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Abstract

Language is an important component of Vision-
Language-Action (VLA) models, but the lin-
guistic quality of training and test data remains
underexplored. We analyze language in several
VLA datasets and find that it is highly repet-
itive and structurally simple. These findings
highlight the need for more diverse and lin-
guistically rich data to support robust language
understanding in embodied settings.

1 Introduction

With advances in large language models (LLMs)
and multimodal learning, language is increasingly
used as an input modality across research fields,
enabling practical, real-world systems. In robotics,
this trend is reflected in the growing focus on VLA
models such as OpenVLA (Kim et al., 2025), RT-
X (Collaboration et al., 2024), and 70.5 (Intelli-
gence et al., 2025). Much of this progress has
been driven by datasets like Open X-Embodiment
(OXE) (Collaboration et al., 2024), which are
significantly larger and more diverse than earlier
robotics datasets. Together with advances in lan-
guage modeling, these developments have enabled
a shift toward generalist robotic systems that use
language to specify tasks.

Despite this progress, language—while a core
modality in VLA systems—is often overlooked
in dataset documentation and model evaluations.
Most datasets emphasize diversity across objects,
scenes, and embodiments, while evaluations focus
on task success without testing robustness to lan-
guage variation. Although some works raise con-
cerns about limited generalization (AgiBot-World-
Contributors et al., 2025) and insufficient evalu-
ation, including sensitivity to paraphrases (Wang
et al., 2024), the linguistic characteristics of these
datasets—and their impact—remain largely unex-
amined. As a result, it is often unclear what kind of
language these models are trained on. This limits

Token-Level Analysis

Unique
Unigrams —

Sentence-Level Analysis

Part-of-Speech
Pattern

Command Verb, Direct
Length EAI Object,
, . Dataset Adverbial
Lexical Overlap Diversity

Instruction
Structure

Lexical
Diversity

Figure 1: We perform linguistic diversity analysis on
EAI datasets across two main categories: Token-Level
for granular, lexical features and Sentence-Level for
higher-level, syntactic patterns.

our ability to assess model robustness, safety, and
real-world applicability.

To address this, we analyze the language in sev-
eral VLA datasets from OXE and compare them to
other datasets from robotics and natural language
understanding benchmarks. Using standard NLP
tools and metrics, we evaluate linguistic diversity
at both the token and sentence level. Our analysis
uncovers systemic linguistic limitations in current
VLA datasets that hinder model robustness and gen-
eralization. The datasets contain few unique com-
mands and exhibit limited lexical diversity when
compared to other robotics and natural language
understanding datasets. The language used tends to
follow repetitive syntactic patterns, with minimal
variation in structure and vocabulary. Complex lin-
guistic constructs such as negations, conditionals,
and cycles are largely absent.

Although generalist language-guided robots are
gaining traction, the language used to train VLA
models remains limited in quality and diversity.
Enhancing this language—either by collecting
richer data or generating more varied synthetic in-
puts—could substantially improve natural language
understanding in current VLA systems.



Dataset Citations

Focus Language Style

ALFRED (Shridhar et al., 2020) 738+
SCOUT (Lukin et al., 2024) 0

Household task instruction following
Two-way, task-oriented dialogue

Step-by-step, high-level
Unconstrained, interactive

Open X-Embodiment (Collaboration et al., 2024) 459+
RT-1 (Brohan et al., 2023) 1013+
BRIDGE (Walke et al., 2023) 204+

TacoPlay (Rosete-Beas et al., 2022) 81+
Language Table (Lynch et al., 2023) 214+

Collection of datasets
Kitchen instruction following
Skill generalization across domains
Task-agnostic “play” behaviors
Open-vocab spatial manipulation

Varied, not always included
Concise, imperative, templated
Diverse, step-by-step
Simple, low-variety, templated
Natural, open-ended

LIBERO (Liu et al., 2023) 114+

Knowledge transfer in robot learning Natural!

Table 1: Overview of the datasets explored in this work. We include citation counts for each dataset; note that some
of the referenced works focus primarily on dataset creation, while others introduce new methods alongside the

dataset.

2 Datasets

In total, we examined seven robotics datasets (see
Table 1) that cover a range of language types—from
rigid, templated instructions to natural, open-ended,
and interactive dialogue.

We include four well-known datasets from the
OXE collection: RT-1 (Brohan et al., 2023),
BRIDGE (Walke et al., 2023), TacoPlay (Rosete-
Beas et al., 2022), and Language Table (Lynch
et al., 2023). RT-1 and BRIDGE both target gen-
eralization across diverse tasks but differ in scope:
RT-1 features imperative, templated commands,
while BRIDGE offers richer linguistic and cul-
tural variation, supporting tool use and nuanced ob-
ject interactions. TacoPlay adopts a task-agnostic
“play” paradigm, learning general-purpose behav-
ior from unstructured interaction. In contrast, Lan-
guage Table is designed for open-vocabulary spa-
tial manipulation in controlled tabletop settings.
We also include LIBERO (Liu et al., 2023), which
is not part of the OXE collection but serves as a sim-
ulation benchmark focused on knowledge transfer.
It has recently been used to fine-tune and evaluate
models such as OpenVLA (Kim et al., 2024).

Additionally, we include two robotics datasets
that are more focused on language interaction than
directly training VLA models. ALFRED (Shridhar
et al., 2020) emphasizes natural language through
fine-grained, step-by-step action alignment, mak-
ing it particularly suited for studying task decom-
position. SCOUT (Lukin et al., 2024) contains the
most naturalistic language among the datasets we
consider. It captures unconstrained human-robot
dialogues during navigation tasks, enabling more
adaptive, context-aware interaction beyond static
commands. Notably, it includes transcriptions from
real robot commanders, and its accompanying pub-
lication provides detailed statistics on language use.

To contextualize the language complexity of
modern robotics datasets, we include GLUE (Wang
et al., 2018) and combine the training splits from
each GLUE task into one GLUE dataset. Our goal
is not to evaluate GLUE task performance but to
use its examples as a reference for linguistic rich-
ness in comparison to robotics commands.

3 Results

This section presents a portion of our framework for
analyzing language commands, focusing on token-
level and syntax-level characteristics. Collectively,
these analyses provide insight into the linguistic
limitations of current EAI datasets. Methodologi-
cal details can be found in the Appendices.

3.1 Token-Level Analysis

In this section, we provide token-level analysis to
evaluate language through more interpretable lex-
ical features, in contrast to the LLM-based repre-
sentation analysis used in Section 3.2. For imple-
mentation details, see Appendix C.

Unique Commands and Unigrams serve as a
simple metric to assess the diversity of each dataset
and its vocabulary. This analysis (see Table 2) re-
veals a notable disparity: in most OXE datasets,
fewer than 2% of language instructions contain
unique wording. This is largely due to the same
command being paired with multiple action trajec-
tories via multiple trials. Compared to ALFRED
and SCOUT, the other robotics datasets, except
Bridge, contain relatively few unique unigrams.
This is especially notable due to the difference
in unique commands between SCOUT and Lan-
guageTable. Compared to GLUE, all the other
datasets have few unique unigrams, even consider-
ing the difference in unique commands, which can
be explained by the task-focused nature of others.



