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ABSTRACT

Centralized training with decentralized execution (CTDE) is widely employed to
stabilize partially observable multi-agent reinforcement learning (MARL) by uti-
lizing a centralized value function during training. However, existing methods
typically assume that agents make decisions based on their local observations in-
dependently, which may not lead to a correlated joint policy with sufficient coordi-
nation. Inspired by the concept of correlated equilibrium, we propose to introduce
a strategy modification to provide a mechanism for agents to correlate their poli-
cies. Specifically, we present a novel framework, AgentMixer, which constructs
the joint fully observable policy as a non-linear combination of individual partially
observable policies. To enable decentralized execution, one can derive individual
policies by imitating the joint policy. Unfortunately, such imitation learning can
lead to asymmetric learning failure caused by the mismatch between joint pol-
icy and individual policy information. To mitigate this issue, we jointly train the
joint policy and individual policies and introduce Individual-Global-Consistency
to guarantee mode consistency between the centralized and decentralized poli-
cies. We then theoretically prove that AgentMixer converges to an ϵ-approximate
Correlated Equilibrium. The strong experimental performance on three MARL
benchmarks demonstrates the effectiveness of our method.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has attracted substantial attention in re-
cent years owing to its promise in solving many real-world tasks that naturally comprise multiple
decision-makers interacting at the same time, such as multi-robot control (Gu et al., 2023), traffic
signal control (Ma & Wu, 2020), and autonomous driving (Shalev-Shwartz et al., 2016). However,
unlike the single-agent RL settings, learning in multi-agent systems (MAS) poses two primary chal-
lenges: coordination, i.e., agents should work together in order to achieve a common goal and learn
optimal joint behavior, and partial observability, which limits each agent to her own local obser-
vations and actions. To address these difficulties, most works adopt a popular learning framework
called Centralized Training Decentralized Execution (CTDE) (Lowe et al., 2017; Yu et al., 2022;
Rashid et al., 2020a) that allows agents to access global information during the training phase while
remaining the learned policies executed with only local information in a decentralized way.

To enhance coordination, one line of research is to use value decomposition (VD) (Sunehag et al.,
2017), e.g. QMIX (Rashid et al., 2020b) and QPLEX (Wang et al., 2021a), which learns a central-
ized joint action value function factorized by decentralized agent utility functions. With the struc-
tural constraint of Individual-Global-Max (IGM) (Son et al., 2019), it guarantees the optimal action
consistency between the centralized and decentralized policies. On the other hand, multi-agent pol-
icy gradient (MAPG) methods(de Witt et al., 2020), such as MADDPG (Lowe et al., 2017) and
MAPPO (Yu et al., 2022), has achieved remarkable success. However, while learning a centralized
critic, previous works are still constrained by assuming independence among agents during explo-
ration. A few recent works further propose auto-regressive policies to impose coordination among
agents by allowing agents to observe other agents’ actions, either explicitly (Fu et al., 2022; Wang
et al., 2023) or implicitly (Li et al., 2023; Wen et al., 2022). Inspired by the Correlated Equilibrium
(CE) (Maschler et al., 2013) in game theory, MAVEN (Mahajan et al., 2019) and SIC (Chen et al.,
2022) introduce a hierarchical control method with an external shared latent variable as additional
information for agents to coordinate each other. However, note that existing auto-regressive meth-
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ods assume a pre-defined execution order. Moreover, most existing correlated policies violate the
requirement for decentralized execution. This paper instead aims to achieve Correlated Equilibrium
in a fully decentralized way which is crucial for real-world applications.
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Figure 1: The partially observable bridge
crossing task, where two agents (blue square
and orange square) with changing physiques
in different episodes (left and right figure)
want to arrive at their destinations (stars with
corresponding colors) through passageways
1 or 2. In this task, naively learning from a
full observation expert policy would result in
suboptimal partially observable policies due
to the asymmetric learning failure (Warring-
ton et al., 2021).

In order to mitigate the difficulty of learning under
partial observability, CTDE exploits true state infor-
mation, usually via a centralized critic, to train indi-
vidual policies conditioned on the local observation-
action history. While it is possible to first learn a cen-
tralized expert policy and then train the decentralized
agents to follow it (Lin et al., 2022), it may result
in suboptimal partially observable policies since the
omniscient critic or agent has no knowledge of what
the decentralized agents do not know, referred to as
the asymmetric learning failure (Warrington et al.,
2021). Consider a scenario where two agents of
distinct physical shapes try to get to their opposite
destinations through two possible paths 1 and 2, as
shown in Figure 1. Successful policies should avoid
collision as the body sizes of agents always change
and each passage only permits two small agents or
one big agent. In CTDE, we can learn the optimal
fully observable joint policy conditioned on agents’
physiques, which would select the shorter path 1
when both agents are small. However, naively learn-
ing from such a centralized agent could lead to agents jamming on the same passage, as the partially
observable agents cannot access the other agent’s body size. In contrast, the optimal partially ob-
servable policies should ideally ensure that each agent consistently selects distinct passageways to
avoid collision. This asymmetric learning failure is a prevalent issue in MARL due to the partial
observability nature of MAS. While a few works have studied similar challenges in the context of
single-agent RL (Walsman et al., 2023), it is worth noting that this issue within the MARL domain
has not been thoroughly investigated to the best of our knowledge.

In this paper, we propose correlated policy factorization, dubbed AgentMixer, to tackle the above
two challenges and achieve CE among agents in a fully decentralized way. Firstly, we propose a
novel framework, named Policy Modifier (PM), to model the correlated joint policy, which takes as
input decentralized partially observable policies and the state information and outputs the modified
policies. Consequently, PM acts as an observer from the CE perspective and the modified policies
form a correlated joint policy. Further, to mitigate the asymmetric learning failure when learning
decentralized partially observable policies from the correlated joint fully observable policy, we then
introduce a novel mechanism called Individual-Global-Consistency (IGC), which keeps consistent
modes between individual policies and joint policy while allowing correlated exploration in joint
policy. Theoretically, we prove that AgentMixer converges to ϵ-approximate Correlated Equilib-
rium. Experimental results on various benchmarks confirm its strong empirical performance against
current state-of-the-art MARL methods.

