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Abstract

We propose Dual PatchNorm: two Layer Normalization layers (LayerNorms), before and
after the patch embedding layer in Vision Transformers. We demonstrate that Dual Patch-
Norm outperforms the result of exhaustive search for alternative LayerNorm placement
strategies in the Transformer block itself. In our experiments on image classification and
contrastive learning, incorporating this trivial modification, often leads to improved accu-
racy over well-tuned vanilla Vision Transformers and never hurts.

1 Introduction

Layer Normalization (Ba et al., 2016) is key to Transformer’s success in achieving both stable training
and high performance across a range of tasks. Such normalization is also crucial in Vision Transformers
(ViT) (Dosovitskiy et al., 2020; Touvron et al., 2021) which closely follow the standard recipe of the original
Transformer model.

Following the “pre-LN” strategy in Baevski & Auli (2019) and Xiong et al. (2020), ViTs place LayerNorms
before the self-attention layer and MLP layer in each Transformer block. We explore the following question:
Can we improve ViT models with a different LayerNorm ordering? First, across five ViT architectures on
ImageNet-1k (Russakovsky et al., 2015), we demonstrate that an exhaustive search of LayerNorm placements
between the components of a Transformer block does not improve classification accuracy. This indicates that
the pre-LN strategy in ViT is close to optimal. Our observation also applies to other alternate LayerNorm
placements: NormFormer (Shleifer et al., 2021) and Sub-LN (Wang et al., 2022), which in isolation, do not
improve over strong ViT classification models.

Second, we make an intriguing observation: placing additional LayerNorms before and after the standard
ViT-projection layer, which we call Dual PatchNorm (DPN), can improve significantly over well tuned
vanilla ViT baselines. Our experiments on image classification across three different datasets with varying
number of examples and contrastive learning, demonstrate the efficacy of DPN. Interestingly, our qualitative
experiments show that the LayerNorm scale parameters upweight the pixels at the center and corners of
each patch.

1 hp , wp = patch_size [0] , patch_size [1]
2 x = einops . rearrange (
3 x, "b (ht hp) (wt wp) c -> b (ht wt) (hp wp c)", hp=hp , wp=wp)

4 x = nn.LayerNorm(name="ln0")(x)

5 x = nn. Dense ( output_features , name=" dense ")(x)

6 x = nn.LayerNorm(name="ln1")(x)

Dual PatchNorm consists of a 2 line change to the standard ViT-projection layer.

2 Related Work

Kim et al. (2021) add a LayerNorm after the patch-embedding and show that this improves the robustness
of ViT against corruptions on small-scale datasets. Xiao et al. (2021) replace the standard Transformer
stem with a small number of stacked stride-two 3 × 3 convolutions with batch normalizations and show
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that this improves the sensitivity to optimization hyperparameters and final accuracy. Xu et al. (2019)
analyze LayerNorm and show that the derivatives of mean and variance have a greater contribution to final
performance as opposed to forward normalization. Beyer et al. (2022a) consider Image-LN and Patch-LN
as alternative strategies to efficiently train a single model for different patch sizes. Wang et al. (2022) add
extra LayerNorms before the final dense projection in the self-attention block and the non-linearity in the
MLP block, with a different initialization strategy. Shleifer et al. (2021) propose extra LayerNorms after
the final dense projection in the self-attention block instead with a LayerNorm after the non-linearity in the
MLP block. Unlike previous work, we show that LayerNorms before and after the embedding layer provide
consistent improvements on classification and contrastive learning tasks. An orthogonal line of work (Liu
et al., 2021; d’Ascoli et al., 2021; Wang et al., 2021) involves incorporating convolutional inductive biases to
VisionTransformers. Here, we exclusively and extensively study LayerNorm placements of vanilla ViT.

3 Background

3.1 Patch Embedding Layer in Vision Transformer

Vision Transformers (Dosovitskiy et al., 2020) consist of a patch embedding layer (PE) followed by a stack of
Transformer blocks. The PE layer first rearranges the image x ∈ RH×W ×3 into a sequence of patches xp ∈
R

HW
P 2 ×P 2

where P denotes the patch size. It then projects each patch independently with a dense projection
to constitute a sequence of “visual tokens" xt ∈ R

HW
P 2 ×D P controls the trade-off between granularity of the

visual tokens and the computational cost in the subsequent Transformer layers.

3.2 Layer Normalization

Given a sequence of N patches x ∈ RN×D, LayerNorm as applied in ViTs consist of two operations:

x = x− µ(x)
σ(x) (1)

y = γx + β (2)

where µ(x) ∈ RN , σ(x) ∈ RN , γ ∈ RD, β ∈ RD.

