency and effectiveness of on-
policy sampling for model training, rather than selecting preference data manually and empirically,
which is neither scalable nor optimal for LM alignment.

Data Diversity. The diversity of preference data can be separated into two sections: preference
diversity and candidate diversity, both facts can help improve LM alignment. The former is due to
the complexity of values, environments or populations, which result in the mismatch and diversity
of preferences among different annotators. Several works model the diverse preference alignment
problem as a multi-object optimization problem, addressing the problem using methods like Pareto
optimality (Guo et al., [2024} |Zhou et al.| 2024) or reward ensembling (Lou et al., 2024} Zeng et al.,
2024; Ramé et al. [2024). Our work focuses on the latter one, the candidate diversity. It is due to
the limited coverage of the general text space given the condition of finite sampling, which results
in an insufficient and incomplete preference representation. By labeling preferences using the same
reward model, our work introduces the crucial role of candidate diversity at the preference injection
stage. It can help models construct the general reward distribution effectively that is aligned with
the reward model, and thus achieve more valuable explorations at the preference fine-tuning stage.
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3 PRELIMINARIES

In this section, we first formally review the concept and objective of the language model alignment
problem. Then we review existing approaches that are applied to address the alignment problem via
reinforcement learning and direct preference optimization.

3.1 LM ALIGNMENT WITH HUMAN PREFERENCES

Given a vocabulary V, a language model defines a probability distribution 7(z) =
[Ti, m(z¢|z1, ..., 21—1) over a sequence of tokens = (21, ..., 2, ). We apply 7 to a text gener-
ation task with input space X = V™ and output space ) = V™ modeled by 7 (y|z) = 7(z,y)/7(z).

A preference dataset DP*f consists of pairs of responses as the preference candidates, and their
corresponding preferences pre-annotated by humans (Dubey et al.l 2024) or strong LMs through
prompting-based techniques (Dubois et al., [2024a). Then, a reward model 7, : X x JV — R is
learned on DP*®f and trained by minimizing the pair-wise preference loss by its general form:

eqn : rewardequalL(rg) = By g yypwret (16 (T, Yw) — T (2, 11))], (1)

where v, y; are the chosen and rejected preference candidates, and ¢ is a function that maps the
difference between the two rewards into a probability; or its specific form:

erd) (I»yw)

‘C(W’) = E(I:yw’yz)ND"ref —log ere(T:yw) 4 ero(yn) |7 )
where the preference is discretized, i.e., the chosen response y,, is always annotated as better than
the rejected response g; among different annotators, and the preference formulation is based on

Bradley-Terry (BT) model definition.

Finally, a policy 7y is learned to maximize the following alignment objective (Ziegler et al.| 2019
J1 et al.,[2024)

L(1g) = Eond (Bymrm(-|2) [T (2, )] — BDKL[70 (y|2)] [ 7Tret (y]7)]), 3)

where D is a task-specific dataset, ¢ is the reference model, which is usually the initial checkpoint
of my, typically a model supervised-finetuned (SFT-ed) on instruction-following datasets. Dk, is the
Kullback-Leibler divergence loss and [ is a density coefficient.

3.2 RL FINE-TUNING

One standard approach to optimize the alignment objective Eq. (3) is to use RL algorithms, which is
a consequence of the discrete nature of language generation. Recently, |Ziegler et al.[(2019) proposed

to search for my that maximizes a KL-regularized reward r4(x,y) — (log ﬂ”ef(g’ﬁ), which can be

achieved by policy gradient methods, such as Proximal Policy Optimization (PPO, |Schulman et al.
(2017)) and Group Relative Policy Optimization (GRPO, |Shao et al.| (2024)).

3.3 DIRECT PREFERENCE OPTIMIZATION

Rafailov et al. (2023) proposed DPO that optimizes 7y directly from the preference data. Eq. (3)
can be organized as

min Ep[KL (e (y|2) 7" (y2)) —log Z ()], 4)
where the function Z(z) satisfies Z(z) = >_, Trer(ylz) exp(%r(b(x7 y)), and the optimal solution
7 satisfies 7* (y|x) = %mmt(y\x) exp(%rqb(w,y)).

The optimal solution of Eq. is obtained when KL(7g||7*) is minimized. Let 7} be the opti-

mal solution of Eq. (@), then 7, equals to 7*. The relationship between 74 and 7y can be further
expressed as:

_ Blog ToWlz).
role,y) = flog = "0 5 + Plog Z(z). 5)

4
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Then, they proposed to directly optimize the policy mg by replacing 75 with 7y and substituting the
corresponding reward function into a pair-wise preference loss:

o (Yw|7) o (y1|x)
Lppo(mg) =E N pmf[floga(ﬂlogi — Blog 7” (6)
(mq) (%,9w,y1)~D Tret (Yoo |2) Tret (1|2
Our goal is to understand the requirements of preference candidates during the alignment process
when performing alignment methods like DPO. In the following sections, we try to achieve our goal
by answering the following two research sub-questions (RQs) empirically and theoretically:

RQ1: Can we perform a qualitative description of the alignment process, or can we characterize
the requirements of preference candidates through the alignment process?

RQ2: Is it possible to ensure that the qualitative description of the alignment process has action-
able insight and can help conduct the effective alignment approach?

4 EMPIRICAL ANALYSIS

4.1 ANALYSIS SETUP

Models. We use different models including Llama-3-8B-Instruct (Al@Metal, 2024)), Zephyr-sft-
full (Tunstall et al., 2023)) and Phi-2 (L1 et al., 2023) for experiments. We select these models based
on their parameter scales and training stages. We use PairRM (Jiang et al. [2023b)) as the ground-
truth preference model in our experiments, acting as a surrogate to expensive human preference for
preference annotation. More details are shown in Appendix

Dataset. We use the prompts and preference candidates from UltraFeedback (Cui et al.| [2023),
then relabeled the preference by PairRM to get the final off-policy dataset, aiming at ensuring the
identical preference between different preference datasets. More details are shown in Appendix|[C.2]

Benchmarks. Following previous works (Meng et al., 2024} J1 et al.| |2024)), We use AlpacaEval
2.0 (Dubois et al.l [2024b) as our evaluation benchmark and report the length-controlled win rate
over the reference responses. More details are shown in Appendix [C.3

4.2 MAIN RESULTS: THE EFFECTIVENESS DISCREPANCY BETWEEN
OFF-POLICY/ON-POLICY DATA EXISTS

Firstly, we propose a two-iteration training framework for each model, incorporating a full combi-
nation of off-policy and on-policy candidates. For each model, we conduct four distinct training
configurations: 1) PCyg_,og: Two consecutive iterations using off-policy candidates; 2) PCog—on:
First iteration with off-policy candidates followed by on-policy candidates; 3) PCopn o First iter-
ation with on-policy candidates followed by off-policy candidates; and 4) PC,,,_on: Two iterations
exclusively using on-policy candidates. We provide more details in Appendix [C.4]

