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Abstract

We develop a rigorous mathematical analysis of zero-shot learning with attributes.
In this setting, the goal is to label novel classes with no training data, only detectors
for attributes and a description of how those attributes are correlated with the
target classes, called the class-attribute matrix. We develop the first non-trivial
lower bound on the worst-case error of the best map from attributes to classes for
this setting, even with perfect attribute detectors. The lower bound characterizes
the theoretical intrinsic difficulty of the zero-shot problem based on the available
information—the class-attribute matrix—and the bound is practically computable
from it. Our lower bound is tight, as we show that we can always find a randomized
map from attributes to classes whose expected error is upper bounded by the
value of the lower bound. We show that our analysis can be predictive of how
standard zero-shot methods behave in practice, including which classes will likely
be confused with others.

1 Introduction

Labeled training data is often scarce or unavailable, and it can be very costly to obtain. For this
reason, there is a growing interest in developing methods that can exploit source of information
other than labeled data, such as zero-shot learning (ZSL). In ZSL, we want to recognize items of
unseen classes, for which labeled data is not available. A ZSL model is trained on a disjoint set of
similar classes, called seen classes, for which labeled data is available instead. The model is trained
to map examples to auxiliary information describing the seen classes. Then, at test time, predictions
can be made using only descriptions of the unseen classes. While ZSL is increasingly common in
practice, from a theoretical perspective ZSL is a hard problem that defies analysis, because in the
worst case there can be an arbitrary shift between the distributions of the seen and unseen classes.
In this work, we take a step towards a better theoretical understanding of ZSL. We investigate the
question: Given only auxiliary information in the form of attributes describing unseen classes, what

is the smallest worst-case error than any method can guarantee? We provide the first non-trivial
answer to this question by developing a framework based on adversarial optimization. We also show
that this framework has practical application as a method for identifying when the predictions of ZSL
methods on certain unseen classes are more likely to be incorrect.

ZSL models have obtained impressive accuracy in practice, both for vision (Xian et al., 2018a)
and language domains (Sanh et al., 2022; Wei et al., 2022), but they come with no theoretical
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characterization of their accuracy. To address this gap, we analyze the attribute-based ZSL setting
that includes a large portion of the classic methods proposed in the literature (Romera-Paredes &
Torr, 2015; Lampert et al., 2014; Akata et al., 2015, 2016), as well as more recent end-to-end deep
learning approaches (Kodirov et al., 2017; Xian et al., 2018a; Huynh & Elhamifar, 2020). While this
setting does not include all varieties of ZSL (discussed further in Section 2), we view this work as a
critical first step towards building up a broader theory of ZSL. In attribute-based ZSL, an attribute
is a property of a item to be classified. Each item can either exhibit a given attribute or not. For
example, an image of a lion would often exhibit the attribute tail, while the image of a sheep would
not. Attribute-based ZSL models are trained using attribute representations of the items of the seen
classes, and a class-attribute matrix that describes pairwise relations between the seen classes and
each attribute. At test time, predictions are made for the unseen classes given the items’ attribute
representation and a new class-attribute matrix.

Romera-Paredes & Torr (2015) is one of the few works to address theoretical questions related to
ZSL. Studying attribute-based ZSL, they show a pair of basic bounds that characterize sufficient
conditions for either learning or impossibility: (1) if there is no shift from the seen to the unseen
classes, then learning is trivial, and (2) if the vectors of attributes of the seen classes are mutually
orthogonal with those of the unseen classes, then the error can be arbitrarily large in the worst case.
In this paper, we provide the first non-trivial lower bound for ZSL with attributes, addressing the
open problem posed by Romera-Paredes & Torr (2015).