2 RELATED WORK

Modeling complex correlations among agents has been attracting a growing amount of attention in
recent years. The centralized training decentralized execution (CTDE) paradigm has demonstrated
its success in cooperative multi-agent domain (Lowe et al., 2017; Rashid et al., 2020a; Yu et al.,
2022). Centralized training with additional global information makes agents cooperate better while
decentralized execution enables distributed deployment.

Value decomposition. Value decomposition methods decompose the joint Q-function into individ-
ual utility functions following different interpretations of Individual-Global-Maximum (IGM) (Son
et al., 2019), i.e., the consistency between optimal local actions and optimal joint action. VDN
(Sunehag et al., 2017) and QMIX (Rashid et al., 2020b) decomposes the joint action-value function
by additivity and monotonicity respectively. QTRAN (Son et al., 2019), WQMIX (Rashid et al.,
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2020a) and QPLEX (Wang et al., 2021a) introduce additional components to enhance the expressive
capability of value decomposition. To enhance coordination, MAVEN (Mahajan et al., 2019) intro-
duces committed exploration among agents into QMIX, while DCG (Boehmer et al., 2020) models
the interactions between agents with a coordination graph. Recent works delve into applying value
decomposition to actor-critic methods (Su et al., 2021; Zhang et al., 2021). VDACs (Su et al.,
2021), FACMAC (Peng et al., 2021) and DOP (Wang et al., 2021b) combine value decomposition
to compute policy gradient with a centralized but factored critic. Zhang et al. (2021); Wang et al.
(2023) derive joint soft-Q-function decomposition according to independent and conditional policy
factorization respectively.

Policy factorization. Existing approaches commonly assume the independence of agents’ policies,
modeling the joint policy as the Cartesian Product of each agent’s fully independent policy (Yu
et al., 2022; Zhang et al., 2021; Kuba et al., 2021). However, such an assumption lacks in modeling
complex correlations as it constrains the expressiveness of the joint policy and limits the agents’
capability to coordinate. In contrast, some recent works (Wang et al., 2023; Wen et al., 2022; Fu
et al., 2022) explicitly take the dependency among agents by presenting the joint policy in an auto-
regressive form based on the chain rule (Box et al., 2015). MAT (Wen et al., 2022) casts MARL
into a sequence modeling problem and introduces Transformer (Vaswani et al., 2017) to generate ac-
tions. Wang et al. (2023) extends FOP Zhang et al. (2021) with auto-regressive policy factorization.
However, the lack of restrictions on dependent and independent policies may lead to inconsisten-
cies. ACE (Li et al., 2023) transforms multi-agent Markov Decision Process (MMDP) (Littman,
1994) into a single-agent Markov Decision Process (MDP) (Feinberg & Shwartz, 2012), which im-
plicitly models the auto-regressive joint policy. Despite the merits of the auto-regressive model, the
fixed execution order and explicitly constrained representation limit the feasible joint policy space.
Inspired by Correlated Equilibrium (Maschler et al., 2013), SIC (Chen et al., 2022) introduces a co-
ordination signal to achieve richer classes of the joint policy and maximizes the mutual information
(Kim et al., 2020) between the signal and the joint policy, which is close to MAVEN. Correlated
Q-learning (Greenwald & Hall, 2003) generalizes Nash Q-learning (Hu & Wellman, 2003) based on
CE and proposes several variants to resolve the equilibrium selection problem (Samuelson, 1997).
Similarly, Schroeder de Witt et al. (2019) learns a hierarchical policy tree based on a shared random
seed. Sheng et al. (2023) and Wen et al. (2019) learn coordinated behavior with recursive reason-
ing. However, most existing work focuses on fully observable settings or violates the decentralized
execution requirement.

Moreover, existing approaches rarely study the issues arising from the use of asymmetric informa-
tion (Warrington et al., 2021) in CTDE, that is, the joint fully observable critic or agent has access to
information unavailable to the partially observable agents. In this paper, we study how to factorize
the correlated joint fully observable policy into decentralized policies under partial observability.

3 PRELIMINARIES

3.1 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

In this work, we model a fully cooperative multi-agent game with N agents as a decentralized
partially observable Markov decision process (Dec-POMDP) (Oliehoek & Amato, 2016), which
is formally defined as a tuple G = (N ,S,O,O,A, T ,Ω, R, γ, ρ0). N = {1, . . . , N} is a set of
agents, s ∈ S denotes the state of the environment and ρ0 is the distribution of the initial state.
A =

∏N
i=1 A

i is the joint action space, O =
∏N
i=1 O

i is the set of joint observations. At time
step t, each agent i receives an individual partial observation oit ∈ Oi given by the observation
function O : (at, st+1) 7→ P (ot+1|at, st+1) where at, st+1 and ot+1 are the joint actions, states
and joint observations respectively. Each agent i uses a stochastic policy πi(ait|hit, ωit) conditioned
on its action-observation history hit = (oi0, a

i
0, . . . , o

i
t−1, a

i
t−1) and a random seed ωit ∈ Ωt to

choose an action ait ∈ Ai. A belief state b(st|ht) is a sufficient statistic for joint history ht,
as an estimate of the underlying state st. Actions at drawn from joint policy π(at|st, ωt) condi-
tioned on state st and joint random seed ωt = (ω1

t , . . . , ω
N
t ) change the state according to transi-

tion function T : (st, a
1
t , . . . , a

N
t ) 7→ P (st+1|st, a1t , . . . , aNt ). All agents share the same reward

rt = R(st, a
1
t , . . . , a

N
t ) based on st and at. γ is the discount factor for future rewards. The

goal of agents is to maximize the expected total reward, J (π) = Es0,a0,... [
∑∞
t=0 γ

trt], where
s0 ∼ ρ0(s0), at ∼ π(at|st, ωt).
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3.2 EQUILIBRIUM NOTIONS