We present our result in Table [T} Our observation and conclusions are as follows. 1) The effective-
ness discrepancy between PC,g and PC,, exists among different models. For Llama-3, models
trained with PC,,, consistently outperform those trained with PC,g given the same initial model in
every setting (A<1), which suggests PC,,, generally improve Llama-3 better than PC,g. However,
results on Zephyr are observed to be different from those of Llama-3. Models trained with PC,,
outperform those with PC,g when the initial model has been trained with PC.g in the previous
iteration (A>1). In other cases, PC,, leads to a worse performance for Zephyr compared with
PCog (A<1). For Phi-2, the results are opposite to those of Llama-3. Model trained with PC,g
consistently outperforms that with PC,,, in all settings (A>1). 2) The alignment process may
result in a failure when using PC,,,. We observe a slight performance drop for Phi-2 when trained
with PC,,,, particularly if the initial model is the SFT model or has been trained with PC,g in the
previous iteration. 3) The effectiveness of PC,g varies within the same model under different
circumstances. We observe varying improvements when optimizing Zephyr by PC,g across dif-
ferent training iterations (12.7/3.0/8.5-point increase). The discrepancy between PC.g and PC,,
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Iter-1 Iter-2 | LC Win Rate Win Rate Avg. Len A(x) | LC WinRate WinRate Avg.Len A(x) | LC Win Rate Win Rate Avg. Len A(x)

Llama-3-8B-Instruct Zephyr-7B Phi-2-2.7B

| 24.59 24.47 1924 - 8.12 4.25 824 | 5.81 3.72 915
PCog 27.73(43.14) 22.85 1605 0.33 20.77(112.65) 19.99 1903 297 5.97(10.16) 3.92 983 too
PCon 34.04(19.45) 34.47 2014 - 13.70(45.58) 9.90 1278 ) 4.21(_1.60) 2.86 961
P(:(,ff P(},ﬁ 27.83(1.0.10) 24.38 }72:3 <0.01 :2:3.‘77(,‘;‘(“,3 ?1..67 }75? 0.24 6.4?1(.‘, 17) 443 1077 too
PCosr PCon | 40.57(112.84) 41.89 2094 33.28(112.51) 36.85 2575 4.92(_1.05) 3.46 995
PCon  PCor | 36.36(12.3) 36.58 2010 0.22 22.22(48.52) 19.33 1656 1.56 5.73(41.52) 3.77 991 113
PCon  PCon | 44.52(410.48) 50.57 2473 ) 19.16(45.46) 18.05 1746 : 5.55(11.31) 3.68 946 .

Table 1: Results of full-combination two-iteration experiments for all three models. “PC,,” and
“PCog” refer to on-policy and off-policy preference candidates respectively, “iter” is the abbrevia-
tion of “iteration”. As focusing on the length-controlled win rate (LC Win Rate) of the benchmark,
the red number shows the relative increase compared to the initial model (i.e., iter-2 compared to
iter-1, iter-1 compared to SFT) while the green number shows the relative decrease. A shows the
ratio relationship of relative increase between models trained with PCog and PC,,,. “400” means
there is a performance drop when training on PCyg or PC,,.

shows that during the alignment process, the requirements of preference candidates are dynamic.
This patterned dynamic nature motivates our central proposal: the alignment stage assumption.

We introduce the alignment stage assumption to model the dynamic requirements of preference
candidates. Specially, the alignment process can be divided into two stages, the preference injection
stage and the preference fine-tuning stage. During the preference injection stage, PC,g will be more
effective; when the model comes into the preference fine-tuning stage, PC,g will be less effective
than PC,,. According to the results in Table [T] and the alignment stage assumption, we note that
Llama-3 has been in the preference fine-tuning stage in all settings; after training on PC,g, Zephyr
is in the preference fine-tuning stage; Phi-2 is in the preference injection stage in all settings.

4.3 DIVERSITY AND QUALITY AS THE CHARACTERISTICS OF ALIGNMENT STAGES (RQ1)

To answer RQ1, following previous works (Ding et al.,2024; |Grillotti et al.,|2024), we focus on the
two key characteristics of preference data: intra-diversity and answer quality, and perform experi-
ments on Zephyr. We use Zephyr since it shifts from the preference injection stage to the preference
fine-tuning stage after training with PC,g. To de-confound the effects of data characteristics from
their on-policy/off-policy nature, we introduce P Ciapa, a dataset constructed off-policy with regard
to Zephyr by sampling from Llama-3-8B-Instruct, then annotating preferences using PairRM. All
prompts of PCjjam, are the same as PC,,, and PC,g. We provide more details in Appendix

PCllama is designed to isolate the impact of data characteristics. Through experiments, we show that
the preference candidates in PCyg have a higher intra-diversity than those in PCyj ., and quality of
preference candidates in PC,g is lower than that in PCyj,1,,. We provide experimental details about
the comparison between PC,g and PCy,p,, in Appendix @ Besides results of models trained
with PCog and PCyjama, we also include the PC,,, results as references.

We present our results in Table 2]  Our ob- Table 2: Results of Zephyr-7B for RQI.
servations and conclusions are as follows. 1)

High diversity is more effective for models o1 [ter-2 LC Win Rate Win Rate
in the preference injection stage. Compared

with the SFT baseline, model trained with PCog - - 8.12 4.25
achieves a 12.7-point performance increase. In  PC.g - 20.77(112.65)  19.99
contrast, model trained with PCjjam, achieves a  PClama - 13.53 (4 5.41) 10.15
5.4-point performance increase, which is similar PC,, - 13.70(45.58) 9.90
to the model trained with PC,,, that achieves a

n P P 23. : 21.
5.6-point performance increase. However, when Pgog Pgﬁﬁ ) 23;;&;2?; 37.85

Zephyr has beep in the pr.eference fine-tuning PC.s PC,, 332811251  36.85
stage, PC,g achieves a relatively smaller perfor-
mance increase, which is 3.0 points, compared
with PCyjama and PCy,, which are 8.6 points and 12.5 points, respectively. Similar results are
also observed from experiments in § [4.2] where PCg attributes to slight improvement for Llama-3.
2) High quality will be more effective for models in the preference fine-tuning stage. For the
model in the preference fine-tuning stage, being trained with PCjj,.,,, achieves a 8.6-point increase.
However, the relative performance increase is only 5.4 points when trained with PCyj,,,, for model
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in the preference injection stage. As PCjiama being a dataset with off-policy preference candidates
with regard to Zephyr-7B, the dynamic effectiveness is attributed to the dynamic requirements for
models in different stages, where we conclude that quality matters at the second stage.