We analyze ZSL with attributes by first observing that it is a two stage process consisting of a training
phase and an inference phase. In the training phase, we learn a map from the items to the attribute
space using the seen classes, while in the inference phase we use the class-attribute matrix to infer the
correct class given the item-attribute representation. Based on this two-stage decomposition, we can
identify two kinds of errors. The first kind, related to the training phase, is due to domain shift. The
map from items to the attribute space that is trained on the seen classes might not generalize accurately
to the unseen classes. This contribution to the error can be arbitrarily large without introducing
strong assumptions, as no labeled data is available for the unseen classes. Thus it is impossible
to characterize the domain shift between seen and unseen classes. The second kind, related to the
inference phase, is due to the fact that the class-attribute matrix might not fully differentiate among
the unseen classes. In particular, there can be an item of the unseen classes with a set of attributes
that according to the class-attribute matrix relation conforms with the description of two different
classes. The first kind of error, domain shift, has been extensively studied both in the theory and the
experimental literature (Mansour et al., 2009; Ben-David et al., 2010; Sener et al., 2016; Pinheiro,
2018; Luo et al., 2019). In this work, for the first time, we theoretically characterize the contribution
of the second kind of error. It is important to understand and characterize this error for specific ZSL
tasks because it corresponds to an inherent information gap in the problem setting that cannot be
circumvented with a smarter algorithm.

We provide tight lower and upper bounds on the worst-case error of the best map from attribute
representations to classes based on the class-attribute matrix. Our analysis gives a lower bound in
the sense that it bounds from below the minimum error that any method can guarantee given only
the information of the class-attribute matrix. The class-attribute matrix specifies the fraction of
items in each class that exhibit each attribute. There is a range of class-attribute distributions that
satisfy the constrains defined by a given matrix. We give a lower bound on the error of the best
possible method for the worst case distribution in that range. This distribution represents a worst case
correlation between attributes that satisfies the class-attribute matrix while maximizing the difficulty
to distinguish between attribute-representation of items belonging to distinct classes. Our analysis
also gives an upper bound in the sense that we show a randomized classifier that achieves at most the
error of the lower bound, assuming perfect item-to-attribute mapping. This also shows that the lower
bound is tight. Interestingly, the value of the lower bound can also be interpreted as the quality of the
information provided by the class-attribute matrix. To the best of our knowledge, this is the first work
to quantify such information.

Contributions. Our main contributions are the following:

1. We show the first non-trivial lower bound for attribute-based ZSL (Section 4).
2. We formulate the lower bound given a class-attribute matrix as a linear program (Section 4.1).
3. We show a closed form expression for the lower bound for binary classification (Section 4.2).
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4. We show that the lower bound is tight: we exhibit a randomized classifier whose expected
error is upper bounded by the value of the lower bound (Section 4.3).

5. We run extensive experiments comparing the theoretical results with the error of popular
attribute-based ZSL methods, on benchmark datasets. We show that information given by
the bound can be predictive of how standard methods behave, including which classes will
likely be confused with others (Section 5).

2 Background and Related Work

Much early work on ZSL focused on using logical descriptions of the classes as auxiliary information,
including attributes (Chang et al., 2008; Lampert et al., 2009). Since then, an increasing number
of ZSL methods have been proposed, which differ in methodology and the auxiliary information
they use. Examples of auxiliary information are symbolic descriptions of classes (Chang et al.,
2008; Lampert et al., 2009), pre-trained embedding of the classes (Frome et al., 2013), natural
language descriptions (Obeidat et al., 2019; Brown et al., 2020), and knowledge graphs (Wang et al.,
2018; Kampffmeyer et al., 2019; Nayak & Bach, 2020). Recent ZSL methods can be grouped into
two main categories: embedding-based and generation-based (Pourpanah et al., 2020). Seminal
embedding-based works used two-layer neural networks to link the image feature space to the
semantic one (Socher et al., 2013). Later, they evolved into deep neural networks that either map
semantic features into the visual space (Ba et al., 2015; Zhang et al., 2017; Changpinyo et al., 2017)
or project both the image and semantic features into the same space (Zhang & Saligrama, 2015;
Radford et al., 2021). Generative-based approaches employ various kind of Generative Adversarial
Networks (GANs) (Mirza & Osindero, 2014) to synthesize the features of the unseen classes, and use
them to train a ZSL classifier in a supervised fashion (Felix et al., 2018; Li et al., 2019; Xian et al.,
2018b, 2019; Narayan et al., 2020).