First, Eq. 1 normalizes each patch xi ∈ RD of the sequence to have zero mean and unit standard deviation.
Then, Eq 2 applies learnable shifts and scales β and γ which are shared across all patches.

4 Methods

4.1 Alternate LayerNorm placements:

Following Baevski & Auli (2019) and Xiong et al. (2020), ViTs incorporate LayerNorm before every self-
attention and MLP layer, commonly known as the pre-LN strategy. For each of the self-attention and
MLP layer, we evaluate 3 strategies: place LayerNorm before (pre-LN), after (post-LN), before and after
(pre+post-LN) leading to nine different combinations.

4.2 Dual PatchNorm

Instead of adding LayerNorms to the Transformer block, we also propose to apply LayerNorms in the stem
alone, both before and after the patch embedding layer. In particular, we replace

x = PE(x) (3)
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with

x = LN(PE(LN(x))) (4)

and keep the rest of the architecture fixed. We call this Dual PatchNorm (DPN).

5 Experiments

5.1 Setup

We adopt the standard formulation of Vision Transformers (Sec. 3.1) which has shown broad applicability
across a number of vision tasks. We train ViT architectures (with and without DPN) in a supervised fashion
on 3 different datasets with varying number of examples: ImageNet-1k (1M), ImageNet-21k (21M) and JFT
(4B) (Zhai et al., 2022a). In our experiments, we apply DPN directly on top of the baseline ViT recipes
without additional hyperparamter tuning. We split the ImageNet train set into a train and validation split,
and use the validation split to arrive at the final DPN recipe.

ImageNet 1k: We train 5 architectures: Ti/16, S/16, S/32, B/16 and B/32 using the AugReg (Steiner
et al., 2022) recipe for 93000 steps with a batch size of 4096 and report the accuracy on the official ImageNet
validation split as is standard practice. The AugReg recipe provides the optimal mixup regularization (Zhang
et al., 2017) and RandAugment (Cubuk et al., 2020) for each ViT backbone. We additionally evaluate a
S/16 baseline (S/16+) with additional extensive hyperparameter tuning on ImageNet (Beyer et al., 2022b).

ImageNet 21k: We adopt a similar setup as in ImageNet 1k. We report ImageNet 25 shot accuracies in
two training regimes: 93K and 930K steps.

JFT: We evaluate the ImageNet 25 shot accuracies of 3 variants (B/32, B/16 and L/16) on 2 training
regimes: (220K and 1.1M steps) with a batch size of 4096. In this setup, we do not use any additional data
augmentation or mixup regularization.

On ImageNet-1k, we report the 95% confidence interval across 3 independent runs. On ImageNet-21k and
JFT, because of expensive training runs, we train each model once and report the mean 25 shot accuracy
with 95% confidence interval across 3 random seeds.

5.2 DPN versus alternate LayerNorm placements

Each Transformer block in ViT consists of a self-attention (SA) and MLP layer. Following the pre-LN
strategy (Xiong et al., 2020), LN is inserted before both the SA and MLP layers. We first show that
the default pre-LN strategy in ViT models is close to optimal by evaluating alternate LN placements on
ImageNet-1k. We then contrast this with the performance of NormFormer, Sub-LN and DPN.

For each SA and MLP layer, we evaluate three LN placements: Pre, Post and Pre+Post, that leads to nine
total LN placement configurations. Additionally, we evaluate the LayerNorm placements in NormFormer
(Shleifer et al., 2021) and Sub LayerNorm (Wang et al., 2022) which add additional LayerNorms within each
of the self-attention and MLP layers in the transformer block. Figure 1 shows that none of the placements
outperform the default Pre-LN strategy significantly, indicating that the default pre-LN strategy is close to
optimal. NormFormer provides some improvements on ViT models with a patch size of 32. DPN on the
other-hand provides consistent improvements across all 5 architectures.

5.3 Comparison to ViT

In Table 1 left, DPN improved the accuracy of B/16, the best ViT model by 0.7 while S/32 obtains the
maximum accuracy gain of 1.9. The average gain across all architecture is 1.4.
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Figure 1: The plot displays the accuracy gains of different LayerNorm placement strategies over the default
pre-LN strategy. Each blue point (Other LN placement) corresponds to a different LN placement in
the Transformer block. None of the placements outperform the default Pre-LN strategy on ImageNet-1k
(Russakovsky et al., 2015). Applying DPN (black cross) provides consistent improvements across all 5
architectures.