The narrative explanation of different stage characteristics is through dynamic alignment goals.
Model in the preference injection stage performs poorly and lacks knowledge about ground-truth
preference and its corresponding high-reward region. The exploration will be low-effective since
the high-reward region can hardly be explored. Data with high diversity aims at injecting preference
knowledge into policy models. For the models in the preference fine-tuning stage, it is low-effective
to perform large-scale preference injection, and the alignment goal shifts to explore high-reward
region, sampling responses that are of high quality.

5 BOUNDARY MEASUREMENT ALGORITHM THAT DETERMINES THE
BOUNDARY BETWEEN ALIGNMENT STAGES (RQ2)

In this section, we analyze the requirements of preference data from a theoretical perspective. We
show the equivalence between the DPO objective and the alignment optimization objective (§5.1)
and conclude that we are finding a better text distribution estimation to general text distribution
defined by ground-truth preference model when choosing preference candidates (§5.1I). To find a
better text distribution, we introduce the preference consistency, which is the sufficient condition
of identical distributions between some text distribution 7 and general text distribution 7¢ (§5.2).
Finally, we propose the boundary measurement algorithm, a practical estimation of the preference
consistency measurement (§5.3). We illustrate the relationship between text distribution estimation
and boundary measurement algorithm in Figure[d, Appendix[D} All proofs are shown in Appendix[E]

Notation. Generally, let 7 be a policy that represents a text distribution. Following the notation
in let P : X x Y x Y — [0,1] be the preference distribution that satisfies Bradley-Terry
definition with respect to reward model r. The output P(y; > y2|z) represents the preference of
y1 outperforming ys. Specifically, let o be the general policy and the general text distribution,
Toff be an abstract policy that generates the candidates of PC,g, my be the policy that generates the
preference candidates of PC,,,, 7* be an optimal solution of 7. P* is the ground-truth preference
distribution derived from the ground-truth reward model r*. Py is the parameterized preference
distribution derived from r4, which is the analytical solution of Eq. @) given my and .

5.1 OPTIMIZATION CONSISTENCY ANALYSIS

Eq. (§) establishes a one-way mapping between the reward model and policy model that for every
reward model 7, there exists a policy 7 that satisfies Eq. (5)) and j is the optimal solution of
Eq. (3). First of all, we show that the one-way mapping is reversible, i.e., Eq. (3) satisfies for every
mp when optimizing through Eq. (6).

Theorem 5.1. (Bijection between reward function and policy) Under mild assumption, for any
policy mg and the static reference model T, there exists a unique reward model vy satisfying mg
being the optimal solution of Eq. (3).

Theorem [5.1]indicates that the optimization objective of Eq. (6) and the alignment objective Eq.
are theoretically equivalent. We then discuss the condition that achieves the optimal solution of
Eq. (3) via Eq. (6).

Theorem 5.2. (The Necessary condition of the optimal solution of Eq. (3)) The optimal solution of
Egq. can only be achieved if the preference dataset D™t has infinite preference data.

Theorem [5.2]indicates that 1) The optimal solution of the general alignment objective is practi-
cally intractable, as it is impossible to construct a preference dataset with infinite preference candi-
dates. Given limited preference candidates, the optimization objective is the preference consistency
between P* and Py within the limited dataset. 2) The alignment process will be more effective if
the limited preference dataset is a well-defined proxy of the infinite-sample preference dataset.
Assuming that the preference candidates, i.e., text-based responses of the infinite-sample preference
dataset, are sampled from the general text distribution, then we are estimating general text distribu-
tion when selecting preference candidates.
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5.2 THE GENERAL TEXT DISTRIBUTION ESTIMATION

In this section, we aim at finding a measurement that can estimate the distance between the general
text distribution 7 and the parameterized text distribution 7. Regular distance measurement like
KL divergence does not work since both text distributions are intractable. Instead, we aim to measure
the consistency of the preference distributions between P* and Py, which we will show to be a
sufficient condition of 7 and 7y being identical. First of all, we formally introduce the definition
of g and Py in Definition

Definition 5.3. The general text distribution 7 is defined by the ground-truth P* that satisfies

P*(y1 > ya|z) = o(log mg (y1]2) — log e (y2|x)), (7

and the parameterized preference given 7y is defined as

Po(y1 = y2|x) = o(log mo(y1|z) — log mg (y2|x)). ®)

We note that Definition[5.3]is not related with the optimal condition defined in Eq. (3) and Eq. ().
That is because we will not introduce any assumptions premised on optimizing Eq. (3), and the
general text distribution should be irrelevant to hyper-parameter 3 and reference model 7.

Theorem 5.4. (The uniqueness of w¢) There exists a unique m¢; under Definition[5.3| given a well-
defined P*.

Theorem [5.4] and Definition [5.3] indicate that P* and 7 form a pair of bijections, which allows
us to estimate 7w by estimating P*. We can thus measure the distance between two preference
distributions that are derived from 7 and 7y respectively as a proxy of the estimation between text
distributions. First of all, we provide the definition of preference consistency in Definition[5.5]

Definition 5.5. Given preference distribution P; and Py based on BT definition, the consistency
between IP; and IP5 is defined by the following formula:

E o [LP1(y1 = y2|2)] © T[P2(y1 = ya|z)]] ©)

where I : [0,1] — {0, 1} is the indicator function that maps values in the interval [0, 0.5] into 0 and
values in (0.5, 1] into 1. ® is the XNOR operator.

The preference consistency defined in Definition [5.5] achieves its maximum when
I[P1(y1 > ya2|z)] = [[P2(y1 > ye|x)] satisfies for any {x, y1,y2}, which is a sufficient condition
of two identical preference distributions. In other words, preference consistency is to determine if
probabilities of identical samples exhibit identical rank orders for both text distributions.

5.3 PRACTICAL ESTIMATION OF PREFERENCE CONSISTENCY

Given on-policy distribution 7y and off-policy distribution 7,g, we perform the preference con-
sistency measurement between these distributions and the general text distribution 7. Let
{yi Y, {yb} be the responses sampled from 7y and 7.g given prompt  with size m and n, re-
spectively. For each prompt x, We estimate the preference consistency by responses sampled from
both 7y and 7.g to reduce sampling variance:

I o= wo i j i i
o 2 LT[ i - i) @ T [Potut - i) (10)
y1 vl
which measures the consistency between P* and Py, and
I v Wil g i
%szﬂ[]}p (y1>y2\m)]®ﬂ[ﬁ”oﬁ(y1>y2|x)], (1)
Y1 yp

which measures the consistency between P* and P.g. Practically, we assume that my and m.g are
highly divergent text distributions and responses are sampled from largely distinct regions of the
vast text space, which allows that I[Py (3% = y3|2)] = 1 and I[Pog (i >= vy3]2)] = 0, an assumption
empirically supported in Appendix This allows the preference consistency between P* and

Py, Pog to be simplified into - P ZZ% I {IP’* (Y4 = y%|:17)} and -L P ZZ% I [P*(y% = yilz)],
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Table 3: Results of full-combination two-iteration experiments. The “BS (initial)” denotes the rel-
ative boundary score of each initial policy, calculated as Vo / (Vo + Von) from the results of the
boundary measurement algorithm shown in Algorithm [I] A score less than 0.5 indicates the pol-
icy in the preference injection stage and thus dataset with better intra-diversity will be more effi-
cient (A>1). Otherwise, it is in preference fine-tuning stage and thus the quality matters (A<1).

respectively. Under mild assumptions, these equations indicate that it is possible to select a better
proxy of mg from 7y and m,g by comparing preference consistency of my and m.g regarding to P*.