Dataset # Commands % Unique Commands # Unique Commands # Unique Unigrams
ALFRED (Shridhar et al., 2020) 162K+ 79.9% 126,005 2,627
SCOUT (Lukin et al., 2024) 23K+ 39.4% 8,795 1,631
Open X-Embodiment (Collaboration et al., 2024) - - - -
RT-1 (Brohan et al., 2023) 3.7M+ 0.02% 577 49
Bridge (Walke et al., 2023) 864K+ 1.4% 11,693 1,189
TacoPlay (Rosete-Beas et al., 2022) 214K 0.2% 403 74
LanguageTable (Lynch et al., 2023) 7.0M+ 1.81% 127,370 928
LIBERO (Liu et al., 2023) 6.5K 1.72% 112 79
GLUE (Wang et al., 2018) 1.OM+ 73.1% 748,729 193,713

Table 2: Summary unique commands and unigrams of EAI datasets reviewed in this work.

Dataset CR | Levenshtein 1 Jaccard | BLEU-4 | ROUGE-L | Tree Kernel | BERTScore |
ALFRED (Shridhar et al., 2020) 5912 46.695 + 0.883 0.128 +0.004 0.003 + 0.000 0.214 £0.002 5.705 +0.140 % 0.638 £+ 0.002
SCOUT (Lukin et al., 2024) 4.851  24.512 +£0.946 0.052 + 0.002 0.002 + 0.001 0.072 + 0.004 1.892 +0.219 % 0.493 + 0.003
RT-1 (Brohan et al., 2023) 118.195 28.143 £0.413 0.138 +0.001 0.026 4+ 0.006 0.190 £+ 0.007 5.090 + 0.202 % 0.636 + 0.005
BRIDGE (Walke et al., 2023) 64.904 35.139 +0.180 0.088 &+ 0.004 0.003 £+ 0.000 0.149 + 0.002 3.680 & 0.120 % 0.600 + 0.002
TacoPlay (Rosete-Beas et al., 2022)  158.858 27.705 £0.137 0.188 +0.003 0.020 & 0.001 0.304 £0.005 8.863 £0.132% 0.683 £ 0.002
Language Table (Lynch et al., 2023)  56.643  32.206 £ 0.171 0.198 +0.002 0.010 £+ 0.001 0.288 £ 0.004 - 0.697 + 0.001
LIBERO (Liu et al., 2023) 134.862 34.269 £ 0.188 0.248 +0.006 0.064 + 0.003 0.378 £0.003  12.222 +0.285 0.714 £+ 0.001
GLUE (Wang et al., 2018) 2.605  66.013 +1.480 0.039 +0.001 0.001 + 0.001 0.069 + 0.003 1.603 + 0.029 % 0.487 + 0.001

Table 3: Text similarity measures across robotics datasets. Each measure is computed by sampling 1,000 commands
from each dataset, repeated three times for robustness. Arrows indicate increasing linguistic diversity. CR stands for
Compression Ratio. The Tree Kernel method is from Moschitti (2006).

The Command Length distribution across
seven datasets reveals a preference for short com-
mands that fall within the range of 3 to 15 words
(see Figure 4.) This highlights the dominance
of concise phrasing, which may limit exposure
to more complex linguistic structures, e.g., multi-
clause, multi-step instructions.

Lexical Overlap. We analyze how much vo-
cabulary is shared across datasets along the fol-
lowing POS categories: verbs, nouns, and adverbs.
As shown in the heatmap in Figure 5, TacoPlay
and RT-1, which have smaller vocabularies overall,
share significantly fewer words with other datasets.
Nouns are the most widely shared category, likely
because many robotic tasks involve similar objects
(e.g., boxes, cans, drawers). Verbs are also shared,
though to a lesser extent, likely constrained by the
specific capabilities of each robot embodiment.

Lexical Diversity Metrics. We present text sim-
ilarity statistics in Table 3, which closely align
with the unigram diversity patterns observed in Ta-
ble 2. GLUE, SCOUT, and ALFRED consistently
exhibit the highest levels of diversity, maintaining
this ranking across all evaluated metrics. Notably,
the low compression ratios for RT-1 and TacoPlay
suggest that their language commands are highly
structured and repetitive.

3.2 Intrinsic Dimensionality Analysis

We analyze the intrinsic dimensionality of lan-
guage data by applying PCA to embeddings gen-
erated by standard LLM encoders. We approx-
imate intrinsic dimensionality as the minimum
number of principal components required to ex-
plain 95% of a dataset’s cumulative variance (Fan
et al., 2010; Verleysen and Lee, 2013); we jus-
tify our approach in Appendix A. We can infer
a dataset’s information density by determining
how many principal components are necessary to
reach this threshold. To mitigate model-specific
biases, we evaluate embeddings from four distinct
models: USE (512D) (Cer et al., 2018), SBERT
(768D) (Reimers et al., 2019), CLIP (512D, multi-
modal) (Radford et al., 2021), and SONAR (1024D,
multimodal) (Duquenne et al., 2023). Table 4
presents our results. We note that sample size does
not trivially determine our results (see Figure 3)
(Oates and Jensen, 1997).

3.3 Sentence-Level Analysis

In this section, we examine sentence-level struc-
ture, focusing on syntactic patterns, verb and direct
object coverage, and uncover tendencies in instruc-
tion style. Refer to Appendix D for greater detail.
In particular, ALFRED and SCOUT are more



Dataset #SBERT 1 #USE{1 #SONAR?T #CLIP 1

ALFRED (Shridhar et al., 2020) 165 159 406 198
SCOUT (Lukin et al., 2024) 194 148 295 181
RT-1 (Brohan et al., 2023) 27 33 42 35
BRIDGE (Walke et al., 2023) 115 125 239 149
TacoPlay (Rosete-Beas et al., 2022) 31 42 41 36
Language Table (Lynch et al., 2023) 57 86 108 71
LIBERO (Liu et al., 2023) 32 34 44 33
GLUE (Wang et al., 2018) 393 262 752 383

Table 4: The Minimum Number of PCA Components to
Explain 95% Variance for each EAI Dataset. A greater
number of components represents stronger diversity.

I l sriDGE

II ALFRED II scout RT-1

TacoPlay LanguageTable Il LIBERO

% of Instructions

) ‘II
0 = - ml

Negation Conditional Multi Step Cycle

Figure 2: Percentage of instructions exhibiting four
structural phenomena: negation, conditionality, multi-
step sequencing, and cyclic repetition.

comparable to GLUE, while RT-1 and TacoPlay
show much lower dimensionality, suggesting that
their language is more limited in scope.

Part-of-Speech (POS) Pattern analysis ex-
amines the grammatical structure of commands,
specifically how words are arranged using POS pat-
terns. We use an LLM to extract these structures.
As shown in the histograms in Figure 14, TacoPlay,
SCOUT, RT-1, and LIBERO-10 exhibit long-tailed
distributions, where just one or two syntactic tem-
plates dominate. This reliance on repetitive sen-
tence structures may make it harder for models to
generalize to more complex instructions. Refer to
Figures 7a and 7b for qualitative examples of dom-
inant patterns. Figure 13 offers an aggregated view
across datasets.

