
Under review as a conference paper at ICLR 2021

ARTIFICIAL GAN FINGERPRINTS: ROOTING DEEP-
FAKE ATTRIBUTION IN TRAINING DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Photorealistic image generation is progressing rapidly and has reached a new level
of quality, thanks to the invention and breakthroughs of generative adversarial net-
works (GANs). Yet the dark side of such deepfakes, the malicious use of generated
media, never stops raising concerns of visual misinformation. Existing research
works on deepfake detection demonstrate impressive accuracy, while it is accom-
panied by adversarial iterations on detection countermeasure techniques. In order
to lead this arms race to the end, we investigate a fundamental solution on deep-
fake detection, agnostic to the evolution of GANs in order to enable a responsible
disclosure or regulation of such double-edged techniques. We propose to embed
artificial fingerprints into GAN training data, and show a surprising discovery
on the transferability of such fingerprints from training data to GAN models,
which in turn enables reliable detection and attribution of deepfakes. Our empir-
ical study shows that our fingerprinting technique (1) holds for different state-of-
the-art GAN configurations, (2) turns more effective along with the development
of GAN techniques, (3) has a negligible side effect on the generation quality, and
(4) stays robust against image-level and model-level perturbations. When we al-
locate each GAN publisher a unique artificial fingerprint, the margins between
real data and deepfakes, and the margins among different deepfake sources are
fundamentally guaranteed. As a result, we are able to evidence accurate deep-
fake detection/attribution using our fingerprint decoder, which makes this solution
stand out from the current arms race.

1 INTRODUCTION

In the past years, photorealistic image generation has been evolving rapidly, benefiting from the
invention of generative adversarial networks (GANs) (Goodfellow et al., 2014) and its successive
breakthroughs (Radford et al., 2016; Gulrajani et al., 2017; Miyato et al., 2018; Brock et al., 2018;
Karras et al., 2018; 2019; 2020). Given the level of realism and diversity that GANs can achieve to-
day, detecting generated media, well known as deepfakes, attributing their sources, and tracing their
legal responsibilities become infeasible to human beings. Along with the advent of deep learning
open-source development infrastructures, e.g., PyTorch (Paszke et al., 2016) and Tensorflow (Abadi
et al., 2016), and with the prevalence of deep learning computing platforms on the clouds, e.g.,
Amazon AWS ML, Microsoft Azure ML, deepfake techniques turn increasingly democratized and
the misuse of deepfakes have been permeating to each corner of social media, ranging from misin-
formation of political campaigns (Jee, 2020) to fake journalism (Vincent, 2020; Robitzski, 2020).

This motivates tremendous research efforts on deepfake detection (Zhang et al., 2020) and source
attribution (Marra et al., 2019; Yu et al., 2019b; Wang et al., 2020). By automatically identifying
and flagging generated visual contents and tracking their sources, these techniques aim to counter
the widespread of malicious applications of deepfakes. Most of them rely on low-level visual pat-
terns in GAN-generated images (Marra et al., 2019; Yu et al., 2019b; Wang et al., 2020) or fre-
quency mismatch (Durall et al., 2019; Zhang et al., 2019b; Frank et al., 2020). However, these
techniques are unlikely to stop deepfake misuse for good. On the contrary, they equally boost the
adversarial iterations on anti-detection techniques higher quality generations and are vulnerable to
adversarial evasion attacks (Carlini & Farid, 2020). For example, Durall et al. (2020) propose to
conceal high-frequency cues of generated images, resulting in significant performance deterioration
of state-of-the-art deepfake detectors. Ascribed to the steady improvement of GANs, this category
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Figure 1: Our solution pipeline consists of four stages as captioned in the legend and described in
Section 3. We first train an image steganography encoder and decoder and then use the encoder to
embed artificial fingerprints into the GAN training data. We then train a GAN model in the default
way. Finally, we decode the fingerprints from the deepfakes; we justify that fingerprints can be
transferred from real data to the deepfakes.

of discriminative detectors can barely sustain. Therefore, there is a clear need to seek a fundamental
solution that leads to the end of this arms race.

