
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING FINE-TUNING EN-
HANCES ACTIVATION INTENSITY AND DIVERSITY
IN THE INTERNAL CIRCUITRY OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) acquire extensive prior knowledge through large-
scale pretraining and can be further enhanced via supervised fine-tuning (SFT)
or reinforcement learning (RL)-based post-training. A growing body of evidence
has shown that RL fine-tuning improves the capability of LLMs beyond what SFT
alone achieves. However, the underlying mechanisms why RL fine-tuning is able
to enhance the capability of various LLMs with distinct intrinsic characteristics
remain underexplored. In this study, we draw inspiration from prior work on edge
attribution patching (EAP) to investigate the internal differences of LLMs before
and after RL fine-tuning. Our analysis across multiple model families and mathe-
matical datasets shows two robust effects of online RL post-training: (i) an overall
increase in average activation intensity, indicating that more internal pathways are
engaged and their signals become stronger, and (ii) greater diversity in activa-
tion patterns, reflected by higher entropy and less concentrated edge distributions.
These changes suggest that RL reshapes information flow to be both more redun-
dant and more flexible, which may explain its advantage in mathematical gener-
alization. Notably, models fine-tuned with Direct Preference Optimization (DPO)
deviate from these trends, exhibiting substantially weaker or inconsistent inter-
nal changes compared to PPO- and GRPO-based training. Together, our findings
provide a unified view of how RL fine-tuning systematically alters the internal cir-
cuitry of LLMs and highlight the methodological distinctions between online RL
and preference-based approaches. Our code is open source at https://anon
ymous.4open.science/r/llm_rl_probing_analysis-F673.

1 INTRODUCTION

Recent strides in large language models (LLMs) have shifted the developmental focus from pre-
training to post-training (Kumar et al., 2025). A wide array of post-training strategies, ranging
from supervised fine-tuning (SFT) (Dong et al., 2023) to reinforcement learning (RL) (Zhang et al.,
2025b; Hao et al., 2025), has been developed to enhance model performance. Particularly, RL-based
fine-tuning has witnessed rapid advancements, encompassing the development of reward models
from Outcome Reward Models (ORM) (Lyu et al., 2025) to Process Reward Models (PRM) (Light-
man et al., 2023; Yuan et al., 2024), alongside training algorithms like Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) and Group Relative Policy Optimization (GRPO) (Shao et al.,
2024). With such advancements, emerging empirical evidence indicates that RL-based fine-tuning
can enhance the capability of LLMs beyond what is achieved by SFT alone (Chu et al., 2025),
improving performance across a range of downstream tasks, including writing (Liao et al., 2025),
reasoning (Guo et al., 2025; Xu et al., 2025), and coding (Guo et al., 2024).

Seeking to understand the role of different components within Large Language Models (LLMs)
and the origins of their powerful capabilities, a growing body of research has focused on probing
their internal structures. Initial studies revealed the working mechanisms of LLMs when solving
mathematical problems by analyzing and statistically examining their internal weights (Shao et al.,
2025). Subsequently, some research has analyzed patterns in LLM weights by training external
neural probes, which are lightweight auxiliary models (Kim et al., 2025; Zheng et al., 2025). Re-
cently, researchers have investigated the internal residual pathways of LLMs from a graph-theoretic
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perspective. They have developed methods such as Automated Circuit Discovery (ACDC) (Conmy
et al., 2023) and Edge Attribution Patching (EAP) (Syed et al., 2023; Hanna et al., 2024), which as-
sign importance scores to edges or sub-modules and reveal internal functional circuits that determine
the capabilities of LLMs.

Despite these advances, existing studies on RL-based post-training have predominantly focused on
the external behavioral changes of LLMs, while the underlying internal mechanisms remain under-
explored (Ren & Sutherland, 2024). Conversely, works that do investigate the internal mechanisms
concentrate on given LLMs, but do not correlate the internal mechanisms to the RL-based post-
training methodology with which the LLMs are commonly obtained (Hanna et al., 2024; Kim et al.,
2025). As a result, the two lines of research, external evaluation of RL effects and internal mech-
anistic analysis, have largely progressed in parallel. This gap is partly due to the primary goal of
RL post-training, namely enhancing the ability of LLMs to solve complex reasoning tasks, which
makes it nontrivial to directly transfer analytical strategies developed on toy problems to the study
of RL-induced improvements in real-world problem-solving capabilities.

To address this, we construct a framework for systematically analyzing the mechanisms through
which RL fine-tuning affects LLMs. Specifically, we adopt an efficient Edge Attribution Patch-
ing (EAP) framework (Nanda, 2023), leveraging the cross-entropy computed from partially trun-
cated generations on mathematical problem-solving tasks to estimate the contribution weights of
internal edges. Based on these estimated importance weights, we analyze their distributions be-
fore and after RL fine-tuning to interpret changes in internal neuron activations and derive general
conclusions regarding the structural effects of RL in the context of mathematical problem solving.
Experiments across multiple LLM pairs on diverse mathematical datasets demonstrate that RL post-
training strengthens the activation intensity of internal edge connections and diversifies activation
patterns during problem-solving. Notably, these effects are not consistently observed under DPO
training, highlighting differences between DPO and other RL paradigms, which aligns with prior
observations in the literature (Xu et al., 2024).

Overall, the uncovered patterns hold across diverse LLM families, each with distinct characteristics
such as architecture and training corpus, suggesting a set of common internal effects induced by
RL fine-tuning on reasoning-heavy tasks. These findings provide new insights into how RL post-
training reshapes the internal circuitry of LLMs, thereby bridging empirical performance gains with
interpretable shifts in internal information pathways. In doing so, they offer guidance for the future
development of both LLMs and post-training methodologies.

