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Abstract

The problem of inferring the direct causal parents of a response variable among a large
set of explanatory variables is of high practical importance in many disciplines. However,
established approaches often scale at least exponentially with the number of explanatory
variables, are difficult to extend to nonlinear relationships and are difficult to extend to cyclic
data. Inspired by Debiased machine learning methods, we study a one-vs.-the-rest feature
selection approach to discover the direct causal parent of the response. We propose an
algorithm that works for purely observational data while also offering theoretical guarantees,
including the case of partially nonlinear relationships possibly under the presence of cycles.
As it requires only one estimation for each variable, our approach is applicable even to large
graphs. We demonstrate significant improvements compared to established approaches.

1 Introduction

Identifying causal relationships is a profound and hard problem pervading experimental sciences such as
biology (Sachs et al., 2005), medicine (Castro et al., 2020), earth system sciences (Runge et al., 2019), or
robotics (Ahmed et al., 2020). While randomized controlled interventional studies are considered the gold
standard, they are in many cases ruled out by financial or ethical concerns (Pearl, 2009; Spirtes et al., 2000).
In order to improve the understanding of a system and help design relevant interventions, the subset of
causes that have a direct effect (direct causes/direct causal parents) often needs to be identified based on
observations only. Let us consider the setup exemplified in Figure 1, corresponding to a linear structural
equation (SEM) for the response Y ,

Y = ⟨θ,X⟩+ U. (1)

where U is an independent exogenous variable with zero mean, θ,X ∈ Rd, Y ∈ R and ⟨·, ·⟩ denotes the
inner product. We investigate how to find the direct causes of Y among a high-dimensional vector of
covariates X, where the covariates have arbitrary non-linear, possibly cyclic relationships among them. In
other words, the causal structure of covariates (X) is an arbitrary member of uniquely solvable structural
causal models (Simple SCMs), possibly with hidden confounders (As long as there is no hidden confounder
for the response variable). Uniquely solvability of SCMs amounts to not having self-cycles in the causal
structure, but any other arbitrary non-linear cyclic structure is allowed (Bongers et al., 2021). Practically
speaking, almost all causal discovery applications lie under the umbrella of simple SCMs (Bollen, 1989;
Sanchez-Romero et al., 2019). Besides, the assumption of not having self-cycles is usually assumed not-
limiting in the literature (Lacerda et al., 2012; Rothenhäusler et al., 2015; Bongers et al., 2016). From our
formulation, a given entry of θ should be non-zero if and only if the variable corresponding to that particular
coefficient is a direct causal parent (Peters et al., 2017), e.g., X1 and X2 in Figure 1. We restrict ourselves
to the setting of linear direct causal effects of Y (LDC, as specified in Equation 1) and no feature descending
from Y (NFD). LDC is justified as an approximation when the effects of each causal feature are weak such
that the possibly non-linear effects can be linearized; NFD is justified in some applications where we can
exclude any influence of Y on a covariate. This is, for example, the case when X are genetic factors, and Y
is a particular trait/phenotype. Our method, in particular, comes handy in this case due to the relatively
complex non-linear cyclic structure of these genetic factors in high-dimensional regimes (Yao et al., 2015;
Meinshausen et al., 2016; Warrell & Gerstein, 2020).
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While applicable to full graph discovery rather than the simplified problem of finding causal parents, state-of-
the-art methods for causal discovery often rely on strong assumptions or the availability of interventional data
or have prohibitive computational costs explained in section 1.1 in more detail. In addition to and despite
their strong assumptions, causal discovery methods may perform worse than simple regression baselines
(Heinze-Deml et al., 2018; Janzing, 2019; Zheng et al., 2018).

While plain regression techniques have appealing computational costs, they come without guarantees. When
using unregularized least-square regression to estimate θ, there can be infinitely many possible choices for θ
recovered with equivalent prediction accuracy for regressing Y , especially in the case of over-parametrized
models. However, none of these choices provide any information about the features which, when intervened
upon, directly cause the output variable Y . On the other hand, when using a regularized method such as
Lasso, a critical issue is the bias induced by regularization (Javanmard & Montanari, 2018).

Figure 1: Graphical representation of
Causal Feature Selection in our setting, for
the case of two direct causal parents of Y ,
X1 and X2, out of variables {X1, · · · , X11},
such that Y = θ1X1 +θ2X2 +U , U being an
independent zero-mean noise. We propose
an approach to find X1 and X2 under as-
sumptions discussed in the text. An exam-
ple of this setup in the real-world is finding
genes which directly cause a phenotype.

When knowing the distinction between covariates and direct
causes, Double ML approaches (Chernozhukov et al., 2018a)
have shown promising bias compensation results in the context
of high dimensional observed confounding of a single variable.
In the present paper, we generalize them to the problem of
finding direct causes. Our key contributions are:

• We show that under the assumption that no feature
of X is a child of Y , the Double ML (Chernozhukov
et al., 2018) principle can be applied in an iterative
and parallel way to find the subset of direct causes
with observational data.

• Our approach has a computational complexity require-
ment polynomial (fast) time in dimension d.

• Our method provides asymptotic guarantees that the
set can be recovered from observational data. Impor-
tantly, this result neither requires linear interactions
among the covariates, faithfulness, nor acyclic struc-
ture.

• Extensive experimental results demonstrate the state-
of-the-art performance of our method. Our ap-
proach significantly outperforms all other methods
(even though underlying data generation conditions fa-
vor them), especially in the case of non-linear interac-
tions between covariates, despite relying only on linear
projection.

1.1 Related work

The question of finding direct causal parents is also addressed in the literature as mediation analysis (Baron
& Kenny, 1986; Hayes, 2017; Shrout & Bolger, 2002). Several principled approaches have been proposed
(relying, for instance, on Instrumental Variables (IVs)) (Angrist & Imbens, 1995; Angrist et al., 1996; Bowden
& Turkington, 1990) to test for a single direct effect in the context of specific causal graphs. Extensions
of the IV-based approach to generalized IVs-based approaches (Brito & Pearl, 2012; Van der Zander &
Liskiewicz, 2016) are the closest known result to discovering direct causal parents. However, no algorithm is
provided in Brito & Pearl (2012) to identify the instrumental set. Subsequently, an algorithm is provided in
Van der Zander & Liskiewicz (2016) for discovering the instrumental set in the simple setting where all the
interactions are linear and the graph is acyclic. In contrast, our method allows non-linear cyclic interaction
amongst the variables.

Several other works have also tried to address the problem of discovering causal features. The authors review
work on causal feature selection in Guyon & Aliferis (2007). More recent papers on causal feature selection
have appeared since (Cawley, 2008; Paul, 2017; Yu et al., 2018), but none of those claims to recover all the
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direct causal parents asymptotically or non-asymptotically as we do in our case. There has been another line
of works on inferring causal relationships from observational data, most of which require strong assumptions,
such as faithfulness (Mastakouri et al., 2019; Pearl, 2009; Spirtes et al., 2000). Classical approaches along
these lines include the PC-algorithm (Spirtes et al., 2000), which can only reconstruct the network up to
a Markov equivalence class. Another approach is to restrict the class of interactions among the covariates
and the functional form of the signal-noise mixing (typically considered additive) or the distribution (e.g.,
non-Gaussianity) to achieve identifiability (see (Hoyer et al., 2009; Peters et al., 2014)); this includes linear
approaches like LiNGAM (Shimizu et al., 2006) and nonlinear generalizations with additive noise (Peters
et al., 2011). For a recent review of the empirical performance of structure learning algorithms and a detailed
description of causal discovery methods, we refer to (Heinze-Deml et al., 2018). Recently, there have been
several attempts at solving the problem of causal inference by exploiting the invariance of a prediction
under a causal model given different experimental settings (Ghassami et al., 2017; Peters et al., 2016). The
computational cost to run both algorithms is exponential in the number of variables when aiming to discover
the full causal graph.

Our method mainly takes inspiration from Debiased/Double ML method (Chernozhukov et al., 2018a) which
utilizes the concept of orthogonalization to overcome the bias introduced due to regularization. We will
discuss this in detail in the next section. Considering a specific example, the Lasso suffers from the fact that
the estimated coefficients are shrunk towards zero, which is undesirable (Tibshirani & Wasserman, 2017).
To overcome this limitation, a debiasing approach was proposed for the Lasso in several papers (Javanmard
& Montanari, 2014; 2018; Zhang & Zhang, 2014). However, unlike our approach, Debiased Lasso methods
do not recover all the non-zero coefficients of the parameter vector θ under the generic assumptions of the
present work.

2 Methodology

Before describing the proposed method, we quickly discuss Double ML and Neyman orthogonality in the
next section, which will be helpful in building the theoretical framework for our method.

2.1 Double Machine Learning (Double ML)

Given a fixed set of policy variables D and control variables X acting as common causes of D and Y , we
consider the partial regression model of Equation (2),

Y = Dθ0 + g0(X) + U, E [U |X,D] = 0
D = m0(X) + V, E [V |X] = 0,

(2)

where Y is the outcome variable, U, V are disturbances and g0,m0 : Rd → R are (possibly non-linear)
measurable functions. An unbiased estimator of the causal effect parameter θ0 can be obtained via the
orthogonalization approach as in Chernozhukov et al. (2018a), which is obtained via the use of the “Neyman
Orthogonality Condition" described below.