Verb, Direct Object, Adverbial Diversity anal-
ysis explores how diverse the actions and modi-
fiers are in language instructions. We measure how
many unique verbs are associated with each ob-
ject for manipulation datasets. Figures 16 and 15
show that most objects co-occur with fewer than
ten verbs (fewer than five in LIBERO-10 and RT-
1), indicating limited task diversity. However, AL-
FRED and Language Table exhibit more balanced
and varied distributions. While some constraints
stem from limitations in manipulation capabilities,

others appear artificial; for example, TacoPlay’s
stacked blocks could support richer interactions
(e.g., “observe” or “tip”). For navigation datasets
like SCOUT, we examine the diversity of adver-
bials, which modify actions in ways that convey nu-
ance in direction (north, forward), location (inside,
around), manner (slowly, precisely), time (now,
again), and conversational fillers (please, okay) (see
Figure 11.)

Instruction Structure Analysis examines how
instructions are logically composed, beyond just
their vocabulary, by identifying four structural pat-
terns: negation, conditionality, multi-step sequenc-
ing, and cyclical or loop-like patterns. Figure 2
visualizes their distribution, and Table 6 provides
representative examples. See Appendix F for de-
tails.

We find that multi-step instructions are the most
prevalent across all datasets, reflecting a strong bias
toward procedural, linear task decomposition, par-
ticularly in LIBERO-10. Datasets like RT-1 and
SCOUT contain fewer multi-step commands and
favor shorter, atomic actions. Negation and con-
ditional structures occur in less than 2% of cases.
Their absence suggests that many benchmarks do
not adequately capture logical disjunctions, excep-
tion handling, or constraint-driven behaviors essen-
tial for safe and flexible deployment. Cyclical or
loop-like structures, common in real-world tasks,
are similarly underrepresented, with only SCOUT
and ALFRED showing a modest signal. This points
to a structural bias in current datasets toward flat,
step-by-step formulations, with limited support for
more complex task logic.

4 Conclusion

In this work, we analyzed the linguistic properties
of VLA datasets and showed that the language they
contain is highly repetitive and structurally limited
compared to language-focused robotics datasets
and benchmarks like GLUE. The ALFRED and
SCOUT datasets, with more focus on language,
show significantly more diversity than those used
for VLA training. These findings highlight that
language remains an underemphasized modality
in current VLA systems. Collecting more diverse
language instructions or incorporating synthetic
and augmented language data could substantially
improve the limited language understanding of ex-
isting VLA models.



Limitations

Parts of our analysis rely heavily on automated an-
notations generated by LLMs. While we took steps
to assess annotation quality for dependency parsing,
occasional errors were observed and, due to dataset
scale, could not be corrected exhaustively. A more
rigorous study would include a structured qual-
ity assurance process and measure inter-annotator
agreement even for manually reviewed generations,
e.g., Section D.2. Additionally, while we analyzed
seven datasets, which we believe capture dominant
trends in the field, our findings may not fully gen-
eralize to all EAI instruction-following datasets.
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A Intrinsic Dimensionality Analysis

A notable limitation of our methodology is using
linear dimensionality reduction techniques, specifi-
cally PCA, to assess data that may lie on a nonlinear
manifold, as is often the case with LLM-encoded
datasets. While PCA assumes linearity, this lim-
itation does not significantly undermine our anal-
ysis. In fact, it likely results in an overestimation
of the intrinsic dimensionality, since PCA cannot
exploit underlying nonlinear relationships in the
data (Verleysen and Lee, 2013). For our purposes,
this effect only further underscores the discrepancy
between the structure of robotics datasets and the
more diverse language representations found in nat-
ural language understanding (NLU) research.

Although the conclusions of this analysis are re-
inforced by our more interpretable feature-based
methods (see Section 3.1); in future work, we
would like to strengthen this effort.


https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://aclanthology.org/2024.lrec-main.1259
https://aclanthology.org/2024.lrec-main.1259
https://aclanthology.org/2024.lrec-main.1259
https://aclanthology.org/2024.lrec-main.1259
https://aclanthology.org/2024.lrec-main.1259
https://doi.org/10.1109/LRA.2023.3295255
https://doi.org/10.1109/LRA.2023.3295255
https://doi.org/10.1109/LRA.2023.3295255
https://aclanthology.org/E06-1015
https://aclanthology.org/E06-1015
https://aclanthology.org/E06-1015
https://proceedings.mlr.press/r1/oates97b.html
https://proceedings.mlr.press/r1/oates97b.html
https://proceedings.mlr.press/r1/oates97b.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2101.00411
https://arxiv.org/abs/2101.00411
https://arxiv.org/abs/2101.00411
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1007/978-3-642-42054-2_76
https://doi.org/10.1007/978-3-642-42054-2_76
https://doi.org/10.1007/978-3-642-42054-2_76
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://arxiv.org/abs/2410.05191
https://doi.org/10.24963/ijcai.2020/124
https://doi.org/10.24963/ijcai.2020/124
https://doi.org/10.24963/ijcai.2020/124

B Qualitative Features of EAI datasets

We conducted an informal qualitative review of
the examined datasets and highlighted interesting
attributes, summarized in Table 5.

On Conversational Strengths. The SCOUT
dataset exhibits a distinct dialogue structure that dif-
ferentiates it from traditional instruction-following
datasets. Rather than adhering to a rigid, directive
style, its dialogues often involve an exploratory or
inquiry-based approach, as seen in exchanges like
“move west uh zero point five meters" and “...and
then the last question here anything that indicates
the environment was recently occupied”. This in-
teractive nature may offer advantages for EAI by
allowing more adaptive responses. For example, in
cases where instructions involve complex spatial
reasoning (e.g., placing an object in a specific but
ambiguous location), the dataset’s conversational
format could aid in disambiguation.

On Cultural Knowledge. One of the more strik-
ing aspects of the BRIDGE dataset is its incorpora-
tion of multicultural culinary terminology, despite
being primarily monolingual (English). Unlike
many Western-centric datasets, BRIDGE includes
references to diverse cooking utensils and ingredi-
ents, such as purkoli (broccoli), brinjal (eggplant),
brezzela (eggplant), capsicum (bell pepper), quince
fruit, nigiri, wok, and kadai. This linguistic diver-
sity suggests a broader representation of cultural
knowledge, making incremental progress toward
addressing concerns raised in prior work on dataset
biases (Bender et al., 2021; Bender, 2019). Specifi-
cally, it challenges the tendency for data collection
to reflect primarily Western, white, and wealthy
audiences. Additionally, BRIDGE captures subtle
social characteristics of human perception, such as
humor, evidenced by an annotation that describes a
mushroom toy as a “phallic looking item.”

