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Abstract001

Graph-based Retrieval-Augmented Generation002
(GraphRAG) enhances Large Language Mod-003
els (LLMs) by integrating structured knowl-004
edge graphs, but it faces challenges in subop-005
timal path selection and redundant entity re-006
trieval. To address these, we propose three key007
improvements: (1) LLM-driven Structured008
Entity Extraction, which enhances query un-009
derstanding by extracting structured entities010
prior to retrieval; (2) Beam Search-based011
Path Filtering, which selects globally coher-012
ent reasoning paths over greedy nearest neigh-013
bor search; and (3) Semantic Diversity Score014
(SDS), a novel metric that reduces redundancy015
by quantifying the diversity of retrieved entity016
clusters.017

We evaluate our approach on multiple-choice018
QA datasets: MCTest, LexGLUE CaseHold,019
PubMedQA, and MedQA. Our method im-020
proves accuracy by +1.16%, +6.53%, +4.9%,021
and +0.31% compared to the baseline LLaMA022
3.1-8b, demonstrating enhanced retrieval in-023
formativeness and path coherence. Addition-024
ally, experiments on various LLMs, includ-025
ing Qwen2.5-7B, Gemma2-9B, and LLaMA026
3.1-8B, show accuracy increases of +12.34%,027
+22.50%, and +1.33% on MCTest, respec-028
tively. While our method improves factual con-029
sistency and reasoning quality, further work is030
needed to adapt SDS to domain-specific tasks031
such as biomedical question answering.032

1 Introduction033

Large Language Models (LLMs) have achieved034

state-of-the-art performance across numerous NLP035

tasks (Zhao et al., 2024), but they still suffer from036

limitations such as knowledge staleness and halluci-037

nation (Petroni et al., 2019). Retrieval-Augmented038

Generation (RAG) has emerged as a promising039

solution, enabling LLMs to retrieve relevant exter-040

nal knowledge to improve factual accuracy (Lewis041

et al., 2020).042

Recently, GraphRAG has been proposed as 043

an extension of RAG that integrates structured 044

knowledge graphs (KGs) into retrieval, enhanc- 045

ing LLM reasoning by leveraging structured entity- 046

relationship graphs (Edge et al., 2024; Procko and 047

Ochoa, 2024). GraphRAG constructs an entity- 048

relation Graph from a knowledge graph and re- 049

trieves subgraphs relevant to the query (Xu et al.). 050

However, despite its advantages, GraphRAG still 051

faces the following challenges: 1)Traditional word 052

embedding methods while effective for local simi- 053

larity matching, exhibit limited capacity to capture 054

nuanced contextual semantics or model long-range 055

dependencies in knowledge graphs(Zhou et al., 056

2020). 2)Existing implementations often prioritize 057

entity-level relevance over graph structural coher- 058

ence, thereby ignoring hierarchical relationships 059

and topological constraints inherent in KGs(Shi 060

et al.). 3) Dense retrieval mechanisms can cause 061

redundant information to mask key knowledge ele- 062

ments(Karpukhin et al., 2020). 063

To address these challenges, we propose an en- 064

hanced GraphRAG framework with the following 065

key contributions: 066

• LLM-driven Structured Entity Extraction: 067

We improve query understanding by extract- 068

ing structured entities and keywords using an 069

LLM before retrieval. 070

• Beam Search-based Path Filtering: Instead 071

of greedy nearest neighbor selection, we em- 072

ploy beam search to optimize retrieval paths 073

and improve global coherence. 074

• Semantic Diversity Score (SDS): We intro- 075

duce SDS as a novel metric to maximize in- 076

formativeness while reducing redundant infor- 077

mation within retrieved paths. 078

We evaluate our method based on Llama3.1- 079

8B(Grattafiori et al., 2024) on four multiple-choice 080
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QA datasets: MCTest, LexGLUE CaseHold,081