ZSL with attributes generally consists of learning a linear map from the item to the attribute space, in
the first stage. Then, we use the class-attribute matrix to infer the correct class given the item-attribute
representation (Xian et al., 2018a). ZSL with attributes can be seen as a special case of embedding-
based ZSL, in which the class embeddings are the rows of the class-attribute matrix. Analyzing more
general embedding-based or generation-based ZSL methods is challenging because they rely on deep
neural networks for which relatively little theory is available.

Inspired by previous work to describe classes using error-correcting output codes (Dietterich & Bakiri,
1994), Palatucci et al. (2009) were the first to propose a ZSL algorithm for which they can provide a
theoretical analysis. The algorithm learns linear classifiers individually for each binary attribute, and
the attributes are mapped to the closest class-attribute representation. While they are able to provide
a PAC bound, their analysis relies on several strong assumptions that limit the problem setting. First,
they assume that they can learn each attribute independently, but attribute dependency is a widely
recognized problem for attribute detection (Jakulin & Bratko, 2003). Second, they assume that each
class has a unique attribute representation, i.e. each attribute must be either present or not in all the
items of a given class. Finally, they also assume that they are able to sample classes from a given
distribution, and they are able to generalize to the non-sampled classes. That is, they do not separate
beforehand between seen and unseen classes, which is the common scenario observed in ZSL settings.
Conversely, our lower bound does not assume a unique binary representation for each class, as we are
given a class-attribute matrix that provides the probabilities to observe an attribute given an item of a
class. Also, our lower bound takes into account the possible correlation between attributes, and it is
computed based on the information provided on the given unseen classes.

In more recent work, Romera-Paredes & Torr (2015) draw a connection between transfer learning
(Ben-David et al., 2010) and ZSL to provide a novel theoretical result. In particular, they show that
their model is not able to generalize if the attribute representations of the seen classes are orthogonal
to the one of the unseen classes. Intuitively, if those representations are orthogonal, the attribute
map learned for the seen classes would fail to provide information for the unseen classes. This
is an impossibility result, and it is not able to arbitrarily quantify the information given for the
unseen classes. Unfortunately, transfer learning or domain adaptation like-bounds are challenging
to estimate in a ZSL setting. In fact, a term of those bounds require access to labeled data for the
unseen classes, which is unavailable in ZSL. Another term, the discrepancy, depends on the difference
between the attribute representations of the classes and the distribution of the items between seen
and unseen. While it would be theoretically possible to compute the discrepancy based on the
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information available, its computation is very challenging and it has been possible only in very
specific cases (Mansour et al., 2009).

Our novel lower bound is developed using adversarial techniques that describe the worst-case scenario
with respect to the information available. It is inspired by recent work on semi-supervised learning,
where the goal is to use the information provided by weak supervision sources (Balsubramani &
Freund, 2015; Arachie & Huang, 2021; Mazzetto et al., 2021b,a). The adversarial approach allows us
to handle the possible dependencies between the attributes.

3 Preliminaries

We denote scalar and generic items using lowercase letters, vectors using lowercase bold letters,
and matrices using bold uppercase letters. Given two vectors v and v0, we denote with vv0 the
concatenation of the two vectors. For any n 2 N, we denote with [n] the set {1, . . . , n}. Due to space
constraints, all proofs are deferred to the appendix.

Let D be a distribution defined over the classification domain X . A multiclass classification task is
specified by a labeling function y : X ! Y = [k] that maps each item x 2 X to a class j in the label
space Y , where k � 2. We say that a multiclass classification task is balanced if for each j 2 [k],
it holds that Px⇠D[y(x) = j] = 1/k. Unless otherwise stated, we assume that the classification
task is balanced. This assumption is not restrictive, and as we will observe later, it can be changed
if a different prior is known on the class probabilities. We will show that our lower bound holds
even if we do not assume balanced classes. We also assume to have access to n attribute functions

 1, . . . , n, where  i : X ! {0, 1} for i 2 [n]. We say that a classification item x 2 X has attribute
i 2 [n] if  i(x) = 1. For ease of notation, we define  (x) .