2 PRELIMINARIES

2.1 LARGE LANGUAGE MODELS

Large language models (LLMs) are typically built upon the Transformer architecture, comprising a
stack of L identical layers (Vaswani et al., 2017; Liu et al., 2024; Bai et al., 2023; Achiam et al.,
2023). Each layer consists of two primary sub-structures: a multi-head self-attention mechanism
and a position-wise feed-forward network (FFN), each surrounded by a residual connection. The
mathematical formulation described below represents the most common architecture found in con-
temporary LLMs. Let H(2ℓ) ∈ RB×P×dmodel denote the input hidden state to the (ℓ + 1)-th layer,
where B is the batch size, P is the sequence length, and dmodel is the hidden dimension. Specifically,
the raw input embeddings are denoted by Xinput = H(0).

The output of the ℓ-th layer, H(2ℓ), is computed via the sequential processing of the attention
and FFN sub-structures. For the attention sub-structure, the input is first normalized as Xℓ

attn =
LayerNorm

(
H(2ℓ−2)

)
. The attention mechanism is then applied:

Attention
(
Xℓ

attn

)
= Oℓ

attn = softmax

((
Xℓ

attnW
ℓ
q

) (
Xℓ

attnW
ℓ
k

)T
√
dk

)(
Xℓ

attnW
ℓ
v

)
Wℓ

o, (1)

where Wℓ
q,W

ℓ
k ∈ Rdmodel×dquery ,Wℓ

v ∈ Rdmodel×dattn ,Wℓ
o ∈ Rdattn×dmodel are the query, key, value

and output projection matrices, respectively. Here, dquery is the dimensionality of the query and key
vectors, and dattn represents the dimensionality of the value vectors within the attention computation.
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Positional embeddings are omitted for simplicity. The residual connection yields the intermediate
state: H(2ℓ−1) = H(2ℓ−2) +Oℓ

attn.

The FFN sub-structure then processes H(2ℓ−1) after normalization: Xℓ
ffn = LayerNorm

(
H(2ℓ)

)
.

The FFN employs a gated mechanism with parallel pathways:

FFN(Xℓ
ffn) = Oℓ

ffn =
(
Activation

(
Xℓ

ffnW
ℓ
gate

)
⊙
(
Xℓ

ffnW
ℓ
up

))
Wℓ

down, (2)

where Wℓ
gate ∈ Rdmodel×dff , Wℓ

up ∈ Rdmodel×dff , and Wℓ
down ∈ Rdff×dmodel are learned weight matrices,

⊙ denotes element-wise multiplication, and dff is the expanded inner dimension of the FFN. The
final output of the layer is obtained via another residual connection: H(2ℓ) = H(2ℓ−1) +Oℓ

ffn.

After processing by all L layers, the final hidden states H(2L) are projected to vocabulary logits via:

L = P
(
H(2L)

)
= LayerNorm

(
H(2L)

)
WT

emb, (3)

where Wemb ∈ RV×dmodel is the output embedding matrix and V is the vocabulary size. The resulting
tensor L ∈ RB×P×V contains the unnormalized logits for each token position.

2.2 UNIFIED VIEW OF LLM POST-TRAINING

Previous studies have shown that various post-training methods can be expressed within a unified
framework (Shao et al., 2024), encompassing both supervised fine-tuning (SFT) and reinforcement
learning (RL)-based approaches. Let πθ denote the current policy parameterized by θ, and let (q, o)
represent a query–response pair. The update rule of a generic post-training algorithm A can then be
written in gradient form as

∇θJA(θ) = E(q,o)∼D

 1

|o|

|o|∑
t=1

GCA(q, o, t, πrd, πref, πθ)∇θ log πθ(ot | q, o<t)

 , (4)

where D specifies the sampling distribution that generates the training pairs (q, o), πrd denotes the
reward model or evaluation rule that produces the learning signal, πref is the reference policy used to
anchor relative preference or advantage computations, and GCA represents the token-level weight-
ing factor derived from these signals in algorithm A. This abstraction places different post-training
approaches within a unified mathematical representation, enabling direct comparison between su-
pervised and reinforcement-driven update mechanisms.

3 METHOD

Our methodology is based on the Edge Attribution Patching (EAP) framework (Syed et al., 2023;
Hanna et al., 2024; Nanda, 2023), which adopts a graph-theoretic view of LLMs via their residual
pathways, reflecting a perspective that has long been present in prior research. While the original
work focuses on automated circuit discovery, we adapt its core principle of deriving gradient-based
attribution scores for edges to analyze internal information flow differences between models before
and after reinforcement learning (RL) fine-tuning.

3.1 GRAPH VIEW OF TRANSFORMER RESIDUAL COMPUTATION

Owing to the residual connections in Transformer layers, the input to any sub-module, whether an
attention branch or an FFN branch, corresponds to the sum of all preceding sub-module outputs,
including the original embedding input. For simplicity, let the attention branch transformation be
denoted as Oℓ

attn = Aℓ
(
H(2ℓ)

)
and the FFN transformation as Oℓ

ffn = Fℓ
(
H(2ℓ+1)

)
. Then the

hidden states satisfy:

H(2ℓ) = H(0) +

ℓ∑
i=1

Oi
attn +

ℓ∑
j=1

Oj
ffn, H(2ℓ+1) = H(0) +

ℓ+1∑
i=1

Oi
attn +

ℓ∑
j=1

Oj
ffn. (5)

Consequently, each sub-module, namely any attention block Aℓ or feed-forward block Fℓ, can be
interpreted as a node in a directed graph. Let us define the set of nodes as

V =
{
A1,F1,A2,F2, . . . ,AL,FL

}
, (6)
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Figure 1: Schematic of a two-layer simplified LLM. (a) Residual perspective, (b) graph perspective,
and (c) edge importance estimation: above the dashed line, ACDC-style methods measure the loss
change after edge ablation ( 2⃝− 1⃝), and below, EAP-style methods approximate this via backprop-
agated gradients (− 3⃝ ≈ 2⃝− 1⃝).

where H0 corresponds to the original embedding input. The directed edges, representing the flow
of information from sub-module outputs to subsequent inputs, can be formalized as

E =
{(

H(0),H(j)
)
| 1 ≤ j ≤ 2L

}
∪
{(

Oi
attn,H

(2ℓ−1)
)
,
(
Oi

ffn,H
(2ℓ)
)
| 1 ≤ i ≤ ℓ ≤ L

}
. (7)

Thus, the LLM can be represented as a directed acyclic graph (DAG) G = (V, E), in which nodes
correspond to individual sub-modules and edges encode the residual information pathways. This
graph-theoretic abstraction facilitates analysis of the model both from a network flow perspective
and a circuit-based interpretability standpoint, and for a more intuitive comparison of the residual
stream view and the graph view, see Fig. 1(a) and (b).