PubMedQA, and MedQA(Chalkidis et al., 2022;082

Richardson et al., 2013; Jin et al., 2019, 2020).083

Our approach demonstrates consistent improve-084

ments in accuracy, highlighting the effectiveness085

of structured retrieval and path optimization within086

GraphRAG. Additionally, we test the performance087

of Qwen2-7B(Qwen et al., 2025) and Gemma2-088

9B(Team et al., 2024) on MCTest, demonstrating089

that our method provides consistent enhancements090

across different large models.091

2 Related Work092

Retrieval-Augmented Generation (RAG)093

Retrieval-Augmented Generation (RAG) has094

emerged as a promising paradigm that enhances095

large language models (LLMs) with external096

knowledge retrieval to mitigate issues such as097

hallucination and factual inconsistency. Since the098

introduction of RAG by Lewis et al.(Lewis et al.,099

2020), various works have improved the retrieval100

and generation components by leveraging dense101

retrieval(Karpukhin et al., 2020), hybrid search102

strategies(Izacard and Grave, 2021), and adaptive103

retrieval selection(Ram et al., 2023). However,104

most RAG implementations rely on vector-based105

similarity search, which lacks structured reasoning106

over retrieved knowledge.107

Graph-Based Retrieval in RAG To address the108

limitations of flat dense retrieval, GraphRAG was109

introduced as a structured retrieval approach that110

organizes knowledge into a graph and enables111

retrieval based on entity relationships. Recent112

works have explored knowledge graphs (KGs) and113

graph neural networks (GNNs) for retrieval(Atif114

et al., 2023; Shi et al., 2024). Graph-based re-115

trieval has demonstrated advantages in multi-hop116

reasoning and contextual disambiguation, partic-117

ularly in domains such as scientific literature re-118

trieval(Agarwal et al., 2024) and biomedical knowl-119

edge graphs(Soman et al.). However, existing120

GraphRAG implementations often rely on greedy121

nearest neighbor search, ranking entities based on122

cosine similarity with the query, which may lead to123

suboptimal retrieval paths.124

Path Optimization in Knowledge Graphs Path125

selection and optimization are critical challenges126

in graph-based information retrieval, particularly127

in multi-hop reasoning tasks. Early approaches pri-128

marily relied on shortest-path algorithms and ran-129

dom walk-based methods for traversing knowledge 130

graphs(Tong et al., 2006). More recent work has 131

explored beam search strategies to enhance multi- 132

hop reasoning in knowledge graphs(Xiong et al., 133

2017), aiming to ensure that the retrieved paths re- 134

main both semantically informative and globally 135

coherent. However, existing methods often rely on 136

heuristic-based ranking mechanisms and lack an ex- 137

plicit optimization criterion for selecting paths that 138

best preserve contextual relevance and knowledge 139

consistency. 140

3 Approach 141

In this section, we introduce our approach for 142

improving entity retrieval and path selection in 143

GraphRAG. We propose two key enhancements: 144

(1) Structured Query-based Entity Extraction, 145

which refines entity retrieval by explicitly extract- 146

ing relevant entities from the query, and (2) Beam 147

Search-based Path Optimization, which incor- 148

porates a novel Semantic Diversity Score (SDS) 149

to improve the informativeness and coherence of 150

selected paths. 151

Figure 1 illustrates the overall workflow of our 152

approach. The process consists of three main steps: 153

first, structured entity extraction is applied to iden- 154

tify relevant entities from the query. Second, a 155

subgraph is constructed based on retrieved entities 156

and their relationships. Finally, beam search is per- 157

formed to optimize path selection, leveraging SDS 158

to encourage diverse and informative knowledge 159

paths. 160

3.1 Structured Entity Extraction for 161

Graph-Based Retrieval 162

Traditional GraphRAG methods retrieve relevant 163

entities by directly comparing the query embed- 164

ding with entity embeddings using cosine similar- 165

ity. However, this approach can be suboptimal, 166

as queries often contain multiple relevant entities 167

or concepts that are not well captured by a single 168

embedding. 169

To address this, we first extract structured en- 170

tity representations from the query using a large 171

language model (LLM). Given a natural language 172

query, the model outputs a set of potentially rele- 173

vant entities and key concepts. Formally, given a 174

query q, the model produces: 175

Eq = {e1, e2, ..., en}, Kq = {k1, k2, ..., km}
(1) 176
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Query
Who is Scrooge, and what are his main relationships?
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Prompt: You are an expert in information
retrieval and knowledge extraction. Given a
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entities and keywords in a structured format.
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Figure 1: Overview of our proposed GraphRAG-based retrieval method with Beam Search.