We first define a joint (potentially correlated) policy as π = π1 ⊙ π2 · · · ⊙ πN . We also denote
π−i = π1 ⊙ · · ·πi−1 ⊙ πi+1 ⊙ · · · ⊙ πN to be the joint policy excluding the ith agent. A product
policy is denoted as π = π1 × π2 · · · × πN if the distribution of drawing each seed ωit for different
agents is independent. We define the value function V i

πi,π−i(s) as the expected returns under state s
that ith agent will receive if all agents follow joint policy π = (πi, π−i):

V i
πi,π−i(s) = Eai0:∞∼πi,a−i0:∞∼π−i,s1:∞∼T

[Σ∞
t=0γ

trt|s0 = s]. (1)

A strategy modification for the ith agent is a map f i : Ai 7→ Ai, which maps from the action set to
itself. We can define the resulting policy by applying the map on πi as f i ⋄ πi.
With the definition above, we can accordingly define the solution concepts.
Definition 1 (ϵ-approximate Nash Equilibrium). A product policy π∗ is an ϵ-approximate Nash
Equilibrium (NE) if for for all i ∈ N and any ϵ ≥ 0:

V i
πi∗,π

−i
∗
(s) ≥ max

πi
V i
πi,π−i

∗
(s)− ϵ. (2)

Definition 2 (ϵ-approximate Coarse Correlated Equilibrium). A joint policy π∗ is an ϵ-approximate
Coarse Correlated Equilibrium (CCE) if for for all i ∈ N and any ϵ ≥ 0:

V i
πi∗,π

−i
∗
(s) ≥ max

πi
V i
πi,π−i

∗
(s)− ϵ. (3)

The only difference between Definition 1 and Definition 2 is that an NE has to be a product policy
while a CCE can be correlated.
Definition 3 (ϵ-approximate Correlated Equilibrium). A joint policy π∗ is an ϵ-approximate Corre-
lated Equilibrium (CE) if for for all i ∈ N and any ϵ ≥ 0:

V i
πi∗,π

−i
∗
(s) ≥ max

fi
V i
(fi⋄πi∗)⊙π

−i
∗
(s)− ϵ. (4)

It is also worth noting that an NE is always a CE, and a CE is always a CCE.

4 METHOD

In this work, we propose AgentMixer to achieve correlated policy factorization. The proposed
method consists of two main components: Policy Modifier that models correlated joint fully observ-
able policy and Individual-Global-Consistency that leverages the resulting joint policy for learning
the individual policies while mitigating the asymmetric information issue.

4.1 POLICY MODIFIER

To efficiently introduce correlation among agents, we propose Policy Modifier, a novel framework
based entirely on multi-layer perceptrons (MLPs) (see Appendix A), which contains two types of
MLP layers (Tolstikhin et al., 2021): agent-mixing MLPs and channel-mixing MLPs. The agent-
mixing MLPs allow inter-agent communication; they operate on each channel of the feature inde-
pendently. The channel-mixing MLPs allow intra-agent information fusion; they operate on each
agent independently. These two types of layers are interleaved to enable the interaction among
agents and the correlated representation of the joint policy. Specifically, agent- and channel-mixing
can be written as follows:

Hagent = Hinput + W(2)
agentσ(W

(1)
agentLayerNorm(Hinput)),

Hchannel = Hagent + σ(W(1)
channelLayerNorm(Hagent))W

(2)
channel,

(5)

where Hinput is a concatenation of state features and individual policies features and W denotes fully
connected layers. Then, the output of PM will be combined with individual policies to generate
the correlated joint policy, denoted as PM([πi]Ni=1) = ((f1 ⋄ π1), · · · , (fN ⋄ πN )) = (f1 ⋄ π1) ⊙
(f2 ⋄ π2) · · · ⊙ (fN ⋄ πN ), where f denotes a strategy modification. Consequently, PM maps the
individual policies into a correlated joint policy by introducing dependencies among agents.
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Policy Modifier
channel-mixing

agent-mixing
N x

Environment

Agent 1 Agent 2 Agent n

Individual-Global-Consistency

Figure 2: AgentMixer contains two components: 1) Policy Modifier takes the individual partially
observable policies and state as inputs and produces correlated joint fully observable policy as out-
puts, and 2) Individual-Global-Consistency keeps the mode consistency among the joint policy and
individual policies.

4.2 INDIVIDUAL GLOBAL CONSISTENCY

With the resulting correlated joint fully observable policy generated by PM, we can easily adopt
different single-agent algorithms to get an (sub-)optimal correlated joint fully observable policy. To
fulfill decentralized execution, we further ask a question:

Question 1: Can we just derive the decentralized partially observable policies by distilling the
learned (sub-)optimal correlated joint fully observable policy?

In this section, we take several steps to provide a negative answer to the above research question. We
begin by defining the joint policy and product policy as πθ(a|s) and πϕ(a|b) respectively. Let the
joint occupancy, ρπ(s, b), as the (improper) marginal state-belief distribution induced by a policy π:
ρπ(s, b) =

∑∞
t=0γ

tP (st = s, bt = b|π). Then, the marginal state distribution and marginal belief
distribution induced by π are denoted as ρπ(s) =

∫
b
ρπ(s, b)db and ρπ(b) =

∫
s
ρπ(s, b)ds respec-

tively. To distill the joint policy πθ(a|s) into the product policy πϕ(a|b), previous work (Ye et al.,
2022) leverage imitation learning (Ross et al., 2011), i.e., optimizing the asymmetric distillation
objective:

Eρπβ (s,b) [DKL (πθ(a|s) ∥ πϕ(a|b))] ,where πβ(s, b) = βπθ(a|s) + (1− β)πϕ(a|b). (6)

πβ is a mixture of the joint policy πθ(a|s) and the product policy πϕ(a|b). The coefficient β is
annealed to zero during training. This avoids compounding error which grows with time horizon
(Ross & Bagnell, 2010).