Algorithm 1 Boundary Measurement Algorithm

1: Input Preference datasets PCoy, PCog, Preference model P.

2: ‘/orn Voff <~ 07 0

3: for (z,y1,y2) ~ PCon do

4:  Sample the paired responses (y1,y5) from PCoi where the input of paired responses x is equal to z.
5: fory,y’ wherey € {y1,y2},9" € {y1,v3} do

6: Update Vo, < Von + 1 if IP prefers y better than 3/’ given x. Otherwise, update V.
7:  end for

8: end for

9: if Vog>Von then
10:  return Model is in the preference injection stage, PCog.
11: else
12:  return Model is in the preference fine-tuning stage, PCoy.
13: end if

We then provide the boundary measurement algorithm in Algorithm (1} which is the preference
consistency measurement when letting m = n = 2. The algorithm shows that alignment stages are
decided by preference dataset and preference model jointly. In other words, one initial policy can
be in preference injection stage and preference fine-tuning stage at the same time given different
off-policy preference candidates and preference models. However, once the preference model and
off-policy preference dataset are given, we can decide the alignment stage that model is currently in,
and thus optimizing preference data for policy models.

5.4 EXPERIMENTS OF THE BOUNDARY MEASUREMENT ALGORITHM

Following the experiment settings in §4} we perform experiments on three base models to verify the
effectiveness of the boundary measurement algorithm. We present our result in Table[3] For Llama-
3, the results fit the stage assumption well. The boundary scores are greater than 0.5 for all initial
models, indicating that Llama-3 is in preference fine-tuning stage. The results for Phi-2 also align
with the stage assumption, as the boundary scores are less than 0.5 for all initial models, showing
that the model is in preference injection stage. For Zephyr, the results fit the assumption well given
the SFT model or the model trained with PC,g as the initial models. We notice that the model
trained with PC,,, has a positive score (0.58), but the follow-up training with PC,g (an 8.5-point
increase) is still more effective than PC,,, (a 5.5-point increase). We attribute it to the lower quality
of PC,,, relative to PC,g. We measure the quality of PC,,, following the comparison method used
in Appendix [C.3] The result shows that that the length-controlled win rate of PC,,, compared with
PCyg is 0.46, indicating that the quality of PC,,, is lower than that of PCg.

6 GENERALIZABILITY ANALYSIS

In this section, we further extend the experiments on two models (Qwen2.5-1.5B (Yang et al.| [2024)
and Pythia-6.9B (Biderman et al.,[2023)) and another LM alignment method (SLiC-HF (Zhao et al.,
2023)) to verify the generalizability of our conclusions.
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Iter-1 Iter-2 | LC Win Rate Win Rate BS (initial) A(x) | LC WinRate ~Win Rate  BS (initial) A(x)
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Table 4: Results of two-iteration experiments in Qwen2.5-1.5B and Pythia-6.9B.

Generalizability Analysis on Additional LMs. We further extend experiments on Qwen2.5-
1.5B (Yang et al.l 2024)) and Pythia-6.9B (Biderman et al.||2023). We follow the experiment settings
in §4 and train the models on UltraChat for one epoch first. We report the results in Table ] The
results show that the effectiveness discrepancy between PC,,, and PC,g exists. Specifically, the
boundary score shows that the initial checkpoints of the two models, i.e., the SFT checkpoint and the
checkpoints trained on PC,,,, and PCg in the first iteration are all in the preference injection stage.
As shown in the results, the performance of models trained on PC,g outperforms those trained on
PC,, given the same initial checkpoint among different models, which fit the our conclusions well.

Generalizability Analysis on SLiC-HF. Though the empirical analysis of the two-stage assump-
tion and the theoretical analysis of the boundary measurement are based on DPO, we show that the
assumption and our conclusions can be further extended to other LM alignment methods. In this
section, We perform experiments on SLiC-HF (Zhao et al.,2023).

We report the result in Table 5} The results show a similar trend as those aligning with DPO,
where we observe the effectiveness discrepancy between PC,,, and PC,g for different models. By
performing the alignment stage assumption for these models and performing the boundary measure-
ment, we observe a similar result as those aligning with DPO, which shows that the effectiveness
discrepancy exists, and we can apply the two-stage assumption and judge the boundary between
stages via the boundary measurement we proposed in Algorithm T}

Iter-1 TIter-2 | LC Win Rate Win Rate BS (initial) A(x) | LC Win Rate Win Rate BS (initial) A(x) | LC Win Rate Win Rate  BS (initial) A(x)

Llama-3-8B-Instruct Zephyr-7B Phi-2-2.7B
- | 2459 24.47 - | 8.12 4.25 - - 5.81 3.72
R e R I e A I e
v por | Bee Bm o ee - | R R e s | DRem o B0 0w 1
pen o] St W omeae | g 208 om0 oos | gieie B as 1

Table 5: Results of full-combination two-iteration experiments performed with SLiC-HF loss. The
boundary score can be a good measurement to decide the boundary between each alignment stage.

Though the result matches the assumption and algorithm in most cases, we also observe a model
collapse phenomenon for Llama-3 trained with PC,g and PC,,, subsequently, where a very serious
performance degradation is observed. It may result in the difference between DPO and SLIC-HEF, as
a similar performance degradation is not observed when aligning with DPO as shown in Table 3]

7 CONCLUSION AND LIMITATION

In this work, we reveal the effectiveness discrepancy between on-policy data and off-policy data
for different models, and propose the alignment stage assumption when performing LM alignment
through DPO. We characterize each alignment stage through analyzing the discrepancy by diversity
and quality. We provide the boundary measurement algorithm, a theoretical-grounded method to
decide the alignment stages. Though being an effective simplified abstraction of alignment process,
the alignment stage assumption inspires exploration of smoother and more adaptive data blending
strategies rather than a rigid switch, which is not included and we leave for future research.

10



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work and to facilitate a clearer understanding of our contribu-
tions, we provide extensive supporting materials. In the main text, we describe the models, bench-
mark and training parameters we used in our experiment in §4] In Appendix [C} we provide further
detailed information, including model details, evaluation details, data details and training details.
Our work is based on open-sourced models, open-sourced dataset and open-sourced benchmark,
which ensures our results are reproducible.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we utilized LLMs solely for the purpose of polishing writing. The LLMs were not
used for content generation, and all research, analysis, and conclusions presented are the result of
our own work and independent thought.