Neyman Orthogonality Condition: The traditional estimator of θ0 in Equation (2) can be simply
obtained by finding the zero of the empirical average of a score function ϕ such that ϕ(W ; θ, g) = D⊤(Y −
Dθ−g(X)). However, the estimation of θ0 is sensitive to the bias in the estimation of the function g. Neyman
(Neyman, 1979) proposed an orthogonalization approach to get an estimate for θ0 that is more robust to
the bias in the estimation of nuisance parameter (m0, g0). Assume for a moment that the true nuisance
parameter is η0 (which represents m0 and g0 in Equation (2)) then the orthogonalized “score” function ψ
should satisfy the property that the Gateaux derivative operator with respect to η vanishes when evaluated
at the true parameter values:

∂ηEψ(W ; θ0, η0)[η − η0] = 0 . (3)
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The corresponding Orthogonalized or Double/Debiased ML estimator θ̌0 solves

1
n

n∑
i=1

ψ(W ; θ̌0, η̂0) = 0,

where η̂0 is the estimator of η0 and ψ satisfies condition in Equation (3). For the partially linear model
discussed in Equation (2), the orthogonalized score function ψ is,

ψ(W ; θ, η) = (Y −Dθ − g(X))(D −m(X)) (4)

with η = (m, g).

From Double ML to Causal Discovery: The distinction between policy variables and confounding
variables is not always known in advance, which motivates us to consider the more general setting of causal
discovery. To this end, we consider a set of variables X = {X1, X2, · · ·Xd} which includes direct causal
parents of the outcome variable Y as well as other variables. We also reiterate our assumption that the
relationship between the outcome variable and direct causal parents of the outcome variable is linear. The
relationship among other variables can be cyclic and nonlinear. We now provide a general approach to scan-
ning putative direct causes scaling “polynomially” in their number (see Computational Complexity paragraph
in next section), based on the application of a statistical test and Double ML estimators. We describe first
the algorithm and then provide theoretical support for its performance.

2.2 Informal Search Algorithm Description

We provide pseudo-code for our proposed method (CORTH Features) in Algorithm 1. Intuitively, the idea is
to do a one-vs-rest split for each variable in turn and try to estimate the link between that particular variable
and the outcome variable using Double ML. To do so, we decompose Equation (1) to single out a variable
D = Xk as policy variable and take the remaining variables Z = X−k = X\Xk as multidimensional control
variables, and run Double ML estimation assuming the partial regression model presented in Section 2.1,
which now takes the form

Y = Dθk + gk(Z) + U, E [U |Z,D] = 0
D = mk(Z) + V, E [V |Z] = 0.

(5)

The step-wise description of our estimation algorithm goes as follows:

(a) Select one of the variables Xi to estimate its (hypothetical) linear causal effect θ on Y .
(b) Set all of the other variables X−i as the set of possible confounders.
(c) Use the Double ML approach to estimate the parameter θ i.e. the causal effect of Xi on Y .
(d) If the variable Xi is not a causal parent, the distribution of the conditional covariance χi (Proposi-

tion 3) is a Gaussian centered around zero. We use a simple normality test for χi to select or discard
Xi as one of the direct causal parents of Y .

We iteratively repeat the procedure on each of the variables until completion. Pseudo-code for the entire
procedure is given below in Algorithm 1.

Note that Equation (5) is not necessarily a correct structural equation model to describe the true underlying
causal structure. In general, for instance, when D actually causes Z, it is non-trivial to show that the Double
ML estimation of parameter θk will be unbiased (see Section 2.3).

Remarks on Algorithm 1: X
[k]
i is a vector which corresponds to the samples chosen in the kth subsam-

pling procedure, X [k]
\i = (X [k]

1 , . . . , X
[k]
i−1, X

[k]
i+1, . . . , X

[k]
d ) for any i ∈ [d]. In general the subscript i represents

the estimation for the ith variable and super-script k represents the kth subsampling procedure. K repre-
sents the set obtained after sample splitting. m[\k]

i are (possibly nonlinear) parametric functions fitted using
(1st, . . . , k − 1th, k + 1th, . . . ,Kth) subsamples.

4



Under review as submission to TMLR

Algorithm 1 Efficient Causal Orthogonal Structure Search (CORTH Features)
1: Input: response Y ∈ RN , covariates X ∈ RN×d, significance level α, number of partitions K.
2: Split N observations into K-fold random partitions, Ik for k = 1, 2 . . . ,K, each having n = N/K

observations.
3: for i = 1, . . . , d do
4: for Subsample k ∈ [K] do
5: Dk ← X

[k]
i and Zk ← X

[k]
\i

6: Fit m[\k]
i (Z\k) to D\k and fit g[\k]

i (Z\k) to Y [\k]

7: V̂
[k]

i ← Dk −m[\k]
i (Zk)

8: θ̌
[k]
i ←

( 1
n

∑
j∈Ik

V̂
[k]

ij Dkj

)−1 1
n

∑
j∈Ik

V̂
[k]

ij (Y [k]
ij − g

[\k]
ij (Zkj))

9: χ̂
[k]
i ← 1

n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + V̂
[k]

ij Dkj

)
10: (σ̂[k]

i )2 ← 1
n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + V̂
[k]

ij Dkj − χ̂[k]
i

)2

11: end for
12: θ̂i ← 1

K

∑
k∈K θ̌

[k]
i , χ̂i ← 1

K

∑
k∈K χ̂

[k]
i and σ̂2

i ← 1
K

∑
k∈K(σ̂[k]

i )2

13: end for
14: for i ∈ [d] do
15: Gaussian normality test for χ̂i ≈ N

(
0, σ̂2

i

N

)
with α significance level and select ith feature if null-

hypothese is rejected.
16: end for
17: Return Decision Vector

Computational Complexity: For each subset randomly selected from the data, we fit two lasso esti-
mators. Accelerated coordinate descent (Nesterov, 2012) can be applied to optimize the lasso objective.
To achieve ε error, O

(
d
√
κmax log 1

ε

)
number of iterations are required where κmax is the maximum of the

two condition number for both the problems and each iteration requires O(nd) computation. Hence, the
computational complexity of running our approach is only polynomial in d.

2.3 Orthogonal Scores

Now we describe the execution of our algorithm for a simple graph with 3 nodes. Let us consider the following
linear structural equation model as an example of our general formulation:

Y := θ1X1 + θ2X2 + ε3, X2 := a12X1 + ε2, and X1 := ε1. (6)

Example 1. Let us consider the system whose structural equation model is given in Equation (5). If ε1, ε2
and ε3 are independent uncorrelated noise terms with zero mean, then Algorithm 1 will recover the coefficients
θ1 and θ2.

A detailed proof is given in Appendix A.1. While the estimation of the parameter θ1 is in line with the
assumed partial regression model of Equation (6), the estimation of θ2 does not follow the same. However,
it can be seen from the proof that θ2 can also be estimated from the orthogonal score in Equation (4).

We now show that this result holds for a more general graph structure given in Figure 2, allowing for
non-linear cyclic interactions among features.
Proposition 2. Assume the partially linear Gaussian model of Figure 2, denote X−k = [Z⊤

1 , Z
⊤
2 ]⊤ the

control variables, γ = (γ1,γ2,γ12) the parameter vector of the (possibly non-linear) assignments between
putative parents of Y , and β = (β1, β2), the vector of causal coefficients for encoding linear effects of
X−k on outcome Y . Then, independently of the γ parameters and of the functional form of the associated
assignments between parents of Y , the score

ψ(W ; θ,β) = (Y −Xkθ −X⊤
−kβ)(Xk − rXX−k

X−k) , (7)
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with rXX−k
= E[XkX−k

⊤]E[X−kX−k
⊤]−1, follows the Neyman orthogonality condition for the estimation of

θ with nuisance parameters η = (β,γ) which reads

E
[
(Y −Xkθ −X−k

⊤β)(Xk − rXX−k
X−k)

]
= 0 .

Y

Z1 Z2

Xk

θ

β1

β2

γ1

γ2

γ12

Figure 2: A generic example of identifica-
tion of a causal effect θ in the presence
of causal and anti-causal interactions be-
tween the causal predictor and other puta-
tive parents, and possibly arbitrary cyclic
and nonlinear assignments for all nodes ex-
cept Y (see Proposition 2). We have X−k =
Z1 ∪ Z2.

Please refer to Appendix A.2 for the proof. Comparing the
score in Equation (7) with the score in Equation (4), there
are two takeaways from Proposition 2: (i) the orthogonality
condition remains invariant irrespective of the causal direction
between Xk and Z, and (ii) the second term in Proposition 2 re-
places function m by the (unbiased) linear regression estimator
for modelling all the relations; given that the relation between
Z and Y is linear, even if relationships between Z and Xk

are non-linear (See Appendix B for concrete examples). Com-
bining with the Double ML theoretical results (Chernozhukov
et al., 2018a), this suggests that regularized predictors based on
Lasso or ridge regression are tools of choice for fitting functions
(m, g).

