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ABSTRACT

Feedforward models for novel view synthesis (NVS) have recently advanced by
transformer-based methods like LVSM, using attention among all input and tar-
get views. In this work, we argue that its full self-attention design is suboptimal,
suffering from quadratic complexity with respect to the number of input views
and rigid parameter sharing among heterogeneous tokens. We propose Efficient-
LVSM, a dual-stream architecture that avoids these issues with a decoupled co-
refinement mechanism. It applies intra-view self-attention for input views and
self-then-cross attention for target views, eliminating unnecessary computation.
Efficient-LVSM achieves 29.86 dB PSNR on RealEstate10K with 2 input views,
surpassing LVSM by 0.2 dB, with 2× faster training convergence and 4.4× faster
inference speed. Efficient-LVSM achieves state-of-the-art performance on multi-
ple benchmarks, exhibits strong zero-shot generalization to unseen view counts,
and enables incremental inference with KV-cache, thanks to its decoupled designs.

1 INTRODUCTION

Reconstructing 3D scenes from a collection of 2D images remains a cornerstone challenge in com-
puter vision. The field has witnessed a remarkable evolution, moving from classical photogramme-
try systems to per-scene optimized neural representations like NeRF (Mildenhall et al., 2020) and
3DGS (Kerbl et al., 2023), which achieve high-quality reconstruction, but require dense inputs and
costly optimization for each new scene. A significant advance came from Large Reconstruction
Models (LRMs) (Hong et al., 2024; Wei et al., 2024; Zhang et al., 2024), which learn generalizable
3D priors from vast datasets. A recent paradigm shift, pioneered by models like LVSM (Jin et al.,
2025), has further advanced the field by minimizing hand-crafted inductive biases, where it directly
synthesizes novel views from posed images. It eliminates the need for predefined 3D structures or
rendering equations and achieves surprisingly good rendering quality with flexibility.

Despite the success, its monolithic self-attention mechanism, where all input and target tokens are
concatenated into a single sequence, leads to two primary drawbacks: (1) Low efficiency: full self-
attention leads to quadratic complexity with regard to the number of input views (Jia et al., 2023d).
Furthermore, when generating multiple target views with the same input views, input representation
can not be re-used. (2) Limited performance: full self-attention enforces parameter sharing for
heterogeneous tokens - content-rich input views and pose-only target queries. It hinders the model’s
ability to learn specialized representations for their distinct tasks, i.e., understanding the semantics
& 3D structure of the scene for input tokens and rendering the novel view for target tokens.

In this work, we systematically analyze these trade-offs and derive Efficient-LVSM, a Transformer-
based architecture designed to resolve these limitations. The key insight is to decouple the process
of input view encoding from target view generation (Jia et al., 2023b; Wu et al., 2022). To realize
this, Efficient-LVSM employs a dual-stream architecture. First, a dedicated Input Encoder is solely
responsible for processing the source views. It uses intra-view self-attention to independently build
a representation of each input’s content and geometry. Second, a Target Decoder is tasked with
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Figure 1: Latent Novel View Synthesis Paradigms Comparison. The proposed decoupled archi-
tecture disentangles the input and target streams with lower O(Nin) complexity and no duplication
of tokens.

synthesizing the novel view. The Target Decoder engages in a continuous dialogue with the encoder:
at each layer, the target tokens first refine their own understanding of the target view’s structure
through self-attention, and then query the features from the corresponding layer of the Input Encoder
via cross-attention.

• Specialized Attention Pathways. Our architecture utilizes distinct modules for input and target
tokens (Jia et al., 2023c). In the input encoder, only input view is processed. In the target decoder,
target tokens act as queries and input tokens serve as keys and values in cross-attention, avoiding
the use of shared parameters for heterogeneous information.

• Robustness to Variable View Counts. The input self-attention processes each view separately,
making the transformation of one view independent of others. This per-view processing strategy
allows the model to generalize better than LVSM to a variable number of input views at test time.

• Computational and Memory Efficiency. The input encoder processes each input view sepa-
rately and the target decoder adopts cross-attention, both reducing the computational complexity
with respect to the number of input views from quadratic O(N2

in) to linear O(Nin).
• Incremental Inference via KV-Cache. The decoupled structure enables KV-cache of input view

features. When a new input view is provided, only that view needs to be processed. When a new
target view is required, the KV-cache could be directly re-used. In summary, the cost of adding
new input views and target views is nearly constant and thus enables incremental inference.

We conduct comprehensive evaluations for Efficient-LVSM. It sets a new state-of-the-art, outper-
forming LVSM by 0.2dB PSNR and GS-LRM by 1.7dB PSNR on the RealEstate10K benchmark
with 50% training time and achieves 2−4 times speed acceleration in terms of both training iteration
and inference. It exhibits strong zero-shot generalization to unseen numbers of input views.

2 METHOD

In this section, we present a step-by-step analysis that derives the design of Efficient-LVSM.

