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Abstract
Adversarial examples for neural networks are
known to be transferable: examples optimized
to be misclassified by a “source” network are of-
ten misclassified by other “destination” networks.
Here, we show that training the source network
to be “slightly robust”—that is, robust to small-
magnitude adversarial examples—substantially
improves the transferability of targeted attacks,
even between architectures as different as convo-
lutional neural networks and transformers. In fact,
we show that these adversarial examples can trans-
fer representation (penultimate) layer features sub-
stantially better than adversarial examples gener-
ated with non-robust networks. We argue that this
result supports a non-intuitive hypothesis: slightly
robust networks exhibit universal features—ones
that tend to overlap with the features learned by
all other networks trained on the same dataset.
This suggests that the features of a single slightly-
robust neural network may be useful to derive
insight about the features of every non-robust neu-
ral network trained on the same distribution.

1. Introduction
Neural-network image classifiers are well-known to be sus-
ceptible to adversarial examples—images that are perturbed
in a way that is largely imperceptible to humans but that
cause the neural network to make misclassifications. Many
explanations have been offered for this susceptibility as well
as for the transferability of adversarial examples across net-
work architectures and even training sets; however, the ML
community’s understanding of these phenomena remains
incomplete.

Here, we find that the features of slightly-robust convolu-
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tional neural networks substantially overlap with the fea-
tures of every tested non-robust network, including trans-
former networks (ViT and CLIP (Dosovitskiy et al., 2020;
Radford et al., 2021)), which differ substantially in archi-
tecture, and in the case of CLIP, in the training objective.
As a practical matter, this means that targeted adversarial
examples—which aim to fool a network into misclassifying
the example as a chosen class—constructed with slightly-
robust “source” networks are highly transferable to non-
robust “destination” networks, regardless of architecture. In
other words, the features of slightly-robust networks are uni-
versal with respect to the features of non-robust networks
(Olah et al., 2020). This notion of universality can explain
why slightly-robust networks give rise to more transferable
attacks and have better weight initialization for downstream
transfer-learning tasks (Liang et al., 2020; Salman et al.,
2020; Terzi et al., 2020; Utrera et al., 2020). In addition, the
phenomenon suggests that the features of a single slightly-
robust network may be useful to derive insight about the
features of every non-robust network.

2. The Exceptional Transferability of
Adversarial Examples Generated with
Slightly-Robust Classifiers

In this section, we describe the methodology and results
of our experiments on the transferability of adversarial ex-
amples when generated with a adversarially-trained source
networks. Adversarial training involves adversarially per-
turbing the input at the training step (Madry et al., 2017).
The training is parameterized by a value ε, which specifies
the maximum `2 norm of the adversarial perturbation. We
call this parameter the robustness parameter of the network
and say that a network is ε-robust when it has a robustness
parameter of ε. Our goal is to quantify how the robustness
parameter of the source network affects the transferability
of adversarial examples. We evaluate the targeted transfer-
ability of adversarial examples to destination convolutional
networks Xception (Chollet, 2017), VGG (Simonyan &
Zisserman, 2014), ResNet (He et al., 2016a;b), Inception
(Szegedy et al., 2016), MobileNet (Howard et al., 2017),
DenseNet (Huang et al., 2017), NASNetLarge (Zoph et al.,
2018), and EfficientNet (Tan & Le, 2019), as well as two
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Figure 1. Targeted transfer attack success rate against ImageNet
classifiers using ε-robust ResNet50 source models. The targeted
transferable adversarial examples are limited by a maximum per-
turbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack.
The baseline transfer rate refers the rate at which the original (un-
perturbed) images are classified as the target class. (Best viewed
in color.)

transformer-based networks, ViT (Dosovitskiy et al., 2020)
and CLIP (Radford et al., 2021).