= ( 1(x), . . . , n(x))T . The codomain
of  is {0, 1}n, and it is referred to as attribute space. All the information about the target unseen
classes available to the algorithm is encoded in a class-attribute matrix A 2 [0, 1]k⇥n. The matrix
provides information on the relations between classes and attributes. In particular for a class j 2 [k],
and an attribute i 2 [n], Aj,i is the probability that  i(x) = 1 given that y(x) = j, i.e.,

Aj,i = P
x⇠D

[ i(x) = 1|y(x) = j] . (1)

An attribute-class classifier g is a map from vectors in the attribute space to classes, i.e., g : {0, 1}n !
[k]. The error of g is "(g) .

= Px⇠D[g �  (x) 6= y(x)]. Let G be a collection of all the possible
deterministic maps {0, 1}n ! [k] from the attribute space to the k classes. We are interested in
evaluating ming2G "(g). As we focus on the contribution of the information provided by the class-
attribute matrix, we assume access to the attribute functions  1, . . . , n. In practice, the map to the
attribute space is learned on the available labeled data for the seen classes (Lampert et al., 2014;
Romera-Paredes & Torr, 2015), and it is likely noisy, and can be cause of additional error.

Let p
⇤ be the (unknown) probability mass function (PMF) of the random vector

( 1(x), . . . , n(x), y(x)) where x ⇠ D. The support of p
⇤ is {0, 1}n ⇥ [k]. For v 2 {0, 1}n,

and j 2 [k], let p⇤(v, j) .
= Px⇠D[ (x) = v ^ y(x) = j]. The error of g is a function of p⇤:

"(g) = "(g, p⇤)
.
= 1�

X

v2{0,1}n

p
⇤(v, g(v)) (2)

A function g
⇤ 2 G that attains minimum error "(g⇤) = ming2G "(g) is a Bayes optimal classifier

with respect to p
⇤, i.e. for each v 2 {0, 1}n, we have that g⇤(v) = argmaxj2[k] p

⇤(v, j). Thus,

min
g2G

"(g) = 1�
X

v2{0,1}n

max
j2[k]

p
⇤(v, j) . (3)

We do not have access to labeled data for the unseen classes, so we cannot estimate p
⇤. Instead, we

construct a lower bound with respect to the set of all distributions that fit the available information.
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4 Lower Bounds for Zero-Shot Learning with Attributes

In this section, we formally define our lower bound. Consider a PMF p with support over {0, 1}n⇥[k].
We say that p satisfies the class-attribute matrix A if (as constraints (1)) for each i 2 [n] and j 2 [k],

X

v2{0,1}n:
vi=1

p(v, j) = Aj,i

X

v2{0,1}n

p(v, j) . (4)

Recall that p is balanced if for each j 2 [k], it holds that
P

v p(v, j) = 1/k. Let P(A) be the set
of all possible PMFs p with support over {0, 1}n ⇥ [k] that satisfy (4) and are balanced. Clearly,
the unknown true distribution, p⇤ 2 P(A). The set P(A) can be interpreted as the collection
of all the PMFs of the random vector ( 1, . . . , n, y) that satisfy the constraints imposed by the
information available on the prediction task and on the attribute functions. While the matrix A
provides precise information on the correlation between any pair of attribute function and class,
it fails to provide information on the correlation between attribute functions, i.e., it does not fully
specify the distribution p

⇤. Without additional information, any PMF in P(A) could be equal to p
⇤.

Similarly to (2), given a PMF p 2 P(A) and an attribute-class classifier g 2 G, we can define the
error of g with respect to the distribution p as

"(g, p)
.
= 1�

X

v2{0,1}n

p(v, g(v)) . (5)

Following the computation in (3), the error of the best map from attributes to classes with respect to
p 2 P(A) is computed as

Q(p)
.
= min

g2G
"(g, p) = 1�

X

v2{0,1}n

max
j2[k]

p(v, j) . (6)

We are interested in the quantity

Q
.
= max

p2P(A)
Q(p) (7)

i.e., Q is the maximum over all distributions p 2 P(A) of the error of the best algorithm for
distribution p. In other words, Q is the worst Bayes error with respect to all the distributions that
satisfy the constraints imposed by the class-attribute matrix and on the class probabilities. Since
p
⇤ can be any vector in P(A), the value Q represents a lower bound to the best error rate that

an algorithm can guarantee. In fact, without further information on the attribute functions or the
prediction task, it is possible that p⇤ attains the maximum of (7), that is in the worst-case we have that