We then show that the optimal product policy defined by this objective can be expressed as posterior
inference over state conditioned on the joint policy:
Definition 4 (Implicit product policy). For any correlated joint fully observable policy πθ and any
product partially observable behavioral policy πψ , we define π̂ψθ as the implicit product policy of πθ
under πψ as:

π̂ψθ = Eρπψ (s|b) [πθ(a|s)] , (7)

Such posterior inference has a fixed point (Warrington et al., 2021), i.e., πψ = π̂ψθ , and we refer to
this product policy as the implicit product policy of πθ, denoted as π̂θ.

Implicit product policy is defined as a posterior inference procedure, marginalizing the conditional
occupancy ρπψ (s|b). Since the observations/belief may not contain information to distinguish two
different latent states, the ρπψ (s|b) is a stochastic distribution, and the implicit product policy is the
average of the fully observable policy. Suppose a scenario where the agent learns to cross the ice
while avoiding the pits in the middle of the ice. The fully observable policy which can observe the
location of the pits will choose safer routes that avoid the pits, i.e., both sides of the ice. However,
according to 7, the implicit policy that is not informed of the pit locations will take an average path
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of those safe routes, despite the danger of pits. The key insight is that directly imitating the fully
observable policy will cause asymmetric learning failure.

We show that the solution to the asymmetric distillation objective in 6 is equivalent to the implicit
product policy 7 in Appendix B. However, the implicit product policy requires marginalizing the
conditional occupancy ρπ(s|b), which is intractable. Therefore, we can introduce a variational im-
plicit product policy, πη , as a proxy to the implicit product policy, which can be learned by mini-
mizing the following objective:

Eρπψ (s,b) [DKL (πθ(a|s) ∥ πη(a|b))] . (8)

Under sufficient expressiveness and exact updates assumptions, by setting πψ = πη , updating 8
converges to the fixed point, i.e., the implicit product policy (see Appendix B).

We now reason about the asymmetric learning failure. In order to guarantee the optimal product
partially observable policy, the divergence between the joint policy and product policy should be
strictly zero, which we denote as identifiability:
Definition 5 (Identifiable policy pair). Given a correlated joint fully observable policy πθ and a
product partially observable policy πϕ, we define {πθ, πϕ} as an identifiable policy pair if and only
if Eρπϕ (s,b) [DKL (πθ(a|s) ∥ πϕ(a|b))] = 0.

Identifiable policy pairs require that the product partially observable policy can exactly recover the
correlated joint fully observable policy. Identifiability then requires the optimal correlated joint
fully observable policy and the corresponding implicit product policy to form an identifiable policy
pair. Using identifiability, we can then prove that, given an optimal correlated joint fully observable
policy, optimizing the asymmetric distillation objective is guaranteed to recover an optimal product
partially observable policy:
Theorem 1 (Convergence of asymmetric distillation). Given an optimal correlated joint fully ob-
servable policy πθ∗ being identifiability, the iteration defined by:

ηk+1 = argmin
η

Eρπηk (s,b) [DKL (πθ∗(a|s) ∥ πη(a|b))] , (9)

converges to πη∗(a|b) that defines an optimal product partially observable policy, as k → ∞.

Proof. See Appendix B for detailed proof.

Theorem 1 shows that identifiability of the optimal joint policy defines a sufficient condition to
guarantee the thorough distillation of the optimal joint fully observable policy into product partially
observable policies. Unfortunately, the identifiability imposes a strong limitation on the applicability
of asymmetric distillation. Hereby, we can conclude a negative answer to the Question 1. Therefore,
instead of naively applying distillation on the learned joint policy, we simultaneously learn the cor-
related joint fully observable policy and its product partially observable counterpart. We will show
that the interleaving of the two learning processes moves the product partially observable policy
closer to Correlated Equilibrium, i.e., the optimal product partially observable policy.

We now use the insight from Theorem 1 and the definition of identifiability to define Individual-
Global-Consistency (IGC), which keeps consistent modes between product partially observable pol-
icy and correlated joint fully observable policy.
Definition 6 (IGC). For a correlated joint fully observable policy πθ(a|s), if there exist product par-
tially observable policy πϕ(a|b) = πϕ1(a|h1)×πϕ2(a|h2) · · ·×πϕN (a|hN ), such that the following
holds:

Mo(πθ) =

Mo(πϕ1)
...

Mo(πϕN )

 , (10)

where Mo(·) denotes the mode of distribution. Then, we say that πϕ(a|b) satisfy IGC.

IGC enables the actions that occur most frequently in the joint policy and the product policy to be
equivalent. Crucially, IGC minimizes the divergence between the two policies while allowing cor-
related exploration in the joint policy. Surprisingly, one may find that IGC and IGM are equivalent
as monotonicity and mode consistency are similar.
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4.2.1 IMPLEMENTATION OF IGC

In order to preserve IGC, we adopt the method of disentanglement between exploration and ex-
ploitation to decompose the joint policy into two components: one for the mode (exploitation) and
the other for the deviation (exploration). Then, IGC can be enforced through an equality constraint
on the relationship between the mode of joint policy and individual policies. Based on this disentan-
glement, agents are able to coordinate their exploration through the centralized policy. In practice,
we divide the implementation of IGC into two categories: continuous action space and discrete
action space.

Continuous Case: In this case, we assume the continuous action policy of agent i as a Gaus-
sian distribution with mean µϕi and standard deviation σϕi : πϕi(a|hi) = N (µϕi(h

i), σ2
ϕi(h

i)).
Since the mode of a Gaussian distribution is equal to the mean, we set the mean of joint pol-
icy as the collection of individual policies while the standard deviation is generated by PM:
πθ(a|s) = N (([µϕi ]

N
i=1), σ

2
θ(s)).

Discrete Case: In this case, we denote the discrete action policy of agent i as a categorical distri-
bution parameterized by probabilities αϕi :

πϕi(a|hi) = Cat(αϕi(h
i)) = softmax(αϕi(hi)),

K∑
k=1

αkϕi(h
i) = 1 (11)

The mode of a categorical distribution is the most common category, the category with the highest
frequency. However, it is tricky to promote cooperative exploration while preserving the mode con-
sistency. Fortunately, Gumbel-Softmax distribution (Jang et al., 2017) provides another perspective,
where we explicitly disentangle exploration and mode. Specifically, we define the joint policy as:

πθ =

 softmax((ϵ1θ + logαϕ1)/τ1)
...

softmax((ϵNθ + logαϕN )/τN )

 , (12)

where τ is a temperature hyperparameter and ϵθ is sampled using inverse transform sampling by
generating uθ ∈ (0, 1) with sigmoid function and computing ϵθ = −log(−log(uθ)). Note that
when the temperature approaches 0, the joint policy degrades to the collection of individual policies.