B FURTHER DISCUSSION

B.1 COMPUTATIONAL COST OF ALGORITHM [

The boundary measurement algorithm requires a one-time comparison on a subset of the data, which
requires performing on-policy sampling by current policy to acquire PCy,,. In our experiments, we
use 2,000 prompts in the “test_prefs” split of UltraFeedback (binarized) dataset for this measure-
ment. Specifically, we compare the on-policy samples generated by current policy and the off-policy
samples derived fom the “test_prefs” split of the UltraFeedback (binarized) dataset, using PairRM
as the preference model. Compared to full DPO training on the 61, 135-sample dataset, the com-
putational overhead of our boundary measurement is negligible, estimated to be 3.2% of a single
training epoch. This demonstrates that our method is not only effective but also highly efficient and
practical for real-world application.

B.2 DEPENDENCY OF PREFERENCE MODEL

A key aspect of our boundary measurement is its reliance on a given preference model PP to define
the ground truth for the stage decision. This means the resulting stage boundary is relative to the
preference model P. If P is weak or biased, the boundary decision might be suboptimal for alignment
towards true human preferences, but it will still be optimal for aligning towards the world view of
P. This highlights the importance of the choice of the preference model, a factor common to all
preference-based alignment methods.

B.3 CONNECTION WITH EXPLORATION-EXPLOITATION

Our two-stage assumption can be viewed as a simplified instantiation of the classic exploration-
exploitation trade-off in reinforcement learning within the context of LM alignment. While tradi-
tional reinforcement learning focuses on exploration in state-action space, our work suggests that
for LM alignment via preference-based alignment methods like DPO, exploration happens in the
space of preference candidates. Choosing preference candidates with high diversity can be regarded
as a form of exploration, where the model seeks to learn broadly about the reward landscape defined
by preference model; while choosing high-quality preference candidates can be regarded as a form
of exploitation, where the model refines its policy within high-reward regions defined by preference
model. Our boundary measurement algorithm, therefore, acts as an adaptive switch between the
exploration phrase and the exploitation phrase.

B.4 DISCUSSION ABOUT DISTRIBUTION SHIFT THEORY

One possible confusion about the empirical analysis about stage characteristics we introduced
in §4.3]lies in the contradiction between stage characteristics and distribution shift theory. Different
from quantifying preference candidates by diversity and quality, PC,, is an “in-domain” dataset, as
its preference candidates are sampled from the current policy, while PC,g is an “out-of-domain”
dataset, as its preference candidates are sampled from models different from the current policy. As
a consequence, the effectiveness of PC,,, may lie in its sharing the identical sampling distribution
during the alignment process with regard to current policy. We alleviate the influence of distribution
shift from two aspects.

First of all, the distribution shift theory posits that on-policy data is always superior to off-policy
data. However, our results in showing that optimizing models based on preference candidates
sampled from their identical distribution is not always effective, which indicates that distribution
shift is not the sole, or even the primary factor towards LM alignment. For example, for Phi-2,
training with PC,,, leads to a performance drop, while training with PC,g, whose samples are from
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a more distant distribution, leads to a performance increase. Secondly, we de-confound the effects of
data characteristics (i.e., diversity and quality) from their on-policy/off-policy natures. Specifically,
we use PCiama in @ whose preference candidates are sampled from another model (i.e., Llama-
3-8B-Instruct) that is distant to current policy (i.e., Zephyr-7B). Through empirical analysis about
PCog and PCjam, introduced in §@ we quantify the characteristics of PCyg and PCyjama. This
allows us to isolate the impact of data characteristics.

B.5 DISCUSSION ABOUT IMPORTANCE OF PREFERENCE DATA SELECTION

As the field of LLMs matures beyond the primary pursuit of scale, the central challenges have
shifted towards efficiency, reliability, and cost-effective customization. The decision of how to con-
struct the effective dataset lies at the heart of this new paradigm. On-policy data generation, while
providing highly relevant samples, introduces significant computational and financial overhead, act-
ing as a major bottleneck for the widespread adoption and specialized fine-tuning of models. Our
work addresses this challenge by moving the data selection process from an empirical art to a prin-
cipled, stage-aware science. In an era increasingly focused on Data-Centric Al, instead of simply
assuming on-policy data is superior, off-policy data can be more effective than on-policy data in
some cases. By introducing the same LM inference overhead to construct the on-policy preference
candidates and then optimizing LLMs, the model will achieve better performance when it has been
in the preference fine-tuning stage. Our work provides a diagnostic framework to understand the
model alignment stage and to strategically choose data that maximizes efficiency. Our research of-
fers a critical methodology for building better-aligned models more efficiently and reliably, a core
necessity for the next generation of Al systems.

B.6 ADDITIONAL RELATED WORK ABOUT OPTIMIZATION VIA ON-POLICY AND
OFF-POLICY CURRICULUM

On-policy reinforcement learning encourages LMs to perform active exploration during the opti-
mization process, which enhances their generalization ability by learning from feedback on their
own sampled outputs (Chen et al., 2025} |Chu et al., [2025). However, on-policy sampling is expen-
sive and time-consuming, and can result in policy degradation caused by entropy collapse or over-
exploitation of sub-optimal responses (Yu et al [2025). Relatively, optimizing LMs via off-policy
data is cheap and stable, while it struggles with limited exploration and learning from novel, self-
generated responses. To this end, several works focus on the optimizing LMs via both on-policy
and off-policy data in an empirical and straight-forward way. LUFFY incorporates off-policy re-
sponses in Group Relative Policy Optimization method (GRPO, |Shao et al.[(2024)) by adding them
directly to the group of on-policy responses (Yan et al. 2025). Qwen3 utilizes a weak-to-strong
curriculum strategy during the optimization process, training models in off-policy responses and
on-policy responses subsequently in a supervised fine-tuning manner to improve the reasoning ca-
pability of LMs (Yang et al.| [2025). Other works aim at incorporating off-policy data and on-policy
data in a sequential SF7-then-RL paradigm, either utilizing multi-task learning to balance SFT loss
and RL objective at the same time (Zhang et al., [ 2025b) or performing SFT first, then RL (Lambert
et al.,[2024; |Liu et al.} 2025). In LM alignment scenario, our work reveals a patterned effectiveness
discrepancy between off-policy data and on-policy data across different models, and proposes the
alignment stage assumption to model the dynamic data requirements during the alignment process.
Our work is aligned with findings in Reinforcement Learning from Verifiable Reward (RLVR) and
offline RL sencarios, and can provide valuable and actionable discoveries for these fields.

