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ABSTRACT

Positive-Unlabeled (PU) learning aims to train a binary classifier (positive vs. neg-
ative) where only limited positive data and abundant unlabeled data are available.
While widely applicable, state-of-the-art PU learning methods substantially un-
derperform their supervised counterparts on complex datasets, especially without
auxiliary negatives or pre-estimated parameters (e.g., a 14.26% gap on CIFAR-
100 dataset). We identify the primary bottleneck as the challenge of learning
discriminative representations under unreliable supervision. To tackle this chal-
lenge, we propose NcPU, a non-contrastive PU learning framework that requires
no auxiliary information. NcPU combines a noisy-pair robust supervised non-
contrastive loss (NoiSNCL), which aligns intra-class representations despite un-
reliable supervision, with a phantom label disambiguation (PLD) scheme that sup-
plies conservative negative supervision via regret-based label updates. Theoreti-
cally, NoiSNCL and PLD can iteratively benefit each other from the perspective
of the Expectation-Maximization framework. Empirically, extensive experiments
demonstrate that: (1) NoiSNCL enables simple PU methods to achieve compet-
itive performance; and (2) NcPU achieves substantial improvements over state-
of-the-art PU methods across diverse datasets, including challenging datasets on
post-disaster building damage mapping, highlighting its promise for real-world
applications. Code: https://github.com/Hengwei-Zhao96/NcPU.

1 INTRODUCTION

Positive-Unlabeled (PU) learning aims to train a binary classifier with limited labeled positive data
and a large pool of unlabeled data (Zhao et al., 2023a; Long et al., 2024; Du Plessis et al., 2015),
which is well-suited for many real-world applications such as product recommendation (Hsieh et al.,
2015), medical diagnosis (Yuan et al., 2025), and remote sensing applications (Zhao et al., 2022).
For example, a real-world case arises in the context of humanitarian assistance and disaster response
(HADR), where mapping the spatial distribution of damaged buildings from remote sensing imagery
remains highly challenging. Shortly after a disaster, specialists are typically able to annotate only
a subset of damaged buildings (positive samples) (Xia et al., 2021), while a large amount of the
remaining building data remains unlabeled. These unlabeled data inevitably contain both damaged
and undamaged (negative) structures, and such ambiguity significantly impedes the effective training
of classification models.

Numerous methods for PU learning have been developed over the past decades, and the core chal-
lenge in PU learning lies in deriving the reliable binary classification supervision using only PU
data. Early studies focused on selecting reliable negative samples, and then training a binary clas-
sifier with positive and reliable negatives (Gong et al., 2018; Garg et al., 2021; Wang et al., 2023a).
However, the performance of these methods heavily depends on the pseudo-labels of the selected
samples. More recent research tries to estimate the reliable binary classification supervision using
all PU data, and achieving competitive or state-of-the-art performance (Wilton et al., 2022; Jiang
et al., 2023; Zhao et al., 2023a; Long et al., 2024; Yuan et al., 2025). Nevertheless, many of these
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Figure 1: Illustration of different representation learning methods. Representation learning can
acquire discriminative representations either by pulling same-class samples closer to the anchor and
pushing different-class samples apart (contrastive representation learning), or by only pulling same-
class samples closer to the anchor (non-contrastive representation learning). (a) Self-supervised
representation learning: same-class pairs from augmented anchor. (b) Supervised representation
learning: same-class pairs from reliable labels. (c) Noisy-pair robust representation learning: same-
class pairs from unreliable labels.

methods rely on auxiliary negative validation data or a pre-estimated parameters (such as the class
prior πp, which denotes the proportion of positive samples within the unlabeled data) to facilitate
the estimation of binary classification supervision.

While previous methods have shown promising results, learning discriminative representations from
complex PU data remains a significant challenge, causing the best-performing methods to fall short
compared to supervised counterparts. As shown in Figure 2, the features generated by PU methods,
such as LaGAM (Long et al., 2024) and HolisticPU (Wang et al., 2023a), show substantial overlap
between positive and negative distributions, unlike the clearly separable features obtained with su-
pervised learning. Additional t-SNE visualizations are provided in the Appendix A. In other words,
the binary classification supervision derived from PU data in these methods is insufficient to ensure
the acquisition of discriminative representations, which adversely affects model performance.

Figure 2: t-SNE visualizations of the
representations learned by PU meth-
ods on CIFAR-10 training dataset.

Inspired by recent advances in self-supervised/supervised
representation learning (He et al., 2020; Grill et al., 2020;
Khosla et al., 2020; Lu et al., 2023), this paper proposes
a novel non-contrastive PU learning framework (NcPU) to
learn more discriminative representations. When represen-
tation learning meets PU learning, the challenge of noisy-
pair robust representation learning (Figure 1) arises: unreli-
able supervision inevitably introduces incorrect pairwise re-
lations (i.e., noisy pairs), which hinder the effective learn-
ing of discriminative representations. To address this, noisy-
pair robust supervised non-contrastive loss (NoiSNCL) is
proposed to align intra-class representation while tolerat-
ing noisy pairs from the perspective of gradients. More-
over, based on the discriminative representations learned by
NoiSNCL, the phantom label disambiguation (PLD) is pro-
posed, which refines supervision through regret-based label
updating. Theoretically, NcPU can be interpreted under the
Expectation-Maximization (EM) framework, with pseudo-
label assignment serving as the E-step and NoiSNCL minimization as the M-step (cluster tight-
ening), iteratively updated during training. Remarkably, NoiSNCL enables simple PU methods to
achieve highly competitive performance. The contributions of this paper are summarized as follows:

• Methodology. NcPU is proposed to obtain discriminative representations through noisy-pair
robust intra-class representations alignment, which consists of NoiSNCL and PLD modules. No-
tably, NcPU works well without requiring auxiliary negatives or pre-estimated parameters.

• Theories. Gradient analysis demonstrates that noisy pairs dominate the optimization process in
representation learning. Furthermore, the proposed NoiSNCL and PLD modules can be theoreti-
cally justified to iteratively benefit each other from the perspective of the EM framework.
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• Experiments. Extensive experiments demonstrate that (1) NoiSNCL enables simple PU methods
to achieve competitive performance; and (2) NcPU outperforms state-of-the-art methods, achiev-
ing performance comparable to its supervised counterpart. Moreover, results on post-disaster
building damage mapping tasks highlight the broad applicability of NcPU.

2 PROBLEM SETTING

Let xi ∈ Rd denote a sample and yi denote its label. Here, yi = 0 indicates that xi belongs to the
positive class, and yi = 1 implies that xi belongs to the negative class. The objective of PU learning
is to learn a binary classifier f(xi) : Rd → [0, 1]2 using the training dataset D = P ∪ U :

P = {(xi, yi = 0)}np

i=1 ∼ Pp = P (x|y = 0), (1)
U = {xi}nu

i=1 ∼ Pu = πpP (x|y = 0) + (1− πp)P (x|y = 1), (2)

where np and nu denote the numbers of positive and unlabeled samples, respectively, and Pp and Pu

denote the marginal distributions of positive and unlabeled data, respectively. Besides, πp = P (y =
0) is the class prior.

The challenge of PU learning is to derive reliable binary classification supervision from the PU data.
Let a pseudo target si ∈ [0, 1]2 be assigned to a sample xi, si is expected to become more accurate
as it is updated during training without auxiliary information. If the si is obtainable, the classifier
can be optimized by minimizing the following label-disambiguation cross-entropy loss (LDCE):

Lc(f(xi), si) = −si
⊤ log f(xi), (3)

where f(xi) is the softmax output of the classifier. The sample index i will be omitted if the context
is clear in the following.

Intuitively, if ideal representations are available, the labels of unlabeled data can be accurately recov-
ered by exploiting the available information: the similarity between data points in the representation
space, and the weak supervision inherent in PU data. For example, an unlabeled sample would
be inferred as belonging to the negative class if, in the ideal representation space, it lies close to
a cluster corresponding to the negative class. However, this reliance on representations gives rise
to a non-trivial dilemma: the inherent weak supervision adversely affects the process of represen-
tation learning (as illustrated in Figure 2), while the quality of the learned representations, in turn,
constrains the acquisition of accurate pseudo targets. This dilemma is mitigated in NcPU through
intra-class representation alignment, which is described in the following section.