2.1 PRELIMINARY

Task Definition: Given N input images with known camera poses and M target view camera poses,
novel view synthesis (NVS) aims to render M corresponding target images. Specifically, the input
is {(Ii,Ei,Ki)|i = 1, 2, ..., N} and {(Ej ,Kj)|j = 1, 2, ...,M}, where I ∈ RH×W×3 is the input
RGB image, H and W are the height and width, E,K ∈ R4×4 are camera extrinsic and intrinsic.
The output is rendered target images, denoted as {Îj |j = 1, 2, ...,M, Î ∈ RH×W×3}
Feedforward NVS Framework: we adopt LVSM (Jin et al., 2025) end-to-end paradigm. For
the input {(Ii,Ei,Ki)}Ni=1 and {(Ei,Ki)}Mi=1, all camera poses are encoded using Plücker ray
embedding (Plucker, 1865) while input images are patchified as in ViT (Dosovitskiy et al., 2020).
We obtain the input tokens {Si}Ni=1 by concatenating its RGB patches and Plücker ray patches in
the hidden dimension and passing through an MLP. We obtain the target tokens {Tj}Mi=1 by feeding
its Plücker ray patches into another MLP.
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Figure 2: Efficient-LVSM Model Structure. Efficient-LVSM patchifies posed input images and
target Plücker rays into tokens. Input tokens pass separately through an encoder to extract context,
while target tokens cross-attend to generate new views. Asterisks indicate shared parameters.

Next, input and target tokens pass through a set of transformer blocks to extract features, which is
the key component of the framework: {Rj}Mj=1 = Φ({Si}Ni=1, {Tj}Mj=1) where Φ represents the
transformer blocks and {Rj}Mj=1 is the final features of target views.

The output layer transforms the final features of target views {Rj}Mj=1 into RGB value by a lin-
ear layer followed by a sigmoid function. The resulting RGB patches are then unpatchified and
assembled to form the corresponding target images ÎTj , producing the final synthesized outputs:

ÎTj = unpatchify(Sigmoid(Linearrender(Rj)) ∈ RH×W×3 (1)

Structure Overall Complexity Component Complexity

LVSM
Encoder-Decoder O(N2 +M)

Encoder O(N2)
Decoder O(M)

LVSM
Decoder-Only O(M(N + 1)2) Decoder O(M(N + 1)2)

Efficient-LVSM
(Ours) O(NM +N)

Encoder O(N)
Decoder O(NM)

Table 1: Comparison of Model
Structure Complexity. The pro-
posed Efficient-LVSM obtains lower
complexity than LVSM and thus
achieves significant speed up, as ev-
idenced in Sec. 3.4.

2.2 ANALYSIS OF LVSM’S FULL SELF-ATTENTION PARADIGM

LVSM deocder-only model employs full self-attention on all input and target tokens, which intro-
duces the following two limitations:

Entangled Representation. From the content perspective, input tokens contain both semantic and
geometric information, while target tokens only have geometric information. From the system per-
spective, they bear distinct tasks: input tokens are to understand the semantics & 3D structure of the
scene (Jia et al., 2023a) and target tokens are to render the novel view. However, shared self-attention
parameters do not distinguish the difference (Yang et al., 2025), hampering the generalization ability,
as evidenced experiments in Table 2 and visualizations in Fig. 7c.

Computation and Memory Costs. Consider a sample (Si,Tj) with the shapes of NP × d and
MP × d, where N and M are the numbers of input and target views, and P = HW/p2 is the
number of patches (p represents the patch size). LVSM decoder-only model constructs M separate
sequences for M target views, where each sequence is a concatenation of the entire set of input
tokens and the tokens of a single target view. These sequences are processed by full self-attention
across multiple transformer layers. For a given layer indexed by l, the operation is defined as:

Vi
l = concat(S1

l,S2
l, ...,Sl

N ,Tj
l); Vi

l = Vi
l−1 + Self-Attnl

full(Vi
l−1) (2)

The shape of Vi is M × (NP + P )× d. LVSM repeats the computation of one target view for M
times. Thus, the temporal complexity of LVSM decoder-only model is M ·O(N2P 2) = O(N2M),
as shown in Fig. 1 and Table 1. The quadratic complexity with regard to the number of input views
hampers the efficiency and the repetition of tokens introduces severe computational cost.

LVSM encoder-decoder structure avoids the repetition issue by using an encoder to compress all
input views into one latent vector first. However, this design introduces loss of information, signif-
icantly limiting the reconstruction quality, which is acknowledged in LVSM paper Jin et al. (2025).
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Figure 3: Vanilla Encoder-Decoder vs. Dual-Stream Co-refinement. (a) Hidden features in
middle layers in vanilla encoder-decoder are wasted while the dual-stream co-refinement structure
utilizes these features to extract more information. (b) Feature maps indicate that co-refinement
structure catches more details of the target view.
2.3 DUAL-STREAM PARADIGM

Based on the observation above, we propose a dual-stream structure, where distinct modules are
applied on input and target tokens to decouple the information flow, as in Fig. 2.