C TRAINING AND EVALUATION DETAILS

C.1 MODEL DETAILS

Llama-3-8B-Instruct is a large language model with 8B parameter size, and has been aligned with
human preferences for helpfulness and safety through supervised fine-tuning (SFT) and reinforce-
ment learning from human feedback (RLHF). Zephyr-sft-full is a large language model with 7B
parameter size, and is an aligned version of Mistral-7B (Jiang et al.| |2023a) that has previously su-
pervised fine-tuned on UltraChat (Ding et al., 2023) dataset. Phi-2 is a pretrained language model
with 2.7B parameter size, and has not been fine-tuned or aligned on downstream tasks. Following
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the setup process and training settings of Zephyr-sft-full, we conduct supervised fine-tuning on Phi-
2 on UltraChat for one epoch to get the fine-tuned checkpoint for alignment experiments. These
models vary on the model scale and training stage, which will result in different behavior in the
subsequent experiments and be helpful for our analysis. We use PairRM (Jiang et al.| 2023b) as the
ground-truth preference model in our experiments, an efficient pair-wise preference model of size
0.4B. PairRM is based on DeBERTA-V3 (He et al.,|2023) and has been fine-tuned on high-quality
preference datasets. Results on benchmarks like Auto-J Pairwise dataset (Li et al.} |2024) show that
PairRM outperforms most of the model-based reward models and performs comparably with larger
reward models like UltraRM-13B (Cui et al., [2023). The reference model 7. we used in different
experiment is the initial checkpoint of the corresponding policy model.

C.2 DATASET DETAILS

UltraFeedback (Cui et al., [2023) is a large-scale, fine-grained, diverse preference dataset for LM
alignment. UltraFeedback consists of 63,967 prompts from diverse sources (including Ultra-
Chat (Ding et al.| [2023)), ShareGPT (Chiang et al., 2023), Evol-Instruct (Xu et al.| [2024), Truth-
fulQA (Lin et al., [2022)), FalseQA (Hu et al., |2023)), and FLAN (Longpre et al., [2023)). For each
prompt, the authors query multiple LLMs to generate 4 different responses, then the responses are
scored and ranked by GPT-4 (OpenAl, 2023) based on criterion including instruction-following,
truthfulness, honesty and helpfulness. To construct the UltraFeedback (binarized) dataset, the re-
sponse with the highest overall score is selected as the “chosen” completion, and one of the remain-
ing 3 responses at random as the “rejected” one, thus constructing the preference pairs.

We sample two answers by the current policy to acquire on-policy preference candidates. Specifi-
cally, we use all of the prompts derived from UltraFeedback, sample two responses as the preference
candidates, then annotate the preference between the preference candidates by PairRM. We called
“blender.compare_conversations” method to annotate the preference between preference candidates,
which is the official method provided by the authors of PairRM. To ensure the consistency of prefer-
ence annotators between off-policy preference dataset (whose preferences are annotated by GPT-4)
and on-policy preference dataset (whose preferences are annotated by PairRM), We relabeled the
preference of preference candidates in UltraFeedback (binarized) dataset by PairRM in the same
way as labeling the preference in the on-policy preference dataset.

C.3 EVALUATION DETAILS

AlpacaEval 2.0 (Dubois et al., 2024a) is a leading benchmark that assesses LLMs’ instruction-
following ability and alignment with human preference. To construct the AlpacaEval test set, the
authors combine a variety of instruction-following datasets like self-instruct (Wang et al., [2023)),
open-assistant (Kopf et al., [2023), vicuna (Chiang et al., 2023)), koala (Geng et al.l [2023) and hh-
rlhf (Bai et al.l 2022)), and finally construct a dataset with 805 samples. It calculates the probability
that an LLM-based evaluator (gpt-4-1106-preview) prefers the model output over the response gen-
erated by GPT-4, which provides an affordable and replicable alternative to human preference an-
notation. The win rate over the GPT-4 baseline is computed as the expected preference probability.
The length-controlled win rate is a modified version that reduces the length bias, which alleviates
reward hacking and prevents flawed judgment. We report the length-controlled win rate as it corre-
lates best with Chatbot Arena (Dubois et al., |2024b)), the real-world alignment benchmark based on
human evaluation.

C.4 EXPERIMENT DETAILS

For each training iterations, we use the initial checkpoint of current policy as the reference model.
For on-policy experiments, we sample two answers from the current policy, using prompts same as
UltraFeedback, then annotate the preference by PairRM. The hyper-parameters when training mod-
els are shown in Table [/} The hyper-parameters when generating on-policy preference candidates
are shown in Table[dl

In practice, we seldom see researchers perform the third approach (i.e., PC,,, o) which may be
because the goal of on-policy sampling is to alleviate the out-of-distribution problem that training
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Parameter Value
SFT DPO
Epochs 1 1
Learning Rate 2.0x 1075 5.0 x 1077
Batch size (per device) 4 4
Gradient Accumulation Steps 8 8
B - 0.01
warmup ratio 0.1 0.1
scheduler cosine cosine
GPUs 4 x A100 4 x A100

Table 6: Training hyper-parameters (SFT and DPO).

Parameter | Value
top_k 50
top-p 0.9
temperature 0.7

Table 7: Inference hyper-parameters (sampling on-policy preference candidates).

on off-policy data solely suffers, but the third approach can not handle it empirically for its end up
training on off-policy data. We include this setting for the completeness of the experimental setup.

C.5 DETAILS ABOUT PCyama

Data Construction To construct PCjj,p,,, We use the raw Llama-3-8B-Instruct model to gener-
ate a pair of on-policy reference candidates, following the settings introduced in Appendix [C.2]and
Appendix [C.4] Specifically, we use the prompts same as PCog, which are derived from Ultra-
Feedback, and annotate the preference of on-policy preference candidates by PairRM. PCyj, ., and
PCog have identical prompts but different preference candidates. We abstract the core difference
between PCj,m, and PC,g into two key characteristics, the intra-diversity and the answer quality,
as introduced in We then analysis the characteristics.

Alogps
B

—— PCur
—— PCitama | |
—— PCon 60

—— PCegr
——PCliama | |
—— PCon

——PCliama
—— PCon |

I I I I I I I I ! I I I I I I
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
training steps training steps training steps

(a) Zephyr-7B results. (b) Qwen2.5-1.5B results. (c) Qwen3-4B results.

Figure 3: The intra-diversity between PC,g and PCjj, ., that is defined by the difference(A) of log
probabilities between the chosen and the rejected answer cross different models, inclding Zephyr-
7B, Qwen2.5-1.5B and Qwen3-4B. The curves of PC,,, are also included as reference.