"(g, p⇤) = "(g) � Q 8g 2 G

In other words, the quantity Q reflects a worst-case scenario where the attribute functions are
correlated in such a way that it is hard to distinguish between the classes, even if the attribute
functions still satisfy the constraints (1) given by the class-attribute matrix A. In Section 4.3, we
show that this lower bound is tight. In particular, we prove that there exists a randomized classifier
from the attribute space {0, 1}n to the classes [k] whose expected error is at most Q with respect to
any distribution p 2 P(A).

Example. Consider a balanced binary classification task with two attributes. The class-attribute
matrix A 2 R2⇥2 is such that Ai,j = 1/2 for i, j 2 {1, 2}. Based on this class-attribute matrix, we
consider two different scenario. In the first scenario (best-case), we have that items from the first
class have either both attributes or none with probability 1/2, and items from the second class have
only either the first attribute or the second attribute with probability 1/2. In this case, we can simply
count the number of attributes that an item has to assign it to the correct class. In the second scenario
(worst-case), each item has either both attributes or none with probability 1/2 independently from the
item class. In this case, any mapping from the attributes to the class is going to incur an error of 1/2.

4.1 Computing the Lower Bound

In this subsection, we show how to compute Q as in (7) through a Linear Program (LP). To describe a
generic PMF p, we introduce 2n ⇥ k variables qv,j with v 2 {0, 1}n and j 2 [k]. We use additional
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2n auxiliary variables �v , for v 2 {0, 1}n, to denote the maximums of (6), i.e. �v = maxj2[k] qv,j .
The LP is formulated as follows.

1�Q = min
X

v

�v (8)

(a)
X

v2{0,1}n:
vi=1

qv,j = Aj,i

X

v2{0,1}n

qv,j 8j 2 [k], i 2 [n]

(b)
X

v2{0,1}n

qv,j =
1

k
8j 2 [k]

(c) �v � qv,j � 0 8v 2 {0, 1}n, j 2 [k]

Theorem 4.1. The optimal value of the LP (8) is equal to 1�Q, with Q is as in (6).

By removing or modifying constraint (b) of the LP, it is possible to remove the assumption that
the classes are balanced or provide different class weights. All the previous results still hold by
changing the definition of P(A) accordingly. It is important to point out that since we are computing
a worst-case lower bound, the class weights provide significant information. Without constraints
on the class weights, the worst-case distribution could concentrate all the probability mass on few
classes that are hard to differentiate using the available class-attribute matrix A.

The LP has O(k · 2n) variables and constraints, and therefore it is computationally expensive for
large number of attributes. The dependency on 2n is required to describe all the possible correlations
between the output of the n attribute functions. Nevertheless, we present an efficient computation
for the binary case in the next subsection, and an efficient approximation for the general case in
Appendix C.

4.2 Lower Bound for Binary Classification

In this subsection, we show how to efficiently compute Q as in (7) in the case of a binary classification
task, i.e. k = 2 and A = [0, 1]2⇥n. For ease of notation, let

A =


↵1 . . . ↵n

�1 . . . �n

�
. (9)

Theorem 4.2. Consider a balanced binary classification task and let A be as in (9). Let Q be as in

(7). It holds that Q = 1
2

�
1�maxi2[n] |�i � ↵i|

�
. Moreover, let ga be the attribute-class classifier

ga(v) = 1 +

⇢
vi⇤ if ↵i⇤ < �i⇤

1� vi⇤ if ↵i⇤ � �i⇤

for each v 2 {0, 1}n, where i
⇤ = argmaxi |�i � ↵i| and vi is the i-th component of the vector v.

Then "(ga, p) = Q for all p 2 P(A), i.e. the lower bound Q is tight.