Generating Adversarial Examples. We generate tar-
geted adversarial examples using 1000 randomly selected
images from the ImageNet validation dataset and 1000 ran-
domly selected target classes. We generate adversarial ex-
amples for each image-target pair, for each source network
(of different ε-robustness). We run the TMDI-FGSM algo-
rithm for 300 iterations to generate each perturbation (Zhao
et al., 2020). We detail the exact process in the appendix.

Transferability to Convolutional Networks. In Fig-
ure 1, we plot the transfer success rate for the targeted
adversarial examples. We include the baseline performance
of the attacks that would be measured if the images were
unperturbed. We find that across every convolutional desti-
nation network, a source network with a small robustness
parameter (ε ≈ 0.1) improves the transfer success rate
when compared to the non-robust (ε = 0) and more-robust
(ε > 0.5) source networks (Figure 1).

Transferability to Transformer-Based Classifiers. Few
studies have addressed the robustness of transformer-based
classifiers to transfer attacks (Shao et al., 2021). To our
knowledge, our paper is the first to address targeted transfer
attacks against transformer architectures. We find a strik-
ing result: targeted adversarial examples constructed with
non-robust convolutional source networks are almost en-
tirely non-transferable to transformer networks (Figure 1).
This suggests that the features learned by transformer-based
models and non-robust convolutional models are largely
different. However, we find that using a slightly-robust
ResNet50 classifier as a source network dramatically im-
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Figure 2. Targeted transfer attack success rate against destination
(ε = 3)-robust ImageNet classifiers using ε-robust ResNet50
source networks. The targeted transferable adversarial exam-
ples are limited by a maximum perturbation size ‖δ‖∞ ≤ 16/255.
Higher is a more successful attack. Baseline refers the rate at
which unperturbed images are classified as the target class. (Best
viewed in color.)

proves the transferability of targeted adversarial examples
to transformer-based classifiers. The optimal robustness
parameter to maximize transferability is larger when the
destination network is a transformer (ε ≈ 1 than when it is
convolutional (ε ≈ 0.1).

Attacking Adversarially-Trained Models. Adversarial
training has been shown to improve robustness to transfer
attacks (Madry et al., 2017). We evaluate the transferability
of adversarial examples on adversarially trained destina-
tion networks. Even though the adversarial perturbations
which we use to attack each adversarially-trained network
are larger than the magnitude for which the destination net-
works are trained to be robust, the adversarial examples
generated using non-robust (ε = 0) networks do not transfer
to the robust networks. However, as the robustness of the
source network increases, the attack success rate increases
substantially. Similarly to Figure 1, Figure 2 includes the
baseline performance of the attacks that would be measured
if the images were unperturbed.

3. Universality of Slightly-Robust Features
The previous section established that slightly-robust net-
works can be used as source networks to construct highly
transferable adversarial examples. In this section, we exam-
ine the reason why adversarial examples transfer success-
fully.

It has been previously shown that robust and non-robust
features overlap to some degree (Springer et al., 2021). Intu-
itively, this overlap is speculated to arise, for example, when
a non-robust feature identifies a local pattern, such as the
texture of a dog ear, and when a robust feature identifies a
more global pattern, such as an entire dog. However, there
may be many equally-predictive local features. For exam-
ple two local features, one which responds to a dog nose
and one a dog ear, may be equally predictive. Both would
overlap with a more global feature that responds to an entire



Uncovering Universal Features

dog, but not with each other. Since there may be many non-
overlapping features that are equally predictive, a classifier
may only learn a subset of them. A classifier which learns
features that overlap substantially with the features of every
other standard classifier of a certain type (e.g., non-robust
and trained on the same distribution) is said to have features
that are universal with respect to this type (Olah et al., 2020).
We speculate that non-robust and robust neural networks
learn local and global features, respectively, for example,
due to the association between non-robust features and tex-
ture bias, and robust features and shape bias (Geirhos et al.,
2018). Thus, we expect that the features of robust networks
are universal with respect to non-robust networks trained
on the same distribution. If true, this means not only that
robust networks would transfer the classification, but also
the features (i.e., representation layer activations).