3.2 EDGE-LEVEL ATTRIBUTION

To quantify the importance of individual residual edges, prior work like the Automated Circuit Dis-
covery (ACDC) evaluates the change in loss when a given edge is removed (Conmy et al., 2023).
Concretely, let (O,H) ∈ E denote a directed edge from output O of some sub-module to hidden
representation H at a subsequent stage. ACDC defines the edge importance by the loss perturbation:

IACDC(O,H) = L
(
y; f\(O,H)(x)

)
− L (y; f(x)) , (8)

where f(x) is the model output under input x, L(y; ·) denotes the supervised loss relative to target
y, and f\(O,H) represents the model with edge (O,H) ablated (i.e., setting the corresponding con-
tribution to zero). While conceptually straightforward, this procedure requires two forward passes
per edge, rendering it computationally infeasible for large-scale attribution.

By contrast, the EAP framework proposes a gradient-based linearization that estimates the same
loss perturbation more efficiently. Specifically, for a given edge (O,H), consider the ablation H 7→
H−O, which corresponds to removing O’s contribution. A first-order Taylor expansion around H
yields the following compact expression:

∆L(O,H) ≈ −⟨∇HL(y; f(x)), O⟩ ≡ IEAP(O,H), (9)
where ∇HL(y; f(x)) ∈ RB×P×dmodel is the loss gradient with respect to the hidden state H, and
⟨·, ·⟩ denotes the Euclidean inner product.

Considering the computational cost of analyzing large-scale LLMs, we adopt IEAP to estimate edge-
level importance. Importantly, IEAP can be computed for all edges simultaneously with a single
forward and backward pass under the zeroing perturbation, as both the forward activations O and
the backward gradients ∇HL are available. This approach enables scalable, fine-grained circuit
analysis without the need for separate per-edge ablations, making it tractable even for very large
models. For a more intuitive comparison of ACDC-style ablation and EAP-style gradient-based
attribution, see Fig. 1(c).
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3.3 SAMPLE SELECTION AND TOKEN-LEVEL TRUNCATION

To ensure fair and tractable edge attribution analysis, we implement a systematic filtering and trun-
cation procedure on model-generated token sequences. Let each model in a paired set generate a
token sequence sbase = (sbase

1 , . . . , sbase
Tbase

) and sRL = (sRL
1 , . . . , sRL

TRL
) for a given question, where

T q
base and T q

RL are the respective sequence lengths.

Question Filtering. We first select only questions that are correctly answered by both models,
and denote the resulting set as Q. To mitigate biases caused by extremely short or long answers, we
compute the mean token length across all selected questions for a given model pair and dataset:

T̄ =
1

|Q|
∑
q∈Q

T q
base + T q

RL

2
. (10)

We then define minimum and maximum allowable lengths, Tmin = β T̄ , Tmax = γ T̄ , and retain
only questions satisfying

Tmin ≤ T q
base, T

q
RL ≤ Tmax. (11)

Finally, to control for comparable sequence lengths between the base and RL models, we require

|T q
base − T q

RL|
(T q

base + T q
RL)/2

< δ, (12)

where δ ∈ (0, 1) is a balance coefficient. This ensures that the selected questions are comparable in
length across both models, minimizing biases in edge importance estimates.

Token Truncation and Self-Entropy Computation. For the filtered set of questions, we define a
truncation length Tcut = α T̄ , where α > 0 is a scaling coefficient. Only the first Tcut tokens of each
sequence are used. Let Lt ∈ RV denote the model’s logit output at token position t, and let s1:Tcut

be the sequence of generated tokens truncated to Tcut. We compute the self-entropy (cross-entropy
of the model with respect to its own output) as

Ltrunc = − 1

Tcut

Tcut∑
t=1

log
exp(Lt[st])∑V
v=1 exp(Lt[v])

, (13)

where st denotes the token actually generated at position t by the model itself.

This ensures that edge importance is computed based on each model’s truncated output, maintaining
comparability across sequences while avoiding excessive memory usage for overlong generations.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

In our experiments, to ensure both reproducibility and the generality of the conclusions, we em-
ployed four pairs of open-source large language models (LLMs) of approximately 7B parameters,
each consisting of a base model and its counterpart after post-training:

• Deepseek-Math (Shao et al., 2024): Both deepseek-math-7b-instruct and deepseek-math-7b-rl
are official DeepSeek models based on the LLaMA-style Transformer. deepseek-math-7b-instruct
is instruction-tuned on mathematical datasets such as GSM8K, MATH, and MathInstruct, while
deepseek-math-7b-rl is further trained from it with reinforcement learning on GSM8K and MATH
using the Group Relative Policy Optimization (GRPO) algorithm.

• Mistral (Chaplot, 2023; Wang et al., 2023): mistral-7b-sft is a supervised fine-tuned version
of the Mistral-7B model on the MetaMATH dataset, while math-shepherd-mistral-7b-rl is fur-
ther optimized from it using step-by-step Proximal Policy Optimization (PPO) guided by the
MATH-SHEPHERD process reward model on GSM8K and MATH, leading to notable gains in
mathematical reasoning accuracy.