Motivated by this spirit, we tackle deepfake detection and attribution through a different lens, and
propose a sustainable solution for detection. In specific, we reason to embed artificial fingerprints
into the data before any GAN technique is instantiated on it. We present the first study to justify a
surprising discovery on the transferability of such fingerprints from training data to black-box GAN
models, agnostic to GAN configurations. That is, we show the existence of the same fingerprint
information across all the GAN-generated images as it was embedded into the GAN training data.
We approach this by applying steganography (Baluja, 2017; Tancik et al., 2020) to GAN training
data, transferring the stega (artificial fingerprints) to black-box GAN models through training, and
finally validating the fingerprints in the generated images using the steganography decoder. Figure 1
depicts our pipeline; we achieve deepfake detection by classifying images with matched fingerprints
in our database as fake and images with random detected fingerprints as real (because real images
in fact do not contain artificial fingerprints). We also achieve deepfake attribution when we allocate
different fingerprints for different GAN training.

We summarize our contributions as follow:

(1) We propose a sustainable solution for deepfake detection and attribution, which is independent
of the current arms race between GANs development and deepfake detection.

(2) This is the first study to justify the transferability of artificial fingerprints from GAN training
data to GAN models, which in turn justifies its feasibility for deepfake detection and attribution.

(3) Our empirical study validates several beneficial properties of such fingerprints. Generality: It
holds for several state-of-the-art GAN configurations. Synergy from GANs: It turns more effec-
tive along with the development of GAN techniques. Fidelity: It has a negligible side effect on
generation quality. Robustness: It stays robust against image-level and model-level perturbations.

(4) We demonstrate the advantageous performance of our artificial fingerprints solution on multiple
datasets and GAN subjects over a state-of-the-art detector (Yu et al., 2019b). This in turn enables
responsible disclosure of GANs by the publishers or even regulation of the GAN disclosure process
by allocating each publisher a unique fingerprint.

2 RELATED WORK

Generative adversarial networks (GANs). GANs (Goodfellow et al., 2014) was first proposed as
a workaround to model the intractable real data distribution. The iterative improvements push the
generation realism to brand-new levels (Radford et al., 2016; Gulrajani et al., 2017; Miyato et al.,
2018; Brock et al., 2018; Karras et al., 2018; 2019; 2020). Successes have also been spread to many
other vision tasks, including but not limited to texture synthesis (Yu et al., 2019a), semantic image
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synthesis (Park et al., 2019), super resolution (Ledig et al., 2017), image attribute editing (Choi
et al., 2018), image to image translation (Isola et al., 2017; Zhu et al., 2017a;b), inpainting (Yu
et al., 2018), etc. In Section 4, we focus on unconditional GANs as the subject of our study and
work on the following three recent state-of-the-art GAN techniques: ProGAN (Karras et al., 2018),
StyleGAN (Karras et al., 2019), and StyleGAN2 (Karras et al., 2020).

Deepfake detection and attribution. Images generated by GANs bear unique patterns. Marra et al.
(2019) show that GANs leave unique noise residuals to generated samples, which facilitate deep-
fake detection. Yu et al. (2019b) move one step further, using a neural network classifier to attribute
different images to their sources. Wang et al. (2020) also train a classifier and improve the general-
ization across different GAN techniques. Zhang et al. (2019b); Durall et al. (2019; 2020) point out
that the high-frequency pattern mismatch can serve as an effective cue for deepfake detection, so
can the texture feature mismatch (Liu et al., 2020).

However, these cues are never long-lasting against the steady improvement of GANs because the
advancement of deepfake detection is double-edged and can be accompanied by detection counter-
measure techniques. For example, spectral regularization Durall et al. (2020) is proposed to narrow
down the frequency mismatch and results in a significant detection deterioration. So do adversar-
ial evasion attacks (Carlini & Farid, 2020). Therefore, it is not sustainable to establish deepfake
detection based on the known problems of GANs - these problems are also known to malicious in-
dividuals and can be sidestepped. That motivates us to propose a novel solution in Section 3 that is
independent of this arms race and agnostic to GAN evolution.