2.4 Statistical Test

Now that we have illustrated and justified the fitting procedure
of our algorithm, we provide a theoretically grounded statistical
decision criterion for the direct causes after the model has been
fitted. Consider (Y,X), Y ∈ R, X ∈ Rd, satisfying

Y = ⟨θ,X⟩+ U, (8)
E(Y 2) <∞, E(U2) <∞, E(U) = 0, E(U | Xj) = 0,

∀j, and E(∥X∥2
2) <∞, (9)

E
[
(Xj − E(Xj | X−j))2

]
̸= 0, for all j ∈ {1, . . . , p}. (10)

where U is an exogenous variable and X−j represents all the variables except Xj . The assumptions
made with the above formulation are standard in the orthogonal machine learning literature (Rot-
nitzky et al., 2019; Smucler et al., 2019; Chernozhukov et al., 2018). Let us define the quantity χj =
E [(Y − E(Y | X−j)) (Xj − E(Xj | X−j))] for j ∈ {1, · · · , d}, which is the expected conditional covariance
of Xj given X−j .
Proposition 3. Let PAY = {j ∈ {1, . . . , p} : θj ̸= 0} . For each j ∈ {1, . . . , p} let X−j be the vector equals
to X but excluding coordinate j and define θ−j similarly. Define for j ∈ {1, . . . , p}

χj = E [(Y − E(Y | X−j)) (Xj − E(Xj | X−j))] ,

which also has the double robustness property (Chernozhukov et al., 2018; Rotnitzky et al., 2019) then under
the conditions given in Equations (8) to (10),

a) If j ∈ PAY then χj = θjE
[
(Xj − E(Xj | X−j))2

]
.

b) If j ̸∈ PAY then χj = 0.

c) We also have (with notations of Prop. 2) χj = E
[
(Y − E(Y | X−j))

(
Xj − rXX−k

X−j)
)]
.

Proof. Take j ∈ PAY . Then, from Equation (8)

E(Y | X−j) = E(⟨θ,X⟩ | X−j) + E(U | X−j) = E(⟨θ−j , X−j⟩ | X−j) + θjE(Xj | X−j)
= ⟨θ−j , X−j⟩+ θjE(Xj | X−j) = ⟨θ,X⟩ − θjXj + θjE(Xj | X−j)
= Y − U − θj(Xj − E(Xj | X−j)).
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Thus

χj = E [(U + θj(Xj − E(Xj | X−j))) (Xj − E(Xj | X−j)]
= E [U(Xj − E(Xj | X−j)] + θjE

[
(Xj − E(Xj | X−j)2]

= θjE
[
(Xj − E(Xj | X−j)2]

.

Now take j ̸∈ PAY . Then

E(Y | X−j) = E(⟨θ,X⟩ | X−j) + E(U | X−j) = ⟨θ,X⟩.

Thus, χj = E [U(Xj − E(Xj | X−j))] = 0.
For c), we rewrite

χj = E
[
(Y − E(Y | X−j))

(
Xj − rXX−k

X−j

)]
+ E

[
(Y − E(Y | X−j))

(
rXX−k

X−j − E(Xj | X−j)
)]
.

Let G the sub-sigma algebra generated byX−j , under our assumptions, E(Y |X−j) is the orthogonal projection
of Y on the subspace of G-measurable square integrable RV’s L2(Ω,G), so Y − E(Y |X−j) is orthogonal to
any elements of L2(Ω,G). Noticing that

(
rXX−k

X−j − E(Xj | X−j)
)

is an element of L2(Ω,G), the second
right-hand side term of the above equation vanishes and we get the result.

There are two main implications of the results provided in Proposition 3. (i) χj is non-zero only for direct
causal parents of the outcome variable, and χj has double robustness property as shown in (Rotnitzky et al.,
2019; Smucler et al., 2019; Chernozhukov et al., 2018). Having double robustness property means that while
computing the empirical version of the χj which we denote as χ̂j , one can use regularized methods like
ridge regression or Lasso to estimate the conditional expectation (function m). Afterward, one can perform
statistical tests on top of it to decide between zero or non-zero tests. (ii) In line with the above orthogonal
score results, we see that this quantity can be estimated using linear (unbiased) regression to fit the function
m, although interactions between features may be non-linear.

Next, we discuss the variance of our estimator so that later a statistical test can be used to differentiate
between zero and non-zero test. For the sake of convenience, the case of 2 partitions (K = 2)1 is explained
here.

Variance of Empirical Estimates of χj: Suppose we have n i.i.d. observations indicated by Dn =
{(Xi, Yi), i = 1 . . . , n}. Randomly split the data in two halves, say Dn1 and Dn2. Take j ∈ {1, . . . , p}. For
k = 1 let k = 2, for k = 2 let k = 1. For k = 1, 2, compute estimates of Êk (Y | X−j) and Êk (Xj | X−j)
using the data in sample k. Computing Êk (Y | X−j) and Êk (Xj | X−j) can be considered as regularized
regression problems. We use Lasso as the estimator for conditional expectation (Equation (12)) in the
experiments. Now, we compute the empirical estimates of χj . Let,

χ̂k
j = Pnk

[
−Y Êk (Xj | X−j)−XjÊk (Y | X−j)

+Êk (Y | X−j) Êk (Xj | X−j) + Y Xj

]
.

and (
σ̂k

j

)2 = Pnk

[(
−Y Êk (Xj | X−j)−XjÊk (Y | X−j)

+Êk (Y | X−j) Êk (Xj | X−j) + Y Xj − χ̂k
j

)2
]
. (11)

Pnk here denotes the empirical average and σ̂k
j denotes the empirical variance of χj . Finally, let

χ̂j = χ̂1 + χ̂2

2 , σ̂2
j =

(
σ̂1

j

)2 +
(
σ̂2

j

)2

2 .

1Extension to arbitrary number of data partitions (K ≥ 2) is straightforward. Check Algorithm 1.
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Theorem 1 of (Smucler et al., 2019) provides conditions under which (see also (Chernozhukov et al., 2018)),
when the estimators

Êk (Y | X−j) and Êk (Xj | X−j) (12)

are Lasso-type regularized linear regressions, it holds that asymptotically χ̂j ≈ N
(
χj ,

σ̂2
j

n

)
.

In this case, the test that rejects χj = 0 when |χ̂j | ≥ 1.96 σ̂j√
n

will have approximately 95% confidence level.
The probability of rejecting the null when it is false is

P

(
|χ̂j | ≥ 1.96 σ̂j√

n

)
≥ P

(
|χ̂j − χj | ≤ |χj | − 1.96 σ̂j√

n

)
→ 1.

In order to account for multiple testing, we use Bonferroni correction.

Comments about Estimator: In this paper, we use Lasso for the nuisance parameter estimation as
the variance of the conditional covariance is known (Smucler et al., 2019). One can also use other es-
timators instead, assuming one obtains a reasonable enough estimate of the nuisance parameter (up to
N−1/4-neighbourhood (Chernozhukov et al., 2018a)) with the correct variance term, which is beyond the
scope of this paper.

Conditional Independence Tests: Asymptotically, the conditional independence testing between Y and
Xj given X−j is also a possible solution for our proposed approach. Indeed, d-separation rules imply that true
causes are conditionally dependent according to this test, while non-causes are conditionally independent
(because X−j is not a collider under our NFD assumption). However, conditional independence testing
is challenging in high-dimensional/non-linear settings. Kernel-based conditional independence testing is
computationally expensive (Zhang et al., 2012). We used χj in the paper because it was already known from
previous works (Smucler et al., 2019; Chernozhukov et al., 2018b) that it has double robustness property,
which means one can use regularized methods like Lasso to estimate empirical conditional expectation from
a finite number of samples and the empirical estimator is still unbiased with controlled variance. Our work is
related to the recent work of (Shah & Peters, 2020), which proposes a conditional independence test whose
proofs rely heavily on (Chernozhukov et al., 2018a). In this paper, we use for the first time such double
ML-based tests for the search problem.

3 Experiments

In this section, we perform extensive empirical evaluation for our method.

3.1 Experimental Setup

For every combination of number of nodes (#nodes), connectivity (ps), noise level (σ2), number of observa-
tions (z), and non-linear probability (pn) (see Table C.1), 100 examples (DAGs) are generated and stored
as csv files (altogether 72.000 DAGs are simulated, comprising a dataset of overall >10GB). For each DAG,
z samples are generated. We provide more details about the parameters (#nodes, ps, pn and z) and data
generation process in Appendix C.1. For future benchmarking, the generated files with the code will be
made available later.