Diversity This section discusses the intra-diversity between preference pairs. We define the intra-
diversity as the difference between generation probability of preference pairs by a given model,
operationalized by the log-probability difference between paired responses as follows:

N
. 1 ) 7
Dzvintra = N Z(log 7r9(y1|1') - logwe(y2|x)), (12)

(2

21



Under review as a conference paper at ICLR 2026

where i and y} are the chosen and the rejected answer for the 74, sample respectively. To compare
the intra-diversity between preference pairs that derived from PCyg and PCjapma, we record the
log probabilities of preference pairs individually when training on Zephyr-7B, Qwen2.5-1.5B, and
Qwen3-4B, and present the result in Figure[3] As shown in the figure, during the training procedure,
the difference in log probabilities of PC,g has a larger fluctuation range but the difference in log
probabilities of PCy,,, remains stable and close to zero. The results show that PC,g is more
diverse than PCy,,,. The log probabilities of preferences pairs derived from PC,,), are also included
in Figure |§| as reference. As shown in the result, PC,,, and PCjjan,, share similar trend during the
training process. It indicates that though PCy,p,, is an off-policy preference dataset for models
except for Llama-3, it still holds the low intra-diversity characteristics as an on-policy preference
dataset for different models. As a result, it is a reasonable dataset for conducting comparative
experiments on comparing data characteristics including intra-diversity and answer quality while
avoiding their on-policy/off-policy nature.

Quality We define answer quality as the degree of alignment with human preference. We compare
the quality by measuring the preference labeled by the ground-truth preference model between an-
swers sampled from PCog and PCyy,,,. Specifically, we followed the official recipe of AlpacaEval
benchmark and annotate the preference using GPT-4-turbo. The preference candidates are one ran-
domly sampled answer from the preference candidates of PCy,p,, and the chosen answer of PCg,
then report the result of length-controlled win rate on 805 cases that were randomly sampled from
the training set. Our results show that the length-controlled (LC) win rate that answers of PCjama
being preferred is 58.84. The result shows that the quality of PCjj,p,, is higher than that of PCog.

D ILLUSTRATING THE RELATIONSHIP BETWEEN TEXT DISTRIBUTION
ESTIMATION (§5.2) AND ALGORITHM [1] (§5.3))

We illustrate the relationship between the general text distribution estimation and our purposed
boundary measurement algorithm in Figure [4]

4 . ] N\
Numerical Calculation

Goal: Estimating General Text Distribution g - - - - - 3¢ - - --» Distribution is Intractable

1. Build Connection between Text Distribution 7 and Preference Distribution P (Definition 5.3)

2. Show m and IP form a pair of Bijection (Theorem 5.4) « - - - Then estimating I instead of =

3. Measure Distance between IP; and IP, by Preference Consistency (Definition 5.5, Equation 9)

N 4
4. Compare Preference Consistency between P* < Py, P* < P (Equation 10, 11)

5. Practical Approximation (Appendix E.1)

Solution: Boundary Measurement Algorithm (Algorithm 1)
N J

Figure 4: Tllustration of the relationship between the general text distribution estimation and our
boundary measurement algorithm discussed in §5.2]and §5.3] The boundary measurement algorithm
is derived from preference consistency measurement. The preference consistency measurement is
purposed for estimating the consistency between two preference distributions, which are defined as
proxies towards the intractable text distribution.
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E PROOFS AND DEVIATIONS

E.1 PROOF OF THEOREM[5.1]

Proof. Eq. (EI) shows that given any reward model 7, there is a unique policy my that 7y is the
optimal solution under Eq. (). Then, we prove that given any policy 7y, the corresponding reward
model is unique, too.

Given 7y as the optimal solution and 7, is fixed, we can transform Eq. (EI) into:
mo(y|T)
f(z,y) = re(z,y) — Blog — = — Blog Z(z), (13)
¢ Tret (y|2)
where f(x,y) is always equals to zero. For some given xg,yo, we rewrite f as a function of
7“¢(580, Yo):
Joouo (T(20, 90))
14
o (yolzo) — Blog Z(o). (14)
Tref (yO |$O)
Let 74(20, yo) be an independent variable with range R, we can calculate the partial derivative of f
with respect to 74 (2o, Yo):

8f$07y0 (r¢($07 yO))
Ore(xo, Yo)
- 8T¢(l‘07 yo) 1 82(.’1?0)

 Org(zo, yo) Z(xg) Org(z0,Y0)

1 5‘3XP(%7‘¢($€07ZJ0))
= ]_ — 7 < Tre x
ﬂZ(a:O)W f(@/o| 0) 8%(%)%)

. (1 7Tref(y0|x0) exp(%w(xo,yo)) 8T¢(1'0,y0)

Z(x0) Ore(xo, yo)

71—ref(y0|330) exp(%rg‘b(x()a yO))
Z(xo) '

The partial derivative of f with respect to 74(xo, yo) is always greater than or equal to zero. Due to
its monotonicity, there is at most one value r4 (o, yo) that can satisfy f(zo,yo) = 0. If mer is not
a one-hot distribution (i.e., Tyt (Yo|zo) = 1 and mef(y|zo) = 0 for any y # yo), then the range of
f is R because the domain of r4 is R, there will be an r4(x¢, yo) that satisfies f(xo,y0) = 0. In

other words, for any given y, there exists an ry that satisfies Eq. (5), and completes the proof of
Theorem[5.11

=714(x0,y0) — B

15)

O

E.2 PROOF OF THEOREM[3.2]

Proof. Let P(y1,ya2,x)€ [0,1] be the generalized form of preference that y; is preferred than yo
given prompt x. First of all, we prove that the optimal solution of Eq. () satisfies for each
(x,y1,Y2) ~ D, we have Py (y1, y2, ) = P*(y1, y2, x). Eq. @ can be rewritten into the following
format:

m(;nE(x,yl,yg)wD[Dkl(]P)¢(y17 Y2, .’Iﬁ)H]P* (yla Y2, .T)} (16)

Given that the KL divergence between two Bradley-Terry (BT) models has an exact calculation, it
implies that the optimal solution for each preference pair in D satisfies Py (y1, y2, ©) = P*(y1, Y2, x).
However, we will demonstrate that Py = P* holds only under the assumption of infinite data.
Suppose that Py is the optimal solution of Eq. (6) obtained from dataset D. For any sample
(x,y1,y2) ~ D, the optimal solution ensures that Py(y1 > ya|z) = P*(y1 > ya|z). Conversely, for
any (z,y1,y2) ~ D’ where D' N'D = ¢, there is no guarantee that this equality persists, as P* is un-
constrained for such out-of-distribution samples. Nevertheless, under the infinite data assumption,
D achieves full coverage of the sample space, making D’ an empty set. Consequently, Py = P*
holds for any (x, y1, y2), which completes the proof of Theorem

O
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E.3 PROOF OF THEOREM[5.4]

Proof. We can rewrite the equation in Definition [5.3| with the following form:
T (y1lz) )

76 (y2lz)

Let X be the state space and A be the action space, define f(x,y;,y2) : X x A x A — R be the
cocycle that for each (x, y1, y2), the following equation holds:
7c(y1|z)