Image steganography. Image steganography represents a technique to hide information into car-
rier images, in the initial purpose of covert communication (Fridrich, 2009). Previous steganogra-
phy techniques (Cox et al., 2002; Cayre et al., 2005) rely on Fourier transform or least significant
bits modification (Pevnỳ et al., 2010; Holub & Fridrich, 2012; Holub et al., 2014). Recent works
substitute hand-crafted hiding procedures with neural network embedding (Baluja, 2017; Hayes &
Danezis, 2017; Vukotić et al., 2018; Zhang et al., 2019a; Tancik et al., 2020). In this work, we pro-
pose to root deepfake detection down to the source of GANs, and therefore leverage steganography
to embed artificial fingerprints into training data. This is the first study to train GANs with finger-
printed data, and to justify the transferability of fingerprints from data to GAN models. Thanks to
the stealthiness, the original GAN quality is preserved and validated in Section 4.3.

3 ARTIFICIAL FINGERPRINTS FOR DEEPFAKE DETECTION/ATTRIBUTION

The goal of image attribution is to learn a mapping D0(x) 7→ y that traces the source y ∈ Y =
{real,GAN1, . . . ,GANN} of an image x. If the domain Y is limited, predefined, and known to
us, this is a closed-world scenario and the attribution can be simply formulated as a multi-label
classification problem, each label corresponding to one source. In practice, however, Y can be
unlimited, barely predefined, and agnostic to us. This open-world scenario is intractable using
discriminative learning. In order to generalize our solution to being agnostic to the selection of
GANs, we formulate the attribution as a regression mapping D(x) 7→ w, where w ∈ {0, 1}n is the
source identity space and n is the dimension.

In order to further generalize our solution to being agnostic to the evolution of GANs and indepen-
dent of the detection countermeasure arms race, we propose a pipeline to root the attribution down
to the GAN training dataset x̃ ∈ X̃ and close the loop of the regression D. The pipeline consists of
four stages depicted in Figure 1 and described below.

Steganography training. We introduce the concept of artificial fingerprints representing the
source identity w. We use steganography techniques (Baluja, 2017; Tancik et al., 2020) to learn
an encoder E(x̃,w) 7→ x̃w that embeds an arbitrary fingerprint w into an arbitrary image x̃. In the
meanwhile, we couple E with a decoder D(x̃w) 7→ w to detect the fingerprint information from the
image. E and D are formulated as convolutional neural networks with the following training loss:

min
E,D

Ex̃∼X̃,w∼{0,1}nLBCE(x̃,w;E,D) + λLMSE(x̃,w;E) (1)

LBCE(x̃,w;E,D) =
1

n

n∑
k=1

(
wk log ŵk + (1−wk) log(1− ŵk)

)
(2)
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LMSE(x̃,w;E) = ||E(x̃,w)− x̃||22 (3)
ŵ = D

(
E(x̃,w)

)
(4)

where wk and ŵk are the kth bit of the input fingerprint and detected fingerprint separately; and
λ is a hyper-parameter to balance the two objective terms. The binary cross-entropy term LBCE
guides the decoder to decode whatever fingerprint embedded by the encoder. The mean squared
error term LMSE penalizes any deviation of the stego image E(x̃,w) from the original image x̃. The
architecture of E and D are depicted in the Figure 5 and 6 in Appendix.

Artificial fingerprint embedding. We allocate each GAN training dataset X̃ a unique fingerprint
w. We apply the well-trained E to each training image x̃ and collect a fingerprinted training dataset
X̃w = {E(x̃,w)|x̃ ∈ X̃}.
GAN training. Our solution is agnostic to GAN techniques and therefore tackles GAN training as
a black box. We simply replace X̃ with X̃w to train GAN in the original manner.

Attribution via fingerprint detection. We hypothesize the transferability of our artificial finger-
prints from training data to GAN models: A well-trained generator Gw(z) 7→ xw contains the
same fingerprint information as well, i.e., D(xw) ≡ w, each xw is also fingerprinted with the same
fingerprint w as embedded in x̃w. We empirically justify our hypothesis, the transferability, in Sec-
tion 4.2. Based on the transferability, we can formulate the attribution regression mapping using our
well-trained steganography decoder D.

