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Abstract001

Language is an important component of Vision-002
Language-Action (VLA) models, but the lin-003
guistic quality of training and test data remains004
underexplored. We analyze language in several005
VLA datasets and find that it is highly repet-006
itive and structurally simple. These findings007
highlight the need for more diverse and lin-008
guistically rich data to support robust language009
understanding in embodied settings.010

1 Introduction011

With advances in large language models (LLMs)012

and multimodal learning, language is increasingly013

used as an input modality across research fields,014

enabling practical, real-world systems. In robotics,015

this trend is reflected in the growing focus on VLA016

models such as OpenVLA (Kim et al., 2025), RT-017

X (Collaboration et al., 2024), and π0.5 (Intelli-018

gence et al., 2025). Much of this progress has019

been driven by datasets like Open X-Embodiment020

(OXE) (Collaboration et al., 2024), which are021

significantly larger and more diverse than earlier022

robotics datasets. Together with advances in lan-023

guage modeling, these developments have enabled024

a shift toward generalist robotic systems that use025

language to specify tasks.026

Despite this progress, language—while a core027

modality in VLA systems—is often overlooked028

in dataset documentation and model evaluations.029

Most datasets emphasize diversity across objects,030

scenes, and embodiments, while evaluations focus031

on task success without testing robustness to lan-032

guage variation. Although some works raise con-033

cerns about limited generalization (AgiBot-World-034

Contributors et al., 2025) and insufficient evalu-035

ation, including sensitivity to paraphrases (Wang036

et al., 2024), the linguistic characteristics of these037

datasets—and their impact—remain largely unex-038

amined. As a result, it is often unclear what kind of039

language these models are trained on. This limits040

Part-of-Speech 
Pattern

Instruction 
Structure

Verb, Direct 
Object, 

Adverbial 
Diversity

EAI
Dataset

Token-Level Analysis Sentence-Level Analysis

Unique 
Unigrams

Lexical Overlap

Command 
Length

Lexical 
Diversity

Figure 1: We perform linguistic diversity analysis on
EAI datasets across two main categories: Token-Level
for granular, lexical features and Sentence-Level for
higher-level, syntactic patterns.

our ability to assess model robustness, safety, and 041

real-world applicability. 042

To address this, we analyze the language in sev- 043

eral VLA datasets from OXE and compare them to 044

other datasets from robotics and natural language 045

understanding benchmarks. Using standard NLP 046

tools and metrics, we evaluate linguistic diversity 047

at both the token and sentence level. Our analysis 048

uncovers systemic linguistic limitations in current 049

VLA datasets that hinder model robustness and gen- 050

eralization. The datasets contain few unique com- 051

mands and exhibit limited lexical diversity when 052

compared to other robotics and natural language 053

understanding datasets. The language used tends to 054

follow repetitive syntactic patterns, with minimal 055

variation in structure and vocabulary. Complex lin- 056

guistic constructs such as negations, conditionals, 057

and cycles are largely absent. 058

Although generalist language-guided robots are 059

gaining traction, the language used to train VLA 060

models remains limited in quality and diversity. 061

Enhancing this language—either by collecting 062

richer data or generating more varied synthetic in- 063

puts—could substantially improve natural language 064

understanding in current VLA systems. 065
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Dataset Citations Focus Language Style

ALFRED (Shridhar et al., 2020) 738+ Household task instruction following Step-by-step, high-level
SCOUT (Lukin et al., 2024) 0 Two-way, task-oriented dialogue Unconstrained, interactive

Open X-Embodiment (Collaboration et al., 2024) 459+ Collection of datasets Varied, not always included
RT-1 (Brohan et al., 2023) 1013+ Kitchen instruction following Concise, imperative, templated
BRIDGE (Walke et al., 2023) 204+ Skill generalization across domains Diverse, step-by-step
TacoPlay (Rosete-Beas et al., 2022) 81+ Task-agnostic “play” behaviors Simple, low-variety, templated
Language Table (Lynch et al., 2023) 214+ Open-vocab spatial manipulation Natural, open-ended

LIBERO (Liu et al., 2023) 114+ Knowledge transfer in robot learning Natural1

Table 1: Overview of the datasets explored in this work. We include citation counts for each dataset; note that some
of the referenced works focus primarily on dataset creation, while others introduce new methods alongside the
dataset.