4.3 CONVERGENCE OF AGENTMIXER

Together with PM, we can view the learning of the correlated joint fully observable policy as a
single-agent RL problem where abundant single-agent methods with theoretical guarantees of con-
vergence and performance exist. Specifically, AgentMixer is trained end-to-end to maximize the
following objective:

J (πθ) = Es∼ρπθ ,a∼πθ

[ ∞∑
t=0

γtrt

]
, subject to IGC,whereπθ = PM([πϕi ]

N
i=1). (13)

Theorem 2 (Convergence of AgentMixer). The product partially observable policy generated by
AgentMixer is a ϵ-CE.

Proof. For proof see Appendix B.

With Theorem 3, we are ready to present the learning framework of AgentMixer, as illustrated in Fig-
ure 2, which consists of two main components: Policy Modifier and Individual-Global-Consistency.
Specifically, PM acts as an observer who takes a holistic view and recommends that each agent
follow her instructions. IGC then requires the agents to be obligated to follow the recommenda-
tions they receive. We provide the pseudo-code for AgentMixer in Appendix C. AgentMixer can
benefit from a variety of strong single-agent algorithms, such as TD3 (Fujimoto et al., 2018), PPO
(Schulman et al., 2017b), and SAC (Haarnoja et al., 2019). In this work, our implementation of
AgentMixer follows PPO (Schulman et al., 2017b).
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5 EXPERIMENTS

We compare our method with MAPPO (Yu et al., 2022), HAPPO (Kuba et al., 2021), MAT-Dec
(Wen et al., 2022), MAVEN (Mahajan et al., 2019) and MACPF (Wang et al., 2023). An extensive
evaluation is performed on both an illustrative matrix game (Lauer & Riedmiller, 2000) and two
popular MARL benchmarks, Multi-Agent MuJoCo (Peng et al., 2021) (MA-MuJoCo) with contin-
uous action space and SMAC-v2 (Ellis et al., 2022) with discrete action space. More results and
experimental details on these tasks are included in Appendix E.

5.1 CLIMBING MATRIX GAME
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Figure 3: Left: the Climbing matrix game;
right: the performance comparison.

The climbing matrix game (Lauer & Riedmiller,
2000) has the payoff shown in the left of Figure 3.
In this task, there are two agents to select the col-
umn and row index of the matrix respectively. The
goal is to select the maximal element in the matrix.
Although stateless and with simple action space,
Climbing is difficult to solve via independent learn-
ing, as the agents need to coordinate among two op-
timal joint actions. The right of Figure 3 shows that
the almost compared baselines converge to a local
optimum while only AgentMixer and MAT success-
fully learn the optimal policy. This is reasonable, as in MAPPO, HAPPO, and MAT-Dec, agents are
fully independent of each other when making decisions, they may fail to coordinate their actions,
which eventually leads to a sub-optimal joint policy. While with an explicit external coordination
signal, MAVEN only finds the optima by chance. For MAT, since it learns a centralized auto-
regressive policy, the second agent thus takes as input the first agent’s action. It is not a surprise
that MAT converges to the highest return due to using a centralized policy. In contrast, thanks to
the introduced IGC mechanism, AgentMixer successfully learns fully decentralized optimal policies
from the optimal correlated joint policy generated by the Policy Modifier (PM) module.
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Figure 4: Performance comparison on multiple Multi-Agent MuJoCo tasks.

5.2 CONTINUOUS ACTIONS SPACES: MA-MuJoCo

As in the full observation setting, previous methods have shown near-optimal performance in the
MA-MuJoCo tasks (Kuba et al., 2021; Wen et al., 2022), we instead set obsk = 0 for all the tasks,
which means that each agent can only observe its own joint information and satisfies better the partial
observability nature in MARL. We show the performance comparison against the baselines in Figure
4. We can see that AgentMixer enjoys superior performance over those baselines. The superiority
of our method is highlighted especially in Ant-v2 tasks, where partial observability poses a critical
challenge as the local observations of each agent (leg) of the ant are quite similar and make it hard
to estimate the necessary state information for coordination. In these tasks, while other algorithms,
even the centralized MAT, fail to learn any meaningful joint policies, AgentMixer outperforms the
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baselines by a large margin. These results show that AgentMixer can effectively exploit asymmetric
information to mitigate the challenges incurred by severe partial observability.

5.3 DISCRETE ACTION SPACES: SMAC-v2
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Figure 5: Comparison of the mean test win rate on
SMACv2.

Compared to the StarCraft Multi-Agent
Challenge (SMAC), we instead evalu-
ate our method on the more challeng-
ing SMAC-v2 benchmark which is de-
signed with higher randomness. As
shown in Figure 5, we generally observe
that AgentMixer achieves comparable
performance compared with the base-
lines. Note that even centralized MAT
performs similarly to other decentralized
counterparts.

5.4 ABLATION RESULTS
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Figure 6: Ablations on Ant-v2. The large performance gap can be seen between training and testing
on AIL, which is caused by addressing asymmetric learning failure. Other baselines fail to learn
any effective policies, while AgentMixer obtains superior performance.

To examine the effectiveness of AgentMixer in addressing asymmetric learning failure, we per-
form ablation experiments by adding an imitation learning baseline, asymmetric imitation learning
(AIL) (Warrington et al., 2021), which uses PPO, conditioned on full state information, to supervise
learning decentralized policies, conditioned on partial information. As shown in Figure 6, due to
asymmetric learning failure, AIL performs poorly in evaluation, although it achieves superior per-
formance in training. In contrast, AgentMixer couples the learning of the centralized policy and
decentralized policies such that partially observed policies can perform consistently with the fully
observed policy.