3 NOISY-PAIR ROBUST NON-CONTRASTIVE PU LEARNING FRAMEWORK

The NcPU framework (Figure 3) is designed to obtain more discriminative representations by align-
ing intra-class representations. It consists of two key components: NoiSNCL and PLD. The two
components work collaboratively: NoiSNCL produces discriminative representations under unreli-
able supervision, which in turn benefits subsequent label disambiguation. Conversely, PLD provides
more reliable supervision, thereby facilitating the non-contrastive representation learning module in
acquiring more discriminative representations. Notably, NcPU works well without requiring addi-
tional negative samples or pre-estimated parameters. A more detailed theoretical interpretation from
the perspective of the EM framework is provided in Section 4.

3.1 NOISY-PAIR ROBUST SUPERVISED NON-CONTRASTIVE REPRESENTATION LEARNING

In PU learning, unreliable supervision poses a major obstacle to acquiring discriminative represen-
tations. To address this, NcPU integrates NoiSNCL with LDCE to facilitate the clustering effect in
the representation space, thereby aligning intra-class representations.

Preliminaries. Compared with contrastive representation learning, non-contrastive representation
learning acquire discriminative representations by only pulling same-class data closer to the anchor
(intra-class representation alignment), thereby mitigating the impact of noisy different-class pairs.
Without loss of generality, this paper adopts the classical non-contrastive representation learning
framework BYOL (Grill et al., 2020). Given each sample (x, y), two different augmented views
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Figure 3: The proposed NcPU framework. NoiSNCL improves representations for label disam-
biguation, while PLD enhances supervision for representation learning.

v = Augr(x) and v′ = Augr(x) are produced by the image augmentation Augr(·). Because Augr(·)
is stochastic, v ̸= v′. From the first augmented view v, the online network outputs the embedding q.
The target network outputs the other embedding k based on the augmented view v′. Consistent with
the original design of BYOL, the target network does not include the prediction head. The encoder
and projection head of the target network are momentum-updated from the online network.

Self-supervised non-contrastive representation learning, such as BYOL, aims to pull the representa-
tions of the same sample from different views closer together:

Lself-r(xi) = 2
(
1− ⟨q̃i, k̃i⟩

)
, (4)

where q̃ = q
∥q∥2

and k̃ = k
∥k∥2

are the L2-normalized embeddings. Similar to supervised contrastive
loss (Khosla et al., 2020), the supervised non-contrastive loss (Lr) can align intra-class representa-
tions through the incorporation of label information. Formally, Lr can be formalized as follows:

Lr(xi,xj) = 2
(
1− ⟨q̃i, k̃j⟩

)
1{yi = yj}. (5)

Minimizing Eq.(5) on (xi, yi) and (xj , yj) pulls representations of xi and xj closer if yi = yj .

Gradient Analysis for Noisy Pairs. In the PU learning setting, the ground-truth labels y for unla-
beled data are unavailable, thereby preventing the direct computation of Eq.(5). The use of pseudo
labels ỹ generated by the classifier in NcPU inevitably introduces noisy pairs. These noisy pairs
tend to dominate the representation learning process, as their gradient magnitudes overwhelm those
from the clean pairs. For example, consider a clean pair (xi,xj) with yi = yj and a noisy pair
(xi,xm) with yi = ỹm ̸= ym, the representations may have q̃⊤

i q̃j → 1 and q̃⊤
i q̃m ≈ 0, which will

wrongly pull together representations with incorrect labels and ultimately impair the learning of the
clean pairs:∥∥∥∥∂Lr(xi,xm)

∂qi

∥∥∥∥2
2

=
4

∥qi∥22

(
1− (q̃⊤

i q̃m)2
)
>

4

∥qi∥22

(
1− (q̃⊤

i q̃j)
2
)
=

∥∥∥∥∂Lr(xi,xj)

∂qi

∥∥∥∥2
2

, (6)

where the prediction head is regarded as an identity function for simplicity. The detailed proof is
provided in Appendix B.

Noisy-Pair Robust Supervised Non-Contrastive Loss. The NoiSNCL, as shown in Eq.(7), is
proposed to mitigate the problem of noisy pairs dominating the training process and is defined as
follows:

L̃r(xi,xj) = 2

√
1− ⟨q̃i, k̃j⟩1{yi = yj}. (7)

NoiSNCL still aims to align representations of same-class data, while the gradient magnitudes of
clean pairs are greater than those of noisy pairs (Eq.(8)), the representation learning process is pri-
marily driven by the clean pairs. Moreover, given that L̃r(xi,xj) ≥ Lr(xi,xj), under some mild
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assumptions, minimizing L̃r(xi,xj) in NcPU is equivalent to maximizing a lower bound of the
likelihood function of the unlabeled data (Section 4).∥∥∥∥∥∂L̃r(xi,xm)

∂qi

∥∥∥∥∥
2

2

=
1

∥qi∥22

(
1+ (q̃⊤

i q̃m)
)
<

1

∥qi∥22

(
1+ (q̃⊤

i q̃j)
)
=

∥∥∥∥∥∂L̃r(xi,xj)

∂qi

∥∥∥∥∥
2

2

. (8)

Due to page limit, detailed proofs are provided in Appendix B.

3.2 PHANTOM LABEL DISAMBIGUATION FOR PU LEARNING

Based on the discriminative representations derived from noisy-pair robust supervised non-
contrastive representation learning, the PLD is proposed to generate more accurate pseudo targets.
This strategy is built upon class prototypes and enables regret-based label updating with the proposed
PhantomGate. This strategy facilitates more conservative negative supervision while preserving the
integrity of the prototype-based disambiguation process, where empirical evidence has demonstrated
to be essential for effectively extending prototype-based label disambiguation to PU learning.

Class-conditional Prototype Updating. The class-conditional prototype embedding vector µc

serves as the representative embedding of class c:

µc = Normalize(αµc + (1− α)q̃), (9)

where the prototype µc is defined by the moving-average of the normalized embedding q̃. The
normalized embedding q̃ corresponds to the representation of x produced by the online network,
and the classifier assigns the label c to the x. Besides, α denotes a momentum hyperparameter.

Phantom Pseudo Target Updating. Benefiting from discriminative representations, the prototype
can be employed to obtain more accurate pseudo targets:

s′ = βs′ + (1− β)r, rc =

{
1 if c = argmax

j
q̃⊤µj ,

0 else,
(10)

where β denotes the momentum hyperparameter. However, this approach is effective when πp is
explicitly provided as input (Yuan et al., 2025). In the absence of πp, such a naive label disambigua-
tion strategy in PU learning may lead to a trivial solution caused by the lack of negative information,
namely s′ = [1, 0]⊤.

PhantomGate is proposed to prevent this trivial solution by injecting explicit negative supervision
during training. Specifically, PhantomGate employs a threshold τ to assign [0, 1]⊤ to reliable pseudo
negative samples, while simultaneously incorporating regret-based label updating. That is, when the
model identifies that the pseudo target of a sample has been incorrectly set to [0, 1]⊤, PhantomGate
allows the pseudo target to be updated starting from s′ rather than resetting to [0, 1]⊤. The pseudo
targets of positive data are fixed as [1, 0]⊤ throughout training. The pseudo targets s of unlabeled
samples are initialized as [0, 1]⊤ and updated as follows:

s =

{
[0, 1]⊤ f1(x) ≥ τ,

s′ f1(x) < τ,
(11)

where fc(x) denotes the c-th entry of the softmax output produced by the classifier.