The baselines we compare our method against are: LiNGAM (Shimizu et al., 2006), order - independent
PC (Colombo & Maathuis, 2014), rankPC, MMHC (Tsamardinos et al., 2006), GES (Chickering, 2003),
rankGES, ARGES (adaptively restricted GES (Nandy et al., 2016)), rankARGES, FCI+ (Claassen et al.,
2013), PCI (Shah & Peters, 2020), and Lasso (Tibshirani, 1996), which are suitable for observational data.
The CompareCausalNetworks R Package2 is used to run most of the baselines methods. We use 10-fold cross-
validation to choose the parameters of all approaches. Recall, Fall-out, Critical Success Index, Accuracy, F1

2https://cran.r-project.org/web/packages/CompareCausalNetworks/index.html
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Figure 3: Overall performance for a single random DAG with 100 simulations for each setting, having 20
nodes and 500 observations.

Score, and Matthews correlation coefficient (Matthews, 1975) are considered as metrics for the evaluation.
These metrics are described in Appendix C.2. As direction of the possible causes in the defined setting is
determined, the non-directional edges inferred by some baselines, e.g., PC are evaluated as direct causes of
the target variable.

Number of Nodes

Method 10 20 50
ACC F1 ACC F1 ACC F1

GES 0.85 0.78 0.74 0.53 0.70 0.32
rankGES 0.85 0.75 0.74 0.51 0.70 0.32
ARGES 0.80 0.58 0.75 0.52 0.71 0.22
rankARGES 0.79 0.57 0.75 0.51 0.71 0.22
FCI+ 0.87 0.81 0.83 0.70 0.77 0.49
LINGAM 0.95 0.89 0.89 0.78 0.75 0.39
PC 0.86 0.79 0.82 0.66 0.76 0.46
rankPC 0.85 0.77 0.81 0.64 0.75 0.43
MMHC 0.84 0.74 0.77 0.51 0.73 0.28
PCI 0.92 0.87 0.88 0.78 0.77 0.49
Lasso 0.91 0.90 0.90 0.87 0.77 0.63
CORTH Features 0.95 0.93 0.95 0.91 0.80 0.66

Table 1: Performance across all the settings for differ-
ent number of nodes (10,20 and 50). Each entry in the
table is averaged over 18000 simulations.

Regression Technique and Hyper-
parameters: We use Lasso as the estimator
of conditional expectation for our method because
the variance bound for χj with Lasso type estimator
of conditional expectation (Equation equation 12)
is provided in Equation equation 11. Further,
using more splits than 2 splits in the experiment
relatively increases the performance of parameter
estimation. Plots for parameter estimation are
provided in Appendix E.

3.2 Results

Results aggregated by the number of nodes (cor-
responding to 18000 simulations per entry in the
table), connectivity level (corresponding to 24000
simulations per entry in the table), the number
of observations over all simulations (corresponding to 24000 simulations per entry in the table) are
illustrated in Tables 1 to 3 respectively3. Our method performs better than the competing base-
lines in terms of accuracy and F1 score, especially for more connected structures, despite data be-
ing generated according to DAG causal structures, which, dissimilar to our method, is an essen-

3Please refer to Appendix C.3 for thorough tables for all parameters.
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Figure 4: Distribution of the estimated θ values for the true and false causal parents in 100 simulations of
the graph with 20 nodes, 20000 observations and 0.3 as connectivity. The vertical lines indicate the ground
truth values for the linear coefficients corresponding to causal parents.

tial condition for them. To provide a visual comparison, we plot the accuracy of all the methods
w.r.t. the connectivity parameter (ps) in Figure 3 for different values of pn and σ2 on 1800 samples.

Connectivity

Method 0.1 0.3 0.5
ACC F1 ACC F1 ACC F1

GES 0.961 0.825 0.815 0.598 0.646 0.482
rankGES 0.954 0.790 0.809 0.584 0.642 0.475
ARGES 0.965 0.828 0.805 0.501 0.612 0.330
rankARGES 0.959 0.801 0.802 0.494 0.611 0.328
FCI+ 0.974 0.853 0.866 0.714 0.734 0.629
LINGAM 0.966 0.796 0.896 0.753 0.827 0.727
PC 0.975 0.849 0.861 0.689 0.718 0.588
rankPC 0.971 0.831 0.852 0.670 0.701 0.560
MMHC 0.978 0.867 0.830 0.561 0.639 0.397
PCI 0.986 0.920 0.906 0.759 0.783 0.661
Lasso 0.976 0.925 0.876 0.811 0.800 0.778
CORTH Features 0.988 0.934 0.926 0.858 0.847 0.814

Table 2: Performance across all the settings for differ-
ent sparsities. Each single entry in the table is aver-
aged over 24000 simulations. Our method is almost
state of the art in every case.

It can be observed that the accuracies of the com-
peting baselines significantly drop with increasing
noise level and nonlinearity, while our method is
more robust to them. More plots are given in Ap-
pendix F and Appendix G for several other com-
binations of varying parameters in the simulation.
We also extensively compare all the metrics (Re-
call, Fall-out, Critical Success Index, Accuracy, F1
Score, and Matthews correlation coefficient) for all
the methods in Appendix C.3. According to these
metrics, our approach performs better than base-
lines in most cases regardless of the set of parameters
used for generating data. Our method shows in par-
ticular stability in performance w.r.t. the number of
nodes (Table C.3), partially non-linear relationships
(Table C.4), connectivity (table C.2), number of ob-
servations (table C.6), and noise level (table C.5).
We also show the plot of parameter estimation for direct causal parents vs. non-causal parents in Figure 4.
In the plots and tables, we denote our approach as CORTH Features.

3.3 Scaling Causal Inference to Large Graphs Number of Observations

Method 100 500 1000
ACC F1 ACC F1 ACC F1

GES 0.797 0.588 0.811 0.650 0.815 0.666
rankGES 0.788 0.561 0.806 0.636 0.810 0.652
ARGES 0.780 0.489 0.799 0.576 0.803 0.595
rankARGES 0.776 0.473 0.795 0.566 0.800 0.584
FCI+ 0.837 0.671 0.865 0.755 0.871 0.771
LINGAM 0.840 0.650 0.908 0.743 0.941 0.883
PC 0.830 0.642 0.858 0.732 0.866 0.752
rankPC 0.821 0.617 0.849 0.711 0.855 0.733
MMHC 0.800 0.557 0.820 0.625 0.826 0.642
PCI 0.829 0.594 0.914 0.853 0.931 0.893
Lasso 0.870 0.812 0.889 0.848 0.893 0.854
CORTH Features 0.883 0.78 0.935 0.906 0.942 0.920

Table 3: Performance across all the settings for differ-
ent number of observations. Each single entry in the
table is averaged over 24000 simulations. Our method
is almost state of the art in every case.

Figure 5 shows the runtime of the method in seconds
as a function of the graph’s size. Notice that the run-
time of our algorithm in the log-log plot is roughly
linear, supporting our above statement about the
computational time being polynomial in d. Since
we used 5000 observations, any additional overhead
is coming from cross-validation.

3.4 Real-World Data

We also apply our algorithm to a recent COVID-
19 Dataset (Einstein, 2020) where the task is to
predict COVID-19 cases (confirmed using RT-PCR)
amongst suspected ones. For an existing and exten-
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sive analysis of the dataset with predictive methods, we refer to Schwab et al. (2020). We apply our
algorithm to discover the features which directly cause the diagnosed infection. We found that the following
were the most common causes across different runs of our approach: Patient age quantile, Arterial Lactic
Acid, Promyelocytes, and Base excess venous blood gas analysis. Lacking medical ground truth, we report
these not as corroboration of our approach but rather as a potential contribution to causal discovery in this
challenging problem. It is encouraging that some of these variables are consistent with other studies Schwab
et al. (2020). Details on data preprocessing and more results are available in Appendix D.

4 Discussion
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Figure 5: Runtime as a function of the number of vari-
ables for 10 simulations per number of nodes. In these
simulations connectivity, number of observations, non-
linaer prob., and noise level are set to 0.3, 5000, 0, and
1 respectively.

A recent empirical evaluation of different causal
discovery methods highlighted the desirability of
more efficient search algorithms (Heinze-Deml et al.,
2018). In the present work, we provide identifiabil-
ity results for the set of direct causal parents, includ-
ing the case of partially nonlinear cyclic models, as
well as a highly efficient algorithm that scales well
w.r.t. the number of variables and exhibits state-of-
the-art performance across extensive experiments.
Our approach builds on the Double ML method for
the partial regression setting of Chernozhukov et al.
(2018a); however, we show it can be applied to dif-
ferent underlying causal structures, which is the key
for the purpose of search, as this structure is not
always known in advance. Whilst not amounting to
full causal graph discovery, identification of causal
parents is of major interest in real-world applica-
tions, e.g., when assaying the causal influence of
genes on the phenotype. A natural direction worth exploring is to extend this approach for discovering
direct causal parents in the case when nonlinear relationships exist between the output variable and its
direct causal parents.
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A Causal Discovery via Orthogonalization

A.1 Example 1

Y

X1 X2

θ1 θ2

a12

Figure A.1: An example with linear structural equations.