4 EXPERIMENTS

We describe the experimental setup in Section 4.1. We justify the transferability of our artificial
fingerprints, its generality and synergy in Section 4.2. We justify its fidelity in Section 4.3. The
transferability in turn enables accurate deepfake detection and attribution, which is evaluated and
compared in Section 4.4 and 4.5 respectively. In Section 4.6, we validate its robustness and work-
ing ranges. In addition, we articulate our network designs and training details in Section A.1 in
Appendix, as well as validate the secrecy of fingerprints in Sec A.2 in Appendix.

4.1 SETUP

Datasets. We conduct experiments on CelebA human face dataset (Liu et al., 2015) with image size
128× 128× 3, and LSUN bedroom scene dataset (Yu et al., 2015) with image size 128× 128× 3.
We train/evaluate on 150k/50k CelebA, and 50k/50k LSUN.

GAN models. Our solution is agnostic to GAN configurations. Without losing representativeness,
we focus on three recent state-of-the-art GAN architectures: ProGAN (Karras et al., 2018), Style-
GAN (Karras et al., 2019), and StyleGAN2 (Karras et al., 2020). Each model is trained from scratch
with the official implementations.

4.2 TRANSFERABILITY OF FINGERPRINTS

The transferability indicates the artificial fingerprints that are embedded in the GAN training data
also appear consistently in the GAN-generated data. This is a non-trivial hypothesis in Section 3
and needs to be justified by the fingerprint detection accuracy.

Evaluation. Fingerprints are represented as binary vectors w ∈ {0, 1}n. We use bitwise accuracy
to evaluate fingerprint detection accuracy. We set n = 100 as suggested in (Tancik et al., 2020).

Baseline. For comparison, we implement a straightforward baseline method. Instead of embedding
fingerprints into GAN training data, we enforce fingerprint generation jointly with GAN training.
That is, we train on clean data, and enforce each generated image to not only look realistic approxi-
mating the real training data, but also contain a specific fingerprint. Mathematically,

min
G,D

max
Dis

Ez∼N (0,I),x̃∼X̃Ladv(z, x̃;G,Dis) + ηEz∼N (0,I),w∼{0,1}nLBCE(z,w;G,D) (5)

where G and Dis are the original generator and discriminator in the GAN framework, Ladv is the
original GAN objective, and LBCE is adapted from Eq. 2 where we replace ŵ = D(E(x̃,w)) with
ŵ = D(G(z)). η is set to 1.0 as a hyper-parameter to balance the two objective terms.
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Table 1: Fingerprint detection in bitwise accuracy (⇑ indicating a higher value is more desirable)
and generation quality in FID (⇓ indicating a lower value is more desirable). The “Data” rows
correspond to real testing images for sanity check. The “Original FID” column corresponds to the
generation quality of original (non-fingerprinted) GANs for references.

Dataset Model Bitwise accuracy ⇑ Original FID ⇓ Fingerprinted FID ⇓

CelebA

Data 1.00 - 1.15
ProGAN (baseline) 0.93 14.09 60.28
ProGAN 0.98 14.09 14.38
StyleGAN 0.99 8.98 9.72
StyleGAN2 0.99 6.41 6.23

LSUN

Data 1.00 - 1.02
ProGAN (baseline) 0.87 29.16 183.63
ProGAN 0.93 29.16 32.58
StyleGAN 0.98 24.95 25.71
StyleGAN2 0.99 13.92 14.71

Results. We report fingerprint detection accuracy in Table 1. We observe:

(1) The “Data” rows are for sanity checks: They reach the 100% saturated accuracy, indicating the
effectiveness of the steganography technique on real data.

(2) Our artificial fingerprints can be almost perfectly detected over varying datasets and GAN con-
figurations, with accuracy ≥ 0.98 on CelebA and LSUN, except for ProGAN on LSUN which is
a challenging case as ProGAN is known not good at generating LSUN (original FID only 29.16).
Our hypothesis on the transferability from training data to GAN models (generated data) is justi-
fied. As a result, artificial fingerprints are qualified for deepfake detection in Section 4.4 where only
generated images contain fingerprints, and qualified for deepfake attribution in Section 4.5 where
different GANs are trained with different fingerprints.