On “Common Sense'' Reasoning. A recurring
challenge across real-world datasets is the discon-
nect between world knowledge, common-sense rea-
soning, and practical instruction execution. While
BRIDGE and ALFRED aim to ground tasks in
realistic environments, many instructions contain
fundamental inconsistencies or implausible direc-
tives. In ALFRED, for example, commands such
as “open refrigerator, place potato to the right of
tomato on second shelf of refrigerator, close re-
frigerator, open refrigerator, pick up potato from
refrigerator, close refrigerator” expose rigid, me-
chanical assumptions about human behavior. Addi-

Correlation Between PCA Components and Language Statistics

SBERT -0.38 0.27 0.89

Pearson Correlation

SONAR 0.34 0.46 0.98 --0.25

CLIP -0.34 0.37

Figure 3: Correlation between the number of PCA com-
ponents required to explain 95% variance and language
statistics across EAI datasets. PCA components derived
from SBERT, USE, SONAR, and CLIP embeddings
are compared against the number of commands, unique
commands, and unique unigrams in each dataset. Strong
positive correlations are observed between unique uni-
grams and all embedding models, particularly SONAR
and USE. In contrast, the total number of commands
shows weak or negative correlation with embedding di-
versity

tionally, one must ask what has been accomplished
by storing a potato in a refrigerator and then re-
moving said potato in a matter of seconds. An-
other example from ALFRED includes, “Put an
egg in a pan in the fridge." More concerning, and
at times, unintentionally amusing, are instances of
potentially unsafe or property-damaging instruc-
tions, such as “place a heated slice of tomato on
a counter and store a knife in a microwave” or
“stab the tip of the knife into the wooden table, in
front of the gray plate closest to the lettuce.” While
a robot damaging a kitchen table may be prefer-
able to microwaving a knife, these examples high-
light inconsistencies in world knowledge modeling
within these datasets. Similar anomalies appear in
BRIDGE, where commands such as “take sushi out
of the pan,” “put sushi in pot...,” and “put spatula
in pan” suggest an oversimplified understanding of
object affordances, human behavior, and broader
world and cultural knowledge. If the broader EAI
community sees embodiment as a necessary step
toward elevating the representational learning of
single-modality models, e.g., LLMs, we ought to
discourage dataset collectors from building illogi-
cal “common-sense" associations.



Theme Example Instruction(s)
Cultural Terms (BRIDGE) “put the kadai on the stove”, “grab the brinjal from the drawer”
Unsafe Action (ALFRED) “store a knife in a microwave”, “stab the tip of the knife into the table”

Commonsense Violation (ALFRED)
Commonsense Violation (BRIDGE)

“Put an egg in a pan in the fridge"
“take sushi out of the pan”

Table 5: Selected examples illustrating conversational structure, cultural variation, and commonsense inconsistencies

across EAI datasets.
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Figure 4: Distribution of command lengths across six
examined EAI datasets. The majority of commands
contain fewer than ten words. Command lengths are
capped at a maximum of 30 words for analysis.

C Token-Level Analysis Methodology and
Expanded Results.

C.1 Text Cleaning

All datasets were cleaned to standardize white
space and remove punctuation. However,
SCOUT (Lukin et al., 2024), a dialogue dataset,
required further cleaning of user role tags and tags
that indicate filler words, e.g., “um", silence, and
noise. Due to the complexity of this data, we focus
our initial analysis only on the “robot commander"
dialogue, with plans to expand our analysis to all
roles in the future and to incorporate filler filtering
in the text cleaning pipeline. Once cleaned, we use
a combination of spacy (Honnibal et al., 2020) and
pandas (pandas development team, 2020) methods,
e.g., .unique() to develop Tables 2 and Figure 4.

C.2 Lexical Overlap

To assess how much vocabulary is shared across
datasets, we examine the distribution of words
across three part-of-speech (POS) categories:
nouns, verbs, and adverbs. We use dependency
parsing (see Section 3.3) to extract tokens by their

POS tags. We then construct a dataset—word matrix
that records how often each word appears in more
than one dataset. This allows us to visualize lexical
overlap using a heatmap (Figure 5).

C.3 Token-Level Text Diversity Analysis

We use several text similarity measures in our
analysis (see Table 3.) The first involves assess-
ing syntactic diversity by comparing constituency
parse trees (Moschitti, 2006). Following previous
work (Zhang et al., 2020), we calculate BLEU-
4 (Papineni et al., 2002) and ROUGE-L (Lin, 2004)
scores for candidate sentences against the remain-
der of their respective datasets. Additionally, we
utilize Levenshtein distance as a metric as well as
BERTScore. Given that these methods entail pair-
wise comparisons, we perform 1,000 commands to
obtain these scores across 3 trials.

Shared Word Categories Across Robotics Datasets
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Figure 5: Shared POS categories across datasets. Us-
ing ALFRED as a pretraining dataset is advantageous
because it has the greatest amount of lexical coverage
across the examined EAI datasets.



def format_prompt (text):
retu
sing on the following robotics command:

output in a **valid JSON formatsk with the following structure:

nary) form of the
VERB, NOUN, ADJ, e

Ensure the output is in #valid JSON * with proper nesting and

Figure 6: Prompt used in dependency parse work.

D Sentence-Level Analysis Methodology
and Expanded Results

D.1 POS Patterns

We implemented a large-scale dependency pars-
ing pipeline using an LLM to extract POS and
dependency parse patterns, leveraging multi-GPU
parallel processing for efficiency. Each GPU inde-
pendently processed a subset of instructions using
DeepSeek-R1-Distill-Qwen-32B (DeepSeek-Al
etal., 2025), a state-of-the-art instruction-following
LLM. The model was loaded in 8-bit quantized for-
mat to optimize memory usage, and batch b = 10
processing was employed to maximize throughput.
The prompts for the model followed a structured
format (see Figure 6), instructing it to perform de-
pendency parsing and return results in valid JSON
format. The output JSON included:

* The original instruction

¢ A tokenized breakdown, where each word was
annotated with its:

— Lemma (root form)

— Part of speech (POS) tag

— Syntactic head (parent word in the depen-
dency tree)

— Dependency label (e.g., ROOT, direct ob-
ject, modifier, etc.)

For qualitative examples related to each POS
pattern, please refer to Figure 7.

The BRIDGE dataset is heavily characterized
by prepositional phrases, frequently structuring in-
structions that specify spatial relationships between
objects and the environment. This results in a high
frequency of ADP (adpositions), NOUN (nouns),

and DET (determiners), forming patterns, e.g. “put
the spoon on the cloth”, “put the mangoes in a
pan", and “Move the spatula near the egg." While
this structure ensures precision in command exe-
cution, it lacks syntactic variation beyond simple
prepositional constructs, potentially limiting gener-
alization to more complex spatial reasoning tasks.

RT-1, in particular, exhibits highly repetitive
syntactic patterns, as seen in commands like “place
7up can into middle drawer," “place water bottle
into white bowl," and “place rxbar blueberry into
bottom drawer." Similarly, TacoPlay demonstrates
significant syntactic redundancy, with instructions
such as “place the purple block on the table," “store
the pink object in the drawer," and “slide the yellow
block to the right." This lack of linguistic variabil-
ity, likely due to the template-driven generation
of these datasets, may limit a model’s ability to
generalize to more complex instructions, particu-
larly those involving hierarchical dependencies or
compound actions.

SCOUT introduces more numerical expressions
and adverbial structures, implying an instructional
style where robots may be required to count, mea-
sure, or modify behaviors dynamically, e.g., “move
south four feet", “turn right twenty degrees", “go
forward one meter". However, its emphasis on
concise command structures might underrepresent

more complex multi-step directives.

