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ABSTRACT

Large language models (LLMs) have recently emerged as a promising tool for
small-molecule generation in drug discovery. One notable recent state-of-the-art
work in this field is MOLLEO (Wang et al., 2025), which combines an evolution-
ary algorithm with an LLM that acts as the operator for making crossovers and
mutations on the ligand population. MOLLEO demonstrates strong results on op-
timizing molecular docking scores, but several aspects of their model are not well
suited to real-world drug discovery. We introduce MOLLEO+, an optimized LLM
workflow for de novo molecule generation. First, we replace docking with the
recently released biomolecular foundation model Boltz-2 as an oracle, which im-
proves the predicted binding affinity of generated molecules using gold-standard
molecular dynamics by over 100%. Second, we incorporate knowledge of existing
ligands, which is present in most practical drug discovery scenarios, using ligands
from BindingDB instead of ZINC 250k as the starting population for the genetic
algorithm. Third, we propose a fine-tuning strategy to better modify existing lig-
ands towards higher activity. We demonstrate the superiority of MOLLEO+ on the
receptor tyrosine kinase c-MET and the BRD4 protein, yielding an improvement
over state-of-the-art baselines by up to 20% for Boltz-2 binding affinity.

1 INTRODUCTION

Large Language Models (LLMs) have recently gained interest for their ability to make significant
discoveries and advancements in scientific areas. This is perhaps most notable in the recent AlphaE-
volve (Altschul et al., 1990), an evolutionary approach that uses LLMs to progressively improve the
quality of a generated algorithm. It successfully developed state-of-the-art algorithms for multiple
problems in mathematics and computer science.

However, studies on applying LLMs to the field of small-molecule generation for drug discovery
have been limited. Most previous work in machine learning for small-molecule drug design has
focused on VAEs (Eckmann et al., 2022; 2025; Noh et al., 2022), diffusion models (Lee et al.,
2023; Hoogeboom et al., 2022; Zhou et al., 2024), reinforcement learning (Jeon & Kim, 2020;
Fu et al., 2022; Mazuz et al., 2023), and other generative frameworks (Zhu et al., 2023). These
methods are often guided by a cheap oracle such as AutoDock (Trott & Olson, 2009), which predicts
the binding affinity of generated compounds to a particular protein target; however, it is known to
be inaccurate in reflecting actual experimental activity (Handa et al., 2023). Thus, most current
frameworks struggle with generating compounds that are likely to show experimental binding.

Recently, LLMs have begun to garner interest as a method to generate small molecule binders,
showing promise in generating strong, drug-like ligands. In contrast to more specialized models,
LLMs hold the distinct advantage of being implicitly aware of how chemistry is typically done
(e.g. common reactions, lead optimization techniques, etc.), giving them great potential in problems
related to chemical discovery (White, 2023). This has been demonstrated in the notable previous
work MOLLEO (Wang et al., 2025), an evolutionary algorithm that incorporates LLMs as a mutation
and crossover operator. They report state-of-the-art results for generating molecules with multiple
desired properties, demonstrating the potential of LLMs as a generative framework in the field.

In this work, we further advance LLMs for small molecule drug discovery by introducing a set of
novel optimizations to improve their real-world effectiveness. We introduce MOLLEO+, an opti-
mized framework specially designed for optimizing protein-ligand binding affinity. First, we replace
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the AutoDock (Trott & Olson, 2009) oracle in MOLLEO with the new biomolecular foundation
model Boltz-2 (Passaro et al., 2025). We demonstrate that this relatively cheap oracle significantly
improves the quality of generated ligands over AutoDock, as measured by the gold-standard Ab-
solute Binding Free Energy (Feng et al., 2022, ABFE). To our knowledge, this is the first work to
demonstrate Boltz-2 as a superior oracle in practice for generative frameworks over the currently
standard molecular docking. Second, we change the starting population in MOLLEO to consist of
ligands from the large protein-ligand database BindingDB (Liu et al., 2007), focusing the algorithm
toward the exploitation of existing strong binders. Third, we construct a semi-synthetic dataset
based on BindingDB for improving the LLM’s lead optimization capabilities. We use this dataset to
fine-tune a small LLM, and significantly improve the quality of its generated ligands.

To summarize, we present MOLLEO+, an optimized framework built upon the state-of-the-art
MOLLEO (Wang et al., 2025), greatly improving its performance via the following contributions:

• We replace the docking-based fitness evaluator with Boltz-2 (Passaro et al., 2025) and show
that it increases the mean Absolute Binding Free Energy of generated molecules by over
100%.

• We utilize a starting population of ligands based on BindingDB, which increases mean
predicted binding affinity of generated compounds by up to 15%.

• We develop a novel post-training framework to fine-tune LLMs for lead optimization tasks
using a semi-synthetic dataset. We demonstrate its effectiveness by fine-tuning a small
LLM and significantly improving the quality of its generated molecules.