Input Encoder: To maintain the independency of different input views and improve efficiency, we
limit the scope of self-attention to patches within the same input view. Each input view is processed
separately, which enables efficient inference when a new input view is provided (incremental in-
ference). Instead of constructing a single, prohibitively long attention sequence containing tokens
from all N input views, we propose to process N shorter sequences. Specifically, let Si represent the
tokens of the ith input view. They are updated by an intra-view self-attention block at layer l:

Si
l = Si

l−1 + Self-Attnl
input(Si

l−1); Si
l = Si

l + FFNl
input(Si

l) (3)

Target Decoder: To allow efficient KV-cache for features of input views, target decoder employs
cross-attention, letting output tokens Tj

l attend to input tokens Si
L from the last layer of encoder:

Tj
l = Tj

l + Cross-Attnl
target(Tj

l,S1
L,S2

L, ...,SL
N ); Tj

l = Tj
l + FFNl

input(Tj
l) (4)

This design decouples the parameters for input and output tokens with dual-stream structure and
allows rendering multiple target views with the same input KV-cache. While this approach shares
conceptual similarities with recent architectures like MM-DiT (Esser et al., 2024), which use dif-
ferent projections for heterogeneous inputs, a key distinction lies in our architectural choice. We
argue that our tokens differ not just in content but in their fundamental computational roles: inputs
are content-rich providers, while targets are content-agnostic queries. This asymmetry motivates our
use of a fully decoupled dual-stream architecture, in contrast to MM-DiT’s unified, full self-attention
block.

Assuming the hidden dimension and the number of patches per image are constants, the tempo-
ral complexity of the Target Decoder are O(NM), while complexity of LVSM decoder-only is
O(M(N + 1)2), as in Table 1.

2.4 INTRA-VIEW ATTENTION OF TARGET TOKENS IN DECODER

The aforementioned cross-attention only decoder design introduces a drawback: each target token
has to store the information of the whole scene by their own since there is no scene-level interac-
tion in input encoder, limiting the capacity. To this end, we propose to add intra-view self-attention
in target decoder alternatively with the original cross attention :

Tj
l = Tj

l−1 + Self-Attnl
target(Tj

l−1)

Tj
l = Tj

l + Cross-Attnl
target(Tj

l,S1
l,S2

l, ...,Sl
N )

Tj
l = Tj

l + FFNl
input(Tj

l)

(5)

In this way, the intra-view self-attention in decoder allows to integrate scene-level information from
other target tokens while still maintaining KV-cache ability. Experiments Table 6 (a) demonstrates
6+6 layers self-then-cross attention performs better than 12 layers cross-attention.

2.5 CO-REFINEMENT OF ENCODER-DECODER

One widely observed phenomenon for deep neural network is that different layers of features
represent different abstract level of informantion (Zeiler & Fergus, 2013): early layers captur-
ing fine-grained details such as textures, and later layers encoding high-level semantics. In vanilla
encoder-decoder, only last layer features are used, as in Fig. 3 (a), which limits its capacity.
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Figure 4: Applying REPA into Efficient-LVSM. (a) Pretrained vision encoders and MLP projectors
are discarded in inference. (b) Feature maps indicate that REPA helps the model extract semantics.

To this end, we propose a dual-stream co-refinement structure, illustrated in Fig. 3 (b), where each
layer of the encoder provides information to its corresponding layer in the decoder. At layer l, input
tokens Sl are first updated by self-attention, and then the target decoder queries these updated tokens
to refine its own representation Tl:

Tj
l = Tj

l−1 + Self-Attnl
target(Tj

l−1)

Tj
l = Tj

l + Cross-Attnl
target(Tj

l,S1
l,S2

l, ...,Sl
N )

Tj
l = Tj

l + FFNl
input(Tj

l)

(6)

By querying the encoder’s representations in the middle layers, the decoder can synthesize its own
features using both the fine-grained details from early layers and the rich semantic context from later
ones. Fig. 3 (b) demonstrates that the co-refinement model generate more detailed and high-quality
features compared to vanilla encoder-decoder structure.

2.6 DISTILLATION WITH REPA

With the decoupled attention for different views, a natural thought is to utilize those powerful pre-
trained vision encoder. To utilize visual features without sacrificing inference speed, we employ
REPA (Yu et al., 2025) to distill visual features from DINOv3 (Siméoni et al., 2025). Formally,
consider a clean image I and hϕ(Xk) is the projection of hidden features of layer k, where hϕ is
a trainable projector and Xk represents the input tokens or target tokens of layer k: Xk = Sk or
Xk = Tk. Let f represent the pretrained encoder such as DINOv3. The goal is to align the projec-
tion of layer output hϕ(Xk) with encoded images f(I) by maximizing the patch-wise similarities:

LREPA =
1

N

N∑
i=1

sim(f(I), hϕ(Xk)) (7)

We find that improvement with REPA is conditional. Experiment in Table 6 show that LVSM ben-
efits much less compared to Efficient LVSM’s dual-stream co-refinement design structure, possibly
due to its full self-attention design entangles feature maps of different views.