The POS histograms in Figures 13 and 14 reveal
a long-tailed distribution in TacoPlay, SCOUT, and
RT-1, where the frequency of syntactic structures
drops sharply after the first or second most com-
mon parse pattern. Such patterns indicate a reliance
on repetitive syntactic templates, which may limit a
model’s ability to generalize to linguistically varied
instructions. Language Table shows the longest and
most evenly distributed bar set among all datasets,
with no single POS pattern dominating. Language
Table sets the upper bound for linguistic diversity
among embodied Al datasets and should be more
widely used. However, for datasets like RT-1, we
recommend that synthetic data augmentation could
help mitigate this imbalance by introducing greater
syntactic variability, such as tree-based reordering
techniques, inspired by data augmentation in ma-
chine translation (Dehouck and Gémez-Rodriguez,
2020; Shi et al., 2021), could be adapted to gener-
ate syntactic variants of robotic commands while
preserving their semantics.



TacoPlay

POS Pattern

VERB > DET~>ADJ > NOUN ~>ADP - DET > NOUN

Example Sentences
put the purple block on the table
slide the purple blockto the left

place the yellow block on the table

VERB > DET > ADJ > NOUN > ADP - DET > ADJ > NOUN

put the pink object inside the left cabinet
put the yellow blockinside the right cabinet

place the purple blockinside the right cabinet

VERB > DET~>ADJ > NOUN > CCONJ > VERB - PRON >
ADV

take the purple blockand rotate it right
take the yellow block and turn it right

grasp the purple blockand turnit left

RT-1

VERB > NOUN > NOUN > ADP - ADJ > NOUN

place rxbar blueberry into bottom drawer
move rxbar chocolate near orange can

move 7up can near green can

VERB > NOUN > NOUN > ADP > NOUN > NOUN

move water bottle near rxbar chocolate
move coke can near water bottle

move rxbar blueberry near water bottle

VERB > NOUN > NOUN > ADP > ADJ > NOUN > CCONJ >
VERB > ADP > NOUN

pick coke can from bottom drawer and place on
counter

pick water bottle from top drawer and place on counter

pickrxbar blueberry from middle drawer and place on
counter

(a) TacoPlay and RT1.

Scout

VERB > ADV~> NUM > NOUN

turn left thirty degrees
turn left ninety degrees

move forward one foot

VERB > ADP > DET~> NOUN

move towards a shoe
move towards the barrel

go through the door

VERB > NUM > NOUN > ADV

turn sixty degrees left
move teninches northeast

move two feet forward

BRIDGE

VERB > DET->NOUN > ADP - DET~> NOUN > PUNCT

Place the mushroom behind the spatula.
Place the salmon in the pot.

Move the mushroom onto the towel.

VERB > DET~>NOUN > ADP - DET-> NOUN > ADP > DET
->NOUN > PUNCT

Move the spatula at the edge of the table.
Move the spoon to the left of the napkin.

Put the cloth to the left of the spoon.

VERB > DET>NOUN > ADP > DET>ADJ > NOUN >
PUNCT

Place the strawberry in the silver pot.
Set the pot onto the green cloth.

Place the pot on the blue cloth.

(b) SCOUT and ALFRED.

Figure 7: Common POS Parse Patterns.
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D.2 Verb, Direct Object, Adverbial Diversity.

To extract verb, direct object, and adver-
bial features, we implemented a large-
scale annotation pipeline using two model
variants: R1-Distill-Llama-8B and
R1-Distill-Qwen-14B (DeepSeek-Al et al.,
2025), just as in Section D.1. However, the
prompts for the model followed the format
shown in Figure 8. We implemented in-context
learning (ICL) to enhance accuracy by retriev-
ing sentence-specific examples using TF-IDF
similarity. Despite using LLMs, all annotations
were manually reviewed to ensure consistency,
including lemmatizing verbs, removing duplicates,
and normalizing synonymous expressions (e.g.,
“pick" vs. “pick up"). This hybrid method enabled
the construction of high-quality annotations for
downstream analysis. Results are provided in
Figures 16, 15, and 11.

On Object and Adverbial Diversity. We as-
sessed how many distinct verbs are used with each
direct object for manipulation datasets. Low counts
suggest limited interaction diversity, sometimes
due to real-world constraints, but often due to
overly templated instruction generation. Direct
object structures are less relevant for navigation-
focused datasets, instead how an instruction is fol-
lowed, e.g., directional terms (e.g., “north," “for-
ward"), location-based modifiers (e.g., “around,"
“inside"), manner descriptors (e.g., “slowly," “di-
rectly") are more relevant.

On Numeric Generalization. As VLA mod-
els are increasingly expected to interpret numerical
quantities (e.g., distances, angles) in an end-to-end
manner, the distribution of numerical values in nav-
igation instructions becomes more critical. Fig-
ure 12a shows that numbers like “two," “three,"
and “five" are relatively common in SCOUT, while
values such as “seven," “eight," or “twelve" are rare.
ALFRED (see Figure 12b) appears more tailed
and its numeric coverage is weaker than SCOUT,;
however, the overall representation of numerics is
greater due to dataset size. This sparsity raises
concerns about whether models trained on these
datasets can interpolate or generalize to underrep-
resented numerical instructions. For example, can
a robot correctly interpret “move seven meters" if
it has never encountered that number in training?
What if it has only encountered meters but is given
a command in yards? What if the command con-
tains common shortcuts, such as using 4K to refer

11

to 4,000? Future research should investigate the
impact of numeric and unit sparsity on navigation
performance and explore methods for balancing
numerical distributions during data collection or
augmentation.

E Instruction Structure Analysis

To analyze the compositional structure of language
in robotics datasets, we use LLM-generated fea-
ture information (see Appendices D.1 and D.2)
to construct heuristics for detecting four types
of instruction-level patterns: negation, condition-
ality, multi-step sequencing, and cyclical struc-
tures. These patterns are identified through string-
matching techniques and syntactic cues extracted
from dependency parses and part-of-speech tags.

* Negation was detected using syntactic cues
like neg dependencies and lexical markers
(e.g., “not”, “don’t”, “never”).

* Conditionality was identified via subordinat-
ing conjunctions (e.g., “if”’, “unless”) and
dependency markers indicating conditional
clauses.

* Multi-step sequencing was inferred from co-
ordinating conjunctions (e.g., “and”, “then”),
punctuation, or imperative chaining.

* Cyclical patterns were identified using repeat
verbs (“again”, “repeat”) or constructions in-

dicating iteration or loops.

For each instruction, we annotated binary indica-
tors for each structure type and aggregated them to
compute relative frequencies across datasets. Quan-
titative results are presented in Figure 2, and rep-
resentative examples are shown in Table 6. These
results help reveal structural tendencies in instruc-
tion design; particularly, the dominance of linear,
stepwise instruction formats and the underrepresen-
tation of more complex, logic-driven patterns.