5
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Table 1: Comparison of four model pairs (SFT vs. RL) across three datasets, three evaluation
metrics, and four hyperparameter settings. Missing values result from GPU memory overflow.

Dataset Metric Scale
α

Deepseek-Math Mistral Distilled-Qwen Qwen2.5
SFT +GRPO SFT +PPO SFT +GRPO SFT +DPO

MATH

Act.
Intens.

↑

0.03 2.29e-3 2.64e-3 9.47e-7 3.61e-6 6.18e-4 6.87e-4 1.11e-3 1.13e-3
0.1 1.10e-3 1.31e-3 6.76e-4 7.71e-4 4.51e-4 5.59e-4 6.95e-4 6.90e-4
0.3 7.47e-4 7.77e-4 4.49e-4 4.92e-4 - - 4.39e-4 4.21e-4
0.5 5.64e-4 6.02e-4 3.58e-4 4.05e-4 - - - -

Info.
Complex.

↑

0.03 1.96e-1 2.01e-1 3.39e-2 1.58e-2 1.81e-1 2.30e-1 2.11e-1 1.74e-1
0.1 1.72e-1 2.47e-1 1.41e-1 2.09e-1 1.11e-1 1.96e-1 1.60e-1 1.34e-1
0.3 2.64e-1 4.11e-1 4.13e-2 2.86e-1 - - 1.10e-1 1.34e-1
0.5 2.71e-1 2.93e-1 4.52e-2 3.22e-1 - - - -

Dist.
Kurt.
↓

0.03 3.93e+2 2.53e+2 4.22e+2 5.28e+2 6.78e+2 5.03e+2 3.96e+2 3.62e+2
0.1 3.57e+2 2.23e+2 4.51e+2 3.07e+2 1.27e+3 9.20e+2 5.44e+2 4.83e+2
0.3 3.11e+2 1.89e+2 3.35e+2 2.65e+2 - - 8.49e+2 7.61e+2
0.5 3.03e+2 1.89e+2 2.85e+2 2.20e+2 - - - -

College
Math

Act.
Intens.

↑

0.03 2.36e-3 2.22e-3 1.77e-7 1.17e-6 7.08e-4 7.51e-4 1.20e-3 1.19e-3
0.1 1.24e-3 1.21e-3 8.23e-4 9.06e-4 5.15e-4 5.76e-4 8.11e-4 8.10e-4
0.3 7.61e-4 7.57e-4 4.92e-4 5.32e-4 - - 4.76e-4 4.69e-4
0.5 5.87e-4 5.99e-4 3.87e-4 4.47e-4 - - 3.71e-4 3.53e-4

Info.
Complex.

↑

0.03 1.45e-1 1.96e-1 2.51e-2 1.14e-2 2.13e-1 2.35e-1 8.01e-2 2.17e-1
0.1 2.08e-1 2.09e-1 1.65e-1 1.61e-1 1.32e-1 1.64e-1 1.34e-1 1.25e-1
0.3 2.20e-1 2.89e-1 3.29e-1 2.88e-1 - - 1.23e-1 9.95e-2
0.5 2.53e-1 2.83e-1 2.68e-1 3.43e-1 - - 1.11e-1 1.05e-1

Dist.
Kurt.
↓

0.03 4.71e+2 2.75e+2 4.81e+2 8.60e+2 5.86e+2 5.08e+2 4.57e+2 3.89e+2
0.1 3.48e+2 2.88e+2 3.80e+2 2.64e+2 1.15e+3 8.88e+2 5.31e+2 4.60e+2
0.3 3.31e+2 2.19e+2 2.77e+2 2.08e+2 - - 7.51e+2 6.51e+2
0.5 3.31e+2 2.12e+2 2.54e+2 2.22e+2 - - 9.15e+2 7.48e+2

GSM8K

Act.
Intens.

↑

0.03 3.08e-3 2.76e-3 4.83e-7 1.17e-6 1.06e-3 1.15e-3 2.13e-3 2.19e-3
0.1 1.43e-3 1.50e-3 5.90e-4 6.59e-4 6.71e-4 7.72e-4 1.13e-3 1.13e-3
0.3 7.80e-4 8.52e-4 3.86e-4 4.44e-4 - - 6.46e-4 6.49e-4
0.5 5.76e-4 6.52e-4 3.01e-4 3.60e-4 - - 4.94e-4 4.90e-4

Info.
Complex.

↑

0.03 1.56e-1 1.56e-1 6.30e-2 4.00e-2 2.22e-1 3.33e-1 2.19e-1 2.53e-1
0.1 1.50e-1 2.30e-1 8.43e-2 1.49e-1 1.60e-1 2.64e-1 1.64e-1 1.80e-1
0.3 1.71e-1 2.27e-1 1.48e-1 2.09e-1 - - 1.09e-1 1.57e-1
0.5 1.37e-1 3.23e-1 1.69e-1 2.66e-1 - - 1.14e-1 1.28e-1

Dist.
Kurt.
↓

0.03 4.73e+2 3.05e+2 2.05e+2 2.18e+2 3.81e+2 3.44e+2 4.68e+2 3.95e+2
0.1 4.57e+2 2.79e+2 4.21e+2 3.07e+2 7.66e+2 5.60e+2 5.22e+2 4.53e+2
0.3 3.85e+2 2.48e+2 3.99e+2 2.48e+2 - - 7.17e+2 5.88e+2
0.5 4.02e+2 2.49e+2 3.16e+2 2.18e+2 - - 7.81e+2 6.73e+2

• Distilled-Qwen (Guo et al., 2025; Chen et al., 2025): DeepSeek-R1-Distill-Qwen-7B is a
Qwen2.5-based model distilled from the larger DeepSeek-R1 reasoning model, trained via super-
vised distillation to inherit strong reasoning ability. In contrast, AceReason-Nemotron-7B starts
from the same distilled checkpoint but is further optimized with reinforcement learning on curated
math and code datasets using the GRPO algorithm, yielding significant gains in both mathematical
and programming reasoning tasks.