6 CONCLUSION

In order to achieve coordination among partially observable agents, this paper presents a novel
framework named AgentMixer which enables correlated policy factorization and provably con-
verges to ϵ-approximate Correlated Equilibrium. AgentMixer consists of two key components: 1)
the Policy Modifier that takes all the initial decisions from individual agents and composes them into
a correlated joint policy based on the full state information; 2) the Individual-Global-Consistency
which mitigates the asymmetric learning failure by preserving the consistency between individual
and joint policy. Surprisingly, IGC and IGM can be considered as parallel works of policy gradient-
based and value-based methods respectively. We will study the transformation between IGC and
IGM in future work. We extensively evaluate the proposed method on both an illustrative matrix
game and two popular MARL benchmarks. The experiments demonstrate that our method outper-
forms strong baselines in most tasks and achieves comparable performance in the rest.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Wendelin Boehmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pp. 980–991. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/boehmer20a.html.

G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. Time Series Analysis: Forecasting and
Control. Wiley Series in Probability and Statistics. Wiley, 2015. ISBN 9781118674925. URL
https://books.google.fi/books?id=rNt5CgAAQBAJ.

Liheng Chen, Hongyi Guo, Yali Du, Fei Fang, Haifeng Zhang, Weinan Zhang, and Yong Yu. Signal
instructed coordination in cooperative multi-agent reinforcement learning. In Jie Chen, Jérôme
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A DETAIL STRUCTURE OF POLICY MODIFIER

Figure 7 depicts the macro-structure of Policy Modifier. It accepts the state and policies of agents
as input. Specifically, Policy Modifier two MLP blocks. The first one is the agent-mixing MLPs: it
acts on columns of input. The second one is the channel-mixing MLP: it acts on rows of the output
of agent-mixing MLPs.

Figure 7: Policy Modifier consists of policy embedding layer, agent-mixing MLP and channel-
mixing MLP.

B ADDITIONAL PROOFS

B.1 PROOF OF LEMMA 1

Lemma 1 (Asymmetric distillation solution). theoremad For any correlated joint fully observable
policy πθ and fixed product partially observable behavioral policy πψ , the implicit product policy
π̂ψθ , defined in Definition 4, minimizes the asymmetric distillation objective:

π̂ψθ = argmin
π

Eρπψ (s,b) [DKL (πθ(a|s) ∥ π(a|b))] . (14)
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Proof. Expanding the right-hand side:

argmin
π

Eρπψ (s,b) [DKL (πθ(a|s) ∥ π(a|b))]

= argmin
π

Eρπψ (b)

[∫
s

∫
a

πθ(a|s) log(
πθ(a|s)
π(a|b)

)daρπψ (s|b)ds
]
,

=argmin
π

Eρπψ (b)

[∫
s

H(πθ(·|s))ρπψ (s|b)ds
]
− Eρπψ (b)

[∫
s

∫
a

πθ(a|s) log(π(a|b))daρπψ (s|b)ds
]
,

whereH(·)is the entropy function,

=argmin
π

const − Eρπψ (b)

[∫
a

π̂ψθ (a|b) log(π(a|b))da
]
,

note that we are free to set the const, so long as it remains independent ofπ,

=argmin
π

Eρπψ (b)

[∫
a

π̂ψθ (a|b) log(π̂
ψ
θ (a|b))da−

∫
a

π̂ψθ (a|b) log(π(a|b))da
]
,

=argmin
π

Eρπψ (b)

[
DKL

(
π̂ψθ (a|b) ∥ π(a|b)

)]
.

(15)
Hence we conclude the proof.

B.2 PROOF OF CONVERGENCE OF ITERATIVE VARIATIONAL APPROXIMATION

We first introduce an assumption which simply states that the variational family is sufficiently ex-
pressive such that the implicit product policy can be recovered, and the implicit product policy
is sufficiently expressive such that the optimal product partially observable policy can actually be
found.

Assumption 1 (Sufficiency of Variational Representations). We assume that for any product be-
havioral policy, πψ , the variational family is sufficiently expressive such that any implicit product
policy, π̂θ, can be exactly recovered under the occupancy induced by the product behavioral policy.
We also assume that there is an implicit product policy, π̂θ, such that an optimal product partially
observable policy can be represented, and thus there is a variational implicit product policy that can
represent the optimal product partially observable policy under ρπψ (b).

We then introduce the lemma which shows that the solution to an iterative procedure actually con-
verges to the solution of a single equivalent “static” optimization problem. This lemma allows us to
solve the challenging optimization using a simple iterative procedure.

Lemma 2 (Convergence of Iterative Variational Approximation). Given the implicit product pol-
icy π̂θ and the corresponding variational approximation to π̂θ, πη , then under Assumption 1, the
iterative procedure:

ηk+1 = argmin
η

Eρπηk (b) [DKL (π̂θ(a|b) ∥ πη(a|b))] ,with k → ∞, (16)

converges to the solution to the optimization problem:

η∗ = argmin
η

Eρπη (b) [DKL (π̂θ(a|b) ∥ πη(a|b))] . (17)

Proof. We begin by expressing the total variation between ρπη∗ (b) and ρπηk (b) at the kth iteration:

DTV(ρ
πη∗ (b) ∥ ρπηk (b)) = sup

b

∣∣∑∞
t=0γ

tP (bt = b|πη∗)−
∑∞
t=0γ

tP (bt = b|πηk)
∣∣ ,

=sup
b

|
∑k
t=0γ

tP (bt = b|πη∗) +
∑∞
t=k+1γ

tP (bt = b|πη∗)

−
∑k
t=0γ

tP (bt = b|πηk)−
∑∞
t=k+1γ

tP (bt = b|πηk)|.