To avoid manually setting τ , the self-adaptive threshold (SAT) (Wang et al., 2023b) is introduced,
which offers two key benefits: it starts low to supply clear supervision for more negative samples
in early training, and gradually increases to filter out potentially incorrect negatives as training pro-
gresses. The global threshold τ̃ and the local threshold (ρ̃) are updated as follows:

τ̃ = γτ̃ + (1− γ)
1

b

b∑
i=1

max(f(xi)), ρ̃(c) = γρ̃(c) + (1− γ)
1

b

b∑
i=1

fc(xi), (12)

where b denotes the batch size, γ is a momentum hyperparameter, and ρ̃(c) denotes the c-th entry of
ρ̃. Both τ̃ and ρ̃(c) are initialized to 0.5. The ρ̃ is used to modulate τ̃ in a class-wise manner, and
the final threshold τ can be obtained as follows:

τ =
ρ̃(1)

max{ρ̃(0), ρ̃(1)}
· τ̃ . (13)
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Finally, NcPU can be optimized as follows:

L =
1

|P|
∑
xi∈P

Lc +
1

|U|
∑
xi∈U

Lc + wr
1

|D|
∑
xi∈D

1

|Q|
∑
xj∈Q

L̃r, (14)

where Q denotes the set of same-class pairs associated with xi, and wr is the weight hyperparameter.
In practice, L is computed in a batch manner. An entropy regularization term is employed to stabilize
training. The pseudocode of NcPU is provided in Appendix C.

4 THEORETICAL ANALYSIS OF NcPU BASED ON THE EM FRAMEWORK

By injecting the classifier predictions into the EM framework, the latent variables can be linked to the
supervision from PU data, thereby enabling more accurate supervision for the unlabeled data during
the iterative process. Different from previous works (Wang et al., 2024; Yuan et al., 2025), which
conducted their theoretical analyses within the framework of supervised contrastive learning (Khosla
et al., 2020) while neglecting the uniformity term, the theoretical analysis in this paper is instead built
upon non-contrastive learning (L̃r). By adopting the non-contrastive learning framework, this study
avoids the complications arising from the uniformity term, thereby providing a more comprehensive
theoretical perspective. Since the positive data have accurate labels, the following analysis focuses
primarily on the unlabeled data. A more detailed derivation can be found in Appendix B.

E-Step. At the E-step, each unlabeled example is assigned to one specific cluster. Given a network
g(·) parameterized by θ, the objective is to find θ∗ that maximizes the log-likelihood function:

θ∗ = argmax
θ

∑
x∈U

log p(x|θ) = argmax
θ

∑
x∈U

log
∑
z∈Z

p(x, z|θ), (15)

where Z = {0, 1} denotes the latent variable associated with the data. If the classifier predictions
are injected into the EM framework: p(z|x,θ) = p(y|x,θ), and considering that the label of each
sample is deterministic, we have p(y|x,θ) = 1(ỹ = y). Then, θ∗ can be obtained as:

θ∗ = argmax
θ

∑
x∈U

∑
y∈Z

1(ỹ = y) log p(x, y|θ). (16)

M-Step. At the M-step, minimizing L̃r encourages embeddings to concentrate around their cluster
centers (cluster tightening). For analytical convenience, all data are considered in each iteration:

R̃r(x) =
1

nu

∑
x∈U

1

|Q|
∑
k+∈Q

L̃r ≥
1

nu

∑
x∈U

1

|Q|
∑
k+∈Q

Lr = Rr(x). (17)

Since the same-class peer set of x is constructed based on the classifier predictions, the unlabeled
data can be divided into two subsets Sc ⊆ U (c ∈ {0, 1}), where Sc = {x| argmax f(x) = c,x ∈
U}. Then Rr(x) can be reformulated as:

Rr(x) ≈
2

nu

∑
Sc∈U

∑
x∈Sc

∥g̃(x)− νc∥2 , (18)

where νc denotes the mean center of Sc. Since nu is usually large, we approximate 1
|S| ≈

1
|Q| . For

simplicity, the augmentation operation is omitted and let q̃ = g̃(x). Under some mild assumptions,
minimizing R̃r(x) is equivalent to maximizing a lower bound of the likelihood in Eq.(15).

Theorem 1 Assume the distribution of each class in the representation space follows a d-variate
von Mises-Fisher (vMF) distribution, which leads to: h(x|ν̃c, κ) = cd(κ)e

κν̃⊤
c g̃(x), where ν̃c =

νc/ ∥νc∥, κ is the concentration parameter, and cd(κ) is the normalization constant. Under the
assumption of a uniform class prior, optimizing Eq.(18) and Eq.(15) is equivalent to maximizing L1

and L2 below, respectively.

L1 =
∑
Sc∈U

|Sc|
nu

∥νc∥2 ≤
∑
Sc∈U

|Sc|
nu

∥νc∥ = L2. (19)

A more detailed proof can be found in Appendix B. Theorem 1 indicates that minimizing R̃r(x)
is equivalent to maximizing a lower bound of the likelihood in Eq.(15). The lower bound becomes
tight when ∥νc∥ is close to 1, which implies that the data with the same label are concentrated in the
representation space.
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Table 1: Results of different methods (mean±std). The best performance is highlighted in red.

Method Additional
N Data

CIFAR-10 CIFAR-100 STL-10 ABCD xBD

OA F1 OA F1 OA F1 OA F1 OA F1

CE 60.45±0.1 2.42±0.4 50.36±0.0 1.86±0.2 50.30±0.0 1.19±0.2 55.70±0.2 20.93±0.4 84.08±0.2 25.70±2.4

uPU 65.52±0.2 26.82±0.9 61.44±0.9 43.12±2.1 57.08±0.4 25.88±1.3 83.76±2.1 81.47±2.9 86.82±0.3 55.43±2.8

nnPU 87.29±0.5 83.71±0.6 72.00±0.8 74.93±0.4 80.62±0.1 79.28±0.2 87.73±0.4 88.36±0.3 82.60±0.6 59.66±0.7

vPU 85.94±0.6 82.98±0.9 69.01±1.2 70.78±0.2 75.76±5.5 70.52±10.4 84.06±3.0 84.13±3.4 73.60±1.8 50.30±1.2

ImbPU 87.29±0.4 83.80±0.4 72.07±0.7 75.05±0.6 80.68±0.6 79.41±0.6 88.14±0.6 88.69±0.5 82.51±0.5 59.72±0.5

TEDn 86.29±2.4 80.70±4.6 69.85±0.9 61.73±1.9 66.26±4.9 49.90±10.7 88.90±0.9 89.10±0.9 85.40±0.8 52.65±4.6

PUET 78.51±0.4 73.85±0.5 62.81±0.2 71.09±0.1 75.36±0.2 73.56±0.1 78.09±2.9 66.52±24.9 74.92±0.1 38.38±0.6

HolisticPU 84.20±2.1 78.10±3.9 64.01±6.5 51.94±15.1 72.81±6.4 66.06±14.9 65.49±1.5 51.60±1.5 81.98±4.1 53.35±2.4

DistPU 85.29±2.6 83.96±2.2 67.63±0.8 73.68±0.8 85.62±1.5 85.41±0.9 86.25±1.7 87.36±1.2 82.94±0.8 57.58±0.2

PiCO 89.72±0.1 87.40±0.0 69.98±0.4 72.71±0.3 60.71±0.6 71.04±0.3 74.07±2.2 79.27±1.3 49.36±0.5 39.52±0.2

LaGAM ✓ 95.78±0.5 94.90±0.6 84.82±0.1 84.42±0.2 88.64±0.0 88.50±0.1 75.90±0.4 75.38±0.6 79.14±1.5 58.78±1.7

WSC 90.55±0.3 87.92±0.8 75.39±2.1 73.76±4.0 79.06±4.5 74.16±7.0 80.10±2.8 76.12±4.3 84.89±0.8 62.17±1.3

NcPU(ours) 97.36±0.1 96.67±0.2 88.28±0.6 88.14±0.9 91.40±0.4 90.82±0.6 91.10±0.6 91.21±0.5 87.60±1.0 64.84±1.0

Supervised ✓ 96.96±0.2 96.24±0.2 89.65±0.3 89.78±0.4 — — 92.00±0.2 91.96±0.2 88.47±0.3 73.32±0.4

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the performance of the proposed NcPU, five datasets are employed: three
prevalent benchmark datasets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009) and STL-10 (Coates et al., 2011)), as well as two remote sensing post-disaster building dam-
age mapping datasets (ABCD (Fujita et al., 2017) and xBD (Gupta et al., 2019)), which can be used
to identify damaged buildings after disasters. Experiments on ABCD and xBD demonstrate the sig-
nificant potential of PU learning in the field of HADR. More details regarding ABCD and xBD are
presented in Appendix D. Each dataset was partitioned into two non-overlapping subsets, denoted
as positive and negative, according to their category labels. For the training process, 1000 positive
samples were utilized from CIFAR-10, CIFAR-100, and STL-10, 300 from ABCD, and 500 from
xBD, respectively. A comprehensive summary of the dataset statistics is presented in Appendix D.