• Qwen2.5 (Qwen et al., 2025; Zhang et al., 2025a): Qwen2.5-7B-SFT is fine-tuned with supervised
learning on the MATH and Numina-Math datasets, while Qwen2.5-7B-DPO is derived from that
SFT model via iterative Direct Preference Optimization (DPO).

We conducted extensive analyses on three public mathematical benchmarks: GSM8K, MATH, and
College Math. More detailed characteristics of the analyzed LLMs and implementation details are
provided in the Appendix A and C. Thorough extensive evaluations on multiple benchmarks shown
in Appendix D, the post-training generally improves the capability of different LLMs.

4.2 METRICS

In our experiments, we quantify differences in LLM behavior before and after reinforcement learn-
ing (RL) fine-tuning by analyzing the internal edge-weight matrices obtained from the graph-based

6
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attribution procedure. Let W(k) ∈ Rno×ni denote the edge-weight matrix for sample k, with
k = 1, . . . , n. The collection of all samples forms a tensor W ∈ Rn×no×ni . Based on this input,
we define three complementary metrics:

Activation Intensity (Act.Intens.). This metric quantifies the average magnitude of all edge
weights across every sample, output, and input, capturing both how many pathways in the LLM
are activated and the strength of their activation:

Act.Intens. =
1

nnoni

n∑
k=1

no∑
o=1

ni∑
i=1

∣∣∣W (k)
oi

∣∣∣ . (14)

Information Complexity (Info.Complex.). To capture the heterogeneity and unpredictability of
edge activations across the entire dataset, we compute a Shannon entropy over the absolute values
of all edges from all samples, flattened into a single vector. Let pb denote the normalized probability
of bin b in a histogram of all |W (k)

oi | values, with B bins and a small constant ϵ to prevent log 0:

Info.Complex. = −
B∑

b=1

pb log(pb + ϵ). (15)

Higher entropy values indicate more complex and less predictable distributions of edge activations,
whereas lower values suggest concentrated or more regular patterns. This metric reflects the di-
versity of active information pathways within the LLM during inference and highlights how RL
fine-tuning may alter the overall internal information structure.

Distribution Kurtosis (Dist.Kurt.). To quantify the overall shape and stability of edge-weight
distributions, we first compute the kurtosis of each sample’s edge-weight matrix and then average
across all samples:

Dist.Kurt. =
1

n

n∑
k=1


1

noni

∑
o,i

(
W

(k)
oi − µ(k)

)4
(

1
noni

∑
o,i

(
W

(k)
oi − µ(k)

)2)2 − 3

 , (16)

where µ(k) is the mean edge weight of sample k. Values approaching zero indicate that individ-
ual edge-weight distributions approximate a normal distribution. Conversely, significant positive or
negative values reflect leptokurtic (heavy-tailed) or platykurtic (light-tailed) distributions, respec-
tively. This metric serves to evaluate the impact of RL fine-tuning on the tail behavior and outlier
characteristics of the overall activation distribution.

4.3 RESULTS AND ANALYSIS

Our main experimental results are presented in Table 1. We observe that the three model families,
Deepseek-Math, Mistral, and Distilled-Qwen, exhibit largely consistent changes in the metrics be-
fore and after RL fine-tuning. Specifically, Activation Intensity and Information Complexity tend to
increase, while Distribution Kurtosis tends to decrease. Individual exceptions can be seen in some
cases for Deepseek-Math and Mistral. However, as the scaling factor α controlling truncation length
gradually increases, these exceptions diminish, and the observed patterns become largely consistent,
indicating that the phenomenon is relatively robust. However, beyond these observations, we also
find several differences in the experimental results of the Qwen2.5 series models trained with the
DPO method. For instance, their activation strengths do not exhibit a clear increasing trend, and on
the College Math dataset, as α grows to larger values, the Information Complexity metric of their
internal pathways remains lower than that of the initial SFT model from which training began.

Taken together, the above observations suggest two key conclusions: (i) Online RL fine-tuning for
mathematical reasoning increases the extent and intensity of active information edges in the model.
(ii) Online RL fine-tuning diversifies the activation patterns across these information pathways. We
next provide further analyses to substantiate these conclusions.
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Figure 2: Relative change in edge acti-
vation strength after RL fine-tuning for
the Mistral model on the MATH dataset
with α = 0.5.

Pathway Engagement Induced by RL Fine-tuning.
As shown in our main results (Table 1), RL fine-
tuning consistently increases Act.Intens. and decreases
Dist.Kurt., meaning that a substantial number of low-
activation edges become more active, effectively engag-
ing a larger set of pathways. This trend is observed across
different models, datasets, and hyperparameter settings.
Figure 2 illustrates this effect with a representative case:
the Mistral model on the MATH dataset at α = 0.5. The
relative change analysis highlights that many connections
strengthen after PPO-based RL fine-tuning, confirming
that reinforcement learning systematically enhances the
propagation of internal signals.

Diversity of Activation Patterns in Internal Represen-
tations. In parallel, we find that Info.Complex. gen-
erally increases and Dist.Kurt. decreases after RL fine-
tuning as shown in Table 1, indicating that activation pat-
terns become more diverse. We provide further visual-
ization results relevant to this conclusion, as illustrated in
Figure 3: panel (a) shows that across inference samples, the internal activation structures exhibit
greater variability after RL, as quantified by an increase in one minus the mean correlation of edge-
weight matrices between sample pairs, and panel (b) further demonstrates that output-edge entropy
rises across most model–dataset–hyperparameter combinations. Together, these results indicate that
RL enriches the connectivity structure of the internal circuitry, leading to more robust and flexible
information flow essential for logical deduction. Furthermore, as shown in Figure 3, panel (a), the
Qwen2.5 series models trained with the DPO algorithm also exhibit a certain degree of improve-
ment in diversity. However, the magnitude of this improvement is relatively lower than that of
models trained with other online RL methods.
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Figure 3: Comparison before and after RL fine-tuning: (a) diversity of activation patterns across
inference samples, including data from all datasets and α values; (b) entropy of output edge patterns
per node. In (b), data points are arranged sequentially by dataset (College Math, GSM8K, MATH),
iterating over α ∈ {0.03, 0.1, 0.3, 0.5} for each.