3.1. Testing Universality of Slightly-Robust Features

We aim to address the question, to what extent do adversar-
ial examples transfer representation-layer features transfer
across networks—that is, evoke analogous patterns of ac-
tivation? In particular, we show that adversarial examples
constructed to attack slightly-robust source networks trans-
fer features substantially more effectively to every tested
destination network than non-robust networks. This result
supports our hypothesis that slightly-robust networks rely
on universal features.

Our experiments rely on two types of adversarial examples:
(1) class-targeted, which are optimized to produce a specific
incorrect class in a source network, and (2) representation-
targeted, which are optimized to produce a similar pattern
of activation in the representation layer as a specific input
of a different class. We refer to the degree to which adver-
sarial examples of a source model can analogously affect
the features that are computed by the representation layer of
the destination model as the representation transferability
from source to destination. By contrast, class transferability
(what is commonly referred to as just transferability) refers
to the degree to which adversarial examples can analogously
affect the output of the destination network.

Measuring Representation Transferability and Univer-
sality. To measure representation transferability, we gen-
erate representation-targeted adversarial examples by choos-
ing two examples from a dataset, y0 and x, with dif-
ferent classes, and applying the TMDI-FGSM algorithm
(Zhao et al., 2020) to minimize the `2 distance between
the representation-layer activations in the source network
evoked by the adversarial example, y = y0+δ, and the target
input x. We limit the `∞ norm of δ to the standard 16/255.
Both x and y share similar representation-layer activations
in the source network. If x and y also produce similar
representation-layer activations in the destination network,
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Figure 3. t-SNE plots of destination-network representations of
representation-targeted adversarial examples generated by using
whitebox ResNet50 models of specified ε-robustness. (Best viewed
in color and magnified.)

then the representation transferability of the source network
to the destination network is high. We select 990 initial
images (y0) and 10 targets (x), and construct representation-
targeted adversarial examples for each pair, for a total of
9900. By measuring the similarity of the representations for
each pair (x, y) in the destination network, we can measure
the representation transferability of the source network.

3.2. Results

We plot the t-distributed stochastic neighbor embedding
(t-SNE) of the representation vectors of each representation-
targeted adversarial example y in the destination network
(Figure 3). Each color corresponds to one of the 10 target
images (x). The 10 stars in each plot correspond to the
t-SNE embedding of the destination-network representation
of each target x. When representation transferability is high,
points associated with representation-targeted adversarial
examples group tightly next to the star associated with their
target (in Figure 3, points group by color). We observe
that slightly-robust source networks exhibit a high degree
of representation transferability across every tested model,
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Table 1. Cosine similarity between representations (in the destina-
tion network) of representation-targeted adversarial examples y
and the corresponding target image x, as a function of robustness
parameter ε of the source network. Each value is an average over
the 9900 (x, y) pairs of representation vectors.

Source network robustness parameter (ε)
Dest 0 0.01 0.03 0.05 0.1 0.25 0.5 1 3 5

Xcept 0.46 0.50 0.53 0.56 0.59 0.58 0.57 0.54 0.44 0.40
VGG16 0.33 0.40 0.41 0.49 0.52 0.52 0.52 0.48 0.38 0.33
RN50 0.28 0.34 0.37 0.43 0.49 0.49 0.51 0.48 0.38 0.32
IncV3 0.57 0.61 0.62 0.64 0.67 0.66 0.65 0.63 0.57 0.53
MNv2 0.43 0.45 0.46 0.49 0.52 0.51 0.51 0.50 0.46 0.43
DN121 0.67 0.69 0.69 0.71 0.73 0.71 0.71 0.68 0.62 0.58
NNL 0.36 0.42 0.45 0.49 0.54 0.51 0.48 0.44 0.32 0.27
ENB4 0.09 0.11 0.14 0.14 0.24 0.22 0.23 0.20 0.11 0.07
ViT 0.07 0.09 0.11 0.13 0.20 0.21 0.21 0.20 0.12 0.09