where Eq represents extracted entity candidates and177

Kq denotes relevant keywords. These extracted178

elements are then used for graph-based retrieval,179

replacing the traditional method that relies solely180

on query embeddings.181

3.2 Path Filtering with Beam Search and182

Semantic Diversity Score (SDS)183

Once a set of relevant entities is identified, we184

construct a subgraph by selecting k-hop neighbors185

around them. Given this subgraph, our goal is to186

extract coherent and informative reasoning paths187

that maximize informativeness while avoiding re-188

dundant or noisy entities.189

3.2.1 Beam Search for Path Exploration190

As shown in Figure 2, we employ beam search to191

explore multiple candidate paths, evaluating them192

based on entity relevance, relationship strength, and193

semantic diversity. Beam search maintains a set of194

top-ranked paths at each expansion step, ensuring195

global coherence. The paths are scored using a196

weighted function that incorporates these factors.197

3.2.2 Semantic Diversity Score (SDS) for Path198

Optimization199

To explicitly optimize the informativeness of re-200

trieved paths, we introduce Semantic Diversity201

Score (SDS) as a penalty term in the beam search202

scoring function. SDS measures the diversity of203

semantic information within a path, encouraging204

paths that contain more non-redundant information205

while discouraging paths with excessive semantic206

overlap.207

For a given path P = {e1, e2, ..., ek}, we com- 208

pute SDS as follows: 209

1. Compute the pairwise cosine similarity ma- 210

trix of entity embeddings along the path. 211

2. Perform clustering based on a similarity 212

threshold τ , grouping semantically equivalent 213

entities. 214

3. Compute the Shannon entropy of the cluster 215

distribution: 216

SDS(P ) = −
∑
i

pi log pi (2) 217

where pi represents the proportion of entities 218

in cluster i. 219

Paths with higher SDS contain more diverse and 220

complementary information, while paths with low 221

SDS are penalized. 222

To ensure the selected paths are not only diverse 223

but also relevant and globally coherent, we incorpo- 224

rate Relevance Score, Relation Score, and Path 225

Length Penalty into the scoring function: 226

Score(P ) =
∑
e∈P

Relevance(e)

+ γ
∑

(ei,ej)∈P

Relation(ei, ej)

− λ · SDS(P )

− µ · |P |

(3) 227

where
∑

e∈P Relevance(e) measures the indi- 228

vidual importance of each entity in the path with 229
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respect to the query.
∑

(ei,ej)∈P Relation(ei, ej)230

quantifies the strength of semantic connections be-231

tween entity pairs along the path, weighted by γ.232

SDS(P ) penalizes redundant paths with high se-233

mantic overlap, controlled by λ. |P | represents the234

length of the path, with µ acting as a penalty factor235

to discourage unnecessarily long paths.236

By integrating these components, our method237

prioritizes paths that are semantically rich, well-238

connected, and concise, leading to improved re-239

trieval quality in GraphRAG.240

  Compute Path Scores 

Relevance

Relation

Semantic Diversity
Score (SDS)

Path Length Penalty

 