Based on Equation (4), we can interpret the observed phenomena by analyzing the fundamental
differences in the support of the sampling distribution D and the properties of the gradient coefficient
GCA across SFT, Online RL, and DPO.

For SFT, the data source is static, drawn from a fixed human-annotated distribution DSFT =
{(q, o) ∼ Pdata}, with a constant gradient coefficient GCSFT = 1. Consequently, the model op-
timizes its internal representations to minimize cross-entropy on a narrow, predefined manifold of
”correct solutions.” This drives the model to converge towards a low-entropy mode that mimics the
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training data, resulting in activations concentrated on a small number of outlier edges (high Distri-
bution Kurtosis) and limited engagement of redundant pathways (low Activation Intensity).

In contrast, Online RL algorithms like PPO and GRPO fundamentally alter the data source by in-
troducing on-policy sampling, where outputs are dynamically generated by the evolving policy it-
self: DRL =

{
(q, {oi}Gi=1) | q ∼ Pdata, oi ∼ πθ(·|q)

}
. This mechanism significantly expands the

stochastic support set of the training distribution beyond the SFT subspace, providing the LLM with
a richer set of reasoning path samples for each query q. Mechanistically, to handle the expanded
state space encountered during exploration, the network is compelled to activate and reinforce la-
tent or ”dormant” internal circuits that were underutilized during SFT. Furthermore, the gradient
coefficient in online RL varies dynamically based on feedback from the reward model or rule. Tak-
ing GRPO as an example, GCGRPO = Âi,t(q, o, t, πrd) + β

(
πref (oi,t|oi,<t)
πθ(oi,t|oi,<t)

− 1
)

. To maximize
expected reward, the model is driven to mobilize these less active internal circuits to master rela-
tively ”harder” problems, as correct responses to such instances typically yield significantly higher
gradient coefficients. The observed increase in Activation Intensity and the simultaneous decrease
in Distribution Kurtosis reflect this broader utilization of residual pathways. Moreover, as multiple
distinct reasoning paths for the same question are reinforced, the entropy of the internal edge weight
distribution increases.

Furthermore, from this unified perspective, we can elucidate why DPO exhibits distinct behaviors,
particularly its failure to consistently enhance activation intensity and information complexity. Al-
though DPO is mathematically derived from the RL objective, it operates as an offline (or semi-
offline, where datasets are refreshed only periodically) algorithm. Its data source remains closer to a
relatively more static distribution: DDPO = {(q, o+, o−) ∼ Pdata}, rather than the real-time policy
πθ. Since DPO restricts optimization to the fixed support set of an offline dataset and effectively
retains only two potentially stale contrasting samples for each query q, the mechanistic pressure to
expand the network’s functional capacity through stochastic sampling is significantly weaker. This
explains why Activation Intensity and Information Complexity do not show a consistent upward
trend compared to the SFT baseline. However, DPO does successfully reduce Distribution Kur-
tosis. This is because the preference optimization objective is driven by the gradient coefficient
GCDPO = σ

(
β log πθ(o

−|q)
πref (o−|q) − β log πθ(o

+|q)
πref (o+|q)

)
. This soft margin mechanism relaxes the strict

token-matching constraints of SFT, favoring a broader reward maximization landscape and thereby
inhibiting the emergence of high-intensity activation edges to some extent, which can be intuitively
understood as mitigating rote memorization. Thus, while DPO attenuates the model’s reliance on a
few high-intensity edges during inference (low kurtosis), it lacks the on-policy exploration dynam-
ics inherent to Online RL, which are essential for driving the systematic enhancement of average
internal activation intensity and diversity.

In summary, we posit that the sampling process is the core factor driving the fundamental inter-
nal differences between SFT, DPO, and various online-RL paradigms, which consequently leads to
disparities in external performance. In Appendix B, we manipulated the sampling dynamics dur-
ing online-RL by adjusting the training temperature and observed phenomena consistent with our
expectations. These findings provide robust empirical support for our hypothesis.

5 RELATED WORKS

5.1 INTERPRETABILITY OF REINFORCEMENT LEARNING

The inherent opacity of deep reinforcement learning motivates studies on improving their explain-
ability (Qing et al., 2022). Research in explainable RL can be generally categorized into pre-hoc
and post-hoc techniques, where the former seeks to build inherently interpretable agents while the
latter focuses on analyzing trained agents. Pre-hoc research direction focuses on creating inher-
ently interpretable agents, such as neuro-symbolic systems that represent policies as mathematical
expressions (Landajuela et al., 2021; Delfosse et al., 2023), ensuring transparency by design. On
contrast, among post-hoc approaches, feature attribution methods are widely applied to generate
saliency maps to highlight influential input features (Hao et al., 2022). Besides, another prominent
post-hoc paradigm is policy distillation, where the behavior of a complex neural network is distilled
into a simpler surrogate model, such as a decision tree, to provide a global summary of the agent’s
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strategy (Li et al., 2021). Furthermore, counterfactual methods provide an alternative explanatory
lens by answering “what if” questions, identifying the minimal state alterations that would have led
to a different action (Puri et al., 2019; Huber et al., 2023).

Collectively, these diverse approaches reflect a field moving from reactive explanation of opaque
models towards transparent and trustworthy intelligent agents. However, these research mainly focus
on lightweight RL agents for conventional decision-making tasks, while it remains unexplored how
RL works in the emerging post-training applications, where LLMs are trained as the agent.

