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ABSTRACT

Group equivariance is a strong inductive bias useful in a wide range of domains
including images, point clouds, dynamical systems, and partial differential equa-
tions (PDEs). But constructing efficient equivariant networks for general groups
and domains is difficult. Recent work by Finzi et al. (2021) directly solves the
equivariance constraint for arbitrary matrix groups to obtain equivariant MLPs
(EMLPs). However, this method does not scale well and scaling is crucial to get
the best from deep learning. This necessitates the design of group equivariant
networks for general domains and groups that are simple and scalable. To this end,
we introduce Group Representation Networks (GRepsNets), a simple equivariant
network for arbitrary matrix groups. The key intuition for our design is that using
tensor representations in the hidden layers of a neural network along with appropri-
ate mixing of various representations can lead to expressive equivariant networks,
which we confirm empirically. We find GRepsNet to be competitive to EMLP on
several tasks with group symmetries such as O(5), O(1, 3), and O(3) with scalars,
vectors, and second-order tensors as data types. To illustrate the simplicity and
generality of our network, we also use it for image classification with MLP-mixers,
predicting N-body dynamics using message passing neural networks (MPNNs),
and for solving PDEs using Fourier neural operators (FNOs). Surprisingly, we find
that using simple first-order representations itself can yield benefits of group equiv-
ariance without additional changes in the architecture. Finally, we illustrate how
higher-order tensor representations can be used for group equivariant finetuning
that outperforms the existing equivariant finetuning method Basu et al. (2023b).

1 INTRODUCTION

Group equivariance plays a key role in the success of several popular architectures such as translation
equivariance in Convolutional Neural Networks (CNNs) for image processing (LeCun et al., 1989),
3D rotational equivariance in Alphafold2 (Jumper et al., 2021), and equivariance to general discrete
groups in Group Convolutional Neural Networks (GCNNs) (Cohen & Welling, 2016a).

But designing efficient equivariant networks can be challenging both because they require domain-
specific knowledge and can be computationally inefficient. E.g., there are several works designing
architectures for different groups such as the special Euclidean group SE(3) (Fuchs et al., 2020),
special Lorentz group O(1, 3) (Bogatskiy et al., 2020), discrete Euclidean groups (Cohen & Welling,
2016a; Ravanbakhsh et al., 2017), etc. Moreover, some of these networks can be computationally
inefficient, prompting the design of simpler and lightweight equivariant networks such as E(n)
equivariant graph neural networks (Satorras et al., 2021) for graphs and vector neurons (Deng et al.,
2021) for point cloud processing.

Finzi et al. (2021) propose an algorithm to construct equivariant MLPs (EMLPs) for arbitrary matrix
groups when the data is provided using tensor polynomial representations. This method directly
computes the basis of the equivariant MLPs and requires minimal domain knowledge. Although
elegant, EMLPs are restricted to MLPs or can be used as subcomponents in larger networks, and are
not useful for making more general architectures equivariant as a whole. Moreover, using equivariant
basis functions can often be computationally expensive (Fuchs et al., 2020; Thomas et al., 2018)
leading to several group-specific efficient architectures. Equivariance as an inductive bias makes the
learning problem easier and provides robustness guarantees, and scaling is important to learn more
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complex functions that is not easy to model using inductive biases such as equivariance. So, we need
an architecture that is equivariant and allows scaling to larger sizes and datasets.

To this end, we introduce Group Representation Network (GRepsNet), which replaces scalar rep-
resentation from classical neural networks with tensor representations of different orders to obtain
expressive equivariant networks. This is reminiscent of vector neurons that introduce SO(3) repre-
sentations in various architectures to obtain equivariance to the SO(3) group. In contrast, GRepsNet
works for arbitrary matrix groups like EMLPs and can also leverage higher-order tensor representa-
tions, unlike vector neurons.

We perform three sets of experiments: a) on synthetic datasets from Finzi et al. (2021) to provide
a direct comparison with EMLP across different groups and tensor representations; b) on image
classification using MLP-Mixers (Tolstikhin et al., 2021), on N-body dynamics dataset using message
passing neural networks (MPNNs) (Gilmer et al., 2017), and solving PDEs using Fourier Neural
Operators (FNOs) (Li et al., 2021; Helwig et al., 2023) to show the simplicity and generality of our
proposed method across a range of data and architectures; c) showing the use of higher-order tensor
representations in equivariant finetuning from pretrained models (Basu et al., 2023b). Our main
contributions are summarized below.

1. We propose a simple equivariant architecture called GRepsNet, equivariant to arbitrary
matrix groups that perform competitively with EMLP on several groups such as O(5), O(3),
and O(1, 3) using scalars, vectors, and second-order tensor representations.

2. We find that using GRepsNet with simple representations gives competitive results with
several architectures used in different domains such as image classification, PDEs, and
N-body dynamics predictions using MLP-mixers, FNOs, and MPNNs, respectively.

3. We leverage second-order tensor features for equivariant image classification using CNNs.
When used for finetuning, it outperforms equituning (Basu et al., 2023b) that uses first-order
representations.

2 RELATED WORKS

Parameter sharing A popular method for constructing group equivariant architectures involves
sharing learnable parameters in the network to guarantee equivariance, e.g. CNNs (LeCun et al.,
1989), GCNNs (Cohen & Welling, 2016a; Kondor & Trivedi, 2018), Deepsets (Zaheer et al., 2017),
etc. However, all these methods are restricted to discrete groups, unlike our work which can handle
equivariance to arbitrary matrix groups.