Query

Candidate Paths

Subgraph
Construction

Expand
Paths

Output Final Path

Select
Top-K
Paths

Figure 2: Path Scoring Framework

3.3 End-to-End Query Processing Pipeline241

Our full retrieval and reasoning pipeline is as fol-242

lows:243

1. Entity Extraction: Use an LLM to extract244

structured entities and keywords from the245

query.246

2. Subgraph Construction: Retrieve relevant247

entities and construct a local knowledge sub-248

graph.249

3. Beam Search Path Filtering: Generate can-250

didate reasoning paths and rank them using251

SDS.252

4. Final Context Selection: Retrieve the top-253

ranked paths and use them for response gener-254

ation.255

This approach ensures that the retrieved knowl- 256

edge is contextually relevant, semantically di- 257

verse, and globally coherent, significantly improv- 258

ing the effectiveness of GraphRAG for knowledge- 259

intensive tasks. 260

4 Experiments 261

4.1 Experimental Setup 262

We evaluate our approach on multiple-choice 263

question-answering tasks across four datasets: 264

MCTest, LexGLUE CaseHold, PubMedQA 265

(pqd_label) and MedQA. We utilize LLaMA 3.1- 266

8B as the underlying large language model (LLM) 267

and do not apply any fine-tuning, relying solely on 268

its inference capabilities. Accuracy is used as the 269

primary evaluation metric. 270

We evaluate the effectiveness of our approach 271

across different Large Language Models (LLMs), 272

including Qwen2.5-7B, Gemma2-9B, and LLaMA 273

3.1-8B. 274

The experiments were conducted on a system 275

equipped with two NVIDIA A40 GPUs. 276

4.2 Results 277

Table 1 presents the accuracy of different config- 278

urations on the three datasets. Our baseline is the 279

LLaMA 3.1-8B model. We then compare various 280

enhancements strategies: 281

• GraphRAG: Standard GraphRAG retrieval. 282

• GraphRAG + Beam Search: Path filtering 283

using beam search. 284

• GraphRAG + LLM Entity Extraction: 285

Query entities extracted using an LLM before 286

retrieval. 287

• GraphRAG + LLM Entity Extraction + 288

Beam Search: A combination of both op- 289

timizations. 290

Additionally, we investigate the performance of 291

our method across different LLMs on the MCTest 292

dataset. As shown in Table 2, we achieve signifi- 293

cant accuracy improvements across all models. 294

4.3 Analysis 295

The results demonstrate the effectiveness of inte- 296

grating GraphRAG into retrieval-augmented gen- 297

eration (RAG). Across most datasets, GraphRAG 298

consistently improves accuracy compared to the 299

vanilla LLaMA 3.1-8B model, with notable gains 300
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Table 1: Ablation Study: Accuracy (%) on different datasets with various retrieval and path optimization strategies.
The base LLM is LLaMA 3.1-8B.

Method MCTest LexGLUE CaseHold PubMedQA MedQA

LLaMA 3.1-8B 93.17% 55.47% 71.90% 59.31%
GraphRAG (Base) 94.00% 60.67% 76.80% 59.07%

+ Beam Search (Path Filtering) 93.33% 61.81% 76.30% 59.31%
+ LLM Entity Extraction 94.17% 61.86% 76.40% 59.54%
+ Beam Search + SDS (Full Model) 94.50% 61.92% 76.80% 59.62%

Table 2: Accuracy (%) comparison on MCTest dataset using different LLM models with and without our method.

Model Accuracy (Original LLM) Accuracy (With Our Method)