Proof of Example 1 . Let us start from the easier case first (See Figure A.1) . Let us first try to estimate
the coefficient of interaction between X2 and Y but it is also very clear that the estimation of θ2 will be
unbiased as the given setting precisely match with the double machine learning setting. However, we will see
in this example that given the population, θ1 can be approximated as well. Let us write down the structural
equation model first:

Y := θ1X1 + θ2X2 + ε3

X2 := a12X1 + ε2

X1 := ε1.

(13)

From the set of equations we have:

X1 = a−1
12 X2 − a−1

12 ε2.

Let also denote E[ε2
1] = σ2

1 and E[ε2
2] = σ2

2 . Hence, E[X2
1 ] = σ2

1 , E[X1X2] = a12σ
2
1 and E[X2

2 ] = a12E[X1X2]+
E[ε2X2] = a2

12σ
2
1 + σ2

2 .. Let us first try to find the regression co-efficient of fitting X2 on Y .

Y = θ̂2X2 + η1.

Hence, θ̂2 = E[X2Y ]
E[X2

2 ] if η is independent of X2.

θ̂2 = E[X2Y ]
E[X2

2 ] = E[X2(θ1X1 + θ2X2 + ε3)]
E[X2

2 ] = θ2 + θ1a12
σ2

1
σ2

2 + a2
12σ

2
1
. (14)

Similarly, if we fit X2 on X1 then
X1 = â−1

12 X2 + η2,

then â−1
12 = E[X1X2]

E[X2
2 ] . However E[X1X2] can also be written as following:

E[X1X2] = a−1
12 E[X2

2 ]− a−1
12 E[ε2X2].

Hence,

â−1
12 = a−1

12

(
1− σ2

2
σ2

2 + a2
12σ

2
1

)
= a−1

12

(
a2

12σ
2
1

σ2
2 + a2

12σ
2
1

)
.

Residual V̂ = X1 − â−1
12 X2. Hence we can have

E(V̂ X1) = E[X2
1 ]− â−1

12 E[X1X2] = E[ε2
1]− â−1

12 a12E[ε2
1] = σ2

1σ
2
2

σ2
2 + a2

12σ
2
1
.
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We now calculate,

E
[
V̂ (Y − θ̂2X2)

]
= E

[
(X1 − â−1

12 X2)(Y − θ̂2X2)
]

= E
[
(X1 − â−1

12 X2)
(
(θ2 − θ̂2)X2 + θ1X1 + ε3

)]
= (θ2 − θ̂2)a12σ

2
1 + θ1σ

2
1 − â−1

12 (θ2 − θ̂2)(σ2
2 + a2

12σ
2
1)− â−1

12 θ1a12σ
2
1

= θ1σ
2
1σ

2
2

σ2
2 + a2

12σ
2
1
.

Last equation was written after a step of minor calculation. Since the estimator is

θ̂1 =
[
E(V̂ X1)

]−1
E

[
V̂ (Y − θ̂2X2)

]
= θ1.

A.2 Influence of the interactions between parents

In this section, we use a generic example shown in Figure 2 which we show again in Figure A.2 to illustrate
the role of interactions between the covariates on the proposed causal discovery algorithm.

Y

Z1 Z2

Xk

θ

β1

β2

γ1

γ2

γ12

Figure A.2: A generic example of identification of a causal effect θ in the presence of causal and anti-causal
interactions between the causal predictor and other putative parents, and possibly arbitrary cyclic and
nonlinear assignments for all nodes except Y (see Proposition 2). We have X−k = Z1 ∪ Z2.

The estimator discussed can simply be derived from the Neyman orthogonality condition. We now provide
the below the proof for Proposition 2. For the sake of completeness, we also rewrite the statement of the
proposition again.
Proposition 4 (Restatement of Proposition 2). Assume the partially linear Gaussian model of Fig. A.2,
denote X−k = [Z⊤

1 , Z
⊤
2 ]⊤ the control variables, γ = (γ1,γ2,γ12) the parameter vector of the (possibly

non-linear) assignments between putative parents of Y , and β = (β1, β2) the vector of causal coefficients
for encoding linear effects of X−k on outcome Y . Then, independently from the γ parameters and of the
functional form of the associated assignments between parents of Y , the score

ψ(W ; θ,β) = (Y −Xkθ −X⊤
−kβ)(Xk − rXX−k

X−k) , (15)

with rXX−k
= E[XkX−k

⊤]E[X−kX−k
⊤]−1, follows the Neyman orthogonality condition for the estimation of

θ with nuisance parameters η = (β,γ) which reads

E
[
(Y −Xkθ −X−k

⊤β)(Xk − E[XkX−k
⊤]E[X−kX−k

⊤]−1X−k)
]

= 0 . (16)

Proof of Proposition 2. Using the global Markov factorization for simple SCMs4 (Forré & Mooij, 2017;
Bongers et al., 2021),

P (W ; θ,η) = P (Y |X−k, XK ; θ,β)P (X−k, XK ; γ),
4The necessary condition for this statement to be true is uniquely solvability which is equivalent to not having self-cycles in

the causal structure.
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due to linearity and gaussianity of the assignment of Y , we obtain a negative log likelihood of the form (up
to additive constants)

ℓ(W ; θ,η) = 1
2σ2

Y

(Y −Xkθ −X−k
⊤β)(Y −Xkθ −X−k

⊤β) + f(Xk, X−k; γ).

where f stands for the negative log likelihood of the second factor. Following Chernozhukov et al. (2018a)
[eq. (2.7)], this leads to the Neyman orthogonal score

ψ(W ; θ,η) = ∂θℓ(W ; (θ,η))− µ∂ηℓ(W ; (θ,η)) = − 1
σ2

Y

(Y −Xkθ −X−k
⊤β)Xk

− µ

(
− 1
σ2

Y

(Y −Xkθ −X−k
⊤β)X−k + ∂γf(Xk, X−k; γ)

)
.

Following eq. (2.8) of the same paper, we derive the expression of µ as

µ = Jθ,ηJ
−1
η,η,

with

Jη,η = ∂η⊤E [∂ηℓ(W, θ,η)] =
[
σ−2

Y E
[
X⊤

−kX−k

]
0

0 ∂γ⊤E [∂γf(Xk, X−k; γ)]

]
,

and
Jθ,η = ∂η⊤E [∂θℓ(W, θ,η)] = σ−2

Y

[
E

[
X⊤

k X−k

]
0

]
,

resulting in
µ = E

[
X⊤

k X−k

]
E

[
X⊤

−kX−k

]−1
.

Reintroducing µ in the expression of ψ leads to the result.

B Examples

The result discussed in Proposition 2 is not directly intuitive. In simple words, there are two takeaways from
Proposition 2: (i) the orthogonality condition remains invariant irrespective of the causal direction between
Xk and Z, and (ii) the second term in Equation (16) suggests to use a linear estimator for modeling all the
relations, given that the relation between Z and Y is linear.
To generate more intuition, we provide a few examples. Let us go back again to the three variable interaction
assuming the following structural equation model:

Y := θ1X1 + θ2X2 + ε3

X2 := f(X1) + ε2

X1 := ε1,

(17)

where f is a nonlinear function and ε1, ε2 and ε3 are zero mean Gaussian noises.

• Consider the case when f(x) = x2. The goal is to estimate the parameter θ1 which we call θ̂1. We
follow the standard double ML procedure assuming policy variable X1 and control X2, although the
ground truth causal dependency X1 → X2 in contradiction with such setting (see Equation (2)).
The estimate of θ2 following the double ML procedure, which we call θ̂2 = E[X2Y ]

E[X2
2 ] = θ2 + θ1

E[X1X2]
E[X2

2 ] .
Similarly, we want to estimate X1 = αX2 + η from which we get, α = E[X1X2]

E[X2]2 . It is easy to see that
E[X1X2] = E[X3

1 ] = 0. Hence, α = 0 and it is easy to see θ̂1 = θ1.
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• Consider now the more general case where f is any nonlinear function. As in the previously discussed
example, the goal is to estimate θ1. We have θ̂2 = E[X2Y ]

E[X2
2 ] = θ2 + θ1

E[X1X2]
E[X2

2 ] . Similarly, α = E[X1X2]
E[X2

2 ] .
We substitute these estimates into the orthogonality condition in Equation (16):

E
[
(Y −X1θ̂1 −X2θ̂2)(X1 − αX2)

]
= 0 .

⇒ E
[(
Y −X1θ̂1 −X2θ̂2

) (
X1 −

E[X1X2]
E[X2

2 ] X2

)]
= 0 .

⇒ E
[(
X1(θ1 − θ̂1) + (a2 − θ̂2)X2 + ε3

)
(
X1 −

E[X1X2]
E[X2

2 ] X2

)]
= 0 .

⇒ θ̂1 = θ1.

From the above two examples, it is clear that even though the internal relations between the variables are
nonlinear, all we need is an unbiased linear estimate to estimate the causal parameter.