F Case Study: OpenVLA & LIBERO-10

This case study probes the linguistic robustness
of OpenVLA using the LIBERO-10 dataset. Al-
though LIBERO-10 is designated as an evalua-
tion split in the LIBERO benchmark (Liu et al.,
2023) (see Figure 10), the OpenVLA checkpoint
used here (openvla-7b-finetuned-libero-10)
was trained directly on this test set. As such, this



(a) Verb—direct object prompt example used in Section 3.3.

icl_string = "\n".join(
Example {i+1}:
Sentence: "{ex['example_sentence']}"
Qutput:
I

1

"direct_objects": {ex['direct_objects'l},
"verbs": {ex['verbs']}

for i, ex in enumerate(icl_examples)
if ex

(b) In context learning string generated by tf-idf distance k-
nearest neighbors.

Figure 8: Prompts used in direct object and verb parsing
tasks for instruction analysis.

experiment does not assess cross-split generaliza-
tion (e.g., LIBERO-90 — LIBERO-10). But it may
still yield two critical insights:

First, current evaluation practices in the robotics
community often lead to confusion, as benchmark
train/test splits are frequently assumed to be re-
spected—even when they are not.

Second, and more surprisingly, despite lever-
aging a pretrained LLaMA 2 backbone (Touvron
et al., 2023), the model—fine-tuned directly on
the LIBERO-10 test split—fails when presented
with simple paraphrased versions of the same in-
structions. This brittleness suggests that the limited
linguistic diversity of the fine-tuning data alone can
restrict generalization. In fact, we hypothesize that
models finetuned on narrow, repetitive language
may overwrite the model’s generalist, linguistic ca-
pabilities encoded during pretraining. As shown in
Figure 18, the average task success rate dropped
from 0.66 on original instructions to 0.3168 on
paraphrased variants.

Methodology. We begin by extracting linguis-
tic features (verbs, direct objects, and syntactic
patterns) from the LIBERO-10 test set (Liu et al.,
2023), following the process in Section 3.3, but
using GPT-3.5-turbo due to local GPU constraints.
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These features (see Figures 17a and 17b) inform tar-
geted augmentations designed to probe the model’s
robustness, specifically by generating paraphrases
that diverge from common verbs, objects, and syn-
tactic templates. Paraphrases were generated us-
ing GPT-40 through a multifaceted process that in-
cluded object substitutions (e.g., “cup” for “mug”),
verb replacements (e.g., “activate” for “turn on”),
and syntactic restructuring based on dependency
parse patterns. Our exact prompt is provided in
Figure 9. Variations included clause reordering, rel-
ative clauses, participial phrases, and passive con-
structions, with one strategy applied per prompt to
ensure diversity while maintaining interpretability.
Each prompt included the original BDDL file con-
tent to preserve semantic validity, exposing GPT-40
to the relevant object sets, affordances, and envi-
ronment configurations. This context prevented
implausible commands. Paraphrased instructions
were then substituted into duplicated BDDL files to
ensure the evaluation isolated linguistic robustness
alone. For each task (original and paraphrased), we
executed five trials per BDDL file, enabling a side-
by-side performance comparison across language
variants. Figure 17c demonstrates the efficacy of
the paraphrasing pipeline.



1 |# ==mmmmms== PROMPT BUILDING ====s=====
2 def build_prompt(row, variation_type, constraints):

3 original = row["language_instruction"]
4 verb = row["verb"]

5 obj = row["direct_object"]

6 dep = row["dependency_parse"]

7

8 valid_targets = []

9 for k, v in constraints. items():

10 if obj in k or obj in v:

1 valid_targets. extend(list(v))

»

13 surface_hint = (

1 'The object '{obj}' can be placed or moved onto: {*, '.join(valid_targets)}."
15 if valid_targets

16 else "

7 )

18

19 if variation_type == "structure-complex":

2 return STRUCTURE_COMPLEXITY_PROMPT. format (original=original, dep=dep)

21

2 if variation_typ

23 instruction = f'Replace the verb '{verb}' with a semantically equivalent verb while keeping the rest
24 of the instruction unchanged."

2 elif variation_typ object":

instruction = f'Replace the direct object '{obj}' with a semantically equivalent noun phrase,
possibly with modifiers."
elif variation_typ
instruct
different syntax like 'bowl that is black' instead of 'black bowl') while keeping the semantics identical."

“structure":
Rephrase the sentence by changing the structure (e.g., reordering clauses or using

%
27

28

2

3

3

2 prompt = fu

33 You are given a robot instruction:
u

3

3%

37

38

39

]

Original command: “{original}"
Verb: {verb}

Object: {obj}

Dependency parse pattern: {dep}
{surface_hint}

41 |Your task:
42 1. {instruction}

2. Return a ##new instructionkk that preserves meaning but makes the required variation.
44 |3. Then, produce a *xdependency parsexk as a list of (word, relation, head) triplets.

4. Format your answer sekexactlysx as:

47 New instruction: <your new instruction>
48 Dependency parse:

a9
50 | ("word1", "relation", "head"),
51 .o

return prompt.strip()

STRUCTURE_COMPLEXITY_PROMPT = """
You are given a robot instruction and its dependency parse pattern.

1
2

3

4 Original command: “{original}"
5 Dependency parse pattern: {dep}
6
7
8
9

Your task:

1. Generate a paraphrase of the instruction by restructuring the syntax in a non-trivial way. You must alter
10 the syntactic structure, such as:

1
» - Reordering clauses

13 - Introducing participial phrases (e.g., “after turning on the stove...”)

1 - Using relative clauses (e.g., “the moka pot that goes on the stove...”)

15 - Converting active to passive voice (e.g., “the stove should be turned on...")
16 - Fronting prepositional phrases (e.g., “on the stove, place the moka pot...”)
7 - Embedding verbs or events within noun phrases or clauses

18

19 2. Ensure the new sentence preserves the original meaning, even if its structure is significantly different.
21 3. Pick one syntactic strategy at random — do not apply multiple at once unless natural.
23 Return:

25 New instruction: <your new instruction>
26 Dependency parse:

“relation”, "head"),

[
28 ("word1"

_strip()

Figure 9: Prompt used in paraphrase generation for
test set. The parameter: constraints contains infor-
mation from BDDL files which are then captured by
surface_hint.
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Figure 10: LIBERO task suite overview from https:
//libero-project.github.io/datasets.
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Top 10 POS Patterns per Dataset

Language Table
RT1

- scout

VERS -> DET > AD] > NOUN -> ADV -> ADP -> DET -> AD] = TacoPlay
Noun

VERB > DET -> ADJ > NOUN > ADP > DET -> A0) -> NOUN

VERS -5 DET -> AD) -> NOUN -> ADP -> DET -> NOUN -5 ADP ->

DET > AD] > NOUN

VERB > DET -> AD] -> NOUN > ADP > DET -> AD] -> NOUN ->
Aop

> DET > AD] > NOUN
VER -> DET -» NOUN -> ADP -> DET -> NOUN -> PUNCT

VERS -> DET -> NOUN -> ADP -> DET -> NOUN

VER > DET -> AD] > NOUN > ADP -5 DET -> NOUN

VERB > AD] > NOUN -> ADP -> £] > NOUN

VERS -> DET -> NOUN -> ADP -> DET -> NOUN - ADP -> DET ->
NOUN > PUNCT

VERB > DET -> AD) -> NOUN > ADP -> DET -> NOUN -> NOUN ->
‘ADP > DET > AD] > NOUN

VER - DET -> AD]-> NOUN -> AD? -> DET -> NOUN -> PUNCT
VER - ADP -5 DET -> NOUN -> ADP -> DET > NOUN

VERS -> DET -> AD) -> NOUN -> ADP -> AD) -> NOUN
VERE -5 DET -> AD) -> NOUN -> ADP -> DET -> AD) -> AD] =
NOUN > AD? > DET > AD) > NOUN