Steerable networks Another popular approach for constructing group equivariant networks is by first
computing a basis of the space of equivariant functions, then linearly combining these basis vectors
to construct an equivariant network. This method can also handle continuous groups. Several popular
architectures employ this method, e.g. steerable CNNs (Cohen & Welling, 2016b), E(2)-CNNs (Weiler
& Cesa, 2019), Tensor Field Networks (Thomas et al., 2018), SE(3)-transformers (Fuchs et al., 2020),
EMLPs Finzi et al. (2021) etc. But, these methods are computationally expensive, thus, often
replaced by efficient equivariant architectures for specific models, e.g., E(n) equivariant graph neural
networks (Satorras et al., 2021) for graphs and vector neurons (Deng et al., 2021) for point cloud
processing. More comparisons with EMLPs are provided in Sec. B.

Representation-based methods A simple alternative to using steerable networks for continuous
networks is to construct equivariant networks by simply representing the data using group represen-
tations, only using scalar weights to combine these representations, and using non-linearities that
respect their equivariance. Works that use representation-based methods include vector neurons (Deng
et al., 2021) for O(3) group and universal scalars Villar et al. (2021). Vector neurons are restricted
to first-order tensors and universal scalars face scaling issues, hence, mostly restricted to synthetic
experiments. More comparisons with universal scalars are provided in Sec. B.

Frame averaging Yet another approach to obtain group equivariance is to use frame-averaging (Yarot-
sky, 2022; Puny et al., 2021), where averaging over equivariant frames corresponding to each input
is performed to obtain equivariant outputs. This method works for both discrete and continuous
groups but requires the construction of these frames, either fixed by design as in Puny et al. (2021);
Basu et al. (2023b) or learned using auxiliary equivariant neural networks as in Kaba et al. (2023).
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(a) GRepsNet (b) Vector neurons (O(3) only) (c) Equitune

Figure 1: (a) An example of a GRepsNet layer with inputs of types T0, T1, and T2, and outputs of
the same types. The Ti layer first converts all the inputs to type Ti as described in §. 4.1 following
which it is processed by a neural network layer, such as an MLP. (b) and (c) show layers from vector
neurons Deng et al. (2021) and equitune Basu et al. (2023b), which are special cases of GRepsNet.

Our method is in general different from this approach since our method does not involve averaging
over any frame or the use of auxiliary equivariant networks. For the special case of discrete groups,
the notion of frame averaging is closely related to both parameter sharing as well as representation
methods. Hence, in the context of equituning (Basu et al., 2023b), we show how higher-order tensor
representations can directly be incorporated into their frame-averaging method.

3 BACKGROUND

3.1 GROUP AND REPRESENTATION THEORY

Basics of groups and group actions are provided in §. A. Let GL(m) represent the group of all
invertible matrices of dimension m. Then, for a group G, the linear group representation of G
is defined as the map ρ : G 7→ GL(m) such that ρ(g1g2) = ρ(g1)ρ(g2) and ρ(e) = I , the identity
matrix. A group representation of dimension m is a linear group action on the vector space Rm.

Given some base linear group representation ρ(g) for g ∈ G on some vector space V , we construct
tensor representations by applying Kronecker sum ⊕, Kronecker product ⊗, and tensor dual ∗. Each
of these tensor operations on the vector spaces lead to corresponding new group actions. The group
action corresponding to V ∗ becomes ρ(g−1)T . Let ρ1(g) and ρ2(g) for g ∈ G be group actions on
vector spaces V1 and V2, respectively. Then, the group action on V1 ⊕ V2 is given by ρ1(g)⊕ ρ2(g)
and that on V1 ⊗ V2 is given by ρ1(g)⊗ ρ2(g).

We denote the tensors corresponding to the base representation ρ as T1 tensors, i.e., tensors of order
one, and T0 denotes a scalar. In general, Tm denotes a tensor of order m. Further, Kronecker product
of tensors Tm and Tn gives a tensor Tm+n of order m + n. We use the notation T⊗r

m to denote r
times Kronecker product of Tm tensors. Kronecker sum of two tensors of types Tm and Tn gives a
tensor of type Tm ⊕ Tn. Finally, Kronecker sum of r tensors of the same type Tm is written as rTm.

4 METHOD

4.1 GENERAL ARCHITECTURE

We describe the construction of the GRepsNet layer, an example of which shown in Fig. 1a. The
GRepsNet model is then constructed by stacking several of the GRepsNet layers. Let the input to a
GRepsNet layer be of type ⊕i∈NaiTi, where ais are scalars indicating that the input has ai tensors
of type Ti.

Each GRepsNet layer further has several Ti-layers as shown in Fig. 1a. Each Ti layer performs
two operations: a) converting the input tensors to appropriate tensor types, b) process the converted
tensors using a neural network layer, such as an MLP or a CNN. If the representations used are
not regular representations, we make the assumption that the input to the GRepsNet model always
consist of some tensors with T1 representations, which is not a strong assumption that helps keep our
construction simple and also encompasses all experiments from Finzi et al. (2021).
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Convert tensor types The input to a Ti-layer converts all inputs of types Tj , j ̸= i along with T1, T0

(when available) to type Ti before passing it through an appropriate neural network layer, such as an
MLP or a CNN.

We only convert the input type Tj to Ti when i > j > 0 or i = 0. Otherwise, we do not use Tj in the
Ti-layer. When i > j > 0, we first write i as i = kj + r, where k ∈ N and r < j. We obtain the Ti

tensor using Tj , T1, and T0 as T⊗k
j ⊗ T⊗r

1 .

When i = 0, we convert each input of type Tj to type T0 by using an appropriate invariant operator,
e.g. Euclidean norm for Euclidean groups. These design choices keeps our design lightweight as well
as expressive as confirmed empirically. Details on how these inputs are processed is described next.

Process converted tensors When not using regular representations, first, the T0-layer passes all the
tensors of type T0 or scalars through a neural network such as an MLP or a CNN. Since the inputs
are invariant scalars, hence, the outputs are always invariant and thus, there are no restrictions on the
neural network used for the T0-layer, i.e., they may also use non-linearities.