2 RELATED WORK

2.1 MOLECULAR GENERATIVE MODELS

Most generative models for small-molecule drug design rely on an external oracle that approximates
the binding strength of a ligand to a protein target. Graph-GA (Jensen, 2019) is an evolutionary
algorithm that keeps track of an active population of molecules, for which their fitness is evalu-
ated by some relevant oracle for the desired optimization property. It executes algorithmic random
crossovers and mutations at particular rings and bonds within ligands of the active population, pro-
gressively yielding molecules with more desirable properties as the algorithm progresses. Other
frameworks have relied on machine learning methods to learn the implicit probability distribution of
some input set, ideally generalizing to high performance in the full chemical space. Frameworks like
TAGMol (Dorna et al., 2024) and DecomptOpt (Zhou et al., 2024) rely on conditional diffusion mod-
els that are further guided toward strong generations by an oracle and some external optimization
framework. Pocket2Mol (Peng et al., 2025) employs a graph neural network comprised of several
encoder and predictor modules that auto-regressively predicts the location and type of each subse-
quent ligand atom based on existing ligand atoms and the protein pocket. Notably, Pocket2Mol does
not rely on any external oracle in its generation, only the inherent probability distribution learned
during training.

Recently, there has been an understanding that common, cheap binding affinity oracles such as
AutoDock (Trott & Olson, 2009) are inaccurate in predicting properties that reflect real-life experi-
mental activity (Handa et al., 2023). Physics-based molecular dynamics simulations, e.g. Absolute
Binding Free Energy (Feng et al., 2022, ABFE), are currently known to be the most accurate in
binding affinity prediction, but they are extremely expensive to run and are thus unrealistic candi-
dates for an oracle that may need to be called on tens of thousands of times within an optimization
framework. MF-LAL (Eckmann et al., 2025) is an active learning framework that aims to remedy
this problem through a multi-fidelity approach that balances feedback from expensive oracles (e.g.
ABFE) and inexpensive oracles (e.g. AutoDock). This results in generations that are more optimal
by assessment of the most accurate free energy methods. Ultimately, for the most real-life applicable
results from generative models, these high-accuracy molecular dynamics predictors should be of the
utmost consideration.
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2.2 LLM-BASED APPROACHES

Previous work for incorporating LLMs in drug discovery has been relatively limited. There have
been efforts in creating specialized models for drug discovery tasks. Models like Y-Mol (Ma et al.,
2024) and DrugGen (Sheikholeslami et al., 2025) do this through a combination of pre-training
and fine-tuning. However, these models are inherently designed to be one-shot at generation and
property prediction, which does not comprise a full and rigorous optimization framework.

The current state-of-the-art in LLM generative frameworks is MOLLEO (Wang et al., 2025), which
is a modification of the Graph-GA algorithm (Jensen, 2019). It utilizes LLMs to make structural
modifications (crossovers and mutations) to the ligand population. This incorporation of LLMs into
the algorithm resulted in strong results for protein-ligand optimization on 3 protein targets, demon-
strating the potential of these inherently chemistry-aware large models to be a competitive generative
framework in drug discovery. Due to the use of a natural language model as the operator, MOLLEO
employs a string representation of small molecules, using both the Simplified Molecular Input Line
Entry System (Weininger, 1988, SMILES) and Self-Referencing Embedded Strings (Krenn et al.,
2020, SELFIES) for various LLMs. We focus on SMILES in this work.

While previous models mentioned above have succeeded in fine-tuning more chemistry-aware
LLMs, the intended one-shot nature of their generations make them unsuitable for use in a multi-
step optimization process such as MOLLEO. In contrast, fine-tuning framework we introduce in
this work is optimized for conditioned generation, in which the LLM needs to generate a molecule
based on provided information of previous members in the ligand population. In this way, our fine-
tuning approach is more narrow and focused than previous work, meant for particular use within
long optimization frameworks.

3 METHODOLOGY

Problem Statement Formally, we can represent our molecular optimization problem as

m∗ = argmin
m∈M

Φp(m)

where m is any valid molecule (ligand) and M is the entire valid chemical space. Φp : M → R
is an evaluation function that predicts the scalar binding free energy (∆G, in kcal/mol) of m to the
protein binding target p. Lower binding free energy indicates stronger binding. We aim to find the
optimal molecule m∗, which minimizes the evaluation function (also called the oracle).

MOLLEO is a genetic algorithm that uses an LLM to generate offspring based on modifications
of ligands in the population. Each offspring is subsequently evaluated by the function Φp. The
molecules with the highest “fitness” according to Φp are chosen for the next population. The LLM
performs both crossover and mutation operations, only falling back on algorithmic modifications if
the LLM fails to generate a valid molecule. We now discuss the 3 main contributions that comprise
MOLLEO+, which are visually represented in Figure 1.

3.1 BOLTZ-2 AS A ORACLE

Boltz-2 (Passaro et al., 2025) is a new biomolecular foundation model that utilizes a transformer-
based, SE(3) equivariant architecture to carry out 3D structure prediction, and subsequent binding
affinity estimation on the predicted structure. The authors show that Boltz-2 approaches the accuracy
of much more expensive gold-standard free energy methods like Absolute Binding Free Energy
(ABFE) on their evaluation set, at around 1/1000 the cost. Notably, it is the first pure deep learning
model to approach this kind of accuracy.

In this work, we replace the docking-based reward function used in MOLLEO with the more accu-
rate affinity predictions from Boltz-2, which adds minimal computational cost. Formally, we change
the original MOLLEO evaluation function Φp from AutoDock to Boltz-2 for any protein target p
with a known amino acid sequence. In other words, we directly utilize Boltz-2 affinity prediction to
assign a fitness score to every generated ligand offspring. To our knowledge, this is the first work to
demonstrate the advantages of using Boltz-2 as an oracle within a generative framework.
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Figure 1: The 3 primary optimizations that comprise MOLLEO+. (1) We employ Boltz-2 as
an oracle for improved ABFE results. (2) We utilize BindingDB to form a much stronger basis
for optimization. (3) We propose a novel fine-tuning framework to steer LLMs toward stronger
molecule generations.