2 Datasets066

In total, we examined seven robotics datasets (see067

Table 1) that cover a range of language types—from068

rigid, templated instructions to natural, open-ended,069

and interactive dialogue.070

We include four well-known datasets from the071

OXE collection: RT-1 (Brohan et al., 2023),072

BRIDGE (Walke et al., 2023), TacoPlay (Rosete-073

Beas et al., 2022), and Language Table (Lynch074

et al., 2023). RT-1 and BRIDGE both target gen-075

eralization across diverse tasks but differ in scope:076

RT-1 features imperative, templated commands,077

while BRIDGE offers richer linguistic and cul-078

tural variation, supporting tool use and nuanced ob-079

ject interactions. TacoPlay adopts a task-agnostic080

“play” paradigm, learning general-purpose behav-081

ior from unstructured interaction. In contrast, Lan-082

guage Table is designed for open-vocabulary spa-083

tial manipulation in controlled tabletop settings.084

We also include LIBERO (Liu et al., 2023), which085

is not part of the OXE collection but serves as a sim-086

ulation benchmark focused on knowledge transfer.087

It has recently been used to fine-tune and evaluate088

models such as OpenVLA (Kim et al., 2024).089

Additionally, we include two robotics datasets090

that are more focused on language interaction than091

directly training VLA models. ALFRED (Shridhar092

et al., 2020) emphasizes natural language through093

fine-grained, step-by-step action alignment, mak-094

ing it particularly suited for studying task decom-095

position. SCOUT (Lukin et al., 2024) contains the096

most naturalistic language among the datasets we097

consider. It captures unconstrained human-robot098

dialogues during navigation tasks, enabling more099

adaptive, context-aware interaction beyond static100

commands. Notably, it includes transcriptions from101

real robot commanders, and its accompanying pub-102

lication provides detailed statistics on language use.103

To contextualize the language complexity of 104

modern robotics datasets, we include GLUE (Wang 105

et al., 2018) and combine the training splits from 106

each GLUE task into one GLUE dataset. Our goal 107

is not to evaluate GLUE task performance but to 108

use its examples as a reference for linguistic rich- 109

ness in comparison to robotics commands. 110

3 Results 111

This section presents a portion of our framework for 112

analyzing language commands, focusing on token- 113

level and syntax-level characteristics. Collectively, 114

these analyses provide insight into the linguistic 115

limitations of current EAI datasets. Methodologi- 116

cal details can be found in the Appendices. 117

3.1 Token-Level Analysis 118

In this section, we provide token-level analysis to 119

evaluate language through more interpretable lex- 120

ical features, in contrast to the LLM-based repre- 121

sentation analysis used in Section 3.2. For imple- 122

mentation details, see Appendix C. 123

Unique Commands and Unigrams serve as a 124

simple metric to assess the diversity of each dataset 125

and its vocabulary. This analysis (see Table 2) re- 126

veals a notable disparity: in most OXE datasets, 127

fewer than 2% of language instructions contain 128

unique wording. This is largely due to the same 129

command being paired with multiple action trajec- 130

tories via multiple trials. Compared to ALFRED 131

and SCOUT, the other robotics datasets, except 132

Bridge, contain relatively few unique unigrams. 133

This is especially notable due to the difference 134

in unique commands between SCOUT and Lan- 135

guageTable. Compared to GLUE, all the other 136

datasets have few unique unigrams, even consider- 137

ing the difference in unique commands, which can 138

be explained by the task-focused nature of others. 139
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Dataset # Commands % Unique Commands # Unique Commands # Unique Unigrams

ALFRED (Shridhar et al., 2020) 162K+ 79.9% 126,005 2,627
SCOUT (Lukin et al., 2024) 23K+ 39.4% 8,795 1,631

Open X-Embodiment (Collaboration et al., 2024) - - - -
RT-1 (Brohan et al., 2023) 3.7M+ 0.02% 577 49
Bridge (Walke et al., 2023) 864K+ 1.4% 11,693 1,189
TacoPlay (Rosete-Beas et al., 2022) 214K 0.2% 403 74
LanguageTable (Lynch et al., 2023) 7.0M+ 1.81% 127,370 928

LIBERO (Liu et al., 2023) 6.5K 1.72% 112 79

GLUE (Wang et al., 2018) 1.0M+ 73.1% 748,729 193,713

Table 2: Summary unique commands and unigrams of EAI datasets reviewed in this work.

Dataset CR ↓ Levenshtein ↑ Jaccard ↓ BLEU-4 ↓ ROUGE-L ↓ Tree Kernel ↓ BERTScore ↓

ALFRED (Shridhar et al., 2020) 5.912 46.695 ± 0.883 0.128 ± 0.004 0.003 ± 0.000 0.214 ± 0.002 5.705 ± 0.140 % 0.638 ± 0.002
SCOUT (Lukin et al., 2024) 4.851 24.512 ± 0.946 0.052 ± 0.002 0.002 ± 0.001 0.072 ± 0.004 1.892 ± 0.219 % 0.493 ± 0.003

RT-1 (Brohan et al., 2023) 118.195 28.143 ± 0.413 0.138 ± 0.001 0.026 ± 0.006 0.190 ± 0.007 5.090 ± 0.202 % 0.636 ± 0.005
BRIDGE (Walke et al., 2023) 64.904 35.139 ± 0.180 0.088 ± 0.004 0.003 ± 0.000 0.149 ± 0.002 3.680 ± 0.120 % 0.600 ± 0.002
TacoPlay (Rosete-Beas et al., 2022) 158.858 27.705 ± 0.137 0.188 ± 0.003 0.020 ± 0.001 0.304 ± 0.005 8.863 ± 0.132 % 0.683 ± 0.002
Language Table (Lynch et al., 2023) 56.643 32.206 ± 0.171 0.198 ± 0.002 0.010 ± 0.001 0.288 ± 0.004 - 0.697 ± 0.001

LIBERO (Liu et al., 2023) 134.862 34.269 ± 0.188 0.248 ± 0.006 0.064 ± 0.003 0.378 ± 0.003 12.222 ± 0.285 0.714 ± 0.001
GLUE (Wang et al., 2018) 2.605 66.013 ± 1.480 0.039 ± 0.001 0.001 ± 0.001 0.069 ± 0.003 1.603 ± 0.029 % 0.487 ± 0.001

Table 3: Text similarity measures across robotics datasets. Each measure is computed by sampling 1,000 commands
from each dataset, repeated three times for robustness. Arrows indicate increasing linguistic diversity. CR stands for
Compression Ratio. The Tree Kernel method is from Moschitti (2006).