2.7 KV-CACHE & INCREMENTAL INFERENCE

A key advantage of the decoupled dual stream design is its natural compatibility with KV caching
during inference as illustrated in Fig. 10. The key and values of all input views, {Ŝi}Ni=1, can be
computed once and stored. When a new target view is required, the decoder could directly utilize
the stored cache {Ŝi}Ni=1 for rendering. When a new input view IN+1 is introduced, only this new
view needs to be processed and appended into the cache. As a result, it enables efficient incremental
inference, which could be used in interactive application scenarios.
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Table 2: Scene-level View Synthesis
Quality. We test on the same validation
set proposed in pixelSplat.

RealEstate10k (Zhou et al., 2018)
PSNR ↑ SSIM ↑ LPIPS ↓

pixelNeRF 20.43 0.589 0.550
ViewCrafter 21.63 0.642 0.175

GPNR 24.11 0.793 0.255
SEVA 25.66 0.841 0.139

Du et al. 24.78 0.820 0.213
pixelSplat 26.09 0.863 0.136

DepthSplat 27.46 0.889 0.115
MVSplat 26.39 0.869 0.128
GS-LRM 28.10 0.892 0.114

LVSM Enc-Dec(res-256) 28.58 0.893 0.114
LVSM Dec-Only(res-256) 29.67 0.906 0.098

Ours(res-256) 28.93 0.895 0.102

LVSM Enc-Dec(res-512) 28.55 0.894 0.173
LVSM Dec-Only(res-512) 29.53 0.904 0.141

Ours(res-512) 29.86 0.905 0.147

Table 3: Object-level View Synthesis Quality. We test
at 512 and 256 resolution on both input and rendering.
”Enc” means encoder and ”Dec” means decoder.

ABO (Collins et al., 2022) GSO (Downs et al., 2022)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Triplane-LRM (Res-512) 27.50 0.896 0.093 26.54 0.893 0.064

GS-LRM (Res-512) 29.09 0.925 0.085 30.52 0.952 0.050

LVSM Enc-Dec (Res-512) 29.86 0.913 0.065 29.32 0.933 0.052

LVSM Dec-Only (Res-512) 32.10 0.938 0.045 32.36 0.962 0.028

Ours (Res-512) 32.65 0.951 0.042 32.92 0.973 0.021

LGM (Res-256) 20.79 0.813 0.158 21.44 0.832 0.122

GS-LRM (Res-256) 28.98 0.926 0.074 29.59 0.944 0.051

LVSM Enc-Dec (Res-256) 30.35 0.923 0.052 29.19 0.932 0.046

LVSM Dec-Only (Res-256) 32.47 0.944 0.037 31.71 0.957 0.027

Ours (Res-256) 33.13 0.960 0.035 32.73 0.969 0.022

3 EXPERIMENTS

3.1 DATASETS

Scene-level Datasets. We use the widely used RealEstate10K dataset (Zhou et al., 2018). It contains
80K video clips curated from 10K YouTube videos, including both indoor and outdoor scenes. We
follow the training/testing split applied in LVSM (Jin et al., 2025).

Object-level Dataset. We use the Objaverse dataset (Deitke et al., 2023) to train our model. Follow-
ing the rendering settings in GS-LRM (Zhang et al., 2024), we render 730K objects, and each object
contains 32 random views. We test our object-level model on Google Scanned Objects (Downs
et al., 2022) (GSO) and Amazon Berkeley Objects (Collins et al., 2022) (ABO), containing 1099
and 1000 objects respectively. Following Instant-3D (Li et al., 2023) and LVSM (Jin et al., 2025),
we render 4 structured input views and 10 random target views for testing.

3.2 IMPLEMENTAION DETAILS

Model Details. Following LVSM (Jin et al., 2025), we use a patch size of 8 × 8 for the image
tokenizer with 24 transformer layers (12-layer encoder and 12-layer decoder) and the dimension of
hidden feature 1024. Following REPA (Yu et al., 2025), we select a 3-layer MLP as the alignment
projection layer.

Protocols. Following the settings in LVSM, we select 4 input views and 8 target views in the object-
level dataset. We select 2 input views and 3 target views in scene-level dataset.

More implementation details are provided in Appendix C.