Lets call the output from the T0-layer as YT0
. For a Ti-layer with i > 0, we simply pass it through

a linear neural network with no point-wise non-linearities or bias terms to ensure that the output
is equivariant. Lets call this output HTi

. Then, to mix the Ti tensors with the T0 tensors better,
we update HTi

as HTi
= HTi

∗ YT0

inv(HTi
) , where inv(·) is simply an invariant function such as the

Euclidean norm for an Euclidean group. Finally, we pass HTi through another linear layer without
any bias or pointwise non-linearities to obtain YTi .

When using regular representations for a discrete group of size |G|, the neural networks used
also contain pointwise non-linearities and biases, as they do not affect the equivariance for regular
representation. The proof of equivariance of our architecture is trivial and follows the proof of
equivariance for vector neurons as provided in §. C. While the architecture is already simplified to
make it easy to use, we further make more simplifications as needed for specific applications.

4.2 SPECIAL CASES AND RELATED DESIGNS

Here, we look at existing group equivariant architectures popular for their simplicity that are special
cases or closely related to our general design.

Vector neurons Popular for its lightweight SO(3)-equivariant applications such as point cloud,
the vector neurons (Deng et al., 2021) serve as a classic example of special cases of our design
as illustrated in Fig. 1b. Their T1-layer simply consists of a linear combination T1 inputs without
bias terms, same as ours. The T0-layer first converts the T1 tensors into T0 tensors by taking inner
products. Then, pointwise non-linearities are applied to the T0 tensor and then mixed with the T1

tensors, by multiplying them with T1 tensors and further linearly mixing the T1 tensors.

Harmonic networks Harmonic networks or H-nets Worrall et al. (2017) employ a similar architecture
to ours and vector neurons, but specialized for the SO(2) group. They also take as input T1 inputs,
then obtain the T0 scalars by computing the Euclidean norms of the inputs. All non-linearities are
applied only to the scalars. The T1 tensors are processed using linear circular cross-correlations
that preserve equivariance. Further, higher order tensors are obtained by chained-cross correlations.
The use of cross-correlations differ slightly from our design and that of vector neurons. But it is
designed in a similar spirit of building tensors of various orders and construct simple, yet expressive
equivariant features.

Equitune Finally, recent works on frame-averaging such as equitune, λ-equitune Basu et al. (2023a)
and probabilistic symmetrization Kim et al. (2023) construct equivariant architecture by performing
some sort of averaging over groups. This can be seen as using a regular T1 representation as the input
and output type as illustrated in Fig. 1c. These works have mainly focused on exploring the potential
of equivariance in pretrained models. In this work, we further explore the capabilities of regular T1

representations and find their surprising benefits in equivariant tasks. Moreover, this also inspires us
to explore beyond regular T1 representations, e.g., we find T2 representations can yield better results
than T1 representations when used in the final layers of a model for image classification.

4



Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 2: Comparison of GRepsNets with EMLPs Finzi et al. (2021) and MLPs for (a) O(5)-invariant
synthetic regression task with input type 2T1 and output type T0, (b) O(3)-equivariant regression with
input as masses and positions of 5 point masses using representation of type 5T0 + 5T1 and output
as the inertia matrix of type T2, (c) SO(1, 3)-invariant regression computing the matrix element
in electron-muon particle scattering with input of type 4T1 and output of type T0. Across all the
tasks, we find that GRepsNets, despite its simple design, are competitive with the more sophisticated
EMLPs and significantly outperform MLPs.

4.3 APPLICATIONS AND NETWORK DETAILS

Now, we provide details of applications considered and precise network designs used for each of
them. An overview of the practical designs insights is provided in Sec. D.

Synthetic experiments related to EMLP (Finzi et al., 2021) We work with three group equivariant
regression tasks for the O(5)-invariant regression, O(3)-equivariant regression, and O(1, 3)-invariant
regression. The (input types, output types) corresponding to these tasks are (2T1, T0), (5T0+5T1, T2),
and (4T1, T0). We use architectures with the given input and output types following the GRepsNet
design in §. 4.1. As described in §. 4.1, once the tensor types are converted, we process the tensors
using some neural networks. Here we use simple MLPs for this processing task.

Image classification with MLP-mixers Here we work with CIFAR10 (Krizhevsky et al.) with
random 90◦ rotations, which we call rot90-CIFAR10, along with Galaxy10 (Leung & Bovy) and
EuroSAT (Helber et al., 2019) datasets that have naturally 90◦ symmetries in them. We convert
the images to T1 tensors of the group C4 of 90◦ rotations efficiently as described in §. D.2, which
makes the design more efficient than the traditional regular representations, e.g., used in equitune
by repeating transformed images in the input. Once the regular T1 representations are obtained,
we obtain an additional group dimension in the data in addition to the batch, channel, and spatial
dimensions. The group dimension is treated like the batch dimension, exactly as done in equitune
with T1 regular representations.

PDE solving with FNOs We work with two versions of the incompressible Navier-Stokes equation
from Helwig et al. (2023); Li et al. (2021), with and without symmetry with respect to 90◦ rotations.
Here we use the T1 representation for the C4 group of 90◦ rotations exactly the way used in equitune.
This is because, unlike image classification, here we work in the Fourier domain and it is crucial
to preserve all the frequency modes of the original input. The precise way of construction of this
representation is provided in §. D.3.

The group dimension is treated like the batch dimension similar to the case of image classification.
Then, the data is sequentially passed through four FNO layers taken from Helwig et al. (2023). The
ability to directly use various models such as FNOs and still preserving equivariance emphasizes the
simplicity of our method.