The Command Length distribution across140

seven datasets reveals a preference for short com-141

mands that fall within the range of 3 to 15 words142

(see Figure 4.) This highlights the dominance143

of concise phrasing, which may limit exposure144

to more complex linguistic structures, e.g., multi-145

clause, multi-step instructions.146

Lexical Overlap. We analyze how much vo-147

cabulary is shared across datasets along the fol-148

lowing POS categories: verbs, nouns, and adverbs.149

As shown in the heatmap in Figure 5, TacoPlay150

and RT-1, which have smaller vocabularies overall,151

share significantly fewer words with other datasets.152

Nouns are the most widely shared category, likely153

because many robotic tasks involve similar objects154

(e.g., boxes, cans, drawers). Verbs are also shared,155

though to a lesser extent, likely constrained by the156

specific capabilities of each robot embodiment.157

Lexical Diversity Metrics. We present text sim-158

ilarity statistics in Table 3, which closely align159

with the unigram diversity patterns observed in Ta-160

ble 2. GLUE, SCOUT, and ALFRED consistently161

exhibit the highest levels of diversity, maintaining162

this ranking across all evaluated metrics. Notably,163

the low compression ratios for RT-1 and TacoPlay164

suggest that their language commands are highly165

structured and repetitive.166

3.2 Intrinsic Dimensionality Analysis 167

We analyze the intrinsic dimensionality of lan- 168

guage data by applying PCA to embeddings gen- 169

erated by standard LLM encoders. We approx- 170

imate intrinsic dimensionality as the minimum 171

number of principal components required to ex- 172

plain 95% of a dataset’s cumulative variance (Fan 173

et al., 2010; Verleysen and Lee, 2013); we jus- 174

tify our approach in Appendix A. We can infer 175

a dataset’s information density by determining 176

how many principal components are necessary to 177

reach this threshold. To mitigate model-specific 178

biases, we evaluate embeddings from four distinct 179

models: USE (512D) (Cer et al., 2018), SBERT 180

(768D) (Reimers et al., 2019), CLIP (512D, multi- 181

modal) (Radford et al., 2021), and SONAR (1024D, 182

multimodal) (Duquenne et al., 2023). Table 4 183

presents our results. We note that sample size does 184

not trivially determine our results (see Figure 3) 185

(Oates and Jensen, 1997). 186

3.3 Sentence-Level Analysis 187

In this section, we examine sentence-level struc- 188

ture, focusing on syntactic patterns, verb and direct 189

object coverage, and uncover tendencies in instruc- 190

tion style. Refer to Appendix D for greater detail. 191

In particular, ALFRED and SCOUT are more 192
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Dataset # SBERT ↑ # USE ↑ # SONAR ↑ # CLIP ↑

ALFRED (Shridhar et al., 2020) 165 159 406 198
SCOUT (Lukin et al., 2024) 194 148 295 181

RT-1 (Brohan et al., 2023) 27 33 42 35
BRIDGE (Walke et al., 2023) 115 125 239 149
TacoPlay (Rosete-Beas et al., 2022) 31 42 41 36
Language Table (Lynch et al., 2023) 57 86 108 71

LIBERO (Liu et al., 2023) 32 34 44 33

GLUE (Wang et al., 2018) 393 262 752 383

Table 4: The Minimum Number of PCA Components to
Explain 95% Variance for each EAI Dataset. A greater
number of components represents stronger diversity.
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Figure 2: Percentage of instructions exhibiting four
structural phenomena: negation, conditionality, multi-
step sequencing, and cyclic repetition.