Baselines. To evaluate the effectiveness of NcPU, we compare it against eleven baseline methods:
uPU (Du Plessis et al., 2015), nnPU (Kiryo et al., 2017), vPU (Chen et al., 2020), ImbPU (Su et al.,
2021), TEDn (Garg et al., 2021), PUET (Wilton et al., 2022), HolisticPU (Wang et al., 2023a),
DistPU (Jiang et al., 2023), PiCO (Wang et al., 2024), LaGAM (Long et al., 2024), and WSC (Zhou
et al., 2025). In the CE method, unlabeled data are treated as negative samples. Representation learn-
ing modules are also incorporated into PiCO, LaGAM, and WSC. Nevertheless, LaGAM requires
auxiliary negative samples, whereas WSC relies on additional pre-estimated parameters. PiCO,
originally designed for partial label learning, exhibits suboptimal performance when applied to PU
learning tasks. For NcPU, all momentum hyperparameters are set to 0.99, and the wr is set to 50
for all datasets. More detailed implementation settings are provided in Appendix F. ResNet-18 (He
et al., 2016) is adopted as the backbone for all methods. For methods that require πp, πp is estimated
using KM2 (Ramaswamy et al., 2016).

Metrics. Overall accuracy (OA) and F1 score are adopted as the primary metrics. Precision, recall,
and area under receiver operating characteristic curve are provided in Appendix G. All experiments
are repeated three times, and both the mean and standard deviation are reported.

5.2 MAIN RESULTS

NcPU achieves the best performance. The results of all methods are presented in Table 1, where
the proposed NcPU achieves the best performance across all datasets. Notably, NcPU does not re-
quire additional negative samples or pre-estimated parameters. Compared with other methods that
also do not rely on additional negative samples, NcPU achieves improvements in OA of 6.81%,
12.89%, 5.78%, 2.20%, and 0.78% on CIFAR-10, CIFAR-100, STL-10, ABCD, and xBD, respec-
tively. Although LaGAM achieves the second-best performance on three benchmark datasets, it
requires additional negative samples as input. As an algorithm originally designed for partial label
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Table 2: Ablation and comparative analyses
on CIFAR-100 dataset. NCL: Non-contrastive
Loss. LD: Label Disambiguation.

NCL LD OA F1 P R

s 61.54±7.8 40.58±22.9 84.36±7.1 30.69±25.0

L̃r 50.27±0.1 1.09±0.4 97.97±1.8 0.55±0.2

Lself-r s 73.22±1.7 72.75±1.6 74.10±2.2 71.47±1.9

Lr s 84.58±0.8 85.90±0.6 79.12±1.1 93.96±0.3

L̃r s′ 75.14±2.7 79.91±1.7 67.15±2.6 98.73±0.5

L̃r s′+SAT 50.25±0.0 1.01±0.1 97.85±3.7 0.51±0.1

L̃r s 88.28±0.6 88.14±0.9 89.12±1.7 87.27±3.2

Table 3: Performance Analysis of L̃r under
risk estimation with the real πp and supervised
methods.

Method
CIFAR-10 CIFAR-100

OA F1 OA F1

uPU 69.43±0.3 41.32±1.0 61.68±0.9 44.18±2.6

uPU+L̃r 97.35±0.1 96.66±0.2 83.71±1.6 81.40±2.2

nnPU 83.25±0.2 76.94±0.5 71.22±0.5 68.12±1.0

nnPU+L̃r 97.03±0.2 96.37±0.2 87.81±0.3 87.23±0.4

Supervised+Lr 98.53±0.0 98.17±0.1 94.45±0.1 94.52±0.1

Supervised+L̃r 98.75±0.0 98.43±0.1 94.56±0.1 94.64±0.1

learning, PiCO exhibits inferior performance compared with NcPU. Finally, it is observed that NcPU
achieves results comparable to, or even surpass, those of its supervised counterpart, demonstrating
the effectiveness of noisy-pair robust representation alignment in PU learning.

NcPU learns more discriminative representations. The t-SNE visualization of representations
on the training data demonstrates the learning ability of the PU learning methods under unreliable
supervision (Figure 2). As shown in Figure 2, compared with other PU learning methods, NcPU
produces more discriminative representations through noisy-pair robust intra-class representation
alignment.

NcPU has broad application potential in HADR. NcPU achieved the best performance on both
the ABCD and xBD datasets. Among them, the xBD dataset, which encompasses nineteen disaster
events with global coverage, highlights the remarkable application potential of NcPU.

5.3 ABLATION STUDIES AND ANALYSES

L̃r and s can benefit each other. Due to the influence of non-discriminative features, s alone is
insufficient, as shown in Table 2, whereas its integration with L̃r leads to notable improvements.
Furthermore, this mutually beneficial effect can be theoretically justified from the perspective of the
EM algorithm, as detailed in Section 4.

L̃r demonstrates robustness against noisy pairs. The results in Table 2 corroborate the theoretical
analysis, demonstrating the robustness of L̃r to noisy pairs, with L̃r + s achieving 88.28% OA
compared to 84.58% for Lr +s. L̃r is robust to noisy pairs without losing performance in supervised
learning tasks, achieving results similar to Lr (Supervised+Lr vs.Supervised+L̃r in Table 3).

Figure 4: t-SNE visualizations of the
representations learned by risk esti-
mation methods on CIFAR-10 train-
ing dataset.

PhantomGate plays an important role in label disam-
biguation. As shown in Table 2, in the absence of unam-
biguous negative supervision, class-conditional prototype la-
bel disambiguation (s′) tends to yield a trivial solution, re-
sulting in high recall but low precision for the positive class.
When SAT is employed to introduce negative supervision,
the inaccurate negative supervision improves the precision
of the positive class but substantially reduces its recall. In
contrast, PhantomGate enables the model to discard inaccu-
rately selected negative samples, thereby achieving a better
balance between precision and recall of the positive class.

L̃r significantly enhances PU learning methods. Risk es-
timation methods, which have been validated both theoret-
ically and empirically as the most simply and robust ap-
proaches, are utilized as baselines to reduce the impact of
hyperparameters and heuristic techniques. As shown in Ta-
ble 3, compared with uPU and nnPU, the methods employ-
ing L̃r achieve superior results, highlighting the importance
of learning discriminative representations. The t-SNE visu-
alization of learned representations are shown in Figure 4. While nnPU serves as the foundation of
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(a) Analysis of α (b) Analysis of β (c) Analysis of γ (d) Analysis of wr

Figure 5: Analyses of hyperparameters on the CIFAR-10 dataset.

deep PU learning by constraining the negative risk to be non-negative, we show that uPU+L̃r can
achieve superior performance without this constraint. Remarkably, L̃r enables simple PU meth-
ods to achieve highly competitive performance, this insight opens a promising direction for deep
PU learning. More experiments are presented in Appendix H.

Analysis of hyperparameters. As shown in Figure 5, NcPU is insensitive to α and γ. A smaller
β accelerates the update of pseudo targets, whereas a larger wr facilitates the learning of more
discriminative representations, thereby enhancing label disambiguation. Additional experiments are
provided in Appendix H. Overall, NcPU demonstrates robustness to hyperparameters, as the same
parameters are used across all five datasets: α = β = γ = 0.99 and wr = 50.

Figure 6: OA curve of NcPU during
the training process. NcPU exhibits
stable training performance over a
prolonged training process.