VERB -> DET -> ADJ-> NOUN > AD] -> ADP -> DET -> AD) >
NouN

VER > ADP -> DET -> NOUN -> ADP -> DET -> NOUN -> PUNCT-
VERS > DET -> NOUN -> ADP -> DET -> NOUN - ADP -> DET >
NouN

VERS -> ADP -> DET -> NOUN -> ADP -> DET -> NOUN -> ADP ->
22 NOUN > PUNCT

VERS > ADP > DET -> AD] -> NOUN -> ADP -> DET -> NOUN >
PUNCT

VERB -> DET -> NOUN -> ADP -> DET -> AD] > NOUN -> PUNCT
VERB -> ADV -> NUM -> NOUN

VERE > DET > AD] > NOUN > ADP > DET -> AD] -> NOUN >
NCT

VERB > ADP -> DET -> NOUN -> NOUN -> CCON] -> VERE -> PRON
£ Abp > DET > Nowh

VERE -> DET -> NOUN -> ADP -> DET -> AD) -> NOUN -5 ADP ->
DFT > NOUN > PUNCT

VERB -> ADP > DET -> NOUN

VERB -> DET -> NOUN -> ADP -> DET -> AD] > NOUN

VERS > DET -> NOUN -> ADP -> DET -> AD) -> NOUN -> ADP >
DET > NoUN

VERS > DET -> NOUN -> ADP -> DET > AD] -> AD) -> NOUN >
'ADP > DET > NOUN

VER > NUM -5 NOUN -> ADV

VER -> ADP - DET -> NOUN -> CCON) -> VER -> PRON -> ADP
= DET > NOUN

VERB > ADP -> DET -> AD] -> NOUN
VER > DET -> NOUN -> NOUN -> ADP -> DET -> NOUN
VeRg > ADV-

VERS > ADP > DET -> AD) -> NOUN > ADP -> ADP -> DET ->
NOUN > CCON] -~ VER® -> PRON -> AD? = DET > RNOUN

SRR '”

VERB > NOUN. n

NUM -> NOUN o

VERB -> NUM > NOUN. r

VERS - 40P > DET-» AD) = NOUN > AOF > DET - oW
CEony = VERG 5 PRON > 307 = DET = NOUN 12

VERS -> ADP -> NOUN r

VERS - NOUN - NOUN = ADP - £0] = NoUN

VERS > DET > DET - NOUN > NOUIY = NOUN - CEoN - DET
o 2oe S e

VERS -> DET -> NOUN -> NOUN -> ADP -> NOUN - ADP -> DET ->
Noun

VERB > DET -> NOUN -> ADP -> NOUN > ADP -> DET -> NOUN
VERS -> NOUN -> NOUN -> ADP -> NOUN -> NOUN

VERS > NOUN -> NOUN -> ADP -> AD] -> NOUN -> CCON) -> VERB
VERE - NOUN -> ADP -> 4D) -> NOUN

VERB -> NOUN -> NOUN -> ADP -> AD] -> NOUN -> ADP -> NOUN
VERS > AD] > NOUN -> ADP -> NOUN > NOUN

VERS -> DET > AD] > NOUN -> CCON] > VERE -> PRON -> ADV
VERE -> NOUN - ADP -> NOUN -> NOUN

VERE -5 NOUN -> NOUN -> ADP -> NOUN

VERS -> ADP -> DET -> NOUN - CCON) -> VERE -> DET -> AD] ->
NouN

VERS > AD] > NOUN -> NOUN > ADP -> AD) -> NOUN

VERB > DET > VERS > AD] > NOUN - ADP -> DET > NOUN
VERB > VERB > DET -> AD] > NOUN - ADP -> DET -> NOUN
VERR -> ADV -> DET -> AD) -> NOUN

VERS > DET > AD) -> NOUN > ADP -> NOUN -> ADP -> DET ->
NouN

VERB > ADP > DET -> AD] -> 4] -> NOUN
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Figure 13: POS parse pattern distribution on unique commands in the datasets.
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Top 10 POS Patterns by Dataset

VERS -> DET -> NOUN -> ADP -> DET -> NOUN -> PUNCT
VERB > DET -> NOUN > ADP -> DET -> NOUN
VERS -> DET -> AD] > NOUN -> ADP -> DET -> NOUN -> PUNCT

VERB > DET > NOUN > ADP -> DET -> NOUN - ADP -> DET -
N = PUNCT

VERB -> ADP -> DET -> NOUN - ADP -> DET -> NOUN
VERS > ADP -> DET -> NOUN -> ADP -> DET -> NOUN -> PUNCT
VERR -5 ADP -> DET -> NOUN - ADP -> DET -> NOUN -> ADP ->
DET > NOUN > PUNCT

VER > ADP > DET > AD] > NOUN > ADP -> DET -> NOUN ->
NG

VERE -> DET -> AD] -> NOUN -> ADP -> DET -> NOUN

VERS -> DET -> NOUN -> ADP -> DET -> NOUN -> ADP -> DET ->
NoUN

VERE -> DET -> NOUN -> ADP -> DET -> NOUN -> PUNCT
VERS -> DET -> NOUN -> ADP -> DET -> NOUN -> ADP -> DET ->
NOUN > PUNCT

VERB > DET -> NOUN > ADP -> DET > AD) -> NOUN -> PUNCT
VERE - DET -> AD] -> NOUN -> ADP -> DET -> AD] - NOUN ->
NG

VERE -> DET -> NOUN -> ADP -> DET -> NOUN

VER > DET -> NOUN -> ADP -> DET -> AD] > NOUN -> ADP ->
ET > NOUN > PUNCT

VER > DET > NOUN > ADP -> DET -> AD] > NOUN

VERB - DET -> NOUN - ADP -> DET -> AD] - NOUN - ADP ->
DET = NOUN

VER > DET -> NOUN > ADP -> DET -> NOUN -> ADP -> DET ->
NoUN

VERB > DET -> NOUN > ADP -> DET -> AD] > AD] > NOUN ->
'ADP > DET > NOUN

VERS > ADP -> DET -> NOUN -> NOUN -> CCONJ -> VERB -> PRON
= ADP > DET = NOUN

VERG > ADP -> DET -> NOUN -> CCON] -> VERE -> PRON > ADP
7> NOUN

VERE -> DET -> NOUN - NOUN -> ADP - DET -> NOUN

VERB > DET -> NOUN > ADP -> DET -> NOUN

VERS > ADP > DET -> AD] > NOUN -> ADP > ADP -> DET >
NOUN > CCON) > VERE > PRON - ADF = DET -> NOUN

VER > ADP > DET -> AD] > NOUN > ADP -> DET -> NOUN ->
‘CCON) = VERS - PRON > ADP -> DET - NOUN

VERS -> ADP -> DET > NOUN

VERR -5 DET -> DET -> NOUN -> NOUN -> NOUN -> CCON) > DET
> NOUN -> ADP > DET -> NOUN

VERR - DET -> NOUN > NOUN - ADP -> NOUN -> ADP -> DET ->
NN

VERS -> DET -> NOUN -> ADP -> NOUN -> ADP -> DET -> NOUN

VERS -> DET -> AD] > NOUN -> ADV > ADP -> DET -> AD) ->
Noun

VERS -> DET -> AD) > NOUN -> ADP -> DET -> AD] > NOUN
VERB > DET -> AD] > NOUN -> ADP > DET -> NOUN - ADP ->
DET > AD] > NOUN