comparable to GLUE, while RT-1 and TacoPlay193

show much lower dimensionality, suggesting that194

their language is more limited in scope.195

Part-of-Speech (POS) Pattern analysis ex-196

amines the grammatical structure of commands,197

specifically how words are arranged using POS pat-198

terns. We use an LLM to extract these structures.199

As shown in the histograms in Figure 14, TacoPlay,200

SCOUT, RT-1, and LIBERO-10 exhibit long-tailed201

distributions, where just one or two syntactic tem-202

plates dominate. This reliance on repetitive sen-203

tence structures may make it harder for models to204

generalize to more complex instructions. Refer to205

Figures 7a and 7b for qualitative examples of dom-206

inant patterns. Figure 13 offers an aggregated view207

across datasets.208

Verb, Direct Object, Adverbial Diversity anal-209

ysis explores how diverse the actions and modi-210

fiers are in language instructions. We measure how211

many unique verbs are associated with each ob-212

ject for manipulation datasets. Figures 16 and 15213

show that most objects co-occur with fewer than214

ten verbs (fewer than five in LIBERO-10 and RT-215

1), indicating limited task diversity. However, AL-216

FRED and Language Table exhibit more balanced217

and varied distributions. While some constraints218

stem from limitations in manipulation capabilities,219

others appear artificial; for example, TacoPlay’s 220

stacked blocks could support richer interactions 221

(e.g., “observe” or “tip”). For navigation datasets 222

like SCOUT, we examine the diversity of adver- 223

bials, which modify actions in ways that convey nu- 224

ance in direction (north, forward), location (inside, 225

around), manner (slowly, precisely), time (now, 226

again), and conversational fillers (please, okay) (see 227

Figure 11.) 228

Instruction Structure Analysis examines how 229

instructions are logically composed, beyond just 230

their vocabulary, by identifying four structural pat- 231

terns: negation, conditionality, multi-step sequenc- 232

ing, and cyclical or loop-like patterns. Figure 2 233

visualizes their distribution, and Table 6 provides 234

representative examples. See Appendix F for de- 235

tails. 236

We find that multi-step instructions are the most 237

prevalent across all datasets, reflecting a strong bias 238

toward procedural, linear task decomposition, par- 239

ticularly in LIBERO-10. Datasets like RT-1 and 240

SCOUT contain fewer multi-step commands and 241

favor shorter, atomic actions. Negation and con- 242

ditional structures occur in less than 2% of cases. 243

Their absence suggests that many benchmarks do 244

not adequately capture logical disjunctions, excep- 245

tion handling, or constraint-driven behaviors essen- 246

tial for safe and flexible deployment. Cyclical or 247

loop-like structures, common in real-world tasks, 248

are similarly underrepresented, with only SCOUT 249

and ALFRED showing a modest signal. This points 250

to a structural bias in current datasets toward flat, 251

step-by-step formulations, with limited support for 252

more complex task logic. 253

4 Conclusion 254

In this work, we analyzed the linguistic properties 255

of VLA datasets and showed that the language they 256

contain is highly repetitive and structurally limited 257

compared to language-focused robotics datasets 258

and benchmarks like GLUE. The ALFRED and 259

SCOUT datasets, with more focus on language, 260

show significantly more diversity than those used 261

for VLA training. These findings highlight that 262

language remains an underemphasized modality 263

in current VLA systems. Collecting more diverse 264

language instructions or incorporating synthetic 265

and augmented language data could substantially 266

improve the limited language understanding of ex- 267

isting VLA models. 268
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Limitations269

Parts of our analysis rely heavily on automated an-270

notations generated by LLMs. While we took steps271

to assess annotation quality for dependency parsing,272

occasional errors were observed and, due to dataset273

scale, could not be corrected exhaustively. A more274

rigorous study would include a structured qual-275

ity assurance process and measure inter-annotator276

agreement even for manually reviewed generations,277

e.g., Section D.2. Additionally, while we analyzed278

seven datasets, which we believe capture dominant279

trends in the field, our findings may not fully gen-280

eralize to all EAI instruction-following datasets.281
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A Intrinsic Dimensionality Analysis 468

A notable limitation of our methodology is using 469

linear dimensionality reduction techniques, specifi- 470

cally PCA, to assess data that may lie on a nonlinear 471

manifold, as is often the case with LLM-encoded 472

datasets. While PCA assumes linearity, this lim- 473

itation does not significantly undermine our anal- 474

ysis. In fact, it likely results in an overestimation 475

of the intrinsic dimensionality, since PCA cannot 476

exploit underlying nonlinear relationships in the 477

data (Verleysen and Lee, 2013). For our purposes, 478

this effect only further underscores the discrepancy 479

between the structure of robotics datasets and the 480

more diverse language representations found in nat- 481

ural language understanding (NLU) research. 482

Although the conclusions of this analysis are re- 483

inforced by our more interpretable feature-based 484

methods (see Section 3.1); in future work, we 485

would like to strengthen this effort. 486
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B Qualitative Features of EAI datasets487

We conducted an informal qualitative review of488

the examined datasets and highlighted interesting489

attributes, summarized in Table 5.490

On Conversational Strengths. The SCOUT491

dataset exhibits a distinct dialogue structure that dif-492

ferentiates it from traditional instruction-following493

datasets. Rather than adhering to a rigid, directive494

style, its dialogues often involve an exploratory or495

inquiry-based approach, as seen in exchanges like496

“move west uh zero point five meters" and “...and497

then the last question here anything that indicates498

the environment was recently occupied". This in-499

teractive nature may offer advantages for EAI by500

allowing more adaptive responses. For example, in501

cases where instructions involve complex spatial502

reasoning (e.g., placing an object in a specific but503

ambiguous location), the dataset’s conversational504

format could aid in disambiguation.505

On Cultural Knowledge. One of the more strik-506

ing aspects of the BRIDGE dataset is its incorpora-507

tion of multicultural culinary terminology, despite508

being primarily monolingual (English). Unlike509

many Western-centric datasets, BRIDGE includes510

references to diverse cooking utensils and ingredi-511

ents, such as purkoli (broccoli), brinjal (eggplant),512

brezzela (eggplant), capsicum (bell pepper), quince513

fruit, nigiri, wok, and kadai. This linguistic diver-514

sity suggests a broader representation of cultural515

knowledge, making incremental progress toward516

addressing concerns raised in prior work on dataset517

biases (Bender et al., 2021; Bender, 2019). Specifi-518

cally, it challenges the tendency for data collection519

to reflect primarily Western, white, and wealthy520

audiences. Additionally, BRIDGE captures subtle521

social characteristics of human perception, such as522

humor, evidenced by an annotation that describes a523

mushroom toy as a “phallic looking item.”524

On “Common Sense" Reasoning. A recurring525

challenge across real-world datasets is the discon-526

nect between world knowledge, common-sense rea-527

soning, and practical instruction execution. While528

BRIDGE and ALFRED aim to ground tasks in529

realistic environments, many instructions contain530

fundamental inconsistencies or implausible direc-531

tives. In ALFRED, for example, commands such532

as “open refrigerator, place potato to the right of533

tomato on second shelf of refrigerator, close re-534

frigerator, open refrigerator, pick up potato from535

refrigerator, close refrigerator” expose rigid, me-536

chanical assumptions about human behavior. Addi-537

Figure 3: Correlation between the number of PCA com-
ponents required to explain 95% variance and language
statistics across EAI datasets. PCA components derived
from SBERT, USE, SONAR, and CLIP embeddings
are compared against the number of commands, unique
commands, and unique unigrams in each dataset. Strong
positive correlations are observed between unique uni-
grams and all embedding models, particularly SONAR
and USE. In contrast, the total number of commands
shows weak or negative correlation with embedding di-
versity