Predicting N-body dynamics using GNNs We consider the problem of predicting dynamics of N
charged particles given their charges and initial positions, where the group of symmetry considered
is the orthogonal group O(3). Each particle is placed at a node of a graph G = {V, E}, where
V and E are the sets of vertices and edges. Let the edge attributes of G be aij , and let hl

i be the
node feature of node vi ∈ V at layer l of a message passing neural network (MPNN). An MPNN
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Table 1: We find simple GRepsMLP-Mixers with T1 representations can leverage the benefits of
equivariance with a very simple architecture design. Mean (std) of test accuracies over 3 seeds.
Both GRepsMLP-Mixer-1 and GRepsMLP-Mixer-2 use regular T1 representations, with architecture
near-identical to the MLP-Mixer used. GRepsMLP-Mixer-2 uses a simple early fusion module from
§. D.2 in addition to the late fusion present in GRepsMLP-Mixer-1. Our models clearly outperform
non-equivariant MLP-Mixers with early fusion outperforming or performing competitively to late
fusion for image classification tasks.

Dataset \ Model MLP-Mixer GRepsMLP-Mixer-1 (ours) GRepsMLP-Mixer-2 (ours)
Rot90-CIFAR10 75.08 (0.8) 77.95 (0.37) 79.09 (0.3)

Galaxy 10 82.62 (0.3) 85.02 (1.0) 88.86 (0.2)
Eurosat 96.44 (0.1) 97.83 (0.2) 97.28 (0.3)

as defined by Gilmer et al. (2017) has an edge update, mij = ϕe(h
l
i, h

l
j , aij) and a node update

hl+1
i = ϕh(h

l
i,mi), mi =

∑
j∈N (i) mij , where ϕe and ϕh are MLPs corresponding to edge and

node updates, respectively.

We design GRepsGNN by making small modifications to the MPNN architecture. In our model, we
use two edge updates for T0 and T1 tensors, respectively, and one node update for T1 update. The two
edge updates are mij,T0

= ϕe,T0
(∥hl

i∥, ∥hl
j∥, aij), mij,T1

= ϕe,T1
(hl

i, h
l
j , aij), where ∥·∥ obtains T0

tensors from T1 tensors for the Euclidean group, ϕe,T0
(·) is T0-layer MLP, and ϕe,T1

(·) is a T1-layer
made of an MLP without any pointwise non-linearities or biases. The final edge update is obtained as
mij = mij,T1

∗mij,T0
/∥mij,T1

∥. Finally, the node update is given by hl+1
i = ϕh,T1

(hl
i,mi), where

mi =
∑

j∈N (i) mij and ϕh,T1
(·) is an MLP without any pointwise non-linearities or biases. Thus,

the final node update is a T1 tensor.

Equivariant image classification using CNNs with T2 representations Here we test the hypothe-
sis that T2 representation of features extracted by CNNs serves as better equivariant features than T1

representations such as used in equitune Basu et al. (2023b). The group of symmetry considered here
is the CN group of 360

N

◦ rotations. Our intuition arises from the fact that T2 representations have
better mixing amongst features in the group dimension than T1 representations. This is because, T2

representation stems from the outer product of two T1 representations. This is also similar to the use
of outer products in the features by Bilinear CNNs (Lin et al., 2015) leading to efficient processing
of features for fine-grained classification. Our approach differs from Lin et al. (2015) in that our
outer product is in the group dimension that preserves equivariance, whereas Lin et al. (2015) are not
explicitly concerned with group equivariance.

We first use rot90-CIFAR10 to test our hypothesis that T2 representation provide better performance
than T1 representations. We use a CNN with 3 convolutional layers followed by 5 linear layers. The
initial k layers of the network use T1 representation, following which all layers use T2 representations.
We verify that best performance is obtained when the last few layers use T2 representations.

Based on this observation, we propose T2-equitune, that extracts T1 features from pretrained models
like Basu et al. (2023b), but converts them to T2 representations before providing invariant outputs.
We work with pretrained Resnet18 and finetune on rot90-CIFAR10 and Galaxy10 datasets. We
corroborate our hypothesis and find that T2-equitune outperforms equitune by simply using T2

representations in the extracted features. We further provide comparison with GCNNs Cohen &
Welling (2016a) and E(2)-CNNs Weiler & Cesa (2019).

5 DATASETS AND EXPERIMENTS

5.1 COMPARISON WITH EMLPS

Datasets: We consider three regression tasks from Finzi et al. (2021): O(5)-invariant task, O(3)-
equivariant task, and O(1, 3) invariant task. In O(5)-invariant regression task, we have input X =

{xi}2i=1 of type 2T1 and output f(x1, x2) = sin (∥x1∥)−∥x2∥3/2+ xT
1 x2

∥x1∥∥x2∥ of type T0. Then, for
O(3)-equivariant task we have input X = {(mi, xi)}5i=1 of type 5T0+5T1 corresponding to 5 masses
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Table 2: GRpesFNOs are much cheaper than G-FNOs while giving competitive performance. Table
shows mean (std) of relative mean square errors in percentage over 3 seeds. Our models use regular T1

representations with the architecture kept near-identical to the FNO model used. GRepsFNO-2 uses
additional early fusion layers from §. D.3 in addition to the late fusion layer present in GRepsFNO-1.
Our simple architecture clearly outperforms the non-equivariant FNO architecture and performs
competitively with the more sophisticated G-FNO architecture that uses group convolutions.

Dataset \ Model FNO GRepsFNO-1 (ours) GRepsFNO-2 (ours) G-FNO

Navier-Stokes 8.41 (0.41) 5.31 (0.2) 5.79 (0.4) 4.78 (0.4)

Navier-Stokes-Symmetric 4.21 (0.12) 2.92 (0.1) 2.82 (0.1) 2.24 (0.1)

and their positions. The output is the inertia matrix I =
∑

i mi(x
T
i xiI − xix

T
i ) of type T2. Finally,

for the O(1, 3)-equivariant task, we consider the electron-muon scattering (e− + µ− → e− + µ−)
task used in Finzi et al. (2021), originally from Bogatskiy et al. (2020). Here, the input is of type
4T(1,0) corresponding to the four momenta of input and output electron and muon, and the output is
the matrix element (c.f. Finzi et al. (2021)), which is of type T(0,0).