(3) The generality of fingerprint transferability over varying GAN configurations justifies our solu-
tion is agnostic to GAN techniques. Furthermore, along with the evolution of GAN techniques (from
ProGAN to StyleGAN and then to StyleGAN2), the fingerprint accuracy also improves, indicating
the synergy of our solution from GANs: If a GAN technique can approximate real data distribution
more accurately, it also transfers the artificial fingerprints more accurately. That makes our solution
independent of the detection countermeasure arms race.

(4) The baseline method fails with fingerprint detection accuracy moderately worse than ours and
FID far worse than ours and the original ones. This indicates GAN fingerprinting is a non-trivial
task, and direct fingerprint reconstruction is incompatible with the adversarial training. In contrast,
our solution of leveraging image steganography and fingerprint transferability sidesteps this issue
and leads to advantageous performance.

4.3 FIDELITY OF FINGERPRINTS

The fidelity of fingerprints is as critical as its transferability. It requires a negligible side effect of our
fingerprints on the original functionality of GANs. On one hand, it preserves the original generation
quality. On the other hand, it avoids the adversary’s suspect of the presence of fingerprints. In
principle, the steganography technique we used should enable this, and we validate it empirically.

Evaluation. We use Fréchet Inception Distance (FID) (Heusel et al., 2017) to evaluate generation
quality, the lower the more realistic. We measure FID between a set of generated images and a set
of real non-fingerprinted images, in order to evaluate the quality of the former set. When calculating
FID for different generations, the latter set is unchanged.

Results. We compared generation quality between original and fingerprinted GANs in Table 1. We
observe:

(1) The “Data” rows are for sanity checks: Embedding fingerprints on the real images does not sub-
stantially deteriorate image quality: FID ≤ 1.15 is in an excellent realism range. That validates the
secrecy of the steganographic technique and lays a valid foundation for high-quality GAN training.
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(a) Original real
training samples.

(b) Fingerprinted
real training sam-
ples.

(c) Difference be-
tween 7a and 7b
(10× magnified).
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non-fingerprinted
GAN.

(e) Samples from the
fingerprinted GAN.

Figure 2: Samples for Table 1 on CelebA. See more samples on LSUN in Figure 7 in Appendix.

(2) The performance of the fingerprinted GANs tightly sticks to the performance limit of the non-
fingerprinted baselines with the FID variance within a range of ±8.2% on CelebA and ±11.7%
on LSUN. In practice, the generated fingerprints are imperceptibly hidden in the generated images
and can only be perceived with 10× magnification. See Figure 2 and Figure 7 in Appendix for
demonstrations. Thus, the fidelity of our fingerprints is justified and it qualifies our solution for
deepfake detection and attribution in Section 4.4 and 4.5.

4.4 DEEPFAKE DETECTION

Unlike existing methods that detect intrinsic differences between the real and deepfake classes (Yu
et al., 2019b; Zhang et al., 2019b; Durall et al., 2020), we root the classification performance down
to the origin by embedding artificial fingerprints into GAN models and their generated images. In
particular, we enable GAN publishers with responsible disclosure to publicize fake images only from
fingerprinted GAN models. Then we convert the problem to verifying if one decoded fingerprint
is in our fingerprint regulation database or not. Considering our non-perfect fingerprint detection
accuracy, we allow a 1-7 bits margin depending on the selection of GANs. This is feasible based
on two assumptions: (1) The decoded fingerprint of a real image is random; and (2) the fingerprint
capacity is large enough such that the random fingerprint from a real image unlikely collides with
a regulated fingerprint in the database. The second condition is trivial to satisfy considering we
sample fingerprints w ∈ {0, 1}n and n = 100. 2100 is a large enough capacity. Then we validate
the first assumption by the deepfake detection experiments below.

Baseline. Without losing representativeness, we compare to a recent state-of-the-art CNN-based
deepfake detector (Yu et al., 2019b) as a baseline method. It is trained on 50k real images and 50k
generated images equally from four fingerprinted GANs. We consider two scenarios, a closed world
and an open world, depending on whether or not the set of GAN models used for classifier training
covers that used for testing. The open-world scenario challenges the generalization of detection.

Results. We report deepfake detection accuracy in Table 2. We observe:

(1) Agnostic to datasets and GAN techniques, deepfake detection based on our fingerprints performs
equally perfectly (∼ 100% accuracy) to that based on the CNN classifier in the closed world.