(18)

We can then note that at the kth iteration, the marginal belief distributions induced by πη∗ and πηk
over the first k iteration must be identical as the underlying dynamics are the same at the initial state
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and belief state and we have exactly minimized the DKL(πη∗ ∥ πη). With the assumption that the
maximum variation between the densities is bounded by C, we have:

sup
b

|
∑k
t=0γ

tP (bt = b|πη∗) +
∑∞
t=k+1γ

tP (bt = b|πη∗)

−
∑k
t=0γ

tP (bt = b|πηk)−
∑∞
t=k+1γ

tP (bt = b|πηk)|,
=sup

b
|
∑∞
t=k+1γ

t(P (bt = b|πη∗)− P (bt = b|πηk))|,

≤ sup
b

|
∑∞
t=k+1γ

tC|,

=C(
1

1− γ
− 1− γk+1

1− γ
),

=C
γk+1

1− γ
= O(γk).

(19)

Hence, as γ ∈ [0, 1), the total variation between πη∗ and πηk converges to zero as k → ∞. With
this result and the expressiveness assumption, we complete the proof.

Similar to the proof of Lemma 2, we can derive the following result:

argmin
η

Eρπψ (b) [DKL (π̂θ(a|b) ∥ πη(a|b))] = argmin
η

Eρπ̂θ (b) [DKL (π̂θ(a|b) ∥ πη(a|b))] . (20)

This result allows us to exchange the distribution under which we take expectations.

B.3 PROOF OF THEOREM 1

With Assumption 1, Lemma 2, and the identifiability condition, we are ready to verify the conver-
gence of asymmetric distillation.
Theorem 1 (Convergence of asymmetric distillation). Given an optimal correlated joint fully ob-
servable policy πθ∗ being identifiability, the iteration defined by:

ηk+1 = argmin
η

Eρπηk (s,b) [DKL (πθ∗(a|s) ∥ πη(a|b))] , (9)

converges to πη∗(a|b) that defines an optimal product partially observable policy, as k → ∞.

Proof. We begin by considering the limiting behavior as k → ∞:

η∗ = lim
k→∞

argmin
η

Eρπηk (s,b) [DKL (πθ∗(a|s) ∥ πη(a|b))] ,

= lim
k→∞

argmin
η

Eρπηk (b) [DKL (π̂θ∗(a|b) ∥ πη(a|b))] , (Lemma 1)

=argmin
η

Eρπη (b) [DKL (π̂θ∗(a|b) ∥ πη(a|b))] , (Lemma 2)

=argmin
η

Eρπ̂θ∗ (b) [DKL (π̂θ∗(a|b) ∥ πη(a|b))] , (exchange the distribution)

=argmin
η

Eρπϕ∗ (b) [DKL (πϕ∗(a|b) ∥ πη(a|b))] .(identifiability)

(21)

Finally, under Assumption 1, the expected KL divergence can be exactly zero, which completes the
proof.

B.4 PROOF OF THEOREM 2

Theorem 2 (Convergence of AgentMixer). The product partially observable policy generated by
AgentMixer is a ϵ-CE.

Proof. Since PM modifies the decentralized policies and generates the correlated joint policy, i.e.,
πθ = ((f1

θ ⋄ πϕ1), · · · , (fNθ ⋄ πϕN )), the RL procedure mentioned in 13 can be regarded as a
single-agent RL problem. By leveraging Theorem 1 in TRPO (Schulman et al., 2015), we can
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conclude that a sequence (πθk)
∞
k=1 of joint policies updated by 13 has the monotonic improvement

property, i.e., J (πθk+1
) ≥ J (πθk). According to Bolzano-Weierstrass Theorem, the sequence of

policies (πθk)
∞
k=1 exists at least one sub-optimal point πθ∗ . Let πθ̄ be the optimal joint policy and

ϵ = Vπθ̄ (s)− Vπθ∗ (s) ≥ 0. Given the value function defined in 1, we have:

Vπθ∗ (s) + ϵ ≥ Vπθ (s),∀πθ. (22)

Since optimizing πθ is actually optimizing fθ, then we can obtain:

V((f1
θ∗⋄πϕ1 ),··· ,(f

N
θ∗⋄πϕN ))(s) + ϵ ≥ max

fθ
V((f1

θ ⋄πϕ1 ),··· ,(f
N
θ ⋄πϕN ))(s). (23)

Applying IGC, which keeps the mode consistency between joint policy and product policy, yields:

((f1
θ∗ ⋄ πϕ1), · · · , (fNθ∗ ⋄ πϕN )) = (πϕ1 , · · · , πϕN ). (24)

Finally, by plugging 24 into 23:

V(πϕ1 ,··· ,πϕN )(s) ≥ max
fθ

V((f1
θ ⋄πϕ1 ),··· ,(f

N
θ ⋄πϕN ))(s)− ϵ. (25)

which is exactly the ϵ-CE defined in Definition 3.

C PSEUDO-CODE FOR AGENTMIXER

The pseudo-code of our method is shown in Algorithm C.

Algorithm 1 AgentMixer

INITIALIZE Decentralized partially observable policies {πϕ1 , . . . , πϕN }, a single agent algo-
rithm A.
//Construct the joint policy:
πθ = PM([πϕi ]

N
i=1), subjected to IGC.

Run A on πθ.
RETURN {πϕ1 , . . . , πϕN }.

D BASELINES AND MORE EXPERIMENTS

We compare our method with the baselines below including both algorithms with state-of-the-art
performance and methods designed specifically to tackle the coordination problems.

MAPPO (Yu et al., 2022) applies PPO (Schulman et al., 2017a) to multi-agent settings and utilizes
CTDE to learn critics based on the global state in order to stabilize the policy gradient estimation.
Although with simple techniques, MAPPO has achieved tremendous empirical success in various
multi-agent domains and can be a strong baseline for our method.

HAPPO (Kuba et al., 2021) performs sequential policy updates by utilizing other agents’ newest
policy under the CTDE framework and provably obtains the monotonic policy improvement guar-
antee as in single-agent PPO.

MAT-Dec (Wen et al., 2022) is the decentralized version of MAT which models the multi-agent
decision process as a sequence-to-sequence generation problem with powerful transformer archi-
tecture (Vaswani et al., 2017). MAT-Dec relaxes the restriction of using other agents’ actions but
remains taking the full observations from other agents. Therefore, we remind that MAT-Dec uses
full state information in experiments while our method and other baselines are limited by partial
observation.