Analysis of training stability. While the gradients of L̃r
do not vanish and include the term 1√

1−q̃⊤
i k̃j

, they do not

lead to significant overfitting or training instability: (1) Ben-
efiting from the asymmetric architecture and random data
augmentation, q̃i ̸= k̃j is ensured, which can enable the nu-
merical stability of the gradient; (2) As q̃⊤

i k̃j approaches
1, the gradient magnitude becomes 2

∥qi∥2
2

instead of infinity,

within a finite number of training iterations, L̃r does not lead
to notable overfitting or training instability; (3) The training
stability can also be empirically verified (Figure 6): Taking
the results on CIFAR-10 dataset as an example, NcPU has
achieved promising performance at the 400th epoch. After
extended training for a longer period, the results of NcPU
does not exhibit overfitting or instability; (4) The numerical
stability can be improved by constraining the value of q̃⊤

i k̃j

(e.g., [10−4, 1− 10−4]).

6 RELATED WORKS

Positive-Unlabeled Learning. A straightforward approach is to identify reliable negatives from the
unlabeled set and then train a supervised classifier on positives and these negatives (Gong et al.,
2018; Yu et al., 2004), but its performance heavily depends on the correctness of the selected sam-
ples. Recent studies try to directly estimate supervision from all PU data, such as cost-sensitive
based methods (Li et al., 2021), label disambiguation based methods (Zhang et al., 2019), risk es-
timation based methods (Kiryo et al., 2017; Zhao et al., 2022; Su et al., 2021; Wilton et al., 2022;
Zhao et al., 2023b), density ratio estimation-based methods (Kato et al., 2019), and variational prin-
ciple methods (Chen et al., 2020; Zhao et al., 2023a). Recent studies (Long et al., 2024; Yuan et al.,
2025) leverage a contrastive learning module to obtain better representations, but still suffer from
noisy pairs and require either auxiliary negatives (Long et al., 2024) or pre-estimated πp (Yuan et al.,
2025). In contrast, the proposed NcPU is robust to noisy pairs and free from such requirements.

Contrastive and Non-contrastive Representation Learning. Self-supervised learning has re-
cently made significant progress in acquiring high-quality representations. Depending on the use
of negative pairs, self-supervised learning methods are broadly categorized into contrastive and
non-contrastive learning: contrastive losses encourage embeddings of similar images to be aligned
(alignment) while pushing apart those of different images (uniformity) (He et al., 2020; Wang &
Isola, 2020; Huang et al., 2023a; Lu et al., 2023); non-contrastive losses only align embeddings of
similar images (Grill et al., 2020; Chen & He, 2021; Guo et al., 2025). Beyond self-supervised set-
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tings, SupCon was proposed to extend contrastive learning by incorporating full supervision (Khosla
et al., 2020). Recent works actively explore the application of contrastive learning to weakly super-
vised tasks (Li et al., 2022; Huang et al., 2023b; Zhang et al., 2024; Wang et al., 2022; 2024; Yuan
et al., 2025). However, most of these methods rely on supervised contrastive learning with pseudo
labels, which suffer from the problem of noisy pairs. The CoTAP Loss (Wen et al., 2025) is pro-
posed to align the representations of semantically similar objects in self-supervised dense represen-
tation learning, and the negative effect of noises is alleviated by assigning higher weights to sample
pairs with top scores. The WSC framework (Zhou et al., 2025), a graph-theoretic weakly super-
vised contrastive learning method, introduces continuous semantic similarity; however, it requires
pre-estimated parameters as input. In contrast, NcPU, which builds on non-contrastive learning, is
robust to noisy pairs and does not rely on such requirements.

7 CONCLUSION

This paper identifies the challenge of learning discriminative representations as the key bottleneck
in PU learning. Theoretical analysis demonstrates that noisy pairs dominate representation learning
optimization, while the proposed NoiSNCL and PLD form an EM-inspired framework that itera-
tively benefits each other. Extensive evaluations on both benchmark datasets and remote sensing
building damage mapping tasks validate the effectiveness of the proposed NcPU. Applications of
binary classification with only positive data annotated can benefit from this study, and we expect fu-
ture research to extend this framework beyond image classification. Masked image modeling will be
incorporated to harness more powerful backbone frameworks. Beyond PU learning, the framework
holds promise for broader applications in more weakly supervised learning scenarios.
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A MORE T-SNE VISUALIZATIONS OF LEARNED REPRESENTATIONS

CE denotes the training strategy that employs cross-entropy loss, where unlabeled data are assumed
to be negative samples. Compared to supervised features, the positive and negative features from
other methods (nnPU (Kiryo et al., 2017), DistPU (Jiang et al., 2023), HolisticPU (Wang et al.,
2023a), TEDn (Garg et al., 2021), WSC (Zhou et al., 2025)) exhibit significant overlap on the train-
ing dataset (Figure 7).

(a) CE features (b) nnPU features (c) WSC features (d) DistPU features

(e) HolisticPU features (f) TEDn features (g) NcPU features (h) Supervised features

Figure 7: t-SNE visualizations of the representations learned by different PU learning meth-
ods on CIFAR-10 training dataset. Compared with supervised features, the positive and negative
features obtained from other methods (nnPU, DistPU, HolisticPU, TEDn, WSC) exhibit substantial
overlap, indicating that the primary bottleneck in PU learning lies in acquiring discriminative repre-
sentations. In contrast, the representations produced by NcPU demonstrate discriminative ability.

B THEORETICAL ANALYSIS

B.1 DERIVATION OF GRADIENTS AND GRADIENT MAGNITUDES

The supervised non-contrastive loss (Lr) and noisy-pair robust supervised non-contrastive loss (L̃r)
are defined as follows:

Lr(xi,xj) = 2
(
1− 1⟨q̃i, k̃j⟩

)
1{yi = yj},

L̃r(xi,xj) = 2

√
1− ⟨q̃i, k̃j⟩1{yi = yj},

where q̃ = q
∥q∥2

and k̃ = k
∥k∥2

. Only the case 1{yi = yj} = 1 is considered because the loss is
not calculated when 1{yi = yj} = 0. The prediction head is regarded as an identity function for
simplicity.
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The gradients of Lr(xi,xj) can be obtained as follows:
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The gradients of L̃r(xi,xj) can be obtained as follows:

∂L̃r(xi,xj)

∂qi
=

−1√
1− q̃⊤

i k̃j

∂q̃⊤
i k̃j

∂qi

=
−1

∥qi∥2
√

1− q̃⊤
i k̃j

(I− q̃iq̃
⊤
i

)
k̃j .

(21)

Considering that the following equation holds:(
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The gradient magnitudes of Lr(xi,xj) can be obtained as follows:∥∥∥∥∂Lr(xi,xj)
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The magnitudes of gradient of L̃r(xi,xj) can be obtained as follows:∥∥∥∥∥∂L̃r(xi,xj)
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B.2 DETAILED DERIVATION OF NcPU IN EM FRAMEWORK

At the E-step, each unlabeled example is assigned to one specific cluster. At the M-step, minimiz-
ing R̃r(x) encourages the embeddings to concentrate around their respective cluster centers. The
detailed theoretical interpretation is provided below.