3.2 OPTIMIZING STARTING POPULATION OF MOLLEO

The strength and diversity of the starting population for a genetic algorithm is crucial for the quality
of generated compounds, because all ligand offspring are derived in some way from the structures
present in the starting population. The original MOLLEO algorithm uses a random sample of ZINC
250k (Sterling & Irwin, 2015) compounds as the initial population. Although this data set does
provide a diverse pool of structures to build on, the molecules present are inherently not designed
for any particular target.

Our optimization to MOLLEO involves employing the large protein-ligand database BindingDB
(Liu et al., 2007) instead of ZINC 250k to give the MOLLEO algorithm a significantly stronger
starting point. With BindingDB, we are able to selectively pick strong known binders to the particu-
lar target that we are interested in, comprising an initial population that immediately promises much
greater experimental activity. This focuses the algorithm more on the exploitation of existing strong
binders (which are often known during drug discovery projects), rather than exploration based on
non target-specific molecular structures.

To form this starting pool, we first separate the set of BindingDB ligands corresponding to the
protein target we want to target into clusters using the Butina algorithm, which creates clusters
based on the pairwise Tanimoto similarity of all ligands to each other. We use a distance threshold of
0.4. This ensures that ligands are structurally diverse across different clusters, because very similar
ligands are all grouped within the same clusters. This is desirable because we want the algorithm
to have access to a diverse set of structures and molecules, giving it the potential to create entirely
novel molecules through combinations and crossovers. From there, we sampled the ligand with the
best binding affinity from each cluster, forming a set of strong-binding, structurally diverse ligands.
After sorting this list of ligands, we provide the top n ligands with the best binding affinity as the
starting population for MOLLEO. Analysis of the diversity of the BindingDB starting population in
comparison to the ZINC 250k starting population can be found in Appendix B

3.3 FINE-TUNING WITH BINDINGDB

We propose a fine-tuning strategy to imbue domain knowledge and specifically enable an LLM to
perform better at each optimization step of the MOLLEO process, i.e. every time the LLM makes
a crossover/mutation based on previous ligands. We can formulate the process of each individual
optimization step i as mi = LLM(h<i) where h<i is the prior information (SMILES and binding
affinity) given about previous ligands in the population, and mi is the newly generated molecule.
We want to tune an LLM that can most effectively process h<i to yield mi that minimizes the
binding affinity evaluation function Φp. To achieve this, we propose a supervised fine-tuning (SFT)
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Figure 2: Pipeline for preparing SFT dataset. (a) We sample ligands for the desired protein target
p from BindingDB. (b) We cluster the ligands by the Butina algorithm. (c) We sort the ligands by
binding affinity within each cluster, then sample them into several chains. (d) We utilize a LLM to
generate our semi-synthetic dataset from the ligand chains.

framework for any particular protein target p, involving the creation of a semi-synthetic dataset
followed by subsequent usage of the dataset in SFT.

To form a semi-synthetic dataset for supervised fine-tuning using BindingDB, we begin in a similar
way to the clustering method described above for the formation of the BindingDB starting popula-
tion. We form n distinct clusters from the ligand pool for our desired protein target, using Butina
clustering with distance threshold 0.4. Then within each cluster, we first sort the ligands by affinity,
then form a series of “ligand chains”. This is done by first picking a weak affinity ligand, then re-
peatedly selecting a ligand with binding affinity strictly stronger than the current. The result is that
for each cluster, we end up with several chains of ligands that are ordered with increasing binding
affinity. All ligands within a chain are guaranteed to be relatively similar in structure due to the
clustering. The goal of this approach is to form a dataset where an LLM learns to make decisions
that change a weak-binding ligand into a guaranteed strong-binding one as it moves down the chain
during training. The changes are usually minimal due to the structural similarity, so each chain
represents a somewhat realistic series of modifications that a medicinal chemist might make.

Employing the ligand chains, we generate a semi-synthetic text dataset using an LLM. We employ
GPT 4.1 nano (OpenAI et al., 2024) for cost efficiency. For each ligand chain, we have the LLM
generate an artificial input and output response that mimics how we want our tuned LLM to generate
a molecule based on previous molecules. Formally, for any ligand in position i of a chain, we create
our prior information h0...i by utilizing the LLM to summarize the information from all previous
ligands in positions 0 to i. Since we want our tuned model to generate the ligand at position i, we
utilize the LLM to generate a sample output that includes ligand i as the final generation. Then
a full input/output datum for the dataset is comprised of the prior h0...i as the input and a sample
output that includes the desired molecule mi. Fine-tuning an LLM on this dataset guides the LLM to
generate the strong molecule mi given prior information h0...i, which is what we want the model to
do within a long optimization process such as MOLLEO. The exact details and prompts for how we
utilize the ligand chains to form an SFT dataset can be found in Appendix C.1. This entire process
is visually demonstrated in Figure 2.