3.3 COMPARISON WITH START-OF-THE-ART MODELS

Scene-Level Comparison. We compare on scene-level inputs with pixelNeRF (Yu et al., 2021),
ViewCrafter (Yu et al., 2024), GPNR (Suhail et al., 2022), SEVA (Zhou et al., 2025), Du et al. (Du
et al., 2023), pixelSplat (Charatan et al., 2024), DepthSplat (Xu et al., 2025), MVSplat (Chen et al.,
2024), GS-LRM (Zhang et al., 2024), LVSM encoder-decoderand LVSM decoder-only (Jin et al.,
2025). As in Table 2, our model establishes a new state-of-the-art on the RealEstate10K bench-
mark, outperforming the previous leading method, LVSM decoder-only, by a significant margin of
0.2 dB PSNR. This corresponds to an 4.5% reduction in Mean Squared Error (MSE), indicating a
substantial improvement in reconstruction fidelity. This quantitative leap is supported by our quali-
tative results in Figure 5, where our model produces noticeably sharper renderings and demonstrates
superior geometric accuracy, particularly when synthesizing near-field objects where LVSM often
introduces artifacts. Notably, this state-of-the-art performance is achieved with remarkable effi-
ciency. Our model was trained for just 3 days on 64 A100 GPUs, which is half the training time
required by LVSM. In essence, Efficient-LVSM not only surpasses the previous state-of-the-art in
quality but does so while requiring only 50% of the training budget.

Object-Level Comparison. Similarly, Efficient-LVSM achieves state-of-the-art performance.
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Figure 5: NVS Visual Comparison. We compare with LVSM (Jin et al., 2025) in
RealEstate10K (Zhou et al., 2018) and Amazon Berkeley Objects (Collins et al., 2022). Images
rendered by our model have less blur details.
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Figure 6: Inference Speed Comparison. We compare the inference time (ms) against (a) the num-
ber of target views and (b) the number of input views. Our model achieves consistently low latency.
The performance of the LVSM baselines, particularly LVSM Decoder-Only, degrades severely as
view counts increase. This highlights our model’s significant computational efficiency, achieving up
to a 14.9x speedup over LVSM Decoder-Only.

3.4 EFFICIENCY ANALYSIS

We evaluate the efficiency from three perspectives: vanilla inference latency, incremental inference
latency, and training convergence speed. For fair comparison, we keep the number of layers (12+12)
and hidden dimension (1024) the same with LVSM. For the convergence analysis, smaller variants
are used for fast verification to save computational resource.

Vanilla Inference Speed. We analyze the inference cost by measuring latency, memory peak, and
total GFLOPS as a function of both input and target view counts. As shown in Fig. 6, our model’s
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(a) Incremental Inference Experiments. We compare the inference latency and memory consumption when
the input view is fed one by one. We observe that Efficient LVSM achieves near constant latency and memory
consumption due to its KV-cache ability.

2x faster

(b) Training Speed Comparison. Efficient LVSM
delivers roughly 2× faster training and consistently
achieves higher PSNR.

(c) Zero-Shot Generalization to Input View Count.
Trained with 4 input views and tested on varying
numbers of input views.

Figure 7: Overall Comparison.

Table 4: Comparison of Different Novel View Synthesis Methods.

Type Model Param. Latency (ms) ↓ GFLOPS ↓ PSNR ↑

Optimization-Based pixelNeRF 28M 2500+ - 20.43
GPNR 10M 6000+ - 24.11

Feed-forward GS
pixelSplat 125M 50.52 1934 26.09
MVSplat 12M 10.23 583 26.39
GS-LRM 307M 88.24 5047 28.10

Diffusion-based SEVA 2333M 29000 - 27.46
ViewCrafter 2609M 38000 - 21.63

Feed-forward Latent
LVSM Enc-Dec 177M 70.88 6042 28.58
LVSM Dec-Only 177M 109.37 8523 29.67
Ours (inference) 199M 24.78 1325 29.82

resource consumption exhibits a slow growth, maintaining high efficiency even with many views. In
contrast, while the LVSM Encoder-Decoder shows a moderate increase in cost, the LVSM Decoder-
Only variant suffers from a severe computational growth. This efficiency gap is substantial and
becomes increasingly pronounced as the number of views grows due to our linear complexity design.
Specifically, with 16 input views, our model is approximately 14.9x faster and consumes 50% less
memory than LVSM Decoder-Only. This demonstrates that our decoupled attention mechanism
effectively removes the computational bottleneck caused by quadratic complexity.

Incremental Inference. Fig. 7a indicate that the time and memory required for the incremental
coming input views is nearly constant for Efficient-LVSM. Conversely, both LVSM baselines exhibit
a clear growth in latency and memory consumption.
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Table 5: Ablation Study of REPA Distillation.

Category Configuration PSNR ↑ LPIPS ↓ SSIM ↑
Without REPA Distillation (Baseline) 26.02 0.1481 0.8483

Ablation on REPA Hyperparameters

Loss Function
Smooth L1 26.81 0.1349 0.8562
L2 26.39 0.1366 0.8571
Cosine 26.30 0.1374 0.8542

Distillation Target
Input Tokens Only 26.35 0.1367 0.8569
Target Tokens Only 26.27 0.1452 0.8536
Both Input & Target 26.60 0.1256 0.8642

DINOv3 Source Layer
Layer 8 26.60 0.1256 0.8642
Layer 10 26.28 0.1441 0.8540
Layer 12 26.11 0.1416 0.8503

Training Speed. As in Fig. 7 (b), Efficient-LVSM demonstrates a steeper learning

curve. It successfully reaches the final performance plateau of the LVSM baseline while consuming
only half the computational budget (GPU hours).