E-Step. Given a network g(·) parameterized by θ, the objective is to find θ∗ that maximizes the
log-likelihood function:

θ∗ = argmax
θ

∑
x∈U

log p(x|θ) = argmax
θ

∑
x∈U

log
∑
z∈Z

p(x, z|θ),

where Z = {0, 1} denotes the latent variable associated with data. Since this function is difficult to
optimize directly, a surrogate function is used to lower-bound it:∑

x∈U
log
∑
z∈Z

p(x, z|θ) =
∑
x∈U

log
∑
z∈Z

Q(z)
p(x, z|θ)
Q(z)

≥
∑
x∈U

∑
z∈Z

Q(z) log
p(x, z|θ)
Q(z)

,

(26)

where Q(z) denotes a distribution over z’s (
∑

z∈Z Q(z) = 1). To ensure that the equality holds,
p(x,z|θ)
Q(z) must be a constant. Then, we have:

Q(z) =
p(x, z|θ)∑

z∈Z p(x, z|θ)
=

p(x, z|θ)
p(x|θ)

= p(z|x,θ), (27)

which corresponds to the posterior class probability: p(z|x,θ) = p(y|x,θ). At this step, the classi-
fier predictions are injected into the EM framework, linking the latent variables with the supervision
from PU data. Considered the predicted label ỹ = argmax f(x), and considering that the label of
each sample is deterministic, we have p(y|x,θ) = 1(ỹ = y). Then, θ∗ can be obtained as:

θ∗ = argmax
θ

∑
x∈U

∑
y∈Z

1(ỹ = y) log p(x, y|θ). (28)

M-Step. At the M-step, the goal is to maximize the likelihood presented in Eq.(28). We will
demonstrate that under some mild assumptions, minimizing R̃r(x) is equivalent to maximizing
a lower bound of Eq.(28). For analytical convenience, all unlabeled data are considered in each
iteration:

Rr(x) =
1

nu

∑
x∈U

{
2

|Q|
∑
k+∈Q

(
1− q̃⊤k̃+

)}
, (29)
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R̃r(x) =
1

nu

∑
x∈U

{
2

|Q|
∑
k+∈Q

√
1− q̃⊤k̃+

}
, (30)

where Q corresponds to the positive peer set of the example x. Since the positive peer set of x is
constructed based on the supervised model predictions ỹ = argmax f(x), the unlabeled data can
be divided into two subsets Sc ⊆ U (c ∈ {0, 1}), where Sc = {x| argmax f(x) = c,x ∈ U}. Then
the Rr(x) can be reformulated as follows:

Rr(x) =
2

nu

∑
x∈U

1

2|Q|
∑

k+∈Q

∥∥∥q̃ − k̃+

∥∥∥2
≈ 2

nu

∑
Sc∈U

1

2|Sc|
∑

x,x′∈Sc

∥g̃(x)− g̃(x′)∥2

=
2

nu

∑
Sc∈U

1

2|Sc|
∑
x∈Sc

∑
x′∈Sc

(
∥g̃(x)∥2 − 2g̃(x)⊤g̃(x′) + ∥g̃(x′)∥2

)
=

2

nu

∑
Sc∈U

1

|Sc|
∑
x∈Sc

(
|Sc| − g̃(x)⊤

( ∑
x′∈Sc

g̃(x′)

))

=
2

nu

∑
Sc∈U

1

|Sc|
∑
x∈Sc

(
|Sc| − g̃(x)⊤(|Sc|νc)

)
=

2

nu

∑
Sc∈U

|Sc| −

(∑
x∈Sc

g̃(x)

)⊤

νc


=

2

nu

∑
Sc∈U

|Sc|
(
1− ∥νc∥2

)

=
2

nu

∑
Sc∈U

|Sc| − 2

(∑
x∈Sc

g̃(x)

)⊤

νc + |Sc| ∥νc∥2


=
2

nu

∑
Sc∈U

∑
x∈Sc

(
∥g̃(x)∥2 − 2g̃(x)⊤νc + ∥νc∥2

)
=

2

nu

∑
Sc∈U

∑
x∈Sc

∥g̃(x)− νc∥2 ,

(31)

where νc represents the mean center of Sc. For simplicity, the augmentation operation is omitted
and let q̃ = g̃(x). Since nu is usually large, we approximate 1

|Sc| ≈
1

|Q| .

Assume the distribution of each class in the representation space is a d-variate von Mises-Fisher
(vMF) distribution, which leads to: h(x|ν̃c, κ) = cd(κ)e

κν̃⊤
c g̃(x), where ν̃c = νc/ ∥νc∥, κ is the

concentration parameter, and cd(κ) is the normalization constant. Under the assumption of a uni-
form class prior, optimizing Eq.(31) and Eq.(28) is equivalent to maximizing L1 and L2 below,
respectively.

L1 =
∑
Sc∈U

|Sc|
nu

∥νc∥2 ≤
∑
Sc∈U

|Sc|
nu

∥νc∥ = L2. (32)
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Figure 8: Examples from the ABCD dataset: the first row shows pre-disaster imagery, and the
second row shows post-disaster imagery.

The lower bound becomes tight when ∥νc∥ is close to 1, which implies that the data with the same
label are concentrated in the representation space. More detailed proofs are as follows:

argmin
θ

Rr(x) = argmin
θ

2

nu

∑
Sc∈U

∑
x∈Sc

∥g̃(x)− νc∥2

= argmin
θ

2

nu

∑
Sc∈U

∑
x∈Sc

(
∥g̃(x)∥2 − 2g̃(x)⊤νc + ∥νc∥2

)
= argmin

θ

4

nu

∑
Sc∈U

(
|Sc| − |Sc| ∥νc∥2

)
= argmax

θ

∑
Sc∈U

|Sc|
nu

∥νc∥2 .

(33)

argmax
θ

∑
x∈U

∑
y∈Z

1(ỹ = y) log p(x, y|θ) = argmax
θ

∑
x∈U

∑
y∈Z

1(ỹ = y) log p(x|y,θ)

= argmax
θ

∑
Sc∈U

∑
x∈Sc

log p(x|y = c,θ)

= argmax
θ

∑
Sc∈U

∑
x∈Sc

κν̃⊤
c g̃(x)

= argmax
θ

∑
Sc∈U

|Sc|
nu

∥νc∥ .

(34)

Given that
Lr(xi,xj) ≤ L̃r(xi,xj), (35)

we can obtain
Rr(x) ≤ R̃r(x). (36)

In other words, minimizing R̃r(x) is also equivalent to maximizing a lower bound of Eq.(28). Given
that NcPU can be interpreted from the perspective of the EM framework, its non-contrastive learning
module and classification module can mutually enhance each other during the iterative process,
allowing NcPU to converge to a (local) optimum.
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Algorithm 1: Pseudocode of NcPU (one epoch).
1 Input: Training dataset D, classifier f , online network g, target network g′, initialized pseudo targets si,

initialized class prototypes µc, momentum hyperparameters α, β, γ.
2 for iter = 1, 2, . . . , do
3 sample a mini-batch B from D

// classifier prediction

4 Ỹ = {ỹi = argmax
c

fc(xi)|xi ∈ B}
// online embeddings generation

5 Bq = {qi = g(Augr(xi))|xi ∈ B}
// class-conditional prototype updating

6 for xi ∈ B do
7 µc = Normalize(αµc + (1− α)q̃i), if ỹi = c
8 end

// update the target network
9 momentum update g′ by using g

// target embeddings generation
10 Bk = {ki = g′(Augr(xi))|xi ∈ B}

// self-adaptive threshold updating

11 τ = ρ̃(1)
max{ρ̃(0),ρ̃(1)} · τ̃

// phantom pseudo target updating
12 for xi ∈ B do
13 ri = OneHot(argmax

j
q̃⊤
i µj)

14 s′
i = βs′

i + (1− β)ri

15 si =

{
[0, 1]⊤ f1(xi) ≥ τ

s′ f1(xi) < τ

16 end
// network updating

17 minimize loss L
18 end

C PSEUDOCODE OF NcPU

The pseudocode of NcPU is summarized in Algorithm 1.

D DETAILED DESCRIPTION OF DATASETS

To demonstrate the promising applicability of the proposed NcPU in the field of HADR, two remote
sensing building damage mapping datasets are utilized: ABCD (Fujita et al., 2017) and xBD (Gupta
et al., 2019). The ABCD dataset is a single-hazard dataset annotated to determine whether build-
ings were washed away by a tsunami. It comprises both pre-disaster and post-disaster imagery, as
illustrated in Figure 8. The spatial resolution of the ABCD dataset is 40 cm. The xBD dataset
is a large-scale, multi-hazard dataset encompassing building damages caused by six different dis-
aster types worldwide (earthquake, wildfire, volcano, storm, flooding, and tsunami). It contains
both pre-disaster and post-disaster imagery; however, to ensure distinction from ABCD, only the
post-disaster imagery from xBD is employed in this study. Specifically, in processing xBD, each
building is buffered by a distance equal to 0.5 times its size, and the minimum bounding rectangle of
each buffer is cropped and used as training data. For classification, the categories “Destroyed” and
“Major Damage” are regarded as the positive class. More detailed dataset statistics are presented in
Table 4.