CLIP 0.53 0.54 0.55 0.56 0.59 0.51 0.61 0.61 0.58 0.57

in comparison with non-robust and more-robust source net-
works. This suggests that slightly-robust source networks
rely on universal features—features that are useful to every
tested non-robust destination model, regardless of architec-
ture, and, strikingly, useful even to CLIP, whose training
objective seeks to associate images to textual descriptions
rather than to a discrete set of labels. Our results provide
empirical evidence that universal features exist and that net-
works can use adversarial training with a small robustness
parameter to learn these universal features.

As a second similarity metric, we report the mean cosine
similarity of the representations (in destination networks)
between (x, y) pairs, averaged over all 9900 such pairs for
each source network (Table 1). This similarity peaks for
destination CNNs when the source network has ε = 0.1,
except for ResNet50v2, which peaks at ε = 0.5. Destination
network ViT peaks at ε ∈ {0.25, 0.5} and CLIP when ε ∈
0.5, 1. These peaks are consistent with our t-SNE results
(Figure 3), and are included primarily for the purpose of
quantitatively confirming the visual results of our t-SNE
plots.

4. Related Work
The vulnerable features learned by neural networks have
been studied both empirically (Aubry & Russell, 2015;
Dosovitskiy & Brox, 2016; Geirhos et al., 2020; Ilyas et al.,
2019; Jo & Bengio, 2017; Mahendran & Vedaldi, 2015;
McCoy et al., 2019; Olah et al., 2017; Simonyan et al.,
2013; Wang et al., 2020; Wei, 2020; Zhang & Zhu, 2018)
and theoretically (Allen-Zhu & Li, 2020; Arpit et al., 2017;
De Palma et al., 2019; Hermann et al., 2020; Nakkiran et al.,
2019; Shah et al., 2020; Valle-Pérez et al., 2018; Wu et al.,
2017). There has been some research related to similarity
of learned features across networks (Kornblith et al., 2019;

Li et al., 2015; Olah et al., 2020; Raghu et al., 2017). In ad-
dition, robust networks have been shown to have a number
of valuable properties, including serving as a good starting
point for transfer learning (Liang et al., 2020; Salman et al.,
2020; Terzi et al., 2020; Utrera et al., 2020) and gradient in-
terpretability (Engstrom et al., 2019b). In addition, there has
been substantial work on transferable adversarial example
(Carlini & Wagner, 2017; Dong et al., 2018; 2019; Good-
fellow et al., 2014; Guo et al., 2020; Huang et al., 2019;
Inkawhich et al., 2019; 2020a;b; Kurakin et al., 2016; Li
et al., 2020; Liu et al., 2016; Papernot et al., 2016; Rozsa
et al., 2017; Sharma et al., 2019; Song et al., 2018; Tramèr
et al., 2018; Wu et al., 2020; Xie et al., 2019; Zhao et al.,
2017; 2020; Zhou et al., 2018).

5. Conclusion
In this paper, we have shown that slightly-robust models
learn features that overlap substantially with every tested
non-robust model; such features have been termed univer-
sal (Olah et al., 2020). This overlap leads to representa-
tion transferability, which can be used to construct targeted
transferable adversarial examples that transfer to across sub-
stantially different architectures (ViT) and even training
objectives (CLIP). Since most previous transferable adver-
sarial generation techniques rely on optimizing adversarial
examples over a non-robust source network, our technique
can be combined with virtually any previously existing op-
timization technique by replacing the non-robust source
network with a slightly-robust network.