Arch Base DPN
S/32 72.1 ± 0.07 74.0 ± 0.09
Ti/16 72.5 ± 0.07 73.9 ± 0.09
B/32 74.8 ± 0.06 76.2 ± 0.07
S/16 78.6 ± 0.32 79.7 ± 0.2
S/16+ 79.7 ± 0.09 80.2 ± 0.03
B/16 80.4 ± 0.06 81.1 ± 0.09

Arch Base DPN
93K Steps

Ti/16 52.2 ± 0.07 53.6 ± 0.07
S/32 54.1 ± 0.03 56.7 ± 0.03
B/32 60.9 ± 0.03 63.7 ± 0.03
S/16 64.3 ± 0.15 65.0 ± 0.06
B/16 70.8 ± 0.09 72.0 ± 0.03

930K Steps
Ti/16 61.0 ± 0.03 61.2 ± 0.03
S/32 63.8 ± 0.00 65.1 ± 0.12
B/32 72.8 ± 0.03 73.1 ± 0.07
S/16 72.5 ± 0.1 72.5 ± 0.1
B/16 78.0 ± 0.06 78.4 ± 0.03

Table 1: Left: ImageNet-1k validation accuracies of five ViT architectures with and without dual patch
norm after 93000 steps. Right: We train ViT models on ImageNet-21k in two training regimes: 93k and
930k steps with a batch size of 4096. The table shows their ImageNet 25 shot accuracies with and without
Dual PatchNorm

DPN improves all architectures trained on ImageNet-21k (Table 1 Right) and JFT (Table 2) on shorter
training regimes with average gains of 1.7 and 0.8 respectively. On longer training regimes, DPN improves
the accuracy of the best-performing architectures on JFT and ImageNet-21k by 0.5 and 0.4 respectively.

In three cases, Ti/16 and S/32 with ImageNet-21k and B/16 with JFT, DPN matches or leads to marginally
worse results than the baseline. Nevertheless, across a large fraction of ViT models, simply employing DPN
out-of-the-box on top of well-tuned ViT baselines lead to significant improvements.
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5.4 Finetuning with DPN

We finetune four models trained on JFT-4B with two resolutions on ImageNet-1k: (B/32, B/16) × (220K,
1.1M) steps on resolutions 224× 224 and 384× 384. On B/32, we observe a consistent improvement across
all configurations. On L/16, the baselines without DPN match the transfer performance with DPN.

Arch Base DPN
220K steps

B/32 63.8 ± 0.03 65.2 ± 0.03
B/16 72.1 ± 0.09 72.4 ± 0.07
L/16 77.3 ± 0.00 77.9 ± 0.06

1.1M steps
B/32 70.7 ± 0.1 71.1 ± 0.09
B/16 76.9 ± 0.03 76.6 ± 0.03
L/16 80.9 ± 0.03 81.4 ± 0.06

Arch Resolution Steps Base DPN
B/32 224 220K 77.6 ± 0.06 78.3 ± 0.00
B/32 384 220K 81.3 ± 0.09 81.6 ± 0.00
B/32 224 1.1M 80.8 ± 0.1 81.3 ± 0.00
B/32 384 1.1M 83.8 ± 0.03 84.1 ± 0.00

L/16 224 220K 84.6 ± 0.06 84.5 ± 0.13
L/16 384 220K 86.4 ± 0.00 86.4 ± 0.03
L/16 224 1.1M 86.6 ± 0.03 86.5 ± 0.13
L/16 384 1.1M 87.8 ± 0.08 87.9 ± 0.01

Table 2: Left: We train 3 ViT models on JFT-4B in two training regimes: 200K and 1.1M steps with a
batch size of 4096. The table displays their ImageNet 25 shot accuracies with and without DPN. Right:
Corresponding full finetuneing results on ImageNet-1k.

5.5 Contrastive Learning

We adopt the LiT contrastive-learning setup (Zhai et al., 2022b) and evaluate models trained with DPN
on zero-shot ImageNet accuracy. We evalute 4 frozen image encoders: 2 architectures (B/32 and L/16)
trained with 2 schedules (220K and 1.1M steps). We resue standard hyperparameters and train only the
text encoder using a contrastive loss for 55000 steps with a batch-size of 16384. Table 3 shows that on B/32,
DPN improves over the baselines on both the setups while on L/16 DPN provides improvement when the
image encoder is trained with shorter training schedules.

Arch Steps Base DPN
B/32 220K 61.9 ± 0.12 63.0 ± 0.09
B/32 1.1M 67.4 ± 0.07 68.0 ± 0.09
L/16 220K 75.0 ± 0.11 75.4 ± 0.00
L/16 1.1M 78.7 ± 0.05 78.7 ± 0.1

Table 3: Zero Shot ImageNet accuracy on the LiT (Zhai et al., 2022b) contrastive learning setup.