The theorem shows that in the worst-case, the attributes could be correlated in such a way that it is
not possible to do better than deciding solely based on the attribute with the largest gap between its
probabilities in the two classes. This result also formally proves that for binary classification, the
worst-case is determined by a single attribute, and there is no compounded benefit in having multiple
attributes in the case of perfect attribute detectors. This result is in line with other worst-case analyses
in the context of weak supervision. In Mazzetto et al. (2021b), it is noted that while combining
the output of different weak supervision sources to obtain a noisy label of a given input item, in
the worst-case one cannot do better than just using the most accurate weak supervision source
without additional information. In Appendix C, we show how to approximate the lower bound in the
multiclass setting by using Theorem 4.2.

4.3 Lower Bound is Tight

In this subsection, we prove that the worst-case lower bound (7) is tight. We show a randomized
attribute-class classifier whose expected error is upper bounded by Q with respect to any distribution
p 2 P(A). This classifier can be computed only based on the class-attribute matrix, and it provides
an upper bound to the error of the best map from attributes to classes that matches the lower bound.
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We consider the family GR of all randomized attribute-class classifiers, where each g 2 GR is a
random map from {0, 1}n to [k]. A attribute-class classifier in GR is described with a right-stochastic
matrix W 2 [0, 1]2

n⇥k, where the rows are indexed by binary vectors v 2 {0, 1}n, and the columns
are indexed by the classes j 2 [k]. The entry Wv,j represents the probability of the randomized
classifier to output j given that the input is v. We will use gW to denote the randomized classifier
in GR that is described with the right-stochastic matrix W . Given a PMF p over {0, 1}n ⇥ [k], we
define the expected error of gW as

"(gW , p)
.
= 1� P

(v,j)⇠p
[gW (v) = j] = 1�

X

v2{0,1}n

X

j2[k]

Wv,j · p(v, j) . (10)

We can observe that the definition above extends definition (5), in fact (10) coincides with (5) if gW
is a deterministic classifier, i.e. each row of W contains a 1.
Theorem 4.3. There exists a randomized attribute-class classifier ga 2 GR such that its worst-case

expected error is upper bounded by Q, i.e. maxp2P(A) "(ga, p)  Q , where Q is computed as in (7).
Also, it holds maxp2P(A) ming2GR "(g, p) = Q, i.e. the lower bound Q also applies to the family of

randomized functions GR.

It is possible to compute the randomized attribute-class classifier ga that satisfies Theorem 4.3 solely
based on the matrix A through Linear Programming using O(k · 2n) variables and constraints. Due
to space constraints, we defer this computation to Appendix B.

5 Empirical Applications

In this section we compare our novel theory with the performance of popular attribute-based ZSL
methods. Our results quantify a lower bound to the lowest error rate that any attribute-based ZSL
algorithm can guarantee based on the information provided by the class-attribute matrix. In practice,
we show that the lower bound is still predictive of the performance and the behaviour of attribute-based
ZSL algorithms. We run two set of experiments.

1. Comparing the lower bound and the empirical error (Section 5.2). We compare the error
rates of ZSL models with attributes with the lower bound on the error from Section 4.1.

2. Pairwise misclassification prediction (Section 5.3). We measure the predictive power of
our lower bounds to identify pairs of classes that ZSL models are likely to misclassify. This
hardness is measured using the lower bound on the error for a pair of classes (Section 4.2).

5.1 Experimental Setup

In this section, we briefly describe the experimental setup. Further details about the datasets and
the methods can be found in Appendix D. 1 We choose the following four datasets with attributes
that are widely used benchmarks in ZSL: Animals with Attributes 2 (AwA2) (Xian et al., 2018a),
aPascal-aYahoo (aPY) (Farhadi et al., 2009), Caltech-UCSD Birds-200-2011 (CUB) (Wah et al.,
2011), and SUN attribute database (SUN) (Patterson et al., 2014). We focus on classic ZSL algorithms
with attributes that use at most the information in the class-attribute matrix for the unseen classes:
DAP (Lampert et al., 2014), ESZSL (Romera-Paredes & Torr, 2015), SAE (Kodirov et al., 2017),
ALE (Akata et al., 2016), SJE (Akata et al., 2015). We choose these methods because they use the
class-attribute matrix that is the focus of our theoretical analysis. Many other ZSL methods have
been proposed in recent years (see Section 2), but their comparison with our lower bound would be
vacuous as they often use other source of auxiliary information on the unseen classes, and thus do
not fit within our novel theoretical framework. They are beyond the scope of this first analysis of
ZSL. However, we also run experiments on a more recent attribute-based method DAZLE (Huynh &
Elhamifar, 2020) which takes advantage of additional information, i.e., attribute semantic vectors.