E IMPLEMENTATION DETAILS OF PICO AND WSC

For PiCO Wang et al. (2022; 2024), this paper treats unlabeled data as data associated with a coarse
candidate label set. During training, only the pseudo labels of the unlabeled data are updated, while
positive samples are consistently trained with their ground-truth labels. At the beginning of training,
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Table 4: Summary of datasets.

Dataset np nu # Testing Data πp Positive Class Input Size

CIFAR-10 1000 40000 10000 0.4 0,1,8,9 3× 32× 32

CIFAR-100 1000 40000 10000 0.5 Animal 3× 32× 32

STL-10 1000 90000 8000 - 0,2,3,8,9 3× 96× 96

ABCD 300 4000 3377 0.5 washed-away 6× 128× 128

xBD 500 20000 37682 0.4 2,3 3× 64× 64

Table 5: Results on CIFAR-10 and CIFAR-100 datasets (mean±std).

Method Additional
N Data

CIFAR-10 CIFAR-100

OA F1 P R AUC OA F1 P R AUC

CE 60.45±0.1 2.42±0.4 92.62±6.5 1.22±0.2 59.16±1.9 50.36±0.0 1.86±0.2 80.92±4.4 0.94±0.1 62.36±0.4

uPU 65.52±0.2 26.82±0.9 88.73±0.7 15.80±0.7 50.43±0.9 61.44±0.9 43.12±2.1 82.09±1.0 29.25±1.8 71.19±0.7

nnPU 87.29±0.5 83.71±0.6 85.89±1.2 81.65±1.0 89.77±0.3 72.00±0.8 74.93±0.4 67.85±1.1 83.69±0.9 78.61±0.2

vPU 85.94±0.6 82.98±0.9 80.42±0.9 85.74±2.2 92.95±0.8 69.01±1.2 70.78±0.2 67.10±2.6 75.07±3.6 75.51±1.1

ImbPU 87.29±0.4 83.80±0.4 85.53±1.0 82.13±0.1 89.76±0.1 72.07±0.7 75.05±0.6 67.82±0.9 84.02±1.2 78.30±0.6

TEDn 86.29±2.4 80.70±4.6 91.63±1.7 72.47±8.2 94.53±0.2 69.85±0.9 61.73±1.9 84.48±1.4 48.67±2.5 81.83±0.6

PUET 78.51±0.4 73.85±0.5 71.94±0.4 75.86±0.6 - 62.81±0.2 71.09±0.1 58.14±0.1 91.45±0.2 -

HolisticPU 84.20±2.1 78.10±3.9 87.31±2.4 70.96±7.4 93.08±1.1 64.01±6.5 51.94±15.1 75.71±3.0 41.40±18.4 73.89±4.6

DistPU 85.29±2.6 83.96±2.2 74.77±4.1 95.86±0.9 95.80±0.6 67.63±0.8 73.68±0.8 62.07±0.5 90.64±1.6 77.53±1.8

PiCO 89.72±0.1 87.40±0.0 85.74±0.4 89.13±0.4 95.61±0.1 69.98±0.4 72.71±0.3 66.66±0.4 79.97±0.4 76.47±0.3

LaGAM ✓ 95.78±0.5 94.90±0.6 92.03±1.5 97.96±0.5 99.11±0.1 84.82±0.1 84.42±0.2 86.73±0.6 82.23±0.8 92.33±0.3

WSC 90.55±0.3 87.92±0.8 89.99±2.5 86.08±3.6 96.23±0.2 75.39±2.1 73.76±4.0 78.79±2.1 69.76±8.1 83.35±1.8

NcPU(ours) 97.36±0.1 96.67±0.2 97.53±0.4 95.82±0.6 99.30±0.1 88.28±0.6 88.14±0.9 89.12±1.7 87.27±3.2 94.99±0.1

Supervised ✓ 96.96±0.2 96.24±0.2 95.43±0.6 97.06±0.2 99.58±0.0 89.65±0.3 89.78±0.4 88.63±0.5 90.97±1.3 95.99±0.2

Table 6: Results on STL-10 and ABCD datasets (mean±std).

Method Additional
N Data

STL-10 ABCD

OA F1 P R AUC OA F1 P R AUC

CE 50.30±0.0 1.19±0.2 98.48±2.6 0.60±0.1 75.38±0.5 55.70±0.2 20.93±0.4 95.65±0.8 11.75±0.3 87.18±0.5

uPU 57.08±0.4 25.88±1.3 94.67±0.5 14.99±0.9 72.84±1.7 83.76±2.1 81.47±2.9 94.27±0.4 71.83±4.6 92.67±0.6

nnPU 80.62±0.1 79.28±0.2 85.14±0.2 74.19±0.5 87.96±0.2 87.73±0.4 88.36±0.3 83.93±1.0 93.29±0.9 94.08±0.0

vPU 75.76±5.5 70.52±10.4 87.93±2.5 60.13±14.7 84.85±1.1 84.06±3.0 84.13±3.4 84.46±9.1 85.50±12.0 93.19±1.0

ImbPU 80.68±0.6 79.41±0.6 85.00±0.7 74.52±0.6 87.89±0.2 88.14±0.6 88.69±0.5 84.56±0.8 93.25±0.4 94.33±0.3

TEDn 66.26±4.9 49.90±10.7 95.00±1.5 34.35±10.2 86.77±1.8 88.90±0.9 89.10±0.9 87.35±1.6 90.96±1.9 94.95±0.8

PUET 75.36±0.2 73.56±0.1 79.35±0.6 68.56±0.3 - 78.09±2.9 66.52±24.9 61.97±25.0 71.94±24.3 -

HolisticPU 72.81±6.4 66.06±14.9 85.95±10.6 58.26±25.5 86.74±1.4 65.49±1.5 51.60±1.5 87.69±11.6 36.97±3.9 82.87±10.3

DistPU 85.62±1.5 85.41±0.9 87.13±5.0 84.00±3.2 92.19±0.2 86.25±1.7 87.36±1.2 80.84±2.8 95.11±1.3 95.30±0.3

PiCO 60.71±0.6 71.04±0.3 56.26±0.4 96.36±0.3 78.80±1.0 74.07±2.2 79.27±1.3 66.00±2.0 99.25±0.2 83.65±1.5

LaGAM ✓ 88.64±0.0 88.50±0.1 89.60±0.5 87.43±0.6 95.25±0.1 75.90±0.4 75.38±0.6 76.85±0.2 73.99±1.0 83.87±1.4

WSC 79.06±4.5 74.16±7.0 95.40±0.7 61.11±10.0 92.89±0.7 80.10±2.8 76.12±4.3 94.33±0.6 63.98±6.2 94.07±0.4

NcPU(ours) 91.40±0.4 90.82±0.6 97.38±0.8 85.11±1.6 96.52±0.1 91.10±0.6 91.21±0.5 89.89±1.2 92.58±0.5 96.01±0.3

Supervised ✓ - - - - - 92.00±0.2 91.96±0.2 92.22±0.4 91.69±0.4 97.18±0.0

the pseudo labels of the unlabeled data are initialized as negative. For WSC Zhou et al. (2025),
unlabeled data are initialized as negative samples, thereby reformulating the PU learning task as a
problem of learning with noisy labels. The classification model is subsequently trained using the
Learning with Noisy Labels method proposed in WSC.

F IMPLEMENTATION DETAILS OF NcPU

All momentum-related hyperparameters (α, β, and γ) in NcPU are fixed at 0.99 across all datasets.
The model is trained for 1300 epochs for all datasets. Optimization is performed using SGD with a
momentum coefficient of 0.9, combined with a cosine annealing learning rate scheduler. The initial
learning rate is set to 0.01 for the STL-10 dataset, 0.0001 for the xBD dataset, and 0.001 for all other
datasets. The wr is set to 50 for all datasets, while the went is assigned a value of 0.5 for CIFAR-100
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Table 7: More ablation analysis between L̃r and s.