5.6 Ablations and Analysis

Is normalizing both the inputs and outputs of the embedding layer optimal? In Eq 4, DPN
applies LN to both the inputs and outputs to the embedding layer. We assess three alternate strategies:
Pre, Post and Post PosEmb (Radford et al., 2021). Pre applies LayerNorm only to the inputs, Post only
to the outputs and Post PosEmb to the outputs after being summed with positional embeddings.

Table 4 displays the accuracy gains with two alternate strategies: Pre is unstable on B/32 leading to a
significant drop in accuracy. Additionally, Pre obtains minor drops in accuracy on S/32 and Ti/16. Post
and Post PosEmb achieve worse performance on smaller models B/32, S/32 and Ti/16. Our experiments
show that applying LayerNorm to both inputs and outputs of the embedding layer is necessary to obtain
consistent improvements in accuracy across all ViT variants.
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B/16 S/16 B/32 S/32 Ti/16
Pre -0.1 0.0 -2.6 -0.2 -0.3
Post 0.0 -0.2 -0.5 -0.7 -1.1

Post PosEmb 0.0 -0.1 -0.4 -0.9 -1.1
Only learnable -0.8 -0.9 -1.2 -1.6 -1.6
RMSNorm 0.0 -0.1 -0.4 -0.5 -1.7
No learnable -0.5 0.0 -0.2 -0.1 -0.1

Table 4: Ablations of various components of DPN. Pre: LayerNorm only to the inputs of the embedding
layer. Post: LayerNorm only to the outputs of the embedding layer. No learnable: Per-patch normal-
ization without learnable LayerNorm parameters. Only learnable: Learnable scales and shifts without
standardization.
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Figure 2: Visualization of scale parameters of the first LayerNorm. Top: Ti/16 trained on ImageNet 1k.
Bottom: L/16 trained on JFT-4B

Normalization vs Learnable Parameters: As seen in Sec. 3.2, LayerNorm constitutes a normalization
operation followed by learnable scales and shifts. We also ablate the effect of each of these operations in
DPN.

Applying only learnable scales and shifts without normalization leads to a significant decrease in accuracy
across all architectures. (See: Only learnable in Table 4). Additionally, removing the learnable parameters
leads to unstable training on B/16 (No learnable in Table 4). Finally, removing the centering and bias
parameters as done in RMSNorm (Zhang & Sennrich, 2019), reduces the accuracy of B/32, S/32 and
Ti/16. We conclude that while both normalization and learnable parameters contribute to the success of
DPN, normalization has a higher impact.
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5.7 Visualizing Scale Parameters

Note that the first LayerNorm in Eq. 4 is applied directly on patches, that is, to raw pixels. Thus, the
learnable parameters (biases and scales) of the first LayerNorm can be visualized directly in pixel space.
Fig. 2 shows the scales of our smallest model and largest model which are: Ti/16 trained on ImageNet
for 90000 steps and L/16 trained on JFT for 1.1M steps respectively. Since the absolute magnitude of the
scale parameters vary across the R, G and B channel, we visualize the scale separately for each channel.
Interestingly, for both models the scale parameter increases the weight of the pixels in the center of the patch
and at the corners.

6 Conclusion

We propose a simple modification to vanilla ViT models and show its efficacy on classification and contrastive
learning tasks.
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A Appendix

B Initial Project Idea

We arrived at the Dual PatchNorm solution via another project that explored adding whitened (decorrelated)
patches to the inputs of ViT. Our initial prototype had a LayerNorm right after the decorrelated patches,
to ensure that they are at an appropriate scale. This lead to improvements across multiple benchmarks,
suggesting that whitened patches can improve image classification. Via ablations, later found out that just
LayerNorm is sufficient and adding whitened patches on their own could degrade performance.
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C Code

We perform all our experiments in the big-vision (Beyer et al., 2022c) library. Since the first LayerNorm of
DPN is directly applied on pixels, we replace the first convolution with a patchify operation implemented
with the einops (Rogozhnikov, 2022) library and a dense projection.

D ViT Projection Layer: Gradient Norm
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Figure 3: Gradient norm of each dense projection layer as a function of depth with and without DPN. Index
0 corresponds to the ViT patch embedding layer. DPN makes the gradient norm of the ViT-projection layer
to be of the same scale as the other dense projections.

We analyse the gradient norms of different dense projections in a ViT B/32 model as a function of depth with
and without DPN. Interestingly, Fig. 3 shows that DPN makes the gradient norm of the patch embedding to
be of the same scale as the other dense projections within the Transformer blocks. However, we were unable
to leverage this insight, to train models with DPN at higher learning rates. Without any other change in
hyperparameters, ViTs with and without DPN, start to diverge roughly at the same learning rates. You
may include other additional sections here.
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