tionally, one must ask what has been accomplished 538

by storing a potato in a refrigerator and then re- 539

moving said potato in a matter of seconds. An- 540

other example from ALFRED includes, “Put an 541

egg in a pan in the fridge." More concerning, and 542

at times, unintentionally amusing, are instances of 543

potentially unsafe or property-damaging instruc- 544

tions, such as “place a heated slice of tomato on 545

a counter and store a knife in a microwave” or 546

“stab the tip of the knife into the wooden table, in 547

front of the gray plate closest to the lettuce.” While 548

a robot damaging a kitchen table may be prefer- 549

able to microwaving a knife, these examples high- 550

light inconsistencies in world knowledge modeling 551

within these datasets. Similar anomalies appear in 552

BRIDGE, where commands such as “take sushi out 553

of the pan,” “put sushi in pot...,” and “put spatula 554

in pan” suggest an oversimplified understanding of 555

object affordances, human behavior, and broader 556

world and cultural knowledge. If the broader EAI 557

community sees embodiment as a necessary step 558

toward elevating the representational learning of 559

single-modality models, e.g., LLMs, we ought to 560

discourage dataset collectors from building illogi- 561

cal “common-sense" associations. 562
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Theme Example Instruction(s)

Cultural Terms (BRIDGE) “put the kadai on the stove”, “grab the brinjal from the drawer”
Unsafe Action (ALFRED) “store a knife in a microwave”, “stab the tip of the knife into the table”
Commonsense Violation (ALFRED) “Put an egg in a pan in the fridge"
Commonsense Violation (BRIDGE) “take sushi out of the pan”

Table 5: Selected examples illustrating conversational structure, cultural variation, and commonsense inconsistencies
across EAI datasets.

Figure 4: Distribution of command lengths across six
examined EAI datasets. The majority of commands
contain fewer than ten words. Command lengths are
capped at a maximum of 30 words for analysis.

C Token-Level Analysis Methodology and563

Expanded Results.564

C.1 Text Cleaning565

All datasets were cleaned to standardize white566

space and remove punctuation. However,567

SCOUT (Lukin et al., 2024), a dialogue dataset,568

required further cleaning of user role tags and tags569

that indicate filler words, e.g., “um", silence, and570

noise. Due to the complexity of this data, we focus571

our initial analysis only on the “robot commander"572

dialogue, with plans to expand our analysis to all573

roles in the future and to incorporate filler filtering574

in the text cleaning pipeline. Once cleaned, we use575

a combination of spacy (Honnibal et al., 2020) and576

pandas (pandas development team, 2020) methods,577

e.g., .unique() to develop Tables 2 and Figure 4.578

C.2 Lexical Overlap579

To assess how much vocabulary is shared across580

datasets, we examine the distribution of words581

across three part-of-speech (POS) categories:582

nouns, verbs, and adverbs. We use dependency583

parsing (see Section 3.3) to extract tokens by their584

POS tags. We then construct a dataset–word matrix 585

that records how often each word appears in more 586

than one dataset. This allows us to visualize lexical 587

overlap using a heatmap (Figure 5). 588

C.3 Token-Level Text Diversity Analysis 589

We use several text similarity measures in our 590

analysis (see Table 3.) The first involves assess- 591

ing syntactic diversity by comparing constituency 592

parse trees (Moschitti, 2006). Following previous 593

work (Zhang et al., 2020), we calculate BLEU- 594

4 (Papineni et al., 2002) and ROUGE-L (Lin, 2004) 595

scores for candidate sentences against the remain- 596

der of their respective datasets. Additionally, we 597

utilize Levenshtein distance as a metric as well as 598

BERTScore. Given that these methods entail pair- 599

wise comparisons, we perform 1,000 commands to 600

obtain these scores across 3 trials. 601

Figure 5: Shared POS categories across datasets. Us-
ing ALFRED as a pretraining dataset is advantageous
because it has the greatest amount of lexical coverage
across the examined EAI datasets.
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Figure 6: Prompt used in dependency parse work.