More generally, our paper reveals a phenomenon that is
significant for the broader field of deep learning: we find
that different non-robust networks, even when trained with
similar convolutional architectures, do not necessarily have
many features that substantially overlap. This can have
important implications for the reliability of neural networks;
when different networks rely on different features, they are
susceptible to different types of errors. In addition, we
present an argument that, for a given task, there are features
that are useful to every tested neural network, and that these
features can be learned with small-ε adversarial training,
even when the source network architecture and learning
objective are dissimilar to those of the destination network.
Thus, by studying the features of a single slightly-robust
network, we can empirically discover properties that will be
applicable across all non-robust networks. We speculate that
this phenomenon can explain why slightly-robust networks
are successful at transfer-learning tasks (Liang et al., 2020;
Salman et al., 2020; Terzi et al., 2020; Utrera et al., 2020).
With applications across the field of machine learning, the
contributions of this paper provide an important stepping
stone towards discovering a general understanding of the
features learned by neural networks.
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A. Detailed Methods
Adversarial Examples. In this paper we are primarily concerned with properties of source networks that facilitate
transferability of adversarial examples. Let f : X → Y denote a “white-box” network (i.e., one whose architecture and
weights are known to the adversary) and let g : X → Y denote a “black-box” network (weights and architecture are
unknown to the adversary). Let (x, y) ∈ X × Y be an (unperturbed) input-label pair, where X is the input-space and Y is
the label-space. Given a maximum perturbation size ε, our goal is to optimize over f to construct a transferable adversarial
example x+ δ where ‖δ‖∞ ≤ ε and such that g(x+ δ) 6= y for the untargeted case, and g(x+ δ) = t for some target class
t ∈ Y for the targeted case.

Optimizers. Prior research has identified a number of methods for optimizing adversarial examples given a white-box
classifier f , many of which are based on the Iterative Fast Gradient Sign Method (I-FGSM) (Goodfellow et al., 2014;
Kurakin et al., 2016), in which a perturbation δi is iteratively updated to maximize the loss of the network while obeying an
`∞ norm constraint:

δi+1 = δi + α · sign∇δiL(x+ δi),

where L represents the adversarial loss function, α is a tunable step-size parameter, and x + δn is the final adversarial
example after n steps. At each step, δi is clipped such that ‖δ‖∞ ≤ ε and x+ δi is a valid image.

We adopt the state-of-the-art method recently proposed by (Zhao et al., 2020), which combines three variants of I-FGSM
and optimizes over many steps:

1. Diverse Input Iterative Fast Gradient Sign Method (DI2-FGSM), which applies a random affine transformation to the
input at each step prior to computing the gradient (Xie et al., 2019),

2. Translation-Invariant Iterative Fast Gradient Sign Method (TI-FGSM), which convolves the gradient with a Gaussian
filter (Dong et al., 2019),

3. Momentum Iterative Fast Gradient Sign Method (MI-FGSM), in which a momentum term is added to the gradient (Dong
et al., 2018).

Together called TMDI-FGSM, this optimization method can be described by the following process:

g
(i)
DI = ∇δiL(Ti(x+ δi)) (DI2-FGSM)

g
(i)
TDI = N ∗ g

(i)
DI (TI-FGSM)

g
(i)
TMDI = µ · g(i−1)TMDI +

g
(i)
DI

‖g(i)DI ‖1
(MI-FGSM)

δi+1 = δi + α · sign g(i)TMDI

where L again represents the adversarial loss function, Ti represents a random affine transformation,N represents a Gaussian
convolutional filter, µ is a tunable momentum parameter, and α is a tunable step-size parameter, and x + δn is the final
adversarial example over n steps.

For targeted adversarial examples, the loss function L should be maximized when the target label is predicted with high
confidence. For untargeted adversarial examples, this occurs when the predicted label differs from the true label, and when
the true label is given a low confidence. A number of adversarial loss functions have been proposed, including standard
cross-entropy loss (Szegedy et al., 2014), CW loss (Carlini & Wagner, 2017), and feature-disruption loss (Inkawhich et al.,
2020a). We use the highly-effective logit loss, proposed by (Zhao et al., 2020), which is maximized for targeted examples
when the logit score for a target class (i.e., the value of the output neuron associated with the target class prior to the softmax
operation) is maximized. Similarly, the untargeted version aims to minimize the logit score associated with the true class.