(2) More advantageously, our solution performs equally well in the open-world scenario while the
CNN classifier deteriorates to random guess (∼ 50% accuracy). This is because the CNN classifier
is troubled by the domain gap between training and testing GAN models. In contrast, our solu-
tion enjoys the advantage of being agnostic to GAN models. It depends only on the presence of
fingerprints rather than the discriminative information overfit to a closed world.

(3) As a conclusion, this suggests an administrative practice for media broadcasts. We urge the
media administrators to regulate responsible disclosure of media publications: Publicizing GAN
models or deepfake media requires fingerprinting in advance.

4.5 DEEPFAKE ATTRIBUTION

The goal of the attribution is to trace the GAN source that generated a deepfake media. It plays an
important role in tracing the responsible of a deepfake publisher. Our artificial fingerprint solution
is straightforward to extend for attribution.
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Table 2: Closed/open-world deepfake detection accuracy and attribution accuracy (⇑ indicating a
higher value is more desirable).

Deepfake detection accuracy ⇑ Deepfake attribution accuracy ⇑
Dataset Model Method Closed world Open world Closed world Open world

CelebA

ProGAN Yu et al. (2019b) 0.997 0.508 0.998 0.235
Ours 1.000 1.000 1.000 1.000

StyleGAN Yu et al. (2019b) 0.994 0.497 0.999 0.168
Ours 1.000 1.000 1.000 1.000

StyleGAN2 Yu et al. (2019b) 0.995 0.500 1.000 0.267
Ours 1.000 1.000 1.000 1.000

LSUN

ProGAN Yu et al. (2019b) 1.000 0.493 0.986 0.597
Ours 1.000 1.000 1.000 1.000

StyleGAN Yu et al. (2019b) 0.994 0.499 0.995 0.366
Ours 1.000 1.000 1.000 1.000

StyleGAN2 Yu et al. (2019b) 0.988 0.491 1.000 0.267
Ours 1.000 1.000 1.000 1.000

Closed-world scenario. In the closed-world scenario, the model space is finite and known in ad-
vance. Without losing generalization, we train four GAN models using four different fingerprints.
The task is to attribute a mixture of 50k images evenly generated by these models. We apply our
decoder to decode the fingerprint from an image, and assign that image to the GAN with the closest
GAN fingerprint.

Open-world scenario. We further consider the open-world scenario to validate if an attribution
approach can accurately reject images from unknown GANs. We introduce another four GANs
trained on unknown fingerprints and require to attribute another 12.5k images evenly generated
by these four GANs, meaning to label them as not belonging to any of the four known GANs.
Our fingerprint solution classifies an image as unknown if and only if the number of matching bits
between the detected fingerprint and the closest known fingerprint is less than 75%.

Baseline. Yu et al. (2019b) use a CNN classifier to solve deepfake attribution as a multi-class
classification problem, which is limited to the closed world. We followed their protocol in the
closed world scenario: training over 50k images generated evenly by each of the four GANs. We
also extend their method to the open world via training four one-vs-all-the-others binary classifiers.
During testing, all four classifiers are applied to an image. We assign the image to the class with the
highest confidence if not all the classifiers reject that image. Otherwise, we assign the image to the
unknown label.

Results. We report deepfake attribution accuracy in Table 2. We obtain the same discoveries and
conclusions as those of deepfake detection in Section 4.4.

4.6 ROBUSTNESS OF FINGERPRINTS

Deepfake media and GAN models may undergo post-processing or perturbations during broadcasts.
We validate the robustness of our fingerprint detection given a variety of image and model perturba-
tions, and investigate the corresponding working ranges.

Perturbations. We evaluate the robustness against four types of image perturbation: additive Gaus-
sian noise, blurring with Gaussian kernel, JPEG compression, center cropping. We also evaluate the
robustness against two types of model perturbations: model weight quantization and adding Gaus-
sian noise to model weights. For quantization, we compress each model weight given a decimal
precision. We vary the amount of perturbations, apply each to the generated images or to the model
directly, and detect the fingerprint using the pre-trained decoder.