Experimental setup: We train MLPs, EMLPs, GRepsNet on the datasets discussed above with
varying sizes for 100 epochs. For each task and model, we choose model sizes between small (with
channel size 100) and large (with channel size 384). Similarly, we choose the learning rate from
{10−3, 3 × 10−3}. In general, MLPs and EMLPs provide best result with the large model size,
whereas GRepsNets produce better results with small model sizes. For learning rate, we find 3×10−3

to be best in most cases. The exact hyperparameters used in our experiments are given in §. E.1.

Observations and results: From Fig. 2, we find that across all the tasks, GRepsNets perform
competitively to EMLPs and significantly outperform non-equivariant MLPs. Moreover, Tab. 5
and Fig. 5 show that GRepsNet are computationally much more efficient than EMLPs, while being
only slightly more expensive than naive MLPs. This shows that GRepsNet can provide competitive
performance to EMLPs on equivariant tasks. Moreover, the lightweight design of GRepsNets
motivates its use in larger datasets.

5.2 IMAGE CLASSIFICATION WITH MLP-MIXERS

Datasets and Experimental Setup: We work with rot90-CIFAR10 (CIFAR10 Krizhevsky et al. with
random 900 degree rotations), Galaxy10 Leung & Bovy, and EuroSAT Helber et al. (2018; 2019)
image datasets. We compare the non-equivariant MLP-Mixers with two of our rot90-equivariant MLP-
Mixers with T1 representations: GRepsMLP-Mixer-1 and GRepsMLP-Mixer-2. GRepsMLP-Mixer-2
simply adds non-parametric early fusion operations in the group dimension to the GRepsMLP-Mixer-
1 architecture. Each model has 8 mlp-mixer layers with patch size 16 for the Galaxy10 dataset and
a patch size of 4 otherwise. Each model is trained for 100 epochs with learning rate 10−3 with 5
warmup epochs. Additional details of the architectures and hyperparameters are provided in §. E.2.

Results and Observations: Tab. 1 shows that GRepsMLP-Mixer models clearly outperform non-
equivariant MLP-Mixer across all datasets. This indicates that even with minimal change to the
original architecture, we are able to extract the benefits of group equivariance. Note that the early
fusion layer in GRepsMLP-Mixer-2 helps outperform GRepsMLP-Mixer-1 in two datasets and is
competitive with GRepsMLP-Mixer-1 in general. Hence, fusing the features early on helps in general,
as is known in the literature (Joze et al., 2020).

5.3 SOLVING PDES WITH FNOS

Datasets and Experimental Setup: We consider two versions of the incompressible Navier-Stokes
equation from Helwig et al. (2023); Li et al. (2021). The first version is a Navier-Stokes equation
without any symmetry (NS dataset) in the data, and a second version that does have 90◦ rotation
symmetry (NS-SYM dataset). The general Navier-Stokes equation considered is written as,

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), (1)
∇ · u(x, t) = 0 and w(x, 0) = w0(x),
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Table 3: We find that GRepsGNN provides comparable test loss and forward time compared to
EGNN Satorras et al. (2021). Note that GRepsGNN is constructed by replacing the representation
in the GNN architecture from Gilmer et al. (2017) with T1 representations along with tensor fusion
from §. 4.1, whereas EGNN are specialized GNNs designed for E(n)-equivariant tasks.

Model Test Loss Forward Time

EGNN 0.0069 0.001762

GRepsGNN (ours) 0.0049 0.002018

(a) (b)

Figure 3: In (a), we analyze the performance of a rot90-equivariant CNN with 3 convolutional layers
and 5 fully connected layers on rot90-CIFAR10. Here, T2 representations are introduced in layer
i ∈ [1, . . . , 8]. We find that using T2 representations in the final layers of the CNN easily outperforms
non-equivariant CNNs as well as traditional equivariant representations with T1 representations. (b)
shows the T1 and T2 features obtained from one channel of a pretrained Resnet corresponding to
T1-equitune and T2-equitune, respectively.

where w(x, t) ∈ R denotes the vorticity at point (x, t), w0(x) is the initial velocity, u(x, t) ∈ R2

is the velocity at (x, t), and ν = 10−4 is the viscosity coefficient. f denotes an external force
affecting the dynamics of the fluid. The task here is to predict the vorticity at all points on the
domain x ∈ [0, 1]2 for some t, given the previous values of vorticity at all point on the domain for
previous T steps. As stated by Helwig et al. (2023), when f is invariant with respect to 90◦ rotations,
then the solution is equivariant, otherwise not. We use the same forces f as Helwig et al. (2023).
For non-invariant force, we use f(x1, x2) = 0.1(sin (2π(x1 + x2)) + cos (2π(x1 + x2))) and as
invariant force, we use finv = 0.1(cos (4πx1) + cos (4πx2)). We use T = 20 previous steps as
inputs for the NS dataset and T = 10 for NS-SYM and predict for t = T + 1, same as in Helwig
et al. (2023). We train our models with batch size 20 and learning rate 10−3 for 100 epochs.

Results and Observations: In Tab. 2, we find that both GRepsFNO-1 and GRepsFNO-2 (with early
fusion) clearly outperforms traditional FNOs on both datasets NS ans NS-SYM. Note that the NS
dataset do not have rot90 symmetries and yet GRepsFNOs outperforms FNOs showing that using
equivariant representations may be more expressive for tasks without any obvious symmetries as
was also noted in several works such as Cohen & Welling (2016a); Helwig et al. (2023). Moreover,
we find that the GRepsFNO models perform competitively with the more sophisticated, recently
proposed, G-FNOs. Thus, we gain benefits of equivariance with by using equivariant representations
and making minimal changes to the architecture.