5.2 Comparing Lower Bound and Empirical Error

In this section, we compare the lower bound presented in Section 4 with the actual error of the ZSL
models. To this end, we run two set of experiments: a first set using the ZSL datasets mentioned in

1Code is available at https://github.com/BatsResearch/mazzetto-neurips22-code.
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Figure 1: Comparison of the lower bound with the empirical error. We plot the lower bound on
the error (Q), and the error of ZSL methods with attributes (DAP, ESZSL, SAE, ALE, and DAZLE).
The first row reports these values computed on the unseen classes of the aPY, AwA2, and CUB,
varying the number of available attributes. The second row reports the values for the adversarially
generated synthetic data. The bands indicate the standard errors on five runs with different seeds for
randomized methods. These results validate that even in the absence of domain shift, there exists a
distribution of the data that satisfy the constraints imposed by the class-attribute matrix for which no
method can do better than the lower bound.

the previous subsection, and a second set using adversarially generated synthetic data that conform
with the class-attribute matrices of those same ZSL datasets.

In the first set of experiments, we follow the standard way to evaluate ZSL models. We train our
model on the seen classes, and then compare our lower bound with the empirical error of the ZSL
models on the unseen classes. Since the computation of the lower bound is very expensive for a
large number of attributes (Section 4.1), we focus on a subsets of them. We propose the following
greedy strategy to ensure a selection of attributes that are informative with respect to the target classes.
Starting with no attributes, we iteratively add the attribute that decreases the most the value of the
lower bound, up to 15 attributes. Due to the large number of seen classes of SUN and CUB, we
restrict them to a smaller random subset (see Appendix D). In the first row of Figure 1, we report
results for aPY, AwA2, and CUB, due to space constraints. The results for SUN are similar and
in Figure 3 in Appendix E.

We observe that the value of the lower bound can be significantly lower than the error rate of the ZSL
models. This gap is most probably due to the fact that the learned map from images to attributes does
not generalize perfectly to the unseen classes. In fact, in this setting we can identify two main source
of error for the ZSL models: (1) the arbitrary error due to the domain shift, and (2) the error due to
how discriminative is the attribute space to differentiate between the different classes. Our lower
bound only addresses the latter, as no method can guarantee a smaller error than the lower bound to
map from attributes to classes given only the information of the class-attribute matrix. Nonetheless,
for CUB and SUN we observe that the empirical error of ZSL models roughly follow the trend of
the lower bound. This suggests that the lower bound can still be used as a tool to capture how the
additional information provided by an attribute leads to improvements of the ZSL models.

In the second set of experiments, we empirically demonstrate our theory by showing that even if we
minimize the error due to domain shift, there exists data for which no method can do better than our
lower bound. To this end, for each dataset we adversarially generate synthetic data with attribute
values satisfying the dataset’s class-attribute matrix. Specifically, we use the same class-attribute
matrix with 15 attributes as in the previous set of experiments in order to compute the adversarial
distribution p over attributes and classes according to the linear program introduced in Section 4.1.
The data is generated by sampling attribute-class pairs from this distribution, and using the attribute
vector as the feature vector. In order to minimize the error due to domain shift, this distribution is used
to generate data for both training and testing of the ZSL methods, and the same class-attribute matrix
is used for both seen and unseen classes. We report additional details on this experimental setup and
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Figure 2: Pairwise miscassification matrices. For the unseen classes of aPY, we plot the pairwise
lower bound between pair of classes L (Section 4.2), and the misclassification error matrix M of two
ZSL models: DAP and ESZSL. Darker squares indicate higher values, and light blue on the diagonal
is 0. High values of the lower bound indicate classes that are harder (in the worst-case) to distinguish
in theory, and high values in M indicate pair of classes that are often confused by the ZSL model.