Qwen2.5-7B 78.33% 90.67%
Gemma2-9B 74.83%% 97.33%
LLaMA 3.1-8B 93.17% 94.50%

in LexGLUE CaseHold and PubMedQA (+5.2%301

and +4.9%, respectively). However, the improve-302

ment on MedQA is more modest (+0.31% for the303

full model), likely due to its reliance on special-304

ized medical reasoning beyond general knowledge305

retrieval.306

The use of beam search for path filtering fur-307

ther refines retrieval, leading to slight accuracy im-308

provements in LexGLUE CaseHold (+1.14%) and309

PubMedQA (+0.2%), but shows limited impact on310

MedQA (+0.31%). Notably, on MCTest, beam311

search slightly reduced accuracy (-0.67%), likely312

due to overly aggressive filtering of relevant paths.313

The best performance across all datasets is314

achieved when LLM-based entity extraction is com-315

bined with beam search and SDS. This suggests316

that structured entity extraction is crucial for select-317

ing informative paths, even in domains like MedQA318

where semantic diversity may conflict with factual319

specificity.320

Table 2 shows our method significantly im-321

proves the performance of various LLMs across322

the MCTest dataset. The accuracy for Qwen2.5-323

7B improves from 78.33% to 90.67%, represent-324

ing a +12.34% gain. For Gemma2-9B, the accu-325

racy increases from 74.83% to 97.33%, which is326

a +22.50% improvement. LLaMA 3.1-8B, on the327

other hand, improves from 93.17% to 94.50%, a328

more modest increase of +1.33%.329

4.4 Computational Efficiency330

Despite accuracy improvements, adding beam331

search and entity extraction introduces additional332

computational overhead. In future work, we aim to 333

optimize the efficiency of these steps while main- 334

taining retrieval quality. 335

4.5 Performance on PubMedQA and MedQA 336

While our approach demonstrates consistent im- 337

provements on MCTest and LexGLUE CaseHold, 338

the performance on PubMedQA exhibits a slight 339

decrease when applying Beam Search-based path 340

filtering. Specifically, GraphRAG achieves 76.80% 341

accuracy, while GraphRAG with Beam Search 342

slightly drops to 76.30%, and GraphRAG with en- 343

tity extraction + Beam Search achieves 76.40%. 344

On MedQA, the full model achieves 59.62%, only 345

marginally higher than the baseline 59.31%. 346

We hypothesize that this phenomenon is due to 347

the following factors: 348

1. Precision-sensitive nature of medical QA: 349

Unlike general-domain QA tasks, medical 350

question answering relies on highly specific 351

factual knowledge. Beam Search may filter 352

out critical medical concepts, leading to infor- 353

mation loss and reduced performance. 354

2. Suboptimal Semantic Diversity Score (SDS) 355

for medical text: Our path optimization re- 356

lies on SDS, which encourages diverse paths. 357

However, in medical QA, the most relevant 358

paths are often highly specific rather than di- 359

verse, making SDS less effective in this do- 360

main. 361

3. Limitations of LLaMA 3.1-8B on medical 362

reasoning: The underlying LLM may not 363
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be as specialized in medical knowledge as364

domain-specific models such as BioBERT or365

Med-PaLM, which could further limit perfor-366

mance gains.367

Future work may explore task-specific path fil-368

tering strategies, incorporating medical knowledge369

graphs (e.g., UMLS, SNOMED CT) to improve370

entity selection. Additionally, adapting SDS for fac-371

tual consistency rather than diversity may further372

enhance performance on medical QA tasks.373

5 Conclusion374

In this work, we propose an improved retrieval-375

augmented generation (RAG) framework by en-376

hancing entity retrieval and path filtering in377

GraphRAG. Our approach first utilizes a large lan-378

guage model (LLM) to extract potential entities379

from the query before performing entity retrieval,380

ensuring more accurate and relevant entity selec-381

tion. Additionally, we introduce a beam search-382

based path filtering strategy, incorporating a Se-383

mantic Diversity Score (SDS) to balance path in-384

formativeness and redundancy.385

Experimental results on multiple-choice QA386

datasets demonstrate the effectiveness of our387

method. Our approach consistently improves re-388

trieval quality, leading to better downstream task389

performance. Notably, we achieve substantial gains390

in accuracy across datasets without any fine-tuning391

of the LLM. Our method demonstrates consistent392

improvement across multiple LLMs. The results393

highlight the versatility and effectiveness of our394

approach in enhancing the performance of a wide395

range of models, suggesting that it can be general-396

ized to various language models in future work.397

Despite these improvements, our method has398

certain limitations. The reliance on LLMs for en-399

tity extraction introduces additional computational400

overhead, and SDS-based path filtering may not401

generalize equally well across different domains.402

Future work will explore more efficient entity ex-403

traction techniques, adaptive path selection mech-404

anisms, and broader evaluation on open-domain405

question answering tasks.406

Limitations407

While our approach improves entity retrieval and408

path selection in GraphRAG, it also introduces sev-409

eral limitations.410

First, the reliance on a large language model for411

query-based entity extraction adds additional com-412

putational overhead. Although this step enhances 413

retrieval quality, it may not be feasible for real-time 414

applications or resource-constrained environments. 415

Future work should explore more efficient entity 416

extraction mechanisms, such as lightweight neural 417

classifiers or retrieval-based heuristics. 418

Second, our Semantic Diversity Score (SDS)- 419

based path filtering prioritizes paths with diverse 420

entity semantics, but it does not explicitly model 421

query-specific relevance beyond cosine similarity. 422

This may result in suboptimal path selection when 423

the most relevant entities are semantically similar. 424

Adaptive weighting strategies that incorporate task- 425

specific signals could further refine our approach. 426

Finally, our experiments focus only on multiple- 427

choice QA datasets. While the results demon- 428

strate consistent improvements, further evaluation 429

is needed on broader NLP tasks, such as open- 430

domain question answering, document-grounded 431

generation, and structured reasoning benchmarks. 432

Ethics Statement 433

Our work focuses on improving entity retrieval and 434

path selection in GraphRAG for knowledge-based 435

reasoning. The datasets used in our experiments 436

are publicly available and widely used in the NLP 437

community. No personally identifiable information 438

(PII) or sensitive data is involved in our study. 439

However, as our approach relies on large lan- 440

guage models (LLMs) for entity extraction, poten- 441

tial biases in LLM-generated outputs could propa- 442

gate into the retrieval process. While our method 443

does not introduce new biases, future work should 444

explore mitigation strategies to ensure fairness and 445

robustness in knowledge retrieval across different 446

domains. 447
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