Comparison with State-of-the-art Paradigms. To further assess the efficiency of Efficient LVSM
within the broader landscape of novel view synthesis, we compare it against representative methods
across four paradigms, as summarized in Table 4. As shown in the table, optimization-based meth-
ods (e.g., pixelNeRF (Yu et al., 2021)) require per-object optimization before rendering, resulting
in substantial computation time. Diffusion-based models (e.g., ViewCrafter (Yu et al., 2024)) suffer
from prohibitive latency (ranging from seconds to minutes) due to the large number of sampling
steps, making them unsuitable for real-time applications. Although feed-forward Gaussian Splat-
ting approaches such as MVSplat (Chen et al., 2024) provide extremely low latency, they typically
sacrifice reconstruction quality.

Notably, our model surpasses GS-LRM (Zhang et al., 2024) in both quality and efficiency, requir-
ing only 2̃6% of its GFLOPS. Compared to LVSM variants, Efficient-LVSM maintains the high-
quality rendering characteristic of large latent models and reduce inference latency to 24.78 ms.
This demonstrates that our decoupled attention design successfully mitigates the computational bot-
tleneck of monolithic transformers without sacrificing performance.

3.5 ZERO-SHOT GENERALIZATION TO THE NUMBER OF INPUT VIEWS.

As in Fig. 7c, Efficient-LVSM and LVSM both could benefit from more views even not trained under
such data, thanks to the set operator - Transformer. Efficient LVSM constantly outperforms LVSM
under all view settings while the gap is gradually reduced, since the reconstruction becomes easier
with more input views.

3.6 ABLATION STUDIES

All ablation experiments use a smaller 6+6 encoder-decoder configuration to save budget.

Co-refinement of Encoder-Decoder Structure. As in Table 6 (a), self-then-cross attention yields
0.79 dB PSNR improvement compared to cross-attention only in decoder. Further, adopting
encoder-decoder co-refinement gives 1.28 dB PSNR gains.

Applicability of REPA Distillation. As in Table 6 (b), applying REPA to Efficient-LVSM brings a
substantial gain of 0.8 dB while applying to LSVM only brings 0.16 dB improvement. In Table 5,
we study the configuration of REPA. We find that Smooth L1 loss works the best, possibly due to its
absolute approximation to DINOv3 features instead of relative approximation as cosine similarity.
We confirm that distillation for both input and target are useful. DINOv3’s middle layer features
instead of the final layers are most helpful, aligning with findings in Siméoni et al. (2025).

Influcne of Model Size. As in Table 6 (c), increasing model size consistently improves reconstruc-
tion quality, aligning with Jin et al. (2025), demonstrating the potential of feedforward models.
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Table 6: Ablation Study.
(a) Architectural Components Ablation.

Arch. PSNR ↑ SSIM ↑ LPIPS ↓
Cross-Attention Only 24.18 0.7908 0.1982
Self-Cross Attention 24.97 0.8201 0.1628
Co-Refinement 26.25 0.8462 0.1490

(b) Effect of REPA
Arch./Variant PSNR ↑ SSIM ↑ LPIPS ↓
LVSM Dec-Only 25.52 0.8385 0.1541
LVSM Dec-Only w REPA 25.68 0.8410 0.1515

Ours w/o REPA 26.02 0.8483 0.1481
Ours w REPA 26.81 0.8628 0.1296

(c) Effect of Model Sizes

Models Parameters PSNR ↑ SSIM ↑ LPIPS ↓ Latency(ms)↓ GFLOPS↓ Memory ↓
Enc(12) + Dec(12) 199M 28.32 0.8892 0.1106 24.78 1325 3032
Enc(6) + Dec(6) 101M 27.77 0.8871 0.1149 17.58 647 1802
Enc(3) + Dec(3) 53M 26.43 0.8609 0.1377 10.16 310 1321
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Figure 8: PCA Visualization of Input and Target Views Features at Different Layers.

4 VISUALIZATION

In Fig. 8, we visualize the features of Efficient-LVSM trained on RealEstate10K. We could observe
that from the initial layer (Layer 1) to the middle layer (Layer 6), the features contain more and
more semantics. From the middle layer (Layer 6) to the last layer (Layer 12), the features becomes
similar to the final output - RGB images. The evolving process demonstrates the effectiveness of
the proposed co-refinement structure to extract features from all levels. By bridging the encoder
and decoder at each layer, the model ensures that fine-grained structural details are preserved while
progressively extracting information of the scene.