5.4 MODELLING A DYNAMIC N-BODY SYSTEM WITH GNNS

Datasets and Experimental Setup: We use the N-body dynamics dataset from Satorras et al. (2021),
where the task is to predict the positions of N = 5 charged particles after T = 1000 steps given
their initial positions ∈ R3×5, velocities ∈ R3×5, and charges ∈ {−1, 1}5. We closely followed
Satorras et al. (2021) to generate the dataset: we used 3000 trajectories for train, 2000 trajectories
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Table 4: T2-equituning clearly outperforms T1-equituning Basu et al. (2023b). Table shows mean (std)
test accuracies for equituning (Basu et al., 2023b) using a pretrained Resnet with Rot90-CIFAR10
and Galaxy10. We find that our extension of equituning using T2 representations outperforms the
traditional version that only uses T1 representations.

Dataset \ Model Finetuning T1-Equituning T2-Equituning (ours)
Rot90-CIFAR10 82.7 (0.5) 88.1 (0.3) 89.6 (0.3)

Galaxy10 76.9 (3.2) 79.3 (1.6) 80.7 (4.0)

for validation, and 2000 for test. Both EGNN (Satorras et al., 2021) and GRepsGNN models have 4
layers, and were trained for 10000 epochs, same as in Satorras et al. (2021). Recall that GRepsGNN
was designed by replacing the scalar representations in MPNN with T0 + T1 representations and their
appropriate mixing.

Results and Observations: From Tab. 3, we note that GRepsGNN perform competitively to EGNN
on the N-body problem even though EGNN is a specialized architecture for the task. Moreover, it
has a comparable computational complexity to EGNN, and hence, it is computationally much more
efficient than many specialized group equivariant architectures that uses spherical harmonics for
E(n)-equivariance as noted from Tab. 6.

5.5 SECOND-ORDER IMAGE CLASSIFICATION

Datasets and Experimental Setup: We perform four sets of experiments to understand the impact
of T2 representations in the design of equivariant image classifiers. To that end, we first design a
rot90-equivariant CNN with 3 convolutional layers followed by 5 fully connected layers and train
it from scratch. We use T1 representations for the first i layers and use T2 representations for the
rest. The goal is to understand if T2 representations are more useful to the network than T1. This is
reminiscent of the use of bilinear layers by Lin et al. (2015), where outerproduct of the features in the
spatial dimension helps fine-grained classification. Here, the T2 features plays a similar role, but in
the group dimension and has been ignored in the literature of equivariant image classification to the
best of our knowledge.

Based on the observations made, we take the equituning algorithm of Basu et al. (2023b) that uses T1

representations and extend it to use T2 representations in the final layers. We use pretrained Resnet18
as our non-equivariant model and perform non-equivariant finetuning and equivariant finetuning
with T1 and T2 representations. We perform experiments on rot90-CIFAR10 and Galaxy10 datasets.
Additional experimental details are provided in §. E.

Results and Observations for Second-Order Equituning: From Fig. 3a, we observe that using T2

representations in the later layers of the same network significantly outperforms both non-equivariant
and well as equivariant T1-based CNNs. Finally, from Tab. 4, we find that on both rot90-CIFAR10
and Galaxy10, T2-equitune easily outperforms equitune, confirming that T2 features lead to powerful
equivariant networks.

6 CONCLUSION

We present GRepsNet, a lightweight architecture designed to provide equivariance to arbitrary matrix
groups like EMLPs. We find that GRepsNet gives competitive performance to EMLP on various
invariant and equivariant regression tasks taken from Finzi et al. (2021), while being much more
computationally affordable. Further illustrating the simplicity and generality of our design, we show
that using simple first-order tensor representations in GRepsNet achieves competitive performance
to specially designed equivariant networks for several different domains. We considered diverse
domains such as image classification, PDE solving and N -body dynamics prediction using mlp-
mixers, FNOs, and MPNNs, respectively, as the base model to design GRepsNet. Finally, going
beyond T1 representations, we show how second order tensors can be useful in image classification,
which to the best of our knowledge is the first use of higher order equivariant tensors for image
classification. We show that T2 representation when used in the features of a CNN, provides better
classification accuracies outperforming equitune.
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Reproducibility statement Our model design is described precisely in §. 4 and proof of its
equivariance is given in §. C. Experimental settings for all our experiments and additional details
on model design are detailed in §. 5, §. E, and §. D. We plan to make the code public after paper
acceptance.
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A ADDITIONAL DEFINITIONS

A group is a set G along with a binary operator ‘·’, such that the axioms of a group are satisfied:
a) closure: g1 · g2 ∈ G for all g1, g2 ∈ G, b) associativity: (g1 · g2) · g3 = g1 · (g2 · g3) for all
g1, g2, g3 ∈ G, c) identity: there exists e ∈ G such that e · g = g · e = g for any g ∈ G, d) inverse:
for every g ∈ G there exists g−1 ∈ G such that g · g−1 = g−1 · g = e.

For a given set X , a group action of a group G on X is defined via a map α : G×X 7→ X such that
α(e, x) = x for all x ∈ X , and α(g1, α(g2, x)) = α(g1 · g2, x) for all g1, g2 ∈ G and x ∈ X , where
e is the identity element of G. When clear from context, we write α(g, x) simply as gx

Given a function f : X 7→ Y , we call the function f to be G-equivariant if f(gx) = gf(x) for all
g ∈ G and x ∈ X .