D Sentence-Level Analysis Methodology602

and Expanded Results603

D.1 POS Patterns604

We implemented a large-scale dependency pars-605

ing pipeline using an LLM to extract POS and606

dependency parse patterns, leveraging multi-GPU607

parallel processing for efficiency. Each GPU inde-608

pendently processed a subset of instructions using609

DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI610

et al., 2025), a state-of-the-art instruction-following611

LLM. The model was loaded in 8-bit quantized for-612

mat to optimize memory usage, and batch b = 10613

processing was employed to maximize throughput.614

The prompts for the model followed a structured615

format (see Figure 6), instructing it to perform de-616

pendency parsing and return results in valid JSON617

format. The output JSON included:618

• The original instruction619

• A tokenized breakdown, where each word was620

annotated with its:621

– Lemma (root form)622

– Part of speech (POS) tag623

– Syntactic head (parent word in the depen-624

dency tree)625

– Dependency label (e.g., ROOT, direct ob-626

ject, modifier, etc.)627

For qualitative examples related to each POS628

pattern, please refer to Figure 7.629

The BRIDGE dataset is heavily characterized630

by prepositional phrases, frequently structuring in-631

structions that specify spatial relationships between632

objects and the environment. This results in a high633

frequency of ADP (adpositions), NOUN (nouns),634

and DET (determiners), forming patterns, e.g. “put 635

the spoon on the cloth", “put the mangoes in a 636

pan", and “Move the spatula near the egg." While 637

this structure ensures precision in command exe- 638

cution, it lacks syntactic variation beyond simple 639

prepositional constructs, potentially limiting gener- 640

alization to more complex spatial reasoning tasks. 641

RT-1, in particular, exhibits highly repetitive 642

syntactic patterns, as seen in commands like “place 643

7up can into middle drawer," “place water bottle 644

into white bowl," and “place rxbar blueberry into 645

bottom drawer." Similarly, TacoPlay demonstrates 646

significant syntactic redundancy, with instructions 647

such as “place the purple block on the table," “store 648

the pink object in the drawer," and “slide the yellow 649

block to the right." This lack of linguistic variabil- 650

ity, likely due to the template-driven generation 651

of these datasets, may limit a model’s ability to 652

generalize to more complex instructions, particu- 653

larly those involving hierarchical dependencies or 654

compound actions. 655

SCOUT introduces more numerical expressions 656

and adverbial structures, implying an instructional 657

style where robots may be required to count, mea- 658

sure, or modify behaviors dynamically, e.g., “move 659

south four feet", “turn right twenty degrees", “go 660

forward one meter". However, its emphasis on 661

concise command structures might underrepresent 662

more complex multi-step directives. 663

The POS histograms in Figures 13 and 14 reveal 664

a long-tailed distribution in TacoPlay, SCOUT, and 665

RT-1, where the frequency of syntactic structures 666

drops sharply after the first or second most com- 667

mon parse pattern. Such patterns indicate a reliance 668

on repetitive syntactic templates, which may limit a 669

model’s ability to generalize to linguistically varied 670

instructions. Language Table shows the longest and 671

most evenly distributed bar set among all datasets, 672

with no single POS pattern dominating. Language 673

Table sets the upper bound for linguistic diversity 674

among embodied AI datasets and should be more 675

widely used. However, for datasets like RT-1, we 676

recommend that synthetic data augmentation could 677

help mitigate this imbalance by introducing greater 678

syntactic variability, such as tree-based reordering 679

techniques, inspired by data augmentation in ma- 680

chine translation (Dehouck and Gómez-Rodríguez, 681

2020; Shi et al., 2021), could be adapted to gener- 682

ate syntactic variants of robotic commands while 683

preserving their semantics. 684
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Dataset POS Pattern Example Sentences
put the purple block on the table

slide the purple block to the left

place the yellow block on the table

put the pink object inside the left cabinet

put the yellow block inside the right cabinet

place the purple block inside the right cabinet

take the purple block and rotate it right

take the yellow block and turn it right

grasp the purple block and turn it left

place rxbar blueberry into bottom drawer

move rxbar chocolate near orange can

move 7up can near green can

move water bottle near rxbar chocolate

move coke can near water bottle

move rxbar blueberry near water bottle
pick coke can from bottom drawer and place on 
counter
pick water bottle from top drawer and place on counter 
pick rxbar blueberry from middle drawer and place on 
counter

TacoPlay

VERB → DET → ADJ → NOUN → ADP → DET → NOUN

VERB → DET → ADJ → NOUN → ADP → DET → ADJ → NOUN

VERB → DET → ADJ → NOUN → CCONJ → VERB → PRON → 
ADV

RT-1

VERB → NOUN → NOUN → ADP → ADJ → NOUN

VERB → NOUN → NOUN → ADP → NOUN → NOUN

VERB → NOUN → NOUN → ADP → ADJ → NOUN → CCONJ → 
VERB → ADP → NOUN

(a) TacoPlay and RT1.

turn left thirty degrees

turn left ninety degrees

move forward one foot

move towards a shoe

move towards the barrel

go through the door

turn sixty degrees left

move ten inches northeast

move two feet forward

Place the mushroom behind the spatula.

Place the salmon in the pot.

Move the mushroom onto the towel.

Move the spatula at the edge of the table.

Move the spoon to the left of the napkin.

Put the cloth to the left of the spoon.

Place the strawberry in the silver pot.

Set the pot onto the green cloth. 

Place the pot on the blue cloth.

SCOUT

VERB → ADV → NUM → NOUN

VERB → ADP → DET → NOUN

VERB → NUM → NOUN → ADV

BRIDGE

VERB → DET → NOUN → ADP → DET → NOUN → PUNCT

VERB → DET → NOUN → ADP → DET → NOUN → ADP → DET 
→ NOUN → PUNCT

VERB → DET → NOUN → ADP → DET → ADJ → NOUN → 
PUNCT

(b) SCOUT and ALFRED.