This semi-synthetic dataset is used in a classic supervised fine-tuning run. We employ a train-
validation split on the dataset, and progress until we observe the validation loss reach a plateau. We
apply this training framework to the relatively small Llama-3.1-8B-Instruct model (Grattafiori et al.,
2024). Details about the SFT training process are provided in Appendix C.2

4 RESULTS

4.1 IMPROVING ABFE WITH BOLTZ-2 ORACLE

We first evaluate the impact of using Boltz-2 as an oracle instead of AutoDock. Table 1 compares
the mean Absolute Binding Free Energy (ABFE) scores (Feng et al., 2022) of ligands generated
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for the c-MET protein target using Boltz-2 (Passaro et al., 2025) and AutoDock docking (Trott &
Olson, 2009) as the fitness evaluator for MOLLEO. We also report the 1st, 2nd, and 3rd strongest
molecules generated by these methods. Our setup for ABFE calculations is provided in Appendix A.
We also benchmark against molecules generated by MF-LAL (Eckmann et al., 2025), a VAE-based
generative method that focuses on achieving strong ABFE results using a multi-fidelity approach.

Table 1: c-MET ABFE results (kcal/mol) for Autodock, Boltz-2, and MF-LAL

Method Count Mean ± SD 1st 2nd 3rd

MF-LAL 10 -4.3 ± 3.7 -8.7 -8.5 -8.3
MOLLEO (AutoDock) 20 -3.8 ± 4.2 -12.8 -8.8 -8.7
MOLLEO (Boltz-2) 20 -8.7 ± 4.6 -15.64 -14.04 -13.98

For these calculations, we take the top 20 best molecules generated from each run according to the
respective oracle. We can see that MOLLEO does not beat the MF-LAL baseline in terms of mean
affinity, but simply incorporating Boltz-2 as the evaluation function improves the results drastically.
MOLLEO with Boltz-2 results in compounds with much better ABFE scores than with AutoDock,
having a difference in mean ABFE score of -4.8 kcal/mol, a percentage increase of over 100%.
MOLLEO with Boltz-2 yields p = 0.0007 from the one-sided independent Student’s t-test against
MOLLEO with AutoDock, and p = 0.007 against MF-LAL. Note that these runs are done on the
base MOLLEO setup, without the BindingDB starting population described previously.

Given the demonstrated advantages of using Boltz-2 within a generative framework, we are moti-
vated to provide further general analysis of the correlation between Boltz-2, AutoDock, and ABFE.
In Figure 3, we take 32 compounds for c-MET, 16 of which are known binders, and 16 of which are
presumed inactive binders. We calculate the ABFE, Boltz-2, and AutoDock binding affinities for all
32 compounds. We exclude results for any failed AutoDock or Boltz-2 runs.

(a) ABFE vs AutoDock scores (b) ABFE vs Boltz-2 scores

Figure 3: Comparison of correlation between AutoDock & ABFE and Boltz-2 & ABFE for 32
known compounds for the c-MET protein target. We observe a significantly higher correlation
between Boltz-2 and ABFE as comapared to AutoDock.

We see that ABFE and AutoDock docking show r2 = 0.09 among the 32 compounds, while ABFE
and Boltz-2 show r2 = 0.42. As an oracle nearly 1000x less computationally expensive than ABFE,
Boltz-2 shows exceptional correlation with ABFE, especially in comparison to docking. Further-
more, we calculate the ROC-AUC score for Boltz-2 and docking, to see how well they can separate
binders from non-binders. Boltz-2 scores 0.95 for this metric, while AutoDock scores 0.84. Due
to computational and time constraints regarding expensive ABFE calculations, we are only able to
provide results for the c-MET target at this time.

Thus, we demonstrate that not only does Boltz-2 have stronger correlation with the most accurate
gold-standard computational methods, but that it also has practical application within a generative
framework, acting as a more accurate evaluator that guides generated compounds towards higher
ABFE scores. We generally observe Boltz-2 to be approximately a factor of 10 more expensive
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to run than AutoDock; however, this difference is entirely negligible in comparison to the cost of
molecular dynamics methods such as ABFE.

4.2 IMPROVED BINDING AFFINITY WITH MOLLEO+

Next, we demonstrate the performance of MOLLEO+ on two protein targets, c-MET and BRD4.
Structurally speaking, these targets are quite dissimilar, making our results more robust when con-
sidering both targets. Every MOLLEO run terminates at 1000 oracle calls, with an initial population
(and population size) of 120 and offspring size of 70. We report all results with Boltz-2 calculated
binding affinities instead of ABFE due to computational constraints, but rely on the strong results
shown in the previous section to support the validity of relative differences between methods.

Table 2 shows the comparison of binding affinity measured by Boltz-2 across different methods.
We compare with the base MOLLEO algorithm, as well as with two additional baselines: MF-LAL
and Pocket2Mol (Peng et al., 2025). Both models have previously been observed to yield molecules
with high ABFE scores (Eckmann et al., 2025).

We report 4 metrics:

1. Mean and standard deviation in binding affinity (kcal/mol), as predicted by Boltz-2.
2. Number of ligands that exceed a strong-binding threshold of -11 kcal/mol.
3. Quantitative estimate of drug-likeness (Bickerton et al., 2012, QED), a scale from 0-1 for

which higher QED indicates higher drug-likeness.
4. Synthetic accessibility (Ertl & Schuffenhauer, 2009, SA), a scale from 1-10 for which lower

SA indicates greater ease of molecular synthesis.