For the DI2 component of the optimization algorithm, we use a random resize and crop operation where each image is
resized by a factor selected uniformly between 3/4 and 4/3, and then cropped to be 224× 224 pixels randomly, with 0-valued
padding where appropriate. Then, a random horizontal flip is applied. This is equivalent to the PyTorch code:

transforms.Compose([
transforms.RandomResizedCrop(size=[224, 224],
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scale=(3/4, 4/3),
ratio=(1., 1.)),

transforms.RandomHorizontalFlip()
])

For the TI component, we apply a Gaussian filter to the gradient at each step, with the filter size of 5× 5, and the standard
deviation of the filter 1.

For the MI component, we use a momentum of 0.9.

For generating representation-targeted adversarial examples, we exclude the TI step, as we found that the representation-
targeted adversarial examples were less transferable when it was included.

Constructing Robust Source Networks. We construct robust source networks by performing adversarial training (Good-
fellow et al., 2014; Madry et al., 2017). We use projected gradient descent in order to find model parameters θ∗ that minimize
the following expression:

θ∗ = argmin
θ

E(x,y)∈D[ max
‖δ‖2≤ε

L(θ, x+ δ, y)],

where L(θ, x, y) represents the cross-entropy loss of a network with parameters θ evaluated on input x with label y. We
subject the adversarial examples constructed in the inner optimization procedure to an `2 norm constraint. We will call
this constraint ε the robustness parameter of a classifier, as it represents the (`2) magnitude of the adversarial examples
with respect to which the classifier is trained to be robust. Due to the high computational cost of adversarial training, we
rely on pre-trained robust ResNet50 models that have been pre-trained on ImageNet (Russakovsky et al., 2015). For our
experiments, we test classifiers with robustness parameters ε ∈ {0, 0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 1, 3, 5}.

Model Details. We use a number of models for our experiments. For all robust networks trained on ImageNet, we use
the pre-trained weights that are available on the GitHub page associated with Salman et al. (2020). For all convolutional
destination models, we use pre-trained weights that are included with Keras (Chollet et al., 2015). For the ViT model trained
on ImageNet, we use pre-trained weights from Melas-Kyriazi (2020). For the CLIP model, we use the code and weights
associated with (Radford et al., 2021).

We train robust CIFAR-10 models with the Robustness library (Engstrom et al., 2019a). We train for 100 epochs using a
batch size of 128. We include data augmentation. We optimize using standard stochastic gradient descent with momentum,
using a learning rate of 0.01 and a momentum parameter of 0.9, as well as a weight decay of 0.0001. For adversarial training,
we generate each adversarial example with 7 steps, using a step-size of 0.3× ε for the given robustness parameter of ε. For
the ViT model trained on CIFAR-10, we use pre-trained weights associated with Dosovitskiy et al. (2020) and finetune on
CIFAR-10 for 10 epochs.

All convolutional destination CIFAR-10 models were finetuned for 20 epochs from the pre-trained ImageNet weights that
are included with Keras (Chollet et al., 2015).

B. Comparison to Previously Published Transfer Attack Methods
We directly compare the targeted transfer attack success rate to previous state-of-the-art black-box attacks and find that our
method substantially outperforms the previous methods under similar constraints (Table 2). In particular, we evaluate our
method’s attack performace with three different loss functions: standard cross-entropy loss (Xent), Poincaré distance with a
triplet loss term (Po+Trip) (Li et al., 2020), and logit loss. We include a comparison with the feature distribution attack
(FDA) (Inkawhich et al., 2019), however, FDA requires that we train multiple supplemental models for each individual
target class, which would require thousands of supplemental models to attack all thousand classes of ImageNet. Thus, we do
not perform a direct comparison and instead report the targeted transfer attack success rate that is reported in the original
FDA paper (Inkawhich et al., 2019).
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Table 2. Direct comparison of targeted transfer attack success rate between our technique (slightly-robust source models, i.e., ε > 0)
and previously proposed strong baseline attacks (non-robust source models, i.e., ε = 0). We compare three different loss functions:
cross-entropy, Poincaré distance combined with triplet loss, and logit loss. In addition, we report the success rate of FDA from the original
paper (see text for discussion). We limit the `∞ norm of the adversarial examples to the standard value of 16/255.