C Data Generation and Evaluation Metric

C.1 Data Generation

For every combination of number of nodes (#nodes), connectivity (ps), noise level (σ2), number of observation
(z), and non-linear probability (pn) (look at Table C.1), 100 examples (DAGs) are generated and stored as
csv files (altogether 72.000 DAGs are simulated, comprising a dataset of overall >10GB). For each DAG, z
number of samples are generated by sampling noise (ϵ in Equation (18)) with variance σ2 starting from root
of the DAG. For future benchmarking, the generated files will be made available with the code later on.

We generate DAGs (Direct Acyclic Graphs) in multiple steps: i) a random permutation of nodes is chosen as
a topological order of a DAG. ii) Based on this order, directed edges are added to this DAG from each node
to its followers with a certain probability ps (connectivity). iii) For each observation, values are assigned
to nodes according to the topological order of the DAG in such a way that each node’s value is determined
by summing over transformations (linear or nonlinear with a certain nonlinear probability pn) of values of
its direct causes with the addition of Gaussian distributed noise. The non-linear transformation used is
α tanh(βx)5, with α = 0.5 and β = 1.5. If the set of parents for the node X ′ is denoted as PAX′ as before
then value assignment for a node X ′ is as follow:

X ′ = ε+
∑

X∈P AX′

ιℓ(pn)θX + (1− ιℓ(pn))α tanh(βX), (18)

5The resulting values in the experiments are not concentrated around zero, and they are even up to 10ks for large graphs
(∼ 50 nodes). With the nonlinearity feature of α tanh(βx) for relatively large values taken into account, this is a good representer
of nonlinear relationships.

connectivity # nodes
nonlinear

probability # observ.
noise
level

(ps) (pn) z (σ2)

0.1 5 0 100 0.01
0.3 10 0.3 500 0.1
0.5 20 0.5 1.000 0.3

50 1 0.5
1

Table C.1: Experimental Setup: In the experiments we vary the connectivity parameter, the number of
nodes in the graph, the non-linear probability, the number of observations and the noise level and generate
100 graphs for each setting.

18



Under review as submission to TMLR

where ε ∼ N(0, σ2) in which σ2 represents noise level. ιℓ(X) is an indicator functions which decides between
linear or non-linear contribution of X in X ′. We decide the value of ιℓ(pn) by generating a binary randon
number which is 1 with probablity pn and 0 with probability 1− pn. The value of θ is set to 2 for the small
DAGs (number of nodes equal to 5 or 10) and 0.5 for large DAGs (number of nodes equal to 20 or 50) due
to the value exploitation that might happen in large graphs.

We vary and investigate the effect of non-linear relationships, the number of nodes, number of observations,
effect of connectivity and noise level while simulating the data. We summarize the factors in the data
generation in Table C.1.

C.2 Evaluation Metric

Correctly and incorrectly inferred direct causes are considered true and false. Let the total number of true
positives, false positives, true negatives ,and false negatives denoted by TP, FP, TN, and FN, we evaluate
our method using following metrics:

• Recall (true positive rate):
TPR = TP

TP + FN

• Fall-out (false positive rate):
FPR = FP

FP + TN

• Critical Success Index (CSI): also known as Threat Score.

CSI = TP

TP + FN + FP

• Accuracy:
ACC = TP + TN

P +N

• F1 Score: harmonic mean of precision and sensitivity.

F1 = 2TP
2TP + FP + FN

• Matthews correlation coefficient (MCC): a metric for evaluating quality of binary classification in-
troduced in (Matthews, 1975).

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In some rare cases, we encountered zero-divided-by-zero and divided-by-zero cases for some of these metrics.
In these situations, scores are reported 1 and 0 respectively while Fall-out is reported 0 and 1.

C.3 Supplementary Tables for Performance in Inferring Direct Causes

In this section, supplementary tables supporting superior performance of CORTH Features compared to well-
established methods are provided (See Tables C.2 to C.6). This superiority is consistent w.r.t. connectivity
(Table C.2), number of nodes (Table C.3), number of observations (Table C.6), nonlinearity (Table C.4),
and noise (Table C.5) using different evaluation metrics.

19



Under review as submission to TMLR

Table C.2: Performance across all the settings for different connectivities. Each single entry in the table is
averaged over 24000 simulations. Our method is almost state of the art in every case.

Connectivity

Method 0.1 0.3 0.5
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.961 0.786 0.825 0.857 0.815 0.539 0.598 0.522 0.646 0.405 0.482 0.315
rankGES 0.954 0.746 0.790 0.840 0.809 0.522 0.584 0.511 0.642 0.398 0.475 0.308
ARGES 0.965 0.794 0.828 0.876 0.805 0.456 0.501 0.726 0.612 0.286 0.330 0.720
rankARGES 0.959 0.763 0.801 0.863 0.802 0.447 0.494 0.721 0.611 0.282 0.328 0.716
FCI+ 0.974 0.819 0.853 0.910 0.866 0.631 0.714 0.674 0.734 0.524 0.629 0.521
LINGAM 0.966 0.763 0.796 0.889 0.896 0.710 0.753 0.761 0.827 0.682 0.727 0.715
PC 0.975 0.819 0.849 0.921 0.861 0.609 0.689 0.676 0.718 0.486 0.588 0.516
rankPC 0.971 0.797 0.831 0.912 0.852 0.587 0.670 0.653 0.701 0.458 0.560 0.470
MMHC 0.978 0.834 0.867 0.901 0.830 0.497 0.561 0.574 0.639 0.321 0.397 0.385
PCI 0.986 0.902 0.920 0.954 0.906 0.716 0.759 0.838 0.783 0.600 0.661 0.720
Lasso 0.976 0.886 0.925 0.926 0.876 0.725 0.811 0.737 0.800 0.682 0.778 0.622
CORTH Features (Ours) 0.988 0.915 0.934 0.959 0.926 0.813 0.858 0.833 0.847 0.747 0.814 0.724

Table C.3: Performance across all the settings for different number of nodes. Each single entry in the table
is averaged over 18000 simulations. Our method is almost state of the art in every case.

Number of Nodes

Method 5 10 20 50
ACC CSI F1 ACC CSI F1 ACC CSI F1 ACC CSI F1

GES 0.935 0.890 0.911 0.854 0.730 0.779 0.743 0.442 0.526 0.698 0.245 0.323
rankGES 0.923 0.857 0.883 0.846 0.700 0.753 0.740 0.428 0.514 0.697 0.237 0.316
ARGES 0.922 0.864 0.885 0.797 0.551 0.584 0.752 0.447 0.524 0.705 0.186 0.221
rankARGES 0.914 0.838 0.861 0.793 0.537 0.572 0.750 0.435 0.514 0.705 0.181 0.216
FCI+ 0.963 0.918 0.932 0.873 0.744 0.808 0.830 0.602 0.703 0.766 0.368 0.486
LINGAM 0.991 0.978 0.982 0.953 0.865 0.889 0.891 0.712 0.778 0.750 0.318 0.385
PC 0.957 0.913 0.929 0.864 0.723 0.786 0.823 0.569 0.664 0.763 0.348 0.457
rankPC 0.946 0.891 0.912 0.854 0.701 0.768 0.813 0.541 0.638 0.754 0.324 0.431
MMHC 0.929 0.878 0.905 0.841 0.675 0.739 0.767 0.432 0.507 0.725 0.218 0.281
PCI 0.984 0.965 0.972 0.922 0.844 0.875 0.888 0.734 0.782 0.773 0.414 0.491
Lasso 0.965 0.948 0.968 0.905 0.834 0.892 0.894 0.786 0.866 0.773 0.489 0.627
CORTH Features (Ours) 0.988 0.968 0.973 0.949 0.908 0.934 0.949 0.865 0.905 0.795 0.559 0.663

Number of Nodes

Method 5 10 20 50
TPR FPR MCC TPR FPR MCC TPR FPR MCC TPR FPR MCC

GES 0.934 0.056 0.891 0.790 0.090 0.711 0.502 0.088 0.436 0.304 0.083 0.221
rankGES 0.924 0.068 0.877 0.780 0.098 0.695 0.493 0.089 0.425 0.297 0.083 0.215
ARGES 0.903 0.046 0.906 0.590 0.041 0.841 0.500 0.073 0.557 0.220 0.020 0.794
rankARGES 0.897 0.054 0.896 0.584 0.044 0.832 0.495 0.075 0.549 0.216 0.020 0.789
FCI+ 0.969 0.029 0.948 0.797 0.054 0.759 0.642 0.042 0.645 0.389 0.030 0.454
LINGAM 0.991 0.007 0.988 0.886 0.008 0.934 0.770 0.055 0.759 0.391 0.072 0.471
PC 0.950 0.024 0.941 0.759 0.041 0.759 0.600 0.032 0.650 0.363 0.021 0.468
rankPC 0.944 0.039 0.925 0.750 0.053 0.734 0.580 0.034 0.629 0.341 0.024 0.427
MMHC 0.895 0.011 0.903 0.691 0.015 0.724 0.444 0.009 0.523 0.219 0.005 0.330
PCI 0.992 0.017 0.981 0.875 0.028 0.890 0.754 0.016 0.839 0.430 0.030 0.638
Lasso 0.999 0.074 0.949 0.944 0.119 0.817 0.954 0.147 0.794 0.681 0.148 0.488
CORTH Features (Ours) 0.999 0.016 0.986 0.952 0.044 0.906 0.884 0.011 0.894 0.609 0.101 0.567
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Table C.4: Performance across all the settings for different number of nonlinear probabilities. Each single
entry in the table is averaged over 18000 simulations. Our method is almost state of the art in every case.