Table 2: Boltz-2 affinity (kcal/mol), QED, and SA for baselines and MOLLEO+

Method c-MET BRD4
Mean ± SD # Strong QED SA Mean ± SD # Strong QED SA

MF-LAL -7.4 ± 1.2 0 0.56 3.7 -8.8 ± 1.2 0 0.57 3.7
Pocket2Mol -11.2 ±0.3 7 0.38 4.7 -10.2 ±0.5 1 0.36 4.5
MOLLEO -9.2 ± 0.5 0 0.21 4.1 -8.7 ± 0.5 0 0.25 4.8
MOLLEO (Boltz-2) -11.1 ± 0.3 4 0.08 4.9 -10.7 ± 0.2 0 0.12 5.3
MOLLEO+ (ours) -12.0 ± 0.2 10 0.22 4.4 -12.2 ± 0.3 10 0.35 3.5

MOLLEO+ (Llama) -10.8 ± 0.4 4 0.39 4.0 -10.7 ± 0.7 3 0.4 3.6
MOLLEO+ (Llama FT) -11.7 ± 0.1 10 0.34 3.6 -11.5 ± 0.2 10 0.53 3.4

MOLLEO is the original, unmodified algorithm. MOLLEO (Boltz-2) is the result of changing the
oracle to Boltz-2 instead of AutoDock. MOLLEO+ is our full method, the result of utilizing both
Boltz-2 and the BindingDB starting population. All MOLLEO runs are done with GPT-4.1-mini,
as opposed to GPT-4 used in the original MOLLEO paper. GPT-4.1-mini is far more cost-efficient,
and is also known to be a stronger model overall. At the bottom, we give the results of using the
Llama-3.1-8B-Instruct model within MOLLEO, as well as with our fine-tuned version of this model.

All metrics are reported for a sample of generated ligands. We first Butina cluster the full pool of
generated molecules (with similarity threshold = 0.6), then take the best 10 scores that belong to
distinct clusters. This way, we more effectively assess the quality of structurally unique generations.
Additionally, to focus solely on the LLM performance, we remove compounds from MOLLEO runs
generated by the default crossover/mutation operators, which the algorithm falls back on if the LLM
generates an invalid molecule.

In terms of mean affinity, we see that the original MOLLEO algorithm does not significantly out-
perform the non-MOLLEO baselines on either target. However, we observe a substantial increase in
affinity when we utilize Boltz-2 as the oracle (p < 0.001 against original MOLLEO for both targets).
Furthermore, MOLLEO+ yields another significant increase in mean affinity over MOLLEO (Boltz-
2), with the optimized starting population significantly increasing generation quality (p < 0.001
against MOLLEO with Boltz-2 for both targets). Similarly, we observe a significant increase in
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affinity between our fine-tuned small Llama model and the untuned version (p < 0.001 for c-MET,
p = 0.004 for BRD4). We also measure the number of diverse, top compounds that exceed an
activity threshold of -11 kcal/mol; we see that incorporating BindingDB in the starting population
increases this metric significantly, as does the fine-tuning process for the Llama model.

We observe that, in general, QED metrics are weaker in MOLLEO+ runs than within the baselines
(although, notably, we observe strong results with our fine-tuned Llama model). We note that the
original MOLLEO had a similar issue in this area, showing similar if not even weaker QED and
SA results compared to MOLLEO+. As an evolutionary algorithm, MOLLEO can support multi-
objective optimization through linear scalarization. We did not explore multi-objective optimiza-
tion in this work as our focus was on protein-ligand binding affinity and translation to real-world
experimental activity; however, as MOLLEO+ does not suffer any observed decrease in other desir-
able metrics such as QED and SA as compared to MOLLEO, we expect to still see strong results
in other properties through application of the multi-objective framework to our method. In other
words, we observe a clear increase in binding affinity in MOLLEO+ with no decrease in desirable
ligand-specific properties, implying an unconditional improvement over the original algorithm and
a preserved potential for strong performance in multi-objective optimization. We aim to explore this
concretely in future work.

4.3 ANALYSIS OF SIMILARITY AND NOVELTY

A significant part of the molecular generation process is producing molecules that are both strong
binders and relatively novel in structure. We analyze the effectiveness of MOLLEO+ in this area
by applying a filter to the results, only considering generated ligands with Tanimoto similarity <
0.5 to any ligand in the starting population. The results of applying this filter are shown in Table 3.
We provide the average maximum similarity to any ligand in the starting population for generated
ligands, then measure the mean of the top 10 diverse ligands with this filter applied.

Table 3: Comparison of average maximum similarity and filtered mean affinity (kcal/mol)

Method c-MET BRD4
Avg. Max Sim. Filtered Mean ± SD Avg. Max Sim. Filtered Mean ± SD

MOLLEO 0.35 -9.1 ± 0.6 0.35 -8.7 ± 0.6
MOLLEO (Boltz-2) 0.35 -11.1 ± 0.3 0.34 -10.6 ± 0.2
MOLLEO+ (ours) 0.45 11.7 ± 0.1 0.48 11.8 ± 0.3

MOLLEO+ (Llama) 0.36 -10.2 ± 0.6 0.44 -8.7 ± 0.7
MOLLEO+ (Llama FT) 0.44 -11.2 ± 0.3 0.37 -11.0 ± 0.2

We observe that MOLLEO+ generally suffers from slightly lower novelty within its generated pool
of molecules. This is a consequence of utilizing strong structures in BindingDB as the starting
population. Because the provided initial structures are already very strong, the strongest generated
ligands are likely to be close derivatives of those initial structures. Then as the evolutionary algo-
rithm progresses, it selects for the strongest ligands, resulting in higher similarity throughout the
population. In contrast, the starting structures in ZINC 250K are not guaranteed to be strong for
any particular protein target, so for novel generated ligands to be strong, they necessarily have to be
dissimilar to much of the starting population. Because of this, we observe higher similarity on aver-
age in MOLLEO+. However, the filtered mean shows us that even with a less novel ligand pool on
average, the novel generations of MOLLEO+ with BindingDB are still significantly stronger than
the novel generations of MOLLEO with ZINC 250K (p < 0.001 against the Boltz-2 run for both
targets). Visualizations of the top ligands for c-MET and BRD4 when applying the similarity filter
are shown in Figure 4.