Xcept VGG16 RN50v2 IncV3 MNv2 DN121 NNL ENB4 ViT CLIP

Xent ε = 0 10.4 9.6 4.6 10.6 6.4 40.5 13.1 6.8 0.8 0.1
Po+Trip ε = 0 20.8 15.2 10.0 23.0 11.6 59.3 31.2 14.2 1.3 0.3

Logit ε = 0 45.9 40.0 15.3 43.6 22.9 77.9 60.3 39.6 3.9 0.4
FDA* ε = 0 – 43.5 – – 22.9 57.9 – – – –

Xent ε = 0.1 54.0 59.4 45.8 50.8 32.1 78.8 66.0 41.1 8.6 2.4
Po+Trip ε = 0.1 59.1 57.9 53.0 56.5 39.2 78.4 72.6 45.1 11.4 3.3

Logit ε = 0.1 77.2 78.8 64.5 73.1 52.5 84.0 81.6 68.9 33.4 11.2
Xent ε = 1 60.4 69.3 66.6 58.2 46.7 69.9 61.3 56.9 29.9 19.9

Po+Trip ε = 1 48.5 54.4 60.2 49.5 39.9 62.6 53.3 45.0 22.0 12.4
Logit ε = 1 56.1 62.4 59.5 55.0 47.2 67.0 58.3 53.6 36.0 26.7

C. Extended ImageNet Data
In this section, we present extended data from the ImageNet.

Untargeted Adversarial Examples. We use the 1000 transferable adversarial examples generated to transfer to ImageNet
classifiers and plot the transfer success rate when we treat the adversarial examples as untargeted, i.e., we consider every
adversarial example which is misclassified by the destination classifier as a success (Figure 4). In addition, we include
analogous results for adversarially trained models (Figure 5).

Representation-targeted Adversarial Examples. We include the extended data for the t-SNE figure presented in the
main paper. We plot the destination-network representations of representation-targeted adversarial examples for every
destination network and source network robustness parameter that we test (Figure 6).