VERB > DET -> AD) -> NOUN -> ADP > DET -> AD] > NOUN ->
'ADP > DET > AD) > NOUN

VERS > AD] > NOUN > ADP -> AD] -> NOUN

VERE > DET -> AD] -> NOUN - ADP -> DET -> NOUN - NOUN ->
'ADP = DET > AD) -> NOUN

VERE -5 DET -> AD] -> NOUN -> ADP -> DET -> NOUN

VER > DET -> AD) -> NOUN -> ADP > AD] -> NOUN

VERE -5 DET -> AD) -> NOUN -> ADP > DET -> AD) =» AD) ->
NOUN > ADP > DET > AD) = NOUN

VERE -5 DET -> AD] -> NOUN -> AD] =» ADP -> DET -3 AD) ->
NouN

VERE > NOUN -> NOUN - ADP -> AD] -> NOUN
VERS -> NOUN -> NOUN -> ADP -> NOUN -> NOUN

VERE -> NOUN -> NOUN - ADP -> AD] -» NOUN -> CCON] > VERE
> ADP > NOUN

VERE -> NOUN -> ADP -5 AD] -> NOUN

VERE -> NOUN -> NOUN -> ADP - AD] -> NOUN -> ADP -> NOUN
VERS -> AD] -> NOUN -> ADP -> NOUN -> NOUN

VERS -> A0) -> NOUN -> ADP -> AD] -> NOUN

VERE -> NOUN -> ADP -> NOUN -> NOUN

VERE -> NOUN -> NOUK -> ADP -> NOUN

VERE -> AD) -> NOUN -> NOUN -> ADP -> AD] -> NOUN

VERS -> ADV -> NUM -> NOUN
VERS -> ADP -> DET > NOUN

VERS > NUM -> NOUN > ADV-

VERS -> A0V

VERS -> ADP -> DET -> AD] -> NOUN

VERE -> NOUN

NUM > NoUN

VERS -> NUM -> NOUN

VERE -5 ADP -> DET -> NOUN - ADP -> DET -> NOUN

VER > ADP -> NOUN

VERE -5 DET -> AD) -> NOUN -> ADP > DET -> NOUN
VERS -> DET -> AD] > NOUN -> ADP -> DET -> AD) -> NOUN
VERE -> DET -> AD] -> NOUN -> CCON] > VERB -> PRON -> ADV
VERR -5 ADP -> DET -> NOUN -> CCON) -> VERS -> DET -> AD) ->
NoUN

VERS -> DET -> VERB -> AD] -> NOUN -> ADP > DET -> NOUN
VERS > VERS > DET -> AD] -> NOUN -> ADP -> DET -> NOUN
VERB - ADP -> DET > AD] > NOUN

VERB > ADY -> DET -> AD] > NOUN

VERB -5 DET -> AD] -> NOUN -> ADP -> NOUN -> ADP -> DET ->
NN

VERE -5 ADP -> DET -> AD] -> AD] > NOUN
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Figure 14: Grouped view of top 10 POS parse patterns on unique commands in EAI datasets.
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Figure 15: Frequency Plot of Unique Verbs per Direct Object for Manipulation Datasets
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Category Dataset Examples
SCOUT i don’t know what the red thing was
Negation you are not at the total entrance
no i did not see any
BRIDGE | video frames not showing
video frames or not showing
Picture is not downloading, not able to view.
ALFRED | This step does not exist.
Slice the tomato on the counter but do not put down the knife.
Cook the potato slice in the microwave and do not put the cooked potato slice on the counter.
SCOUT see if there’s a doorway
Conditional check and see if there’s a doorway there
and 1’1l point out when there’s a doorway so we can count them
BRIDGE | Pick the orange towel and place it on the middle if the table
PLACE THE YELLOW TOPWEL SIDE IF THE TABLE
ALFRED | Take keys from the black table, leave them on the lamp when you turn it on.
Turn right and walk until you’re even with the fridge on your right and when you are turn right
and walk to it.
Turn left and walk to the table then turn right when you get to it.
LIBERO | open the top drawer and put the bowl inside
TacoPlay | go towards the drawer and place the pink object
. o towards the purple block and grasp it
Multi-Step tgake the purple glégk and rotate i% rigflt
RT-1 pick coke can from bottom drawer and place on counter
pick apple from top drawer and place on counter
pick green rice chip bag from bottom drawer and place on counter
SCOUT and take a picture
and then the last question here anything that indicates the environment was recently occupied
and then take a picture
BRIDGE | put pot or pan on stove and put egg in pot or pan
Take the spatula from the vessel and place it on the table.
ALFRED | Open the drawer. Put the cell phone in the drawer on the right side towards the back and close it.
open the top right drawer of the desk, put phone inside, close the drawer
Turn and move to the far end of the kitchen island, so you’re facing the tomato and fork.
SCOUT continue moving forward
Cycle follow hallway to the end of the wall uh to until you reach the wall
take a photo every forty five degrees
BRIDGE | end effector reaching knife
pick orange toy from vessel and keep it on the left side of the table
end effector reaching corn
ALFRED | Move over to the right side of the desk again.
Put the potato slice in the fridge and shut the door and then take the potato slice out and shut the
fridge door again.
Walk to your left until you see a loaf of bread on the counter top.

Table 6: Representative instruction examples for negation, conditional, multi-step, and cycle structures. Note that in
BRIDGE and ALFRED, some examples contain noise from the original OXE metadata (e.g., typos or syntactic
errors); and in many cases, this noise artificially inflate diversity scores.
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(c) Distribution of POS patterns in the GPT-40 augmented LIBERO-10 test set.

Figure 17: Feature extraction across LIBERO datasets. Top: parse and verb—object statistics across all splits.
Bottom: POS diversity from paraphrased instructions in LIBERO-10. These insights guide our augmentation
pipeline (see Figure 1).

18



Success Comparison: Criginal vs Augmented (Grouped by original_bddl)
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Figure 18: Average Task Success Rates Across Original and Augmented Instructions for LIBERO-10 Tasks. Each
pair of bars represents the success rate of the OpenVLA model on a specific LIBERO-10 task using either the
original task description (blue) or a GPT-40-generated paraphrased version (orange). The drop in success on
paraphrased instructions highlights the model’s sensitivity to linguistic variation and limited robustness to novel
language inputs. The OpenVLA checkpoint used was trained and tested on the LIBERO-10 split, so these results
reflect a model (most likely) highly overfit to language data.
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