MAVEN (Mahajan et al., 2019) is proposed to improve the exploration of QMIX by introducing
a latent space for hierarchical control. Compared to QMIX, MAVEN takes further advantage of
CTDE through a committed exploration strategy.

MACPF (Wang et al., 2023) extends SAC (Haarnoja et al., 2019) into multi-agent settings and
explicitly introduces auto-regressive dependency among agents.
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AIL (Wang et al., 2023) naively distills partially observable agents’ policies from the fully ob-
servable centralized policy. Although showing significant training performance, it suffers from the
asymmetric learning failure problem and fails to perform well during execution with partial obser-
vation.

We summarize the different CTDE settings in Table 1. Note that although MAT and MAT-Dec
sometimes show better performance than other methods, they take the full state information even
during execution.

Algorithm MAPPO HAPPO MAT MAT-Dec MAVEN MACPF AIL Ours
P. Ob. (execution) ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
C. Value (training) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C. Policy (training) ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Table 1: This table compares different settings of CTDE used in baselines with our methods, where
P. Ob. denotes partial observation, C. Value means centralized value and C. Policy represents cen-
tralized policy. Note that only methods with partial observation during execution are fair for com-
parison. Although all the methods take advantage of CTDE by using a centralized value during
training, only our method and AIL further employ centralized policy for training. Our method tack-
les the asymmetric learning failure problem in AIL and hence shows better performance.

D.1 MORE EXPERIMENTS ON MA-MuJoCo

Inspired by mujoco tasks in the single-agent RL realm, MA-MuJoCo splits the joints of robots into
different agents to enable decentralized control for MARL research. MA-MuJoCo allows different
observation settings by changing the parameter of obsk which controls the number of neighbor joints
each agent can observe.

We show the experiment results on more MA-MuJoCo tasks in Figure 8. Extended ablation study
results are shown in Figure 9.
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Figure 8: Performance comparison on multiple Multi-Agent MuJoCo tasks.

D.2 MORE EXPERIMENTS ON SMAC-V2

The original StarCraft Multi-Agent Challenge (SMAC) has been shown to be not difficult enough,
as an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many
scenarios. To address these shortcomings, a new benchmark, SMACv2 was proposed to address
SMAC’s lack of stochasticity.

We compare a baseline, MAPPO FULL, conditioned on full state information during evaluation.
The results in Fig. 12 show that partially observable policies achieve similar performance as fully
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Figure 9: Ablations on multiple Multi-Agent MuJoCo tasks.
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Figure 10: Ablations on multiple Multi-Agent MuJoCo tasks.
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Figure 11: Comparison of the mean test win rate on SMACv2.
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observable policies. This demonstrates that global information is not important for learning in the
SMACv2 domain.
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Figure 12: Ablations demonstrating the effect of full state information on SMACv2.

D.3 MORE EXPERIMENTS ON PREDATOR-PREY

We use an environment similar to that described by Li et al. (2020) where agents are controlled to
capture prey. If a prey is captured, the agents receive a reward of 10. However, the environment
penalizes any single-agent attempt to capture prey with a penalty. Figure 13 shows the average
return for test episodes for varying penalties.
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Figure 13: Performance comparison on Predator-Prey with different penalties for single-agent cap-
ture attempt.

E HYPER-PARAMETERS

For a fair comparison, the implementation of AgentMixer and the baselines are based on the imple-
mentation of MAPPO. We keep all hyper-parameters unchanged at the origin best-performing status.
The proposed method and compared baselines are implemented into parameter independent version
except MAT and MAT-Dec. The common and different hyper-parameters used for the baselines and
AgentMixer across all domains are listed in Table 2-8 respectively.

E.1 COMMON HYPER-PARAMETERS

We list the common hyper-parameters across all the domains in Table 2-5.

E.2 MATRIX GAMES

We list the hyper-parameters used in matrix games in Table 6.
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Parameter Value
agent-mixing hidden dim 32

channel-mixing hidden dim 256
mixer lr 5e-5

Table 2: Unique hyper-parameters of AgentMixer.

Parameter Value
block number 1
head number 1

Table 3: Unique hyper-parameters of MAT / MAT-Dec.

Parameter Value
noise dim 2

epsilon start 1.0
epsilon end 1.0

target update interval 200

Table 4: Unique hyper-parameters of MAVEN.

Parameter Value
Training

optimizer Adam
optimizer epsilon 1e-5

weight decay 0
max grad norm 10

data chunk length 1
Model

activation ReLU
PPO

ppo-clip 0.2
gamma 0.99

gae lambda 0.95

Table 5: Common hyper-parameters used across all domains.

E.3 SMACV2

We list the hyper-parameters used for each map of SMACv2 in Table 7.

E.4 MA-MUJOCO

The hyper-parameters used for each task of MA-MuJoCo are listed in Table 8.

21



Under review as a conference paper at ICLR 2024

Parameter Value
Training

actor lr 5e-4
critic lr 5e-4

entropy coef 0.01
Model

hidden layer 1
hidden layer dim 64

PPO
ppo epoch 15
ppo-clip 0.2

num mini-batch 1
Sample

environment steps 200000
rollout threads 50
episode length 200

Table 6: Common hyper-parameters used in matrix games.

Parameter Value
Training

actor lr 5e-4
critic lr 5e-4

entropy coef 0.01
Model

hidden layer 1
hidden layer dim 64

PPO
ppo epoch 5
ppo-clip 0.2

num mini-batch 1
Sample

environment steps 10000000
rollout threads 50
episode length 200

Table 7: Common hyper-parameters used in the SMACv2.

Parameter Value
Training

actor lr 3e-4
critic lr 3e-4

entropy coef 0
Model

hidden layer 2
hidden layer dim 64

PPO
ppo epoch 5
ppo-clip 0.2

num mini-batch 1
Sample

environment steps 10000000
rollout threads 40
episode length 100

Environment
agent obsk 0

Table 8: Common hyper-parameters used in the MA-MuJoCo.
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