Additional Tested Source-Network Robustness Parameters. In the main paper, we exclude certain values of ε in
the figures that illustrate the transferability of adversarial examples for clarity, so that the results from slightly-robust
networks could be more easily seen. We include the extended results for both targeted and untargeted adversarial examples
(Figures 7 and 8). We observe a decrease in transfer performance as robustness increases past the optimal point. We
speculate that this arises from the fact that as robustness increases, smaller features on which non-robust neural networks
rely are gradually thrown away, thus reducing transfer performance.
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Figure 4. Error rate of destination networks (ImageNet classifiers) evaluated on untargeted transferable adversarial examples using ε-robust
ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the misclassification
rate of unperturbed images. (Best viewed in color.)
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Figure 5. Error rate of destination (ε = 3)-robust ImageNet classifiers evaluated on untargeted adversarial examples using ε-robust
ResNet50 source networks with perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the misclassifica-
tion rate of unperturbed images. (Best viewed in color.)
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Figure 6. Extended data: t-SNE plots of destination-network representations of representation-targeted adversarial examples generated by
using whitebox ResNet50 models of specified ε-robustness. (Best viewed in color and magnified.)
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Figure 7. Extended ImageNet data (note extended horizontal axis in comparison with Figure 1): Transfer success rate of destination
networks (CIFAR-10 classifiers) evaluated on targeted transferable adversarial examples using ε-robust ResNet50 source models with
perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the transfer rate of unperturbed images. (Best
viewed in color.)
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Figure 8. Extended ImageNet data (note extended horizontal axis in comparison with Figure 4). Error rate of destination networks
(CIFAR-10 classifiers) evaluated on untargeted transferable adversarial examples using ε-robust ResNet50 source models with perturbation
size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline refers to the misclassification rate of unperturbed images. (Best viewed
in color.)
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D. CIFAR-10 Data
We extend our experiments to the CIFAR-10 dataset to confirm that our results are general. We present the effectiveness
of targeted and untargeted transferable adversarial examples (Figures 9 and 10). In addition, we present t-SNE plots of
the destination-network representations of representation-targeted examples (Figure 11), as well as the cosine similarity
between feature representations and the target images (Table 3). For all experiments, our results are not as exaggerated
as with the ImageNet data, but nonetheless, we observe an increase in transferability of both class-targeted, untargeted,
and representation-targeted adversarial examples when we use slightly-robust source networks, confirming that our claims
generalize to networks trained on the CIFAR-10 dataset.
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Figure 9. CIFAR-10 data: Transfer success rate of destination networks (CIFAR-10 classifiers) evaluated on targeted transferable
adversarial examples using ε-robust ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack.
Baseline refers to the transfer rate of unperturbed images. (Best viewed in color.)
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Figure 10. CIFAR-10 data: Error rate of destination networks (CIFAR-10 classifiers) evaluated on untargeted transferable adversarial
examples using ε-robust ResNet50 source models with perturbation size ‖δ‖∞ ≤ 16/256. Higher is a more successful attack. Baseline
refers to the misclassification rate of unperturbed images. (Best viewed in color.)
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Figure 11. CIFAR-10 data: t-SNE plots of destination-network representations of representation-targeted adversarial examples generated
by using whitebox ResNet50 models of specified ε-robustness. (Best viewed in color and magnified.)
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Table 3. CIFAR-10 data: Cosine similarity between feature representations of representation-targeted adversarial examples and the
targeted original images by robustness parameter of source model.

0 0.01 0.03 0.05 0.1 0.25 0.5 1

Xception 0.609 0.633 0.665 0.667 0.655 0.608 0.552 0.494
VGG16 0.736 0.744 0.749 0.749 0.728 0.697 0.668 0.638
RN50 0.691 0.709 0.717 0.715 0.705 0.652 0.600 0.546
IncV3 0.662 0.686 0.706 0.700 0.695 0.637 0.590 0.532
MNV2 0.630 0.647 0.664 0.670 0.667 0.644 0.615 0.563
DN121 0.714 0.726 0.739 0.739 0.727 0.683 0.639 0.595
NNL 0.653 0.682 0.714 0.694 0.686 0.627 0.581 0.535
ENB4 0.483 0.509 0.545 0.548 0.536 0.484 0.424 0.353
ViT 0.269 0.324 0.375 0.370 0.362 0.295 0.211 0.134

CLIP 0.768 0.771 0.773 0.772 0.772 0.767 0.762 0.755

E. Examples of Adversarial Examples
We include class- and representation-targeted adversarial examples that have a perturbation generated with TMDI-FGSM
and an `∞ constraint of 16/255 (Figures 12 and 13).
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Figure 12. Examples of class-targeted adversarial examples, where the horizontal axis represents the robustness of the source network
used to generate the adversarial examples. The adversarial perturbations are subject to an `∞ constraint of 16/255, and are optimized
with the TMDI-FGSM algorithm. (Best viewed in color.)
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Figure 13. Examples of representation-targeted adversarial examples, where the horizontal axis represents the robustness of the source
network used to generate the adversarial examples. The adversarial perturbations are subject to an `∞ constraint of 16/255, and are
optimized with the TMDI-FGSM algorithm. (Best viewed in color.)