76 (y2|)

Then f is a fixed function given . We then prove that my which satisfies Eq. (18)) does not exist
unless g = m. Without loss of generality, assume there exists my that satisfies

P*(y1 = ya|r) = o(log (17

flx,y1,2) = (18)

Flaan o) = ), (19)
o (y2|z)
which is equivalence to
mo(y1|z) = f(2,y1,y2)mo(y2|). (20)
Let y- be a static point that has a specific value, sum y; on both sides of the equation, we have
> mayle) = f(@, 1, y2)me(yolx). 1)
Y1 Y1

Since 7 is a text distribution, we have >, 7g(y|z) = 1. Substitute the equivalence into the above
equation then simplify the above formula, we have
1

Wg(y2|33) = Zyl f(w,yl,yQ)'

The right hand side can be accurately calculated since the f function is determined. The left hand
side, which is 7y (y2|z), can be uniquely determined. And thus we prove my(ya|z) = 7 (ye|z).
Applying the result to all y, we have 9 = 7, and completes the proof of Theorem

(22)

O

F FURTHER EMPIRICAL ANALYSIS

F.1 REASONABLENESS OF THE DISTINCT ASSUMPTION

In this section, we compare the sampling probability between on-policy preference candidates and
off-policy preference candidates. Since 7o is intractable, we verify I[Py(yi = vy3]z)] = 1 and
extend the result to I[Pog(yi = y3|z)] = 0. Specifically, we sample 2,000 prompts from Ultra-
Feedback, as well as their corresponding off-policy preference candidates and their corresponding
on-policy preference candidates. For each prompt, we compare the sampling probability between
one off-policy preference candidate and one on-policy preference candidate by performing a lan-
guage modeling task using the corresponding policy. As for each prompt, we have two off-policy
preference candidates and two on-policy preference candidates, we perform four comparisons each
time, then performing a macro average and report the final win rate. The win rate is calculated as
on-policy preference candidate having a higher probability than off-policy preference candidate for
all the initial policy we used in our previous experiments. We provide the comparison results in
Table[§] The results show that, compared to off-policy samples, initial policies assign higher proba-
bilities to the on-policy candidates in all cases. Notably, the win rate is 84.3% ~ 96.5% for different
models, indicating that our assumption is reasonable in most cases.

G FURTHER VISUALIZATION RESULTS

G.1 SYSTEM PROMPT OF GPT-4 EVALUATION IN ALPACAEVAL

We follow the standard recipe of the authors of AlpacaEval, where the system prompt is illustrated
in Table [0l
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Iter-1 Iter-2 Win Rate
Llama-3-8B-Instruct

- - 91.06
PCos - 93.97
PCon - 91.11

Zephyr-7B

- - 88.80
PCog - 89.56
PCon - 96.50

Phi-2-2.7B

- - 86.96
PCor - 84.32
PCon - 85.89

Table 8: Results of the comparison between the sampling probability between PC,g and PC,,, for
different initial models. The win rate getting close to 1 shows that the initial policies assign higher
probabilities to on-policy candidates.

G.2 CASE FOR ALPACAEVAL
We provide a case from the AlpacaEval generated by Zephyr in Table[I0} Though this case is neither

cherry-picked nor lemon-picked, it is not randomly selected as we choose this case by its relatively
short prompt length and generation length for better visualization effect.
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<|im_start|>system
You are a highly efficient assistant, who evaluates and rank
large language models (LLMs) based on the quality of their

responses to given prompts. This process will create a
leaderboard reflecting the most accurate and human-preferred
answers.

<|im_end|>

<|im_start|>user

I require a leaderboard for various large language models.
I’11 provide you with prompts given to these models and
their corresponding responses. Your task 1s to assess these
responses, ranking the models in order of preference from a
human perspective. Once ranked, please output the results
in a structured JSON format for the make_partial_leaderboard
function.

## Prompt
{
}

## Model Outputs

"instruction": """{instruction}""",

Here are the unordered outputs from the models. Each output is
associated with a specific model, identified by a unique model
identifier.

{

"model": "m",
"output ". nn "{output,l}" nn
I
"model": "™",
"output" . nn "{output,Z}" nn

}
## Task

Evaluate and rank the models based on the quality and relevance
of their outputs. The ranking should be such that the model
with the highest quality output is ranked first.

<|im_end|>

Table 9: Prompt for GPT-4 evaluation in the Alpaca Eval configuration file. Texts in blue can to be
substituted by the real data.
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Instruction

Complete the sentence by providing an appropriate word.
She was wearing a ____ dress.

Reference Output

The word “red” would be an appropriate word to fill in the blank in the sentence ”She was
wearing a [___] dress.”

Zephyr (SFT)

Red

Zephyr (PCog)
floral (adjective) dress (noun)

Confidence: 95%

Zephyr (PC,,)
Cocktail dress. She was wearing a cocktail dress.

Zephyr (Pcoff%oﬁ)

. Flowery (if the dress had floral designs)

. Red (if the dress was the color red)

. Sequined (if the dress had sequins)

. Lace (if the dress was made of lace)

. Vintage (if the dress was from an older time period)

. Off-shoulder (if the dress had an off-shoulder design)

. Maxi (if the dress was very long)

. Little black (if the dress was a simple, black, versatile dress)
. Bohemian (if the dress had a loose, flowing style)

10. Cocktail (if the dress was appropriate for a formal event)

Zephyr (Pcoﬁ'—>on)

1. Flowery: She was wearing a **floral** dress - with intricate patterns of blooming flowers.

2. Sequined: She was wearing a **sequined** dress - adorned with sparkling rhinestones and
tiny beads.

(omit for 6 lines)

9. Bold-printed: She was wearing a **bold-printed** dress - featuring a striking, eye-catching
pattern, such as stripes, polka dots, or abstract designs.

10. Off-shoulder: She was wearing an **off-shoulder** dress - a dress style with the neckline
falling off one or both shoulders, often featuring a halter-style strap or spaghetti straps.

O 00NN A W —

Hope these suggestions help! Let me know if you need more context or specificity.

ZePhyl’ (Pcon—»off)
She was wearing a flowyairysheerdiaphanous (adjectives indicating a light and transparent fabric)
maxi dress.

(Alternatively, you could also use: She was wearing a chiffonsilklaceorganza dress, depending
on the specific fabric used.)

Zephyr (PCon—on)
Cocktail dress

Alternatively:

- Little black dress (if it was a black, form-fitting dress suitable for a formal or semi-formal
occasion)

(omit for 7 lines)

- A-line dress (if the skirt flared out from the waist in a triangular shape)

Table 10: Responses generated by Zephyr-7b under different training iterations and trained with
different preference data. We omit the outputs of Zephyr (PC,g_,o,) and Zephyr (PCoy,—ofr)-
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