5.2 INTERPRETABILITY OF LARGE LANGUAGE MODELS

Research into the interpretability of LLMs has largely progressed along two complementary
paradigms: mechanistic interpretability and representation interpretability (Singh et al., 2024).
Mechanistic interpretability aims to reverse-engineer the patterns learned by a model by analyz-
ing its fundamental components, such as neurons and attention heads, which often employs causal
tracing techniques (Gantla, 2025). For instance, one study traced numerical hallucinations to a “Ben-
ford’s Curse”, identifying a statistical bias learned from training data that was internalized by a small
subset of feed-forward network (FFN) neurons, and then causally verified this by demonstrating that
pruning these specific neurons corrected numerical errors (Shao et al., 2025). In contrast, repre-
sentation interpretability mainly investigates what information is encoded in the model’s internal
activation states via external probing models. A prominent line of work in this area uses lightweight
probes varying from linear models (Kim et al., 2025) to graph models (Zheng et al., 2025), decoding
concepts within the activation space of the model’s middle layers. These discovered representations
are not merely correlational, but the learned probe weights can be repurposed as “steering vectors” to
causally intervene on the activations during generation, thereby controlling the model’s output (Kim
et al., 2025). While the former paradigm focuses on how a model computes, the latter reveals what
knowledge it represents, together offering a more holistic understanding of these complex systems.

While such studies offer valuable perspectives on LLM interpretability, they predominantly focus
on analyzing given LLMs without integrating the training methodology with which the LLMs are
obtained into the investigation. In particular, it remains unclear how RL, the widely adopted tech-
nique in post-training, is able to broadly enhance the capabilities of diverse LLMs with distinct
architectural and functional characteristics.

6 CONCLUSIONS

We presented a systematic analysis of how reinforcement learning (RL) fine-tuning reshapes the
internal circuitry of large language models (LLMs). Using edge attribution patching, we identified
two robust effects across multiple model families: stronger average activation intensity and greater
diversity in activation patterns. These findings suggest that online RL enhances both the redun-
dancy and flexibility of information flow, which may underlie its superior generalization ability in
mathematical domains. In contrast, DPO fine-tuning produced weaker or inconsistent changes, em-
phasizing the methodological gap between static preference optimization and dynamic online RL.
Our results provide a unified mechanistic perspective on RL post-training and offer guidance for the
design of future post-training algorithms.

7 LIMITATIONS

Our study acknowledges certain limitations that outline important directions for future research.
While the consistency of our results suggests potential broader applicability, our empirical valida-
tion is currently confined to mathematical reasoning tasks. Verifying whether these internal cir-
cuit dynamics hold in domains with open-ended outputs, such as code generation, creative writing,
open-ended dialogue and so on, remains a critical subject for future investigation. We also note the
limitation regarding model scale, as the significant memory overhead required for granular internal
state analysis prevented us from extending our experiments to models larger than 7B parameters.
Furthermore, concerning model architecture, although we endeavored to include a diverse range of
open-source models, the current landscape is overwhelmingly dominated by the ”LLaMA-style”
structure.
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A CHARACTERISTICS OF ANALYZED LLMS

We employed four pairs of large language models (LLMs), each consisting of a base model (SFT)
and its post-trained RL counterpart. The models and their download links are listed below:

• DeepSeek-Math
– deepseek-math-7b-instruct: https://huggingface.co/deepseek-ai/de
epseek-math-7b-instruct

– deepseek-math-7b-rl: https://huggingface.co/deepseek-ai/deepse
ek-math-7b-rl

• Mistral
– mistral-7b-sft: https://huggingface.co/peiyi9979/mistral-7b-s
ft

– math-shepherd-mistral-7b-rl: https://huggingface.co/peiyi9979/mat
h-shepherd-mistral-7b-rl

• Distilled-Qwen
– DeepSeek-R1-Distill-Qwen-7B: https://huggingface.co/deepseek-a
i/DeepSeek-R1-Distill-Qwen-7B

– AceReason-Nemotron-7B: https://huggingface.co/nvidia/AceReaso
n-Nemotron-7B

• Qwen2.5
– Qwen2.5-7B-SFT: https://huggingface.co/RLHFlow/Qwen2.5-7B-S
FT

– Qwen2.5-7B-DPO: https://huggingface.co/RLHFlow/Qwen2.5-7B-D
PO

As summarized in Table 2, these LLMs are designed with distinctive structural and functional char-
acteristics.

Table 2: Structural and functional characteristics of the analyzed LLMs.

LLM series Parameter size # layers # heads Max ctx Dim Vocab size

DeepSeek-Math 7B 30 32 4096 4096 102400
Mistral 7B 32 32 4096 4096 32000

Distilled-Qwen 7B 28 28 131072 3584 152064
Qwen-2.5 7B 28 28 8192 3584 151665

14

https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct
https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl
https://huggingface.co/peiyi9979/mistral-7b-sft
https://huggingface.co/peiyi9979/mistral-7b-sft
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-rl
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-rl
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/nvidia/AceReason-Nemotron-7B
https://huggingface.co/nvidia/AceReason-Nemotron-7B
https://huggingface.co/RLHFlow/Qwen2.5-7B-SFT
https://huggingface.co/RLHFlow/Qwen2.5-7B-SFT
https://huggingface.co/RLHFlow/Qwen2.5-7B-DPO
https://huggingface.co/RLHFlow/Qwen2.5-7B-DPO


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B TRAINING DYNAMICS UNDER SAMPLING INTERVENTIONS
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Figure 4: Smoothed moving-average curves of reward and group reward standard deviation during
RL training under different temperatures, with a sliding window length of 8.
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Figure 5: (a) Accuracy of models trained with different numbers of RL steps on the GSM8K test
set. (b), (c), and (d) show, respectively, the differences in Activation Intensity, Distribution Stability,
and Information Complexity between models trained with different numbers of RL steps and the
initial model. We highlight the training intervals where the performance gains are most pronounced
for temperature = 0.6 and temperature = 1.0, corresponding to [60, 120] and [40, 100], and mark the
extrema of each metric within these intervals in the expected direction.