5 DISCUSSION & CONCLUSION

We present MOLLEO+, an optimization of the MOLLEO framework that demonstrably improves
the design of LLM-based protein-ligand drugs. We show that Boltz-2 is a better fitness function
than docking, producing compounds more likely to show real-world binding. This result is notable
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Figure 4: Visualizations of top 3 ligands for c-MET and BRD4 generated by MOLLEO+ with < 0.5
Tanimoto similarity to any ligand in the starting population and < 0.6 similarity to each other.

given previous concerns that Boltz-2 performs poorly out-of-distribution, and suggests that Boltz-2,
instead of docking, should be used as an oracle for other molecular generative models. We also
modify the starting population of MOLLEO, resulting in significantly stronger generated structures
and molecules throughout the algorithm. Finally, we present a fine-tuning framework that employs
BindingDB to create a novel semi-synthetic dataset, which improves the molecular generation abil-
ities of a small Llama 3 model.

We demonstrate significant advantages of the MOLLEO+ framework in generating molecules with
high Boltz-2 scores. Due to the demonstrated increase in ABFE and the additional correlation
analysis between ABFE and Boltz-2, we are confident that this increase in Boltz-2 affinity over
MOLLEO is somewhat correlative to an increase in ABFE. Through this, we are comfortable with
claiming that MOLLEO+ is a significantly more effective framework for producing molecules that
may show real-world experimental activity.

Our fine-tuning method also shows great promise in improving the generation quality of small
molecules through post-training alone. We observe not only a significant increase in binding affinity,
but also great success in QED and SA. While we acknowledge that we do not yet exceed the state-of-
the-art (GPT-4) in terms of binding affinity with our very small fine-tuned model, we demonstrate
extremely strong relative improvements, and hypothesize that the same post-training method can
be applied to larger models and yield a similar relative increase in performance. We leave this for
exploration in future work. We did have some specific concerns about whether this fine-tuning pro-
cess actually improved the quality of generated molecules, or simply molded the model to obey
the MOLLEO answer format. We observed that the untuned model fails to follow the answer for-
mat for a significant portion of its generations, leading to failed parsing and thus an unconsidered,
potentially-valid generated molecule. We ablate this potential flaw in Appendix C.3.

Limitations While our BindingDB approach to MOLLEO demonstrably improves the perfor-
mance on the c-MET and BRD4 targets, we recognize that these are both very well-studied targets.
For less studied protein targets, this method may be entirely inapplicable if there are not enough
diverse known binders to comprise a starting population. This also somewhat applies to our fine-
tuning framework; however, we demonstrate in Appendix D that we can utilize other ligands from
BindingDB and still achieve comparable performance.

9
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Ethics Statement We recognize that improved molecular optimization frameworks may be uti-
lized to generate chemically dangerous compounds. However, since our work does not consider
complicated properties and requirements for generation and synthesis of harmful compounds, our
contribution is not imminently problematic in this direction.

Reproducibility Statement We provide all details of our work and implementation in the Method-
ology section, as well as in sections of the Appendix. We disclose our parameters for ABFE, our
parameters for fine-tuning, and all details needed to reproduce our experiments. Additionally, we
attach all of our relevant code as supplementary material in this submission, which is documented
with instructions on how to run everything and reproduce our results.

LLM Usage While our methodology focuses on the use of LLMs as a scientific tool, we did not
employ any LLMs in either the ideation or composition of this work. All text in this work were
written solely by the authors, as are all figures, tables, and data. We do not employ any LLM
assistance in the writing process, and all written text is our own.
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A ABFE SETUP

For our ABFE calculations, we utilize the following Binding Affinity Tool BAT.py Heinzelmann
& Gilson (2021) repository: https://github.com/GHeinzelmann/BAT.py. We simulate
using OpenMM and the standard SDR method. For calculations of molecules generated by docking
as the oracle, we use the ligand pose generated by AutoDock as the starting pose for the calculation.
For calculations of molecules generated by Boltz-2 as the oracle, we use the Boltz-2 predicted
ligand pose as the starting pose. We separate the source of the poses to avoid potential bias toward
one particular oracle in the ABFE calculation. Because Boltz-2 does not take a protein crystal
structure as input and makes a prediction based on the given amino acid sequence, we first align the
entire predicted Boltz-2 conformation to the protein crystal structure with ChimeraX Pettersen et al.
(2020), then extract only the ligand pose for ABFE. We observe this alignment to yield an RMSE of
under 0.7 angstroms; thus we are comfortable using the aligned ligand pose with the crystal structure
in ABFE calculations. We do not observe frequent steric clashes resulting from this process.
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Our simulation steps parameters for the BAT.py framework are as follows:
eq steps1 = 500000 (Number of steps for equilibration gradual release)
eq steps2 = 15000000 (Number of steps for equilibration after release)

m steps1 = 500000 (Number of steps per window for component m (equilibrium))
m steps2 = 1000000 (Number of steps per window for component m (production))

n steps1 = 500000 (Number of steps per window for component n (equilibrium))
n steps2 = 1000000 (Number of steps per window for component n (production))

e steps1 = 250000 (Number of steps per window for component e (equilibrium))
e steps2 = 500000 (Number of steps per window for component e (production))

v steps1 = 500000 (Number of steps per window for component v (equilibrium))
v steps2 = 1000000 (Number of steps per window for component v (production))

On 4 NVIDIA H200 GPUs, one ABFE calculation typically takes us around 16 hours to complete.