B ADDITIONAL DETAILS ON RELATED WORKS

B.1 EMLPS AND UNIVERSAL SCALARS

EMLPs Given the input and output types for some matrix group, the corresponding tensor represen-
tations can be derived from the given base group representation ρ. Using these tensor representations,
one can solve for the space of linear equivariant functions directly from the obtained equivariant
constraints corresponding to the tensor representations. Finzi et al. (2021) propose an elegant solution
to solve these constraints by computing the basis of the linear equivariant space and construct an
equivariant MLP (EMLP) from the computed basis. Our work is closest to this work as we use the
same data representations as Finzi et al. (2021), but we propose a much simpler architecture for
equivariance to arbitrary matrix groups. Because of the simplicity of our approach, we are able to use
it for several larger datasets, which is in contrast to Finzi et al. (2021), where the experiments are
mostly restricted to synthetic experiments. Moreover, using these bases are in general known to be
computationally expensive (Fuchs et al., 2020).

Universal scalars Villar et al. (2021) propose a method to circumvent the need to explicitly use
these equivariant bases. The First Fundamental Theorem of Invariant Theory for the Euclidean
group O(d) states that “a function of vector inputs returns an invariant scalar if and only if it can be
written as a function only of the invariant scalar products of the input vectors” (Weyl, 1946). Taking
inspiration from this theorem and a related theorem for equivariant vector functions, Villar et al.
(2021) characterize the equivariant functions for various Euclidean and Non-Euclidean groups. They
further motivate the construction of neural networks taking the invariant scalar products of given
tensor data as inputs. However, the number of invariant scalars for N tensors in a data point grows
as N2, hence, making it an impractical method for most real life machine learning datasets. Hence,
their experiments are also mostly restricted to synthetic datasets like in EMLP.

Moreover, they show (Villar et al., 2021, §. 5) that even though the number of resulting scalars
grow proportional to N2, when the data is of dimension d, approximately N × (d+ 1) number of
these scalars is sufficient to construct the invariant function. But, it might not be trivial to find this
subset of scalar for real life datasets such as images. Hence, we propose to use deeper networks with
equivariant features that directly take the N tensors as input, instead of N2 scalar inputs, which also
circumvent the need to use equivariant bases. Additional related works and comparisons are in §. 2.
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C PROOF OF EQUIVARIANCE

Here we provide the proof of equivariance of a GRepsNet layer to matrix groups. Further, since
stacking equivariant layers preserve the equivariance of the resulting model, the equivariance of the
GRepsNet model follows directly. The argument is similar to the proof of equivariance of vector
neurons to the SO(3) group.

First consider regular representation. Note from §. D.2 and §. D.3 that the group dimension is treated
like a batch dimension in regular representations for discrete groups. Thus, any permutation in the
input naturally appears in the output, hence, producing equivariant output.

Now consider non-regular representations considered in the paper, e.g., matrix-based representa-
tions such as in §. 5.1. Assuming that the input to a GRepsNet layer consists of tensors of types
T0, T1, . . . , Tn, we first note that the output of the T0-layer in Fig. 1a is invariant, following which
we find that the Ti-layer outputs equivariant Ti tensors.

The output of the T0-layer is clearly invariant since all the inputs to the network are of type T0, which
are already invariant.

Now, we focus on a Ti-layer. Recall from §. 4.1 that a Ti layer consists only of linear networks
without any bias terms or pointwise non-linearities. Suppose the linear network is given by a stack
of linear matrices. We show that any such linear combination performed by a matrix preserves
equivariance, hence, stacking these matrices would still preserve equivariance of the output. Let the
input tensor of type Ti be X ∈ Rc×k, i.e., we have c tensors of type Ti and size of the representation
of each tensor equals to k. Consider a matrix W ∈ Rc′×c, which multiplied with X gives Y =

W × X ∈ Rc′×k, where Y is a linear combination of the c input tensors each of type Ti. Let
the group transformation on the tensor Ti be given by G ∈ Rk×k. Then the group transformed
input is given by X ′ = X × G ∈ Rc×k. The output of X ′ through the Ti-layer is given by
Y ′ = W ×X × G ∈ Rc′×k = (W ×X) × G = Y × G, where the second last equality follows
from the associativity property of matrix multiplication. Thus, each Ti-layer is equivariant.

D ADDITIONAL NETWORK DESIGN DETAILS

The practical design insights gained from Sec. 4.1 is described below:

1. Regular representation: For applications such as image classification or FNOs that usually
use regular representation for equivariance Cohen & Welling (2016a); Helwig et al. (2023),
we first convert the inputs to regular representations. Data represented using regular represen-
tations can be written to have a group dimension along with spatial and channel dimensions.
E.g., C4 (group of 90◦-rotations) T1 image can be represented as a tensor of dimensions
(4, C,H,W ), where 4 represents the size of the group dimension, and (C, H, W) represents
the channel and spatial dimensions. Similarly, the C4 T2 image can be represented as a
tensor of dimensions (16, C,H,W ), where 16 represents the size of the group dimension,
and (C, H, W) represents the channel and spatial dimensions. The implementation in this
case simply involves treating the group dimension in the same way as the batch dimension
and passing the data through arbitrary models such as CNN or MLP-Mixers as done in
equituning Basu et al. (2023b) for T1 representation. The use of regular representations is
applicable in the cases of a) image classification with MLP-mixers, b) PDE solving with
FNOs, c) equivariant image classification using CNNs.

2. Not regular representation: For tensor representations that are not regular representations,
such as a direct sum of irreducible representations, we segregate the tensors based on their
orders, then use non-linear layers on T0 tensors and linear layers for higher order tensors.
Moreover, the tensors are converted to different orders as described in Sec. 4.1 at each
layer. This method is used for: a) synthetic experiments for comparison with EMLPs and b)
predicting N-body dynamics with GNNs.