To investigate whether the observed internal circuit changes are causal drivers of performance im-
provement rather than mere byproducts, we designed an intervention experiment. These changes
specifically refer to the increased activation intensity and the enhancement of pattern diversity. We
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employed Qwen2.5-3B-Instruct1 (Daniel Han & team, 2023) as the base model and limited its max-
imum generation length to 200 tokens to constrain its initial reasoning capabilities. On this basis,
we conducted reinforcement learning training on the GSM8K training set using an improved variant
of the GRPO algorithm (Yu et al., 2025). The experiment was configured with a batch size of 32
and sampled 4 candidate responses per query. We utilized the RLVR reward function where correct
answers received 3 points and completely incorrect answers received -0.5 points. Partial correctness
was scored proportionally based on the deviation between the prediction and the ground truth.

Our core hypothesis asserts that effective on-policy exploration drives the activation and consoli-
dation of beneficial internal circuits and subsequently leads to performance gains. To verify this,
we required a control variable to modulate exploration quality. We selected sampling temperature
as the intervention method because excessively high temperatures theoretically introduce excessive
randomness and alter sampling effectiveness. We compared two temperature settings. A temperature
of 0.6 represents effective exploration under standard settings while 1.0 represents noisy exploration
under high-entropy settings.

Figure 4 illustrates the reward trajectories and the standard deviation of the Group Reward during
training. As shown in Figure 4(b), the Group Reward standard deviation under the 1.0 temperature
setting is significantly higher than that of the 0.6 setting. This confirms that high temperatures induce
higher output mode variability (Liu et al., 2025; Ren & Sutherland, 2024). Such excessive variance
implies that the signals generated during exploration are noisier. Consequently, it becomes difficult
for the model to reliably identify the underlying patterns corresponding to correct solutions.

We tracked the evolution of three key internal metrics relative to the initial SFT model as detailed
in Figure 5(b)-(d). We observed significant differences during the critical mid-training phase be-
tween steps 40 and 120. At temperature 0.6, activation intensity showed a clear increasing trend
and peaked around step 120. In contrast, the growth of this metric was significantly suppressed at
temperature 1.0 where the peak was markedly lower than that of the low-temperature group. This
suggests that noisy sampling hindered the full activation of latent dormant circuits. Similarly, the
information complexity for the 0.6 group rose sharply between steps 100 and 120. Conversely, the
1.0 group failed to sustain growth and even exhibited a decline during mid-training. Regarding
distribution kurtosis in Figure 5(c), the 0.6 group showed a significant decrease. This implies that
the model no longer relies excessively on a few concentrated high-activation pathways for reason-
ing. In comparison, the 1.0 group exhibited a smaller decrease. Overall, the 0.6 temperature group
achieved higher peaks in activation intensity and information complexity alongside lower valleys in
distribution kurtosis compared to the 1.0 group during the mid-training phase.

The differences in internal circuits mapped directly to downstream task performance. Figure 5(a)
illustrates the changes in GSM8K test accuracy. The accuracy of the 0.6 group climbed rapidly
alongside the expected changes in internal metrics and finally reached 51.2%. Conversely, the
performance growth of the 1.0 group was slow due to suppressed internal circuit evolution and
eventually stagnated around 36.5%. This is far below the control group. The results indicate that
performance gains are substantially weakened when the normal evolution of internal circuits is ar-
tificially suppressed via high-temperature sampling. This intervention-suppression effect provides
effective empirical support for our causal hypothesis. This provides empirical support for the view
that diverse and high-intensity internal pathway activation is a key mechanism bridging effective
sampling and performance improvement, rather than being a simple byproduct.

1https://huggingface.co/unsloth/Qwen2.5-3B-Instruct
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C IMPLEMENTATION DETAILS

In this section, we provide all implementation details for reproducibility in Table 3. In the experi-
ments, we selected the hyperparameter configuration as β = 0.5, γ = 1.5, and δ = 0.5. For each
combination of dataset and α, we randomly drew 100 pairs of contrastive samples from the final
pool of filtered samples.

Table 3: Implementation details

Module Element Detail

System

OS Ubuntu 22.04.3 LTS
CUDA 12.2
Python 3.11
Pytorch 2.7.0+cu26
Device 2*NVIDIA A100 80G

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PERFORMANCE OF LLMS

Here we compare the performance of LLMs before and after post-training on multiple benchmarks.
As shown in Table 4, post-training generally improves the capability of different LLMs.

Table 4: Performance comparisons of LLMs before and after post-training. Bold numbers indicate
better performance.

LLM series Post-training MATH GSM8K Minerva
math

Olympiad
bench

College
math AIME24 AMC23

DeepSeek-Math Before 46.2 82.1 22.1 14.5 30.8 3.3 17.5
After 52.6 87.9 27.2 18.2 33.5 6.7 25.0

Mistral Before 29.1 78.2 12.1 5.5 17.5 0.0 12.5
After 32.6 84.2 11.8 9.2 19.9 0.0 12.5

DS-Distill-Qwen Before 88.4 90.3 43.0 49.8 40.0 46.7 87.5
After 95.4 93.4 55.9 65.9 44.6 70.0 95.0

Qwen-2.5 Before 75.7 92.2 32.7 37.6 41.9 16.7 62.5
After 82.6 92.0 40.1 46.4 42.5 26.7 67.5
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E USE OF LLMS

The authors used LLMs to aid or polish paper writing, but all content has been carefully reviewed
by the author. The authors used LLMs for literature retrieval and discovery, but all related works
have been carefully reviewed and organized by the author. The research ideation in this work was
entirely completed by the author and does not involve the use of LLMs.
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