Figure 7: Common POS Parse Patterns.
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D.2 Verb, Direct Object, Adverbial Diversity.685

To extract verb, direct object, and adver-686

bial features, we implemented a large-687

scale annotation pipeline using two model688

variants: R1-Distill-Llama-8B and689

R1-Distill-Qwen-14B (DeepSeek-AI et al.,690

2025), just as in Section D.1. However, the691

prompts for the model followed the format692

shown in Figure 8. We implemented in-context693

learning (ICL) to enhance accuracy by retriev-694

ing sentence-specific examples using TF-IDF695

similarity. Despite using LLMs, all annotations696

were manually reviewed to ensure consistency,697

including lemmatizing verbs, removing duplicates,698

and normalizing synonymous expressions (e.g.,699

“pick" vs. “pick up"). This hybrid method enabled700

the construction of high-quality annotations for701

downstream analysis. Results are provided in702

Figures 16, 15, and 11.703

On Object and Adverbial Diversity. We as-704

sessed how many distinct verbs are used with each705

direct object for manipulation datasets. Low counts706

suggest limited interaction diversity, sometimes707

due to real-world constraints, but often due to708

overly templated instruction generation. Direct709

object structures are less relevant for navigation-710

focused datasets, instead how an instruction is fol-711

lowed, e.g., directional terms (e.g., “north," “for-712

ward"), location-based modifiers (e.g., “around,"713

“inside"), manner descriptors (e.g., “slowly," “di-714

rectly") are more relevant.715

On Numeric Generalization. As VLA mod-716

els are increasingly expected to interpret numerical717

quantities (e.g., distances, angles) in an end-to-end718

manner, the distribution of numerical values in nav-719

igation instructions becomes more critical. Fig-720

ure 12a shows that numbers like “two," “three,"721

and “five" are relatively common in SCOUT, while722

values such as “seven," “eight," or “twelve" are rare.723

ALFRED (see Figure 12b) appears more tailed724

and its numeric coverage is weaker than SCOUT;725

however, the overall representation of numerics is726

greater due to dataset size. This sparsity raises727

concerns about whether models trained on these728

datasets can interpolate or generalize to underrep-729

resented numerical instructions. For example, can730

a robot correctly interpret “move seven meters" if731

it has never encountered that number in training?732

What if it has only encountered meters but is given733

a command in yards? What if the command con-734

tains common shortcuts, such as using 4K to refer735

to 4,000? Future research should investigate the 736

impact of numeric and unit sparsity on navigation 737

performance and explore methods for balancing 738

numerical distributions during data collection or 739

augmentation. 740

E Instruction Structure Analysis 741

To analyze the compositional structure of language 742

in robotics datasets, we use LLM-generated fea- 743

ture information (see Appendices D.1 and D.2) 744

to construct heuristics for detecting four types 745

of instruction-level patterns: negation, condition- 746

ality, multi-step sequencing, and cyclical struc- 747

tures. These patterns are identified through string- 748

matching techniques and syntactic cues extracted 749

from dependency parses and part-of-speech tags. 750

• Negation was detected using syntactic cues 751

like neg dependencies and lexical markers 752

(e.g., “not”, “don’t”, “never”). 753

• Conditionality was identified via subordinat- 754

ing conjunctions (e.g., “if”, “unless”) and 755

dependency markers indicating conditional 756

clauses. 757

• Multi-step sequencing was inferred from co- 758

ordinating conjunctions (e.g., “and”, “then”), 759

punctuation, or imperative chaining. 760

• Cyclical patterns were identified using repeat 761

verbs (“again”, “repeat”) or constructions in- 762

dicating iteration or loops. 763

For each instruction, we annotated binary indica- 764

tors for each structure type and aggregated them to 765

compute relative frequencies across datasets. Quan- 766

titative results are presented in Figure 2, and rep- 767

resentative examples are shown in Table 6. These 768

results help reveal structural tendencies in instruc- 769

tion design; particularly, the dominance of linear, 770

stepwise instruction formats and the underrepresen- 771

tation of more complex, logic-driven patterns. 772

F Case Study: OpenVLA & LIBERO-10 773

This case study probes the linguistic robustness 774

of OpenVLA using the LIBERO-10 dataset. Al- 775

though LIBERO-10 is designated as an evalua- 776

tion split in the LIBERO benchmark (Liu et al., 777

2023) (see Figure 10), the OpenVLA checkpoint 778

used here (openvla-7b-finetuned-libero-10) 779

was trained directly on this test set. As such, this 780

11



(a) Verb–direct object prompt example used in Section 3.3.

(b) In context learning string generated by tf-idf distance k-
nearest neighbors.

Figure 8: Prompts used in direct object and verb parsing
tasks for instruction analysis.