synthetic data generation in Appendix D. We report the results of the experiments in the second row
of Figure 1, iterating over the same attributes greedily selected in the first set of experiments for each
dataset. (For this set of experiments, we do not report results for DAZLE as this method relies on the
input items being images, so it does not apply to our synthetic data.) In this case, the methods are able
to achieve errors that are comparable with the lower bound as we minimized the error due to domain
shift. This experiment empirically validates that even in the absence of domain shift, there exists a
distribution of the data that satisfy the constraints imposed by the class-attribute matrix for which no
method can do better than the lower bound. This adversarial distribution represent an intrinsic error
gap due to the quality of the information provided by the class-attribute matrix. This is the first work
to quantify such information in ZSL.

5.3 Pairwise Misclassification Prediction

Theorem 4.2 shows how to efficiently compute the lower bound on the error to distinguish between
a pair of classes given the class-attribute matrix. In addition to the overall bound on error, it also
gives us fine-grained information about which classes are harder to distinguish among. We define the
pairwise lower bound error matrix L, whose entry Lj,j0 is the lower bound on the error computed
as in Section 4.2, for all classes j, j0 2 [k], j 6= j

0. A large entry Lj,j0 between two classes j 6= j
0

indicates that it is hard (in the worst-case) to distinguish between them. In this section, we compare the
matrix L with the classification errors made by the ZSL models discussed in Section 5.1. In particular,
we want to show if the pairwise lower bounds on the errors are predictive of the misclassification
errors made by the ZSL models. Specifically, a large lower bound on the error for a pair of classes
indicates that a ZSL model would likely confuse one class with the other. For a given dataset and a
ZSL method, we build a misclassification error matrix M . The entry Mj,j0 is computed as

P
x⇠D

(h(x) = j ^ y(x) = j
0|y(x) 2 {j, j0}) + P

x⇠D
(h(x) = j

0 ^ y(x) = j|y(x) 2 {j, j0})

for all j, j0 2 [k], j 6= j
0, where h(·) is the ZSL model. The entry Mj,j0 represents the probability of

the model to misclassify an item of the class j with the class j0 or vice-versa. We estimate M using
test data of the unseen classes.

In Figure 2, we plot L together with the misclassification matrices M of two ZSL methods: DAP
and ESZSL, computed on the unseen classes of aPY. The pairwise lower bound matrix L has large
values within multiple groups of semantically similar classes, e.g., animals and transportation means.
This is in line with human intuition, as we expect visually similar classes to exhibit similar attributes.
Correspondingly, the misclassification matrices of DAP and ESZSL highlight the presence of many
errors for classes belonging to these groups. We also note that ZSL models could misclassify other
pairs of classes due to other source of errors, such as an inaccurate map from image to attributes. We
report additional experimental analysis on all datasets in Appendix E.
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6 Conclusions, Limitations, and Future Work

We present the first non-trivial lower bound on the best error that an attribute-based ZSL method can
guarantee given the information provided—the class attribute matrix. While our method is limited
to class-attribute matrices, it constitutes a first theoretical building block to quantify the auxiliary
information provided in ZSL. In general, theoretical evaluation of the error of ZSL models remains a
hard problem due to the arbitrary domain shift between seen and unseen classes, and the wide range
of possible auxiliary information used. As a future direction, it remains an open problem to be able to
quantify this information for other families of ZSL methods. However, our analysis readily extends
to other variants of ZSL, such as generalized ZSL, where we simply use the class-attribute matrix of
the union of both seen and unseen classes while computing our lower bound.

Broader Societal Impacts

Zero-shot learning is now a popular scenario in research, with potential application to real-world
language and vision tasks. Worse-case guarantees have long been desired in ZSL. Any improvement
in the rigor of claims about model performance has impact because it demonstrates both what
performance can be achieved and that some solutions are invalid. However, such bounds do not cover
many kinds of error, such as a generalization gap from domain shift or label errors. Further, it is
important that bounds are correctly interpreted such that no false claims or confidences are drawn
from our findings. An educated interpretation of the effect of these bounds upon any particular
machine learning application is still required.
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