Results. We evaluate fingerprint detection in bitwise accuracy over 50k images from a fingerprinted
ProGAN. We plot the bitwise accuracy w.r.t. the amount of perturbations in Figure 3 and 8 (Ap-
pendix). We observe:
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Figure 3: Zoom-in needed. Red plots show the fingerprint detection in bitwise accuracy w.r.t. the
amount of perturbations over ProGAN trained on CelebA. In the left four plots (robustness against
image perturbations), blue dots represent detection accuracy on the fingerprinted real training im-
ages, which serve as the upper bound references for the red dots. See Figure 8 in Appendix for
additional results over ProGAN trained on LSUN. In the right two plots (robustness against model
perturbations), blue dots represent FID of generated images from the perturbed models.

(a)
Original

0.99 bit acc

(b) Im noise
Std 0.1

0.77 bit acc

(c) Blurring
Kernel size 5
0.75 bit acc

(d) JPEG
Quality 35%
0.75 bit acc

(e) Cropping
Crop size 64
0.80 bit acc

(f) Quantize
Precision 100

0.64 bit acc

(g) GAN noise
Std 0.16

0.77 bit acc

Figure 4: Perturbed image samples from the fingerprinted ProGAN and the corresponding finger-
print detection accuracy. The detection still performs robustly (bitwise accuracy ≥ 0.75) even when
the image quality heavily deteriorates w.r.t. each perturbation.

(1) For all the image perturbations, fingerprint detection accuracy drops monotonously as we in-
crease the amount of perturbation, while for small perturbations accuracy drops rather slowly. We
consider accepting accuracy ≥ 75% and result in the working range w.r.t. each perturbation: Gaus-
sian noise standard deviation ∼ [0.0, 0.05], Gaussian blur kernel size ∼ [0, 5], JPEG compression
quality ∼ [50, 100], center cropping size ∼ [86, 128], quantization decimal precision ≤ 10−1, and
model noise standard deviation ∼ [0.0, 0.18], which are reasonably wide ranges in practice.

(2) For image perturbations (the left four subplots) out of the above working ranges, the reference
upper bounds drop even faster and the margins to the testing curves shrink quickly, indicating the
detection deterioration is irrelevant to GAN training but rather relevant to the heavy quality deterio-
ration of images.

(3) For model perturbations (the right two subplots) out of the above working ranges, image quality
deteriorates faster than fingerprint accuracy, such that before accuracy turns lower than 75%, FID
has increased by > 500%.

(4) As a result of (2) and (3), before fingerprint detection is close to random guess (∼ 50% accuracy),
image quality has been heavily deteriorated by strong perturbations (Figure 4), which demonstrates
our fingerprints are more robust than image functionality itself.

5 CONCLUSION

The adversarial iterations between deepfakes and detection form an arms race. In order to lead it
to the end, we investigate a fundamental and sustainable solution on the detection side, agnostic
to the evolution of GANs. We present the first study to embed artificial fingerprints into GAN
models. We root deepfake detection/attribution into GAN training data, and justify the transferability
of artificial fingerprints from training data to GAN models. Our empirical study justifies several
beneficial properties of fingerprints, including generality, synergy to GAN development, fidelity, and
robustness. Based on these, we demonstrate our advantageous detection/attribution performance on
multiple datasets and GAN subjects over a state-of-the-art detector (Yu et al., 2019b). This in turn
enables responsible disclosure by GAN publishers or even regulation on the GAN disclosure process
by allocating each publisher a unique fingerprint.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Steganography encoder. The encoder is trained to embed a fingerprint into an image while min-
imizing the pixel difference between the input and stego images. We follow the technical details
in (Tancik et al., 2020). The binary fingerprint vector is first passed through a fully-connected layer
and then reshaped as a tensor with one channel dimension and with the same spatial dimension of
the cover image. We then concatenate this fingerprint tensor and the image along the channel di-
mension as the input to a U-Net architecture (Ronneberger et al., 2015). The output of the encoder,
the stego image, has the same size as that of the input image. Note that passing the fingerprint
through a fully-connected layer allows for every bit of the binary sequence to be encoded over the
entire spatial dimensions of the input image and flexible to the image size. In our experiments, the
image size is set to 128× 128× 3 without losing representativeness. The fingerprint length is set to
100 as suggested in (Tancik et al., 2020). The length of 100 bits leads to a large enough space for
fingerprint allocation while not having a side effect on the fidelity performance. We visualize the
encoder architecture in Figure 5.