experiment does not assess cross-split generaliza-781

tion (e.g., LIBERO-90 → LIBERO-10). But it may782

still yield two critical insights:783

First, current evaluation practices in the robotics784

community often lead to confusion, as benchmark785

train/test splits are frequently assumed to be re-786

spected—even when they are not.787

Second, and more surprisingly, despite lever-788

aging a pretrained LLaMA 2 backbone (Touvron789

et al., 2023), the model—fine-tuned directly on790

the LIBERO-10 test split—fails when presented791

with simple paraphrased versions of the same in-792

structions. This brittleness suggests that the limited793

linguistic diversity of the fine-tuning data alone can794

restrict generalization. In fact, we hypothesize that795

models finetuned on narrow, repetitive language796

may overwrite the model’s generalist, linguistic ca-797

pabilities encoded during pretraining. As shown in798

Figure 18, the average task success rate dropped799

from 0.66 on original instructions to 0.3168 on800

paraphrased variants.801

Methodology. We begin by extracting linguis-802

tic features (verbs, direct objects, and syntactic803

patterns) from the LIBERO-10 test set (Liu et al.,804

2023), following the process in Section 3.3, but805

using GPT-3.5-turbo due to local GPU constraints.806

These features (see Figures 17a and 17b) inform tar- 807

geted augmentations designed to probe the model’s 808

robustness, specifically by generating paraphrases 809

that diverge from common verbs, objects, and syn- 810

tactic templates. Paraphrases were generated us- 811

ing GPT-4o through a multifaceted process that in- 812

cluded object substitutions (e.g., “cup” for “mug”), 813

verb replacements (e.g., “activate” for “turn on”), 814

and syntactic restructuring based on dependency 815

parse patterns. Our exact prompt is provided in 816

Figure 9. Variations included clause reordering, rel- 817

ative clauses, participial phrases, and passive con- 818

structions, with one strategy applied per prompt to 819

ensure diversity while maintaining interpretability. 820

Each prompt included the original BDDL file con- 821

tent to preserve semantic validity, exposing GPT-4o 822

to the relevant object sets, affordances, and envi- 823

ronment configurations. This context prevented 824

implausible commands. Paraphrased instructions 825

were then substituted into duplicated BDDL files to 826

ensure the evaluation isolated linguistic robustness 827

alone. For each task (original and paraphrased), we 828

executed five trials per BDDL file, enabling a side- 829

by-side performance comparison across language 830

variants. Figure 17c demonstrates the efficacy of 831

the paraphrasing pipeline. 832
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Figure 9: Prompt used in paraphrase generation for
test set. The parameter: constraints contains infor-
mation from BDDL files which are then captured by
surface_hint.

Figure 10: LIBERO task suite overview from https:
//libero-project.github.io/datasets.

Figure 11: VLN adverbials - limited to the top 20 verbs
with most unique language use

(a) SCOUT Numerics

(b) ALFRED Numerics

Figure 12: Numeric representation in navigation
datasets.
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Figure 13: POS parse pattern distribution on unique commands in the datasets.
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Figure 14: Grouped view of top 10 POS parse patterns on unique commands in EAI datasets.
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Figure 15: Frequency Plot of Unique Verbs per Direct Object for Manipulation Datasets
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Figure 16: Frequency Plot of Unique Verbs per Direct Object for Manipulation Datasets
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Category Dataset Examples

Negation
SCOUT i don’t know what the red thing was

you are not at the total entrance
no i did not see any

BRIDGE video frames not showing
video frames or not showing
Picture is not downloading, not able to view.

ALFRED This step does not exist.
Slice the tomato on the counter but do not put down the knife.
Cook the potato slice in the microwave and do not put the cooked potato slice on the counter.

Conditional
SCOUT see if there’s a doorway

check and see if there’s a doorway there
and i’ll point out when there’s a doorway so we can count them

BRIDGE Pick the orange towel and place it on the middle if the table
PLACE THE YELLOW TOPWEL SIDE IF THE TABLE

ALFRED Take keys from the black table, leave them on the lamp when you turn it on.
Turn right and walk until you’re even with the fridge on your right and when you are turn right
and walk to it.
Turn left and walk to the table then turn right when you get to it.

Multi-Step

LIBERO open the top drawer and put the bowl inside
TacoPlay go towards the drawer and place the pink object

go towards the purple block and grasp it
take the purple block and rotate it right

RT-1 pick coke can from bottom drawer and place on counter
pick apple from top drawer and place on counter
pick green rice chip bag from bottom drawer and place on counter

SCOUT and take a picture
and then the last question here anything that indicates the environment was recently occupied
and then take a picture

BRIDGE put pot or pan on stove and put egg in pot or pan
Take the spatula from the vessel and place it on the table.

ALFRED Open the drawer. Put the cell phone in the drawer on the right side towards the back and close it.
open the top right drawer of the desk, put phone inside, close the drawer
Turn and move to the far end of the kitchen island, so you’re facing the tomato and fork.

Cycle
SCOUT continue moving forward

follow hallway to the end of the wall uh to until you reach the wall
take a photo every forty five degrees

BRIDGE end effector reaching knife
pick orange toy from vessel and keep it on the left side of the table
end effector reaching corn

ALFRED Move over to the right side of the desk again.
Put the potato slice in the fridge and shut the door and then take the potato slice out and shut the
fridge door again.
Walk to your left until you see a loaf of bread on the counter top.

Table 6: Representative instruction examples for negation, conditional, multi-step, and cycle structures. Note that in
BRIDGE and ALFRED, some examples contain noise from the original OXE metadata (e.g., typos or syntactic
errors); and in many cases, this noise artificially inflate diversity scores.
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(a) Dependency parse features across all LIBERO splits.
(b) Verb and direct object frequencies across all LIBERO
splits.

(c) Distribution of POS patterns in the GPT-4o augmented LIBERO-10 test set.

Figure 17: Feature extraction across LIBERO datasets. Top: parse and verb–object statistics across all splits.
Bottom: POS diversity from paraphrased instructions in LIBERO-10. These insights guide our augmentation
pipeline (see Figure 1).
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Figure 18: Average Task Success Rates Across Original and Augmented Instructions for LIBERO-10 Tasks. Each
pair of bars represents the success rate of the OpenVLA model on a specific LIBERO-10 task using either the
original task description (blue) or a GPT-4o-generated paraphrased version (orange). The drop in success on
paraphrased instructions highlights the model’s sensitivity to linguistic variation and limited robustness to novel
language inputs. The OpenVLA checkpoint used was trained and tested on the LIBERO-10 split, so these results
reflect a model (most likely) highly overfit to language data.
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