L̃r s
CIFAR-10 CIFAR-100

OA F1 OA F1

✓ 75.61±1.3 56.48±3.4 61.54±7.8 40.58±22.9

✓ 61.60±0.5 7.72±2.4 50.27±0.1 1.09±0.4

✓ ✓ 97.36±0.1 96.67±0.2 88.28±0.6 88.14±0.9

Table 8: More ablation analysis on label disambiguation.

Label Disambiguation
CIFAR-10 CIFAR-100

OA F1 P R OA F1 P R

s′ 97.41±0.1 96.79±0.1 95.88±0.7 97.72±0.6 75.14±2.7 79.91±1.7 67.15±2.6 98.73±0.5

s′ + SAT 60.45±0.0 2.24±0.1 98.60±1.2 1.13±0.1 50.25±0.0 1.01±0.1 97.85±3.7 0.51±0.1

s 97.36±0.1 96.67±0.2 97.53±0.4 95.82±0.6 88.28±0.6 88.14±0.9 89.12±1.7 87.27±3.2

and 5 for the remaining datasets. A warm-up phase is applied at the beginning of training, during
which pseudo targets are kept fixed for the first 30 epochs.

G MORE EXPERIMENTAL RESULTS

The results of precision (P), recall (R), and area under receiver operating characteristic curve (AUC)
are presented in Table 5-Table 6. NcPU achieves a better trade-off between P and R.

H MORE ABLATION ANALYSES

L̃r and s can benefit each other. Experiments on the CIFAR-10 dataset (Table 7) further validate
the theoretical analysis in Section 4, demonstrating that L̃r and s can benefit each other, thereby
enabling NcPU to achieve superior performance.

Figure 9: L̃r will accelerate
the model’s correct fitting to the
training dataset.

Table 9: Non-contrastive loss
analysis on CIFAR-100 dataset.

OA F1

uPU 66.84±0.51 60.12±1.28

nnPU 69.51±0.16 69.52±0.47

uPU+Lself-r 72.71±0.79 66.80±1.22

uPU+Lr 76.29±3.11 78.47±2.48

uPU+L̃r 80.06±0.03 79.67±1.32

nnPU+L̃r 81.55±0.45 81.59±0.61

PhantomGate plays an important role in label disambigua-
tion. More detailed results on label disambiguation are pre-
sented in Table 8. While class-conditional prototype-based la-
bel disambiguation (s′) performs well on the CIFAR-10 dataset,
it fails to achieve satisfactory results on the CIFAR-100 dataset.
Specifically, this approach achieves relatively high recall for the
positive class but suffers from low precision, indicating a ten-
dency to over-identify samples as positive. Therefore, incorpo-
rating negative supervision through SAT and PhantomGate is es-
sential, even if it slightly degrades performance on CIFAR-10.

L̃r significatly enhances the performance of PU learning
methods. Apart from Table 3, we also conducted another set of
experiments to analyze the contribution of representation quality
on PU learning and test the robustness of L̃r with respect to fewer
training data and higher πp. CIFAR-100 is used as the experi-
mental dataset, with the division of positive and negative classes
consistent with the main experiments, and ResNet-18 serves as
the backbone. To highlight the effectiveness of L̃r, the πp is set
to 0.6, with 1000 positive training samples and 20000 unlabeled
training samples. Optimization is performed using SGD with
a momentum coefficient of 0.9 and a cosine annealing learning
rate scheduler. The initial learning rate is set to 0.001. The wr
is set to 100. The pair-construction strategy is generalized by in-
troducing a similarity threshold (τ ), which enables more flexible
construction of pairs:

f1(xi)f1(xj) + (1− f1(xi))(1− f1(xj)) ≥ τ. (37)
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Figure 10: An illustration of pairs selection based on similarity. In the top-view representation,
the colored regions indicate the pairs involved in training. It can be observed that a smaller τ leads
to a larger number of pairs being included. In particular, when τ = 0.5, the selection becomes
equivalent to pairs selection using pseudo labels.

(a) Analysis of η (b) Analysis of went

Figure 11: Analyses of η and went.

For example, a lower threshold allows more pairs to participate in training, but also introduces a
higher proportion of noisy pairs. As illustrated in the Figure 10, when τ = 0.5, the strategy is
equivalent to selecting samples with ỹi = ỹj as pairs. In this experiment, τ is set to 0.2 to ensure
the inclusion of a sufficient number of pairs during training. As shown in Table 9, L̃r significantly
improves the classification performance of the baseline model and accelerates the model’s correct
fitting of the training data, which may in turn facilitate label disambiguation (Figure 9).

Analysis on Imbalanced Datasets. NcPU has been validated under more challenging conditions:
class imbalance (Table 10) and distribution imbalance (Su et al., 2021; Zhao et al., 2023b) (Table 11).
WSC was selected as the comparison method due to its best performance without any auxiliary
information. In class imbalance scenarios, the number of positive samples is significantly smaller
than that of unlabeled samples. The imbalance ratio (IR) is used to quantify the degree of class
imbalance, defined as the ratio of the number of unlabeled samples to positive samples. IR can be
increased by reducing the number of positive samples (all other settings remain consistent with the
main experiments). Results in Table 10 demonstrate that NcPU is robust to class imbalance. Recent
studies (Su et al., 2021; Zhao et al., 2023b) have indicated that distribution imbalance is another
critical challenge for PU learning tasks: a low πp exerts adverse effects on classifier training. In
the experiments of Table 11, 20000 unlabeled samples were used, and distribution imbalance was
simulated by decreasing the πp (all other settings are consistent with the main experiments). Results
in Table 11 show that NcPU is robust to distribution imbalance.

Analysis of hyperparameters. η denotes the momentum hyperparameter for updating the target
network. As shown in Figure 11(a), NcPU is robust to η. In practice, we observe that NcPU may
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Table 10: Class imbalance results on CIFAR-10
dataset.

Method
IR: 80 IR: 53.33

OA F1 OA F1

WSC 81.46±3.0 71.31±6.4 89.70±0.7 86.59±1.4

NcPU(ours) 93.70±4.0 91.34±6.1 96.44±0.9 95.42±1.2

Table 11: Distribution imbalance results on
CIFAR-10 dataset.

Method
πp: 0.05 πp: 0.1

OA F1 OA F1

WSC 90.97±0.3 88.48±0.4 90.72±0.3 88.36±0.4

NcPU(ours) 93.57±0.5 91.36±0.7 93.88±0.4 91.81±0.6

Table 12: Computational overhead of different methods on CIFAR-10 dataset.

Method
Training Phase Inference Phase Task Performance

Training Time/Epoch (s) Batch Inference
(ms/256 samples)

GFLOPs OA F1

nnPU 5.06

12.92 0.56

87.29±0.5 83.71±0.6

LaGAM 14.79 95.78±0.5 94.90±0.6

WSC 16.00 90.55±0.3 87.92±0.8

NcPU 14.84 97.36±0.1 96.67±0.2

occasionally exhibit instability during training with a very small probability, but this issue can be
effectively mitigated by the entropy regularization term. Furthermore, the model is also robust to
the weighting of the entropy regularization went (Figure 11(b)).

I ANALYSIS ON COMPUTATIONAL OVERHEAD

The comparison of computational overhead between NcPU and other existing PU learning methods
in both training and inference phases is presented in Table 12. Among these methods, nnPU is a
classic PU learning algorithm without a representation learning module, while LaGAM, WSC, and
NcPU all incorporate representation learning modules: (1) In the training phase, compared with
nnPU, the PU learning algorithms with representation learning modules exhibit increased training
time per epoch, but there is no significant difference in the per-epoch training time between NcPU
and the other algorithms with representation learning modules; (2) In the inference phase, NcPU
and other methods only utilize a single classification network for inference, thus NcPU achieves
the same inference speed and computational complexity to the other methods; (3) Compared with
other methods with representation learning modules, NcPU does not show a significant increase in
per-epoch training time, yet it delivers a substantial improvement in OA and F1.

J THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were employed exclusively for the purpose of correcting grammat-
ical errors and enhancing the clarity of expression.
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