Steganography decoder. The decoder is trained to detect the hidden fingerprint from the stego im-
age. We follow the technical details in (Tancik et al., 2020). It consists of a series of convolutional
layers with kernel size 3x3 and strides ≥ 1, dense layers, and a sigmoid output activation to pro-
duce a final output with the same length as the binary fingerprint vector. We visualize the encoder
architecture in Figure 6.

Steganography training. The encoder and decoder are jointly trained end-to-end w.r.t. the objective
in Eq. 1 and with randomly sampled fingerprints. The encoder is trained to balance fingerprint
detection and image reconstruction. At the beginning of training, we set λ = 0 to focus on fingerprint
detection, otherwise, fingerprints cannot be accurately embedded into images. After the fingerprint
detection accuracy achieves 95% (that takes 3-5 epochs), we increase λ linearly up to 10 within 3k
iterations to shift our focus more on image reconstruction. We train the encoder and decoder for 30
epochs in total. Given the batch size of 64, it takes 3 hours using 1 NVIDIA Tesla V100 GPU with
16GB memory.
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Figure 5: Steganography encoder architecture.

Figure 6: Steganography decoder architecture.

A.2 SECRECY OF FINGERPRINTS

The presence of a fingerprint embedded in a GAN model should not be easily detected by the third
party, otherwise, it would be potentially manipulated and restart the deepfake arms race. This prop-
erty is more demanding than fidelity because high fidelity just avoids intuitive detection while high
secrecy requires technical counter-detection against steganalysis.

Attack. In order to design a quantitative evaluation on secrecy, we consider from the outsider side a
binary classification problem: the presence of fingerprint in an image. We follow the attack protocol
in (Zhu et al., 2018) to perform the Artificial Training Sets (ATS) attack (Lerch-Hostalot & Megı́as,
2016). We target to separate testing images fingerprinted 0 or 1 time but we have no supervision.
The intuition is to expand the testing set and establish an artificial setting with known labels that
enable supervised training, such that the original testing class space is a subspace of the artificial
training class space and is separable by the training task. The attack is as follows: We independently
trained another steganography encoder. We regard the original testing images as negative training
samples. Then, we apply the encoder twice to the testing set to obtain extra images fingerprinted 2
times (corresponding to originally non-fingerprinted images) or 3 times (corresponding to originally
fingerprinted images), which are regarded as positive training samples. Then we train an SVM clas-
sifier (Chang & Lin, 2011) using such positive and negative samples, in order to separate between
images fingerprinted 0-1 time (original set), and the ones fingerprinted 2-3 times (artificial training
set). During testing, we first apply the encoder once to the testing images so that the originally
non-fingerprinted images now are fingerprinted 1 time (belonging to 0-1 class), and the originally
fingerprinted images are now fingerprinted 2 times (belonging to 2-3 class). Then we can use our
SVM to separate them and propagate the predictions back to the original images. We evaluate the
attack on a set of 250 fingerprinted deepfake images and 250 non-fingerprinted deepfake images.

Results. The binary classification accuracy on the existence of fingerprint is 0.502 according to
the ATS attack, which is close to random guess (∼ 50% accuracy). We reason that the third-party
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(a) Original real
training samples.

(b) Fingerprinted
real training sam-
ples.

(c) Difference be-
tween 7a and 7b
(10× magnified).

(d) Samples from the
non-fingerprinted
GAN.

(e) Samples from the
fingerprinted GAN.

Figure 7: samples for Table 1 on LSUN, supplementary to Figure 2 in the main text.

Figure 8: Red plots show the fingerprint detection in bitwise accuracy w.r.t. the amount of per-
turbations over ProGAN trained on LSUN. Blue dots represent detection on the fingerprinted real
training images, which serve as the upper bound references for the red dots. This is supplementary
to Figure 3 in the main text.

steganography encoder trained from different initialization uses different patterns to hide the finger-
print, and therefore does not couple well with the victim encoder. In conclusion, as long as we keep
our encoder private, the existence of fingerprint in a GAN model is validated secret from the ATS
attack.
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