B DIVERSITY IN BINDINGDB STARTING POPULATION

We very briefly analyze the diversity within the BindingDB starting population for c-MET and
BRD4, in comparison to the diversity of the ZINC 250k starting population. In Table 4, we calculate
the mean pairwise Tanimoto similarity for ZINC 250K, BindingDB for c-MET, and BindingDB for
BRD4. Because the ZINC 250K starting population is just a random sample of 120 ligand from the
entire set, we randomly sample from ZINC 250K 100 times to reduce variance.

Table 4: Starting population diversity for ZINC 250K vs BindingDB

Starting Population Mean Pairwise Tanimoto Similarity

ZINC 250K 0.15
BindingDB (c-MET) 0.20
BindingDB (BRD4) 0.19

We observe a very minimal difference in mean pairwise similarity between ZINC 250K and the
BindingDB samples. This indicates that our method involving Butina clustering is sufficient in
creating a pool of molecules that are diverse enough for use as a starting population in MOLLEO.

C ADDITIONAL LLM FINE-TUNING INFORMATION

C.1 LLM PROMPTS FOR DATASET FORMATION

This section provides the exact prompts used to create the supervised fine-tuning dataset used in this
work.

Consider one of the ligand chains formed by the clustering-sorting process. For each ligand/position
in the chain, we first ask the LLM to generate a summary based on all the past (weaker affinity)
ligands in the chain. This summary is used in the input for SFT, simulating the information the LLM
might receive for an optimization step.
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Prompt to generate the summary of past ligand modifications used in the input for SFT

You are a chemistry-aware assistant that is collaborating with me on generating a ligand for
a protein with high binding affinity. Below is a chronological history of past ligands you’ve
generated. Provide a summary of changes and modifications you’ve made so far in regards to
the ligand structure and how it impacts the binding affinity; the goal is to give context about past
iterations to another agent. Be sure to explicitly output the SMILES of every past ligand. Do not
provide any suggestions for future generations at this time. Keep your response relatively short.
SMILES: Affinity
SMILES: Affinity
SMILES: Affinity
...

Where we input all previous ligands and their binding affinities in the chain as SMILES: Affinity.
The generated summary is placed into the following format, which becomes the full input for SFT:

Full SFT Input

We are collaborating on generating a ligand for a protein with high binding affinity. I will give
you the output from docking software after each of your attempts. Provided below is a brief
summary of past ligand modifications:
****GENERATED SUMMARY***
First describe what you have learned from the above summary. Then based on that knowledge,
generate a ligand that can bind to this protein with high binding affinity. Ensure that your genera-
tion is unique and is not found within the provided data. Follow this format for your final answer:
\\box{MOLECULE}, where MOLECULE is your proposed ligand in SMILES format.
SMILES: Affinity
SMILES: Affinity
SMILES: Affinity
...

After this, we ask the LLM to generate reasoning that might lead an agent to generate the next
(stronger affinity) ligand in the chain. This becomes the full desired output for SFT. In essence,
we want to tune the model to carry out what we know to be a strong modification decision for a
particular protein target based off information provided in the input.

Prompt to generate the full output for SFT:

We are collaborating on generating a ligand for a protein with high binding affinity. I will give
you the output from docking software after each of your attempts. Provided below is a brief
summary of past ligand modifications:
****GENERATED SUMMARY***
Based on the summary, first pretend that you are thinking about what modifications to make to
create a stronger molecule. In the end, choose to generate the molecule NEXT LIGAND. Do not
mention this molecule until you’ve explained what decisions and specific structural modifica-
tions would lead to this new molecule. It’s crucial that you pretend to have came up with this
generation yourself after some brief analysis of the provided summary. Provide the final ligand
explicitly in this exact format, character by character: \\box{NEXT LIGAND}. Keep your re-
sponse relatively short.
SMILES: Affinity
SMILES: Affinity
SMILES: Affinity
...

Notice that the first half of this prompt is the same as the actual input for SFT. However, we
instead tell the LLM to pretend like it’s doing the generation action, using the predetermined
NEXT LIGAND as the guide for its explanation, where NEXT LIGAND is the next (higher affin-
ity) ligand in the ligand chain. This results in an SFT output that not only contains the desired next
ligand, but also provides a sample explanation for how you might modify previous ligands to create
the new one. This is precisely what we want for the SFT dataset, as we want a model to learn how to
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make the best modifications for any given input to optimize toward a point of higher affinity. Here
is a sample LLM output for this prompt:

Sample Full SFT Output

Considering the previous ligand’s balance of hydrophobic aromatic rings, heterocycles, and
hydrogen-bonding groups, I think introducing a more rigid and cyclic structure could enhance
binding affinity. Replacing flexible linker regions with nitrogen-containing heterocycles might
improve interactions through additional hydrogen bonds and electrostatic contacts. Additionally,
modifying substituents to include carbonyl groups could further strengthen hydrogen bonding
capacity. Incorporating a carbamate moiety at a strategic position can also influence binding
strength. After analyzing these features, I realize that a cyclic structure incorporating these
elements—specifically, a fused ring system with carbamate and aromatic groups—optimize in-
teractions with the protein binding site. Therefore, I plan to generate a ligand with these features,
resulting in the target molecule: \\box{NEXT LIGAND}.