5 CONCLUSION

In this work, we present a systematic analysis for issues of existing Transformer based NVS feed-
forward model, identifying the bottlenecks of monolithic attention, Based on the analysis, we de-
rive Efficient LVSM, a decoupled dual-stream architecture that integrates an encoder-decoder co-
refinement mechanism. Comprehensive experiments demonstrate that the proposed structure not
only performs better but also achieves significant speed up for training convergence and inference
latency. By successfully reconciling the trade-off between quality and cost, our approach paves the
way for more scalable and interactive 3D generation applications.
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A USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT
During the preparation of this manuscript, we utilized Large Language Models (LLMs), as a writing
assistance tool. The use of LLMs was limited to improving the grammar, clarity, and readability
of the text. This includes tasks such as rephrasing sentences for better flow, correcting spelling
and grammatical errors, and ensuring stylistic consistency. The core scientific ideas, experimental
design, results, and conclusions presented in this paper are entirely our own. LLMs were not used to
generate any of the primary scientific content or interpre- tations. The final version of the manuscript
was thoroughly reviewed and edited by all authors, who take full responsibility for its content and
originality.

B RELATED WORKS

Generalizable Novel View Synthesis. The ability to synthesize novel views from a sparse set of
images is a long-standing goal in computer vision. Pioneering approaches such as image-based
rendering (IBR) blend reference images based on proxy geometries (Debevec et al., 1996; Gortler
et al., 1996). Early deep learning based methods predict blending weights or depth maps (Hedman
et al., 2018; Choi et al., 2019). Generalizable neural radiance fields models like PixelNeRF (Yu
et al., 2021) and MVSNeRF (Chen et al., 2024) pioneered the use of 3D-specific inductive biases.

Transformer-based Large Reconstruction Models. The Transformer architecture (Vaswani et al.,
2017), originally proposed for natural language processing, has demonstrated remarkable versatility
and scalability across diverse domains (Jia et al., 2025b;a; Yang et al., 2025; 2023; Fan et al., 2025).
Building on its success, recent research has focused on developing Transformer-based Large Recon-
struction Models (LRMs)(Hong et al., 2024; Wei et al., 2024; Li et al., 2023; Gao et al., 2024; You
et al., 2025) to capture robust and generalizable 3D priors from extensive datasets. These models
are trained on vast datasets to learn generic 3D priors. For instance, Triplane-LRM(Li et al., 2023)
and GS-LRM (Zhang et al., 2024) learn to map sparse input images to explicit 3D representations
like triplane NeRFs or 3D Gaussian Splatting primitives.

View Synthesis without Explicit 3D Representations. A compelling line of research explores the
possibility of performing novel view synthesis in a purely “geometry-free” manner. Early attempts
such as Scene Representation Transformers (SRT) (Sajjadi et al., 2022), introduced the idea of using
a Transformer to learn a latent scene representation. Large View Synthesis Model (LVSM) (Jin et al.,
2025) employs a single, monolithic Transformer to process all input and target tokens.
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Generative and Diffusion-based Novel View Synthesis. Parallel to deterministic approaches, gen-
erative models, particularly those based on diffusion (Watson et al., 2022; Zhou et al., 2025), have
gained traction for their ability to plausibly complete unobserved regions. A key challenge has been
ensuring multi-view consistency. Solutions include test-time distillation into 3D representations like
NeRFs (Poole et al., 2022; Wu et al., 2023), or building consistency directly into the model using
video backbones and cross-view attention (Gao* et al., 2024; Zhou et al., 2025). This research area
also includes lightweight methods like NVS-Adapter (amd Jinwoo Lee et al., 2024), which adapts
pre-trained 2D models for the single-view NVS task.

C TRAINING AND IMPLEMENTATION DETAILS

Training Setup. We train Efficient-LVSM with a constant learning rate of 4e-4 with a warmup
of 2500 iterations. Following LVSM (Jin et al., 2025), we use AdamW optimizer and the β1 and
β2 are 0.9 and 0.95 respectively. We also employ a weight decay of 0.05 on all parameters of the
LayerNorm layers. Unless noted, our models have 12 encoder layers and 12 decoder layers, which
is the same as LVSM.

Dataset-Specific Schedules. For the object-level dataset, we use 4 input views and 8 target views,
training on 64 A100 80G GPUs. We first train at a resolution of 256, using a batch size of 12 for
3 days, totaling 250k iterations. We then finetune the model at a resolution of 512 for 2 days, with
a batch size of 2 per GPU and 100k iterations, using a learning rate of 4 × 10−5. For the scene-
level dataset, we use 2 input views and 3 target views. Training begins at a resolution of 256 with
a batch size of 16 per GPU for 2 days, completing 650k iterations. We then finetune the model at
a resolution of 512 for 1 day, using a batch size of 4 and 200k iterations. In the ablation studies,
we train and evaluate on the RealEstate10K dataset using 2 input views and 3 target views. These
models are trained on 2 A100 80G GPUs for 10 hours, with the per-GPU batch size set as large as
permitted by memory capacity. For the model-size ablations, training is extended to 24 hours on 2
GPUs.

REPA Distillation Details. We use the DINOv3-ViT-B/16 model (Siméoni et al., 2025) as the
pre-trained teacher. We use the output features from the 8th transformer layer of DINOv3 as the
distillation target. These teacher features are aligned with the output of a specific layer in our
student model, which varies by its size: for our main 12+12 layer models, we align with the 3rd
layer’s output, while for the smaller 6+6 layer models used in ablations, we align with the 2nd
layer. The alignment is performed via a 3-layer MLP projector and optimized using the Smooth L1
loss (Girshick, 2015).