Nonlinear Probability

Method 0 0.3 0.5 1
ACC CSI F1 ACC CSI F1 ACC CSI F1 ACC CSI F1

GES 0.803 0.583 0.646 0.806 0.566 0.622 0.811 0.577 0.632 0.810 0.581 0.641
rankGES 0.796 0.559 0.625 0.801 0.546 0.605 0.805 0.556 0.613 0.805 0.561 0.623
ARGES 0.781 0.476 0.515 0.786 0.486 0.525 0.792 0.506 0.546 0.818 0.581 0.628
rankARGES 0.778 0.461 0.503 0.782 0.474 0.515 0.788 0.490 0.531 0.814 0.564 0.615
FCI+ 0.827 0.599 0.674 0.860 0.663 0.745 0.872 0.685 0.764 0.873 0.685 0.746
LINGAM 0.907 0.738 0.778 0.886 0.689 0.725 0.880 0.684 0.724 0.911 0.762 0.808
PC 0.818 0.574 0.641 0.854 0.641 0.720 0.864 0.665 0.7430 0.869 0.672 0.731
rankPC 0.813 0.560 0.630 0.841 0.614 0.694 0.848 0.627 0.704 0.864 0.656 0.720
MMHC 0.797 0.516 0.578 0.815 0.549 0.610 0.823 0.566 0.625 0.826 0.571 0.620
PCI 0.853 0.674 0.720 0.897 0.746 0.789 0.905 0.763 0.806 0.911 0.774 0.805
Lasso 0.847 0.694 0.773 0.891 0.776 0.853 0.902 0.797 0.869 0.896 0.790 0.857
CORTH Features (Ours) 0.871 0.768 0.824 0.934 0.830 0.873 0.943 0.851 0.891 0.933 0.852 0.887

Nonlinear Probability

Method 0 0.3 0.5 1
TPR FPR MCC TPR FPR MCC TPR FPR MCC TPR FPR MCC

GES 0.643 0.093 0.564 0.620 0.074 0.557 0.629 0.071 0.568 0.637 0.079 0.570
rankGES 0.633 0.100 0.550 0.612 0.080 0.546 0.620 0.076 0.557 0.628 0.083 0.559
ARGES 0.514 0.041 0.789 0.526 0.041 0.793 0.547 0.043 0.791 0.626 0.055 0.725
rankARGES 0.509 0.044 0.780 0.522 0.044 0.788 0.540 0.046 0.783 0.620 0.059 0.715
FCI+ 0.638 0.045 0.637 0.704 0.037 0.708 0.728 0.035 0.731 0.728 0.037 0.730
LINGAM 0.775 0.025 0.832 0.723 0.028 0.759 0.722 0.034 0.741 0.819 0.053 0.822
PC 0.605 0.037 0.649 0.672 0.027 0.707 0.695 0.025 0.728 0.702 0.029 0.734
rankPC 0.597 0.043 0.626 0.656 0.040 0.680 0.668 0.036 0.695 0.692 0.031 0.714
MMHC 0.528 0.017 0.581 0.561 0.008 0.623 0.578 0.007 0.636 0.582 0.008 0.639
PCI 0.712 0.057 0.792 0.765 0.011 0.848 0.781 0.010 0.845 0.794 0.013 0.864
Lasso 0.823 0.130 0.684 0.907 0.120 0.778 0.926 0.116 0.800 0.921 0.122 0.787
CORTH Features (Ours) 0.840 0.119 0.730 0.849 0.007 0.872 0.870 0.008 0.888 0.885 0.038 0.863

Table C.5: Performance across all the settings for different noise levels. Each single entry in the table is
averaged over 14400 simulations. Our method is almost state of the art in every case.

Noise Level

Method 0.01 0.5 1
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.804 0.579 0.639 0.559 0.808 0.571 0.629 0.562 0.818 0.586 0.644 0.589
rankGES 0.797 0.557 0.619 0.548 0.802 0.552 0.613 0.551 0.812 0.565 0.625 0.577
ARGES 0.810 0.572 0.625 0.653 0.789 0.496 0.534 0.814 0.774 0.434 0.460 0.897
rankARGES 0.804 0.549 0.605 0.643 0.786 0.483 0.523 0.806 0.774 0.433 0.459 0.895
FCI+ 0.843 0.617 0.691 0.674 0.865 0.678 0.753 0.717 0.874 0.697 0.766 0.740
LINGAM 0.888 0.703 0.744 0.763 0.899 0.723 0.763 0.797 0.903 0.732 0.773 0.803
PC 0.837 0.595 0.664 0.683 0.859 0.659 0.731 0.716 0.870 0.686 0.752 0.745
rankPC 0.831 0.584 0.657 0.653 0.845 0.626 0.699 0.688 0.856 0.655 0.724 0.714
MMHC 0.806 0.526 0.585 0.605 0.818 0.557 0.615 0.626 0.829 0.586 0.639 0.652
PCI 0.873 0.690 0.730 0.819 0.901 0.760 0.801 0.846 0.906 0.777 0.815 0.854
Lasso 0.868 0.728 0.807 0.725 0.891 0.780 0.852 0.779 0.898 0.794 0.861 0.793
CORTH Features (Ours) 0.899 0.789 0.839 0.795 0.929 0.842 0.883 0.858 0.934 0.854 0.891 0.866
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Table C.6: Performance across all the settings for different number of observations. Each single entry in the
table is averaged over 24000 simulations. Our method is almost state of the art in every case.

Number of Observations

Method 100 500 1000
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.797 0.524 0.588 0.539 0.811 0.593 0.650 0.572 0.815 0.612 0.666 0.583
rankGES 0.788 0.495 0.561 0.522 0.806 0.576 0.636 0.564 0.810 0.595 0.652 0.573
ARGES 0.780 0.446 0.489 0.786 0.799 0.535 0.576 0.773 0.803 0.555 0.595 0.764
rankARGES 0.776 0.428 0.473 0.778 0.795 0.523 0.566 0.766 0.800 0.542 0.584 0.757
FCI+ 0.837 0.589 0.671 0.652 0.865 0.684 0.755 0.720 0.871 0.702 0.771 0.732
LINGAM 0.840 0.578 0.650 0.678 0.908 0.719 0.743 0.825 0.941 0.858 0.883 0.862
PC 0.830 0.568 0.642 0.661 0.858 0.662 0.732 0.719 0.866 0.684 0.752 0.733
rankPC 0.821 0.544 0.617 0.632 0.849 0.639 0.711 0.696 0.855 0.660 0.733 0.707
MMHC 0.800 0.495 0.557 0.579 0.820 0.570 0.625 0.633 0.826 0.587 0.642 0.647
PCI 0.829 0.551 0.594 0.804 0.914 0.812 0.853 0.842 0.931 0.855 0.893 0.866
Lasso 0.870 0.729 0.812 0.732 0.889 0.778 0.848 0.773 0.893 0.786 0.854 0.780
CORTH Features (Ours) 0.883 0.710 0.780 0.754 0.935 0.874 0.906 0.874 0.942 0.891 0.920 0.887

D Real-World Data Experiment-Covid19

D.1 Preprocessing

The preprocessing stage for this dataset is the same as (Schwab et al., 2020) except that, for each target
variable upsampling is used to resolve data imbalance.

D.2 Results

The results obtained by leveraging CORTH Features is suprisingly consistent with (Schwab et al., 2020)
which demonstrates the ability of this method in feature selection. The selected features are indicated in
Tables D.1 to D.4
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Table D.1: Ranks of the features based on the
times being predicted as direct causes of SARS-
Cov-2 exam result out of 1000 different runs
of our propsal approach. Not mentiond features
were not predicted even once, note that prepro-
cessed dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1Arterial Lactic Acid
Promyelocytes
Base excess venous blood gas analysis

5 pH venous blood gas analysis 0.999
6 MISSING Mean platelet volume 0.992
7 MISSING Lactic Dehydrogenase 0.966
8 Segmented 0.934
9 Myelocytes 0.904
10 Eosinophils 0.794
11 Leukocytes 0.784
12 Total CO2 arterial blood gas analysis 0.450
13 Potassium 0.340
14 MISSING International normalized ratio INR 0.289
15 Metapneumovirus not detected 0.234
16 Arteiral Fio2 0.092
17 HCO3 arterial blood gas analysis. 0.046
18 Creatinine 0.035
19 MISSING.Magnesium 0.034
20 pO2 arterial blood gas analysis 0.031
21 MISSING Arteiral Fio2 0.024
22 Direct Bilirubin 0.016

23 MISSING Ferritin 0.014Respiratory Syncytial Virus detected

25 MISSING Albumin 0.010Creatine phosphokinase CPK
27 Strepto A positive 0.008

28

Neutrophils

0.004Red blood cell distribution width RDW
Coronavirus HKU1 detected
Influenza A rapid test positive