C.2 SFT TRAINING PROCESS

In this section, we provide information about the training process for our supervised fine-tuned
model. We fine-tune using the unified open-source fine-tuning repository LLaMA-Factory Zheng
et al. (2024). We utilize Low-Rank Adaption (LoRA) Hu et al. (2021) to train a subset of the
model parameters, saving a significant amount of time and computation. We utilize all default
hyperparameters from the LLaMA-Factory repository (see the llama3 lora sft.yaml example file
in examples/train lora/), except for modifying the train-validation split to be 0.95/0.05 instead of
0.90/0.10.

Figure 5 provides the training and validation loss graphs for this process for the BRD4 target. We
train for 10 epochs on a dataset of around 5,000 samples, taking around 150 minutes on a NVIDIA
H200. As is evident from the figure, validation loss drops rapidly, then rather quickly plateaus, and
increases rapidly as the model overfits to the relatively small dataset. We let the training continue
past the overfitting point just for the chance of any emergent behavior. However, we carefully
select the checkpoint for which the validation loss is at its minimum, which we evaluate to be the
checkpoint at step 2,000. We merge the LoRA adapters at this checkpoint into the original base
model to obtain the fine-tuned model used in MOLLEO optimization.

(a) Training loss (b) Validation loss

Figure 5: Training and validation loss graphs for supervised fine-tuning

C.3 FURTHER COMPARISON OF TUNED VS UNTUNED LLAMA

In this section, we further compare the results of our fine-tuned Llama model with the untuned
model. Specifically, we account for the high amount of invalid format responses that the untuned
model yields in order to provide a more focused comparison of the generated molecules themselves.

We do this by only considering the first n LLM generations of the fine-tuned model, where n is the
total number of validly-formatted responses made by the untuned model throughout the entire 1000-
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step process. In this way, we take the generation results from an equal number of valid LLM attempts
from both models, allowing us to purely compare the quality of molecule generations between the
models without statistical interference from answers with invalid formats. The results from this
limitation are shown in Table 5:

Table 5: Boltz-2 affinity (kcal/mol) for untuned Llama vs fine-tuned Llama w/ limitation applied

Method Mean ± SD (c-MET) Mean ± SD (BRD4)

Untuned Llama -10.8 ± 0.4 -10.7 ± 0.7
Fine-tuned Llama w/ limitation -11.1 ± 0.3 -10.9 ± 0.3

With this limitation, the fine-tuned model yields p = 0.02 for c-MET and p = 0.15 for BRD4.
However, we can consider a joint probability for the hypothesis that the fine-tuning method improves
generations across all targets, since the runs are entirely independent. Using Fisher’s method with 4
degrees of freedom, we get a joint probability of pcombined ≈ 0.02, giving us statistically significant
evidence that our fine-tuning framework improves the inherent generation quality of the LLM for
any protein target p.

This limitation is actually heavily biased toward the untuned model, since its model generations are
built upon existing strong molecules generated by default crossover/mutation operators throughout
the entire course of the optimization process, while the fine-tuned results are limited only to the
initial parts of the optimization process. Even with such a limiting ablation, we observe a statistically
significant increase in binding affinity with the fine-tuned model, concretely supporting the claim
that our post-training framework improves the inherent quality of molecule generations within the
optimization process.

D DEMONSTRATION FOR LACK OF BINDINGDB LIGANDS

In this section, we demonstrate that for our supervised fine-tuning dataset, we have a workaround in
the situation where we are optimizing for a protein target that is not well studied and has few results
for experimentally-tested ligand binders.

Our original dataset for c-MET was sufficiently large because c-MET is a very well-studied target.
As a proof of concept however, we pretended that this was not a well-studied target, and instead
formed our dataset by considering 20 protein targets that we determined to have structural similari-
ties c-MET using the BLASTP tool Altschul et al. (1990). We took the ligand entries corresponding
to these 20 targets and applied the same process to form a surrogate dataset. We trained the same
small Llama model on this dataset, and its performance in MOLLEO is shown in Table 6.

Table 6: Boltz-2 affinity (kcal/mol) for Llama tuned on 2.5k vs 30k datasets for c-MET

Method Mean ± SD

Llama -10.8 ± 0.4
Llama (c-MET dataset) -11.7 ± 0.1
Llama (surrogate dataset) -11.6 ± 0.2

Comparing the results we get from a model trained on the pure c-MET dataset against our sur-
rogate dataset, we get p = 0.13 from a two-sided independent Student’s t-test, which implies a
non-significant difference. We see that if the desired protein target does not have sufficient ligand
entries, we can make up for it by identifying protein targets that are structurally similar to it and
use their ligand entries instead. This guarantees some level of similarity in the input ligands, and as
demonstrated experimentally, does not hurt performance relative to using a dataset comprised only
of target-specific ligands.
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