D ANALYSIS OF ALTERNATIVE ARCHITECTURAL DESIGNS

In this section, we evaluate our dual-stream co-refinement architecture by comparing it against sev-
eral alternative designs. Notably, the datapath of our architecture can, in principle, be reproduced
using customized attention masks, and the separation of token roles (input vs. target tokens) may be
approximated by assigning distinct projection layers within the attention module. To provide a com-
prehensive analysis, we implemented and assessed such alternatives.The alternative architectures
are described below:

LVSM w/ Mask: We add a custom attention mask on a single Transformer backbone to emulate
the information flow of our model: input tokens are restricted to self-attend only within themselves,
while target tokens are permitted both self-attention and cross-attention over all input tokens.

LVSM w/ MMDiT-style: Inspired by multi-modal architectures (Esser et al., 2024), this variant
uses a shared Transformer block but introduces separate projection layers (Wq,Wk,Wv) and feed-
forward networks (FFNs) for input and target tokens, allowing the model to handle their distinct
characteristics.

LVSM w/ Mask + MMDiT-style: A hybrid design that combines the custom attention mask with
the specialized per-token-type projection layers within a single Transformer block.

We trained all variants on the RealEstate10K dataset while keeping the parameter budget as compa-
rable as possible. Quantitative results are summarized in Table 7.

The results clearly highlight the advantages of our dual-stream co-refinement architecture. Although
the LVSM w/ Mask variant uses fewer parameters, it is more than 7× slower. This slowdown arises
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Table 7: Comparison of Different Architectures.

Arch. Parameters PSNR ↑ SSIM ↑ LPIPS ↓ Latency (ms) ↓ GFLOPS ↓ Memory ↓
Corefinement 101M 26.02 0.8483 0.1481 17.58 647 1802
LVSM 86M 25.24 0.8286 0.1545 74.45 3487 3114
LVSM w/ mask 86M 24.13 0.7925 0.1793 125.13 1050 5758
LVSM w/ MMDiT 164M 24.37 0.8021 0.1607 78.58 3487 3857
LVSM w/ mask+MMDiT 164M 23.24 0.7601 0.1913 130.76 1050 6544

Table 8: Latency and Speedup with KV-Cache.

Number of Input Views Ours w/ KV-Cache (ms) ↓ LVSM Dec-Only (ms) ↓ Speedup Factor ↑
4 24.37 123.1 5.1x
8 28.62 286.0 10.0x
16 42.96 801.7 18.7x
32 72.84 2592 35.6x
48 103.26 5408 52.4x
64 138.43 9231 66.7x

because irregular attention masks disrupt the highly optimized contiguous memory access patterns
expected by underlying implementations; realizing any theoretical speedup would require custom
CUDA kernels, undermining the simplicity and generality of the approach. Similarly, MMDiT-style
variants incur significantly higher parameter counts and computational costs due to the duplicated
projection and FFN layers for each token type.

This ablation study demonstrates that our dual-stream co-refinement architecture achieves an effec-
tive balance of reconstruction quality, inference speed, computational efficiency, and implementation
simplicity for novel view synthesis.

E DETAILS ON KV-CACHING

As discussed in the main paper, our architecture’s compatibility with KV-caching is key to its effi-
ciency. Figure 10 provides a visual workflow of this incremental inference process and contrasts it
with the LVSM baseline.

F DETAILED MODEL ARCHITECTURE

Fig. 9 displays the detailed model architecture and the data path.

G LIMITATIONS AND FUTURE WORK

Despite the progress, we recognize several limitations that offer promising avenues for future re-
search. A primary limitation, which our work shares with other large-scale feed-forward models, is
the path to industrial-scale deployment. Although Efficient-LVSM makes substantial strides in re-
ducing computational costs, translating these large Transformer-based architectures into production-
level applications with stringent latency and memory constraints remains a formidable challenge. In
line with the perspective of the original LVSM paper, our model can be viewed as a powerful proof
of concept that further validates the potential of geometry-free, Transformer-based novel view syn-
thesis.

Bridging the gap between this academic proof of concept and widespread industrial adoption will
likely require significant innovations beyond architectural design. Future work in this direction could
explore techniques such as model compression, network quantization, and knowledge distillation to
create smaller, faster versions of these models without substantial degradation in quality. We are
hopeful that our contribution in improving the baseline efficiency of the feed-forward paradigm
serves as a beneficial step on the path toward making these models practical for real-world use.
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Figure 9: Detailed Model Structure. ps = HW/p2 denotes the number of patches in an image,
where p is the patch size. vi and vt represent the numbers of input and target views, respectively.
When vi or vt appears in the first (batch) dimension, it indicates that the tokens from different views
are processed jointly as a batch.
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Figure 10: Efficient Incremental Inference with KV-Cache. Efficient LVSM saves computation
when provided with novel inputs or targets by caching the key and value for previous input views.
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