32 Hb saturation venous blood gas analysis 0.002

33

Urine pH

0.001
Inf A H1N1 2009 detected
MISSING Serum Glucose
Aspartate transaminase
Urine Esterase nan

Table D.2: Ranks of the features based on the
times being predicted as direct causes of Patient
addmited to regular ward out of 1000 differ-
ent runs of our propsal approach. Not mentiond
features were not predicted even once, note that
preprocessed dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1HCO3 venous blood gas analysis
Total CO2 venous blood gas analysis
Gamma glutamyltransferase

5 MISSING Lactic Dehydrogenase 0.987
6 Alanine transaminase 0.845
7 MISSING International normalized ratio INR 0.804
8 Serum Glucose 0.652
9 pH venous blood gas analysis 0.631
10 Base.excess venous blood gas analysis 0.341
11 MISSING Arteiral Fio2 0.334
12 Urine Density 0.334
13 Magnesium 0.323
14 Metapneumovirus not detected 0.261
15 MISSING Mean platelet volume 0.118
16 Creatine phosphokinase CPK 0.086
17 Creatinine 0.058
18 International normalized ratio INR 0.049
19 MISSING Ferritin 0.046
20 Urea 0.044
21 Respiratory Syncytial Virus detected 0.032
22 MISSING Magnesium 0.021
23 MISSING Albumin 0.018
24 MISSING Potassium 0.016
25 Inf A H1N1 2009 detected 0.014
26 Coronavirus HKU1 detected 0.010
27 Strepto A positive 0.008
28 Influenza A rapid test positive 0.007

29 MISSING Sodium 0.002Urine Protein nan

31
ctO2 arterial blood gas analysis

0.001Influenza A detected
Influenza B detected

Table D.3: Ranks of the features based on the
times being predicted as direct causes of Patient
addmited to semi-intensive unit out of 1000
different runs of our propsal approach. Not men-
tiond features were not predicted even once, note
that preprocessed dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1

Creatinine
MISSING Lactic Dehydrogenase
Total CO2 venous blood gas analysis
Magnesium
Gamma glutamyltransferase
Alanine transaminase

8 ctO2 arterial blood gas analysis 0.999HCO3 venous blood gas analysis
10 Relationship Patient Normal 0.786
11 MISSING Arteiral Fio2 0.595
12 Base excess venous blood gas analysis 0.578
13 pO2 venous blood gas analysis 0.449
14 MISSING International normalized ratio INR 0.435
15 Mean platelet volume 0.366
16 Metapneumovirus not detected 0.308
17 Proteina C reativa mg dL 0.235
18 Sodium 0.212
19 Phosphor 0.164
20 Urine Density 0.085
21 Respiratory Syncytial Virus detected 0.068
22 MISSING Mean platelet volume 0.056
23 MISSING Ferritin 0.054
24 pH venous blood gas analysis 0.021
25 Strepto A positive 0.018
26 Inf A H1N1 2009 detected 0.016
27 Influenza A rapid test positive 0.014

28 MISSING Albumin 0.012Coronavirus HKU1 detected
30 MISSING Magnesium 0.008
31 Aspartate transaminase 0.004

32

Urine Ketone Bodies absent

0.001
Red blood cell distribution width RDW
Influenza A detected
Urine Esterase absent
Urine Protein nan

Table D.4: Ranks of the features based on the
times being predicted as direct causes of Patient
addmited to intensive care unit out of 1000
different runs of our propsal approach. Not men-
tiond features were not predicted even once, note
that preprocessed dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1

MISSING Mean platelet volume
Total CO2 venous blood gas analysis
HCO3 venous blood gas analysis
Alanine transaminase
Gamma glutamyltransferase
Magnesium
MISSING Lactic Dehydrogenase
Creatinine

10 pO2 venous blood gas analysis 0.982
11 ctO2 arterial blood gas analysis 0.962
12 pH venous blood gas analysis 0.938
13 MISSING Arteiral Fio2 0.667
14 MISSING International normalized ratio INR 0.586
15 Red blood cell distribution width RDW 0.503
16 Urine Density 0.414
17 Creatine phosphokinase CPK 0.380
18 Base excess venous blood gas analysis 0.352
19 Potassium 0.234
20 Promyelocytes 0.221
21 MISSING Ferritin 0.174
22 Metapneumovirus not detected 0.132
23 Phosphor 0.082
24 Sodium 0.036
25 MISSING Magnesium 0.032
26 Proteina C reativa mg dL 0.016
27 Aspartate transaminase 0.015
28 Respiratory Syncytial Virus detected 0.010
29 Relationship Patient Normal 0.007

30 MISSING Albumin 0.006Arterial Lactic Acid

32 Coronavirus HKU1 detected 0.005Eosinophils
34 Inf A H1N1 2009 detected 0.004

35 Influenza A rapid test positive 0.002International normalized ratio INR

37
Urine Crystals Ausentes

0.001Leukocytes
Strepto A positive
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E Supplementary Figures for Parameter Estimation
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Figure E.1: 0.1 connectivity, 5 nodes, 100 observations, 100 simulations. Distribution of the estimated θ
values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground truth
values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.2: 0.1 connectivity, 5 nodes, 500 observations, 100 simulations. Distribution of the estimated θ
values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground truth
values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.3: 0.1 connectivity, 5 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.4: 0.1 connectivity, 10 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.5: connectivity 0.1, 10 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.6: connectivity 0.1, 10 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.7: connectivity 0.1, 20 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.8: connectivity 0.1, 20 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.9: connectivity 0.1, 20 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.10: connectivity 0.1, 50 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.11: connectivity 0.1, 50 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.12: connectivity 0.1, 50 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.13: 0.3 connectivity, 5 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.14: 0.3 connectivity, 5 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.15: 0.3 connectivity, 5 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.16: 0.3 connectivity, 10 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.17: 0.3 connectivity, 10 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.18: 0.3 connectivity, 10 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.19: 0.3 connectivity, 20 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.20: 0.3 connectivity, 20 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.21: 0.3 connectivity, 20 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.22: 0.3 connectivity, 50 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.23: 0.3 connectivity, 50 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.24: 0.3 connectivity, 50 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.25: 0.5 connectivity, 5 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.26: 0.5 connectivity, 5 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.27: 0.5 connectivity, 5 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.28: 0.5 connectivity, 10 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.29: 0.5 connectivity, 10 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.30: 0.5 connectivity, 10 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.31: 0.5 connectivity, 20 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.32: 0.5 connectivity, 20 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.33: 0.5 connectivity, 20 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.34: 0.5 connectivity, 50 nodes, 100 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.35: 0.5 connectivity, 50 nodes, 500 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure E.36: 0.5 connectivity, 50 nodes, 1000 observations, 100 simulations. Distribution of the estimated
θ values for the true and false causal parents in 100 simulations. The vertical lines indicate the ground
truth values for the causal parents linear coefficients. In general we observe that in all settings with enough
observations the parameter estimation works reliably.
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Figure F.1: 5 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.2: 5 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.3: 5 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.4: 10 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.5: 10 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.

64



Under review as submission to TMLR

0.1 0.3 0.5

0.2

0.4

0.6

0.8

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(a) pn = 0, σ2 = 0.3

0.1 0.3 0.5

0.2

0.4

0.6

0.8

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y
(b) pn = 0, σ2 = 0.5

0.1 0.3 0.5

0.2

0.4

0.6

0.8

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(c) pn = 0, σ2 = 1

0.1 0.3 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(d) pn = 0.3, σ2 = 0.3

0.1 0.3 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(e) pn = 0.3, σ2 = 0.5

0.1 0.3 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(f) pn = 0.3, σ2 = 1

0.1 0.3 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(g) pn = 0.5, σ2 = 0.3

0.1 0.3 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(h) pn = 0.5, σ2 = 0.5

0.1 0.3 0.5

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(i) pn = 0.5, σ2 = 1

0.1 0.3 0.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(j) pn = 1, σ2 = 0.3

0.1 0.3 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(k) pn = 1, σ2 = 0.5

0.1 0.3 0.5

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Method

CORTH Features
Lasso
rankPC
PC
MMHC
LINGAM

Sparsity

A
cc

ur
ac

y

(l) pn = 1, σ2 = 1

nonlinearity

noise level

Figure F.6: 10 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure F.7: 20 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.8: 20 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure F.9: 20 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure F.10: 50 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure F.11: 50 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure F.12: 50 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.1: 5 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure G.2: 5 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is stable
wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming the
majority of baselines.
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Figure G.3: 5 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.4: 10 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.5: 10 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.6: 10 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.7: 20 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.8: 20 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.9: 20 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.10: 50 nodes, 100 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.11: 50 nodes, 500 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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Figure G.12: 50 nodes, 1000 observations, 100 simulations. Compared to other methods, our approach is
stable wrt. noise level, connectivity and even partially non-linear relationships, significantly outperforming
the majority of baselines.
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