Now we provide additional details of the designed equivariant networks.
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(a) Simple T1 residual connections (b) T2-CNN design

Figure 4: (a) shows a simple way to add residual connections in GRepsNet. (b) shows the architecture
used for T2 CNNs and equituning, where the first k layers are made of T1-layers to extract features,
then the extracted features are converted in T2 tensors, which are then processed by T2-layers. Finally
T0 tensors, i.e., scalars are obtained as the final output.

D.1 ADDITIONAL DESIGN DETAILS FOR SYNTHETIC EXPERIMENTS RELATED TO EMLP

As mentioned in §. 4.3, we consider the three synthetic experiments from Finzi et al. (2021): O(5)-
invariant regression task, O(3)-equivariant regression task, and O(1, 3)-invariant task. Detailed
description of the network designs made for these experiments are described below.

O(5)-invariant model The input consists of two tensors of T1 type that is passed through the first
layer consisting of T0-layers and T1-layers similar to vector neurons shown in Fig. 1b, but our design
differs from vector neurons in that we use simple Euclidean norm to compute the T0 converted tensors
instead of dot product used by vector neurons. All Ti layers are made of MLPs. The number of output
tensors is equal to the channel size, and the channel sizes used for our experiments in discussed in
§. 5.1. This is followed by three similar layers consisting of T0-layers and T1-layers, all of which
takes as input T1 tensors, and output tensors of the same type. Additionally, these layers use residual
connections as shown in Fig. 4a. Finally, the T1 tensors are converted to T0 tensors by taking their
norms, which is passed through a final T0-layer that gives the output.

More precisely, in our experiments, we consider a model with 5 learnable linear layers with no bias
terms, where the dimensions of the layers are (2× 100, 100× 100, 100× 100, 100× 100, 100× 1).
The input of type 2T1 is of dimension (2 × 5). The input is first passed through the first layer of
dimension 2× 100 to obtain a hidden layer output of type 100T1. Then, this output is also converted
to type 100T0 by simply taking the norm. Thus, we have a tensor of type 100T0 + 100T1. Finally,
we convert this tensor of type 100(T0 + T1) to 100T1 by simply multiplying the 100T0 scalars with
the 100T1 vectors. This gives a tensor of type 100T1, which is the input for the next layer. We repeat
the same process of converting to T0 and back to T1 for the next two layers. For the final two layers,
we convert all the tensors to scalars of type 100T0 and process through the last two layers and use
ReLU activation function in between.

O(3)-equivariant model The input consists of 5 tensors each of type T0 + T1. The first layer of our
model converts them into tensors of type T0 + T1 + T2.

A detailed description of the first layer follows. Let the input and output of the first layer be XT0 , XT1

and HT0 , HT1 , HT2 , respectively. Here, XTi denotes tensors of type Ti and similarly for HTi .

To compute HT0
, we first convert XT1

to type T0 by taking its norm and concatenate it to XT0
. Let

us assign this concatenated value to HT0
. Then, the final value of HT0

is obtained by passing HT0

through two linear layers with a ReLU activation in between.

To compute HT1
, we simply perform W2(HT0

∗W1(XT1
)/∥W1(XT1

)∥), where W1,W2 are single
linear layers with no bias terms.

To compute HT2 , we first convert XT0 to type T2 by multiplying it with an identity matrix of
dimension of XT2 . Let us call this HT20 . Then, we convert XT1 to type T2 by taking the outer product
with itself. Let us call this HT21 . We concatenate HT20 , HT21 , and XT2 , and call this HT2 . Then, we
update HT2

as follows. We simply perform W2(HT0
∗W1(HT2

)/∥W1(HT2
)∥), where W1,W2 are

single-layered linear layers with no bias terms.

The number of tensors obtained is equal to the channel size used for the experiments discussed in
§. 5.1. It is followed by two layers of input and output types T0 + T1 + T2.
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A detailed description of the next layers follows. Let the input and output of the first layer be
XT0

, XT1
, XT2

and HT0
, HT1

, HT2
, respectively. Here, XTi

denotes tensors of type Ti and similarly
for HTi

.

To compute HT0 , we first convert XT1 and XT2 to type T0 by taking its norm and concatenate it
to XT0 . Let us assign this concatenated value to HT0 . Then, the final value of HT0 is obtained by
passing HT0 through two linear layers with a ReLU activation in between.

The rest of the computations for obtaining HT1
and HT2

are identical to the first layer,
which is described below for completeness. To compute HT1

, we simply perform W2(HT0
∗

W1(XT1)/∥W1(XT1)∥), where W1,W2 are single linear layers with no bias terms.

To compute HT2
, we first convert XT0

to type T2 by multiplying it with an identity matrix of
dimension of XT2

. Let us call this HT20
. Then, we convert XT1

to type T2 by taking the outer product
with itself. Let us call this HT21

. We concatenate HT20
, HT21

, and XT2
, and call this HT2

. Then, we
update HT2

as follows. We simply perform W2(HT0
∗W1(HT2

)/∥W1(HT2
)∥), where W1,W2 are

single-layered linear layers with no bias terms.

These layers also use residual connections similar to the ones shown in Fig. 4a. Then, the T2 tensors
of the obtained output is passed through another T2 layer, which gives the final output.

O(1, 3)-invariant model This design is identical to the design of the O(5)-invariant network above
except for a few changes: a) the invariant tensors is obtained using Minkowski norm instead of the
Euclidean norm, b) the number of channels are decided by the number of channels chosen for this
specific experiment in §. 5.1.

D.2 ADDITIONAL DESIGN DETAILS FOR IMAGE CLASSIFICATION USING MLP-MIXER
MODELS

Our MLP-mixers are taken from 1 contain eight layers, each containing two smaller layers: a spatial
MLP-mixer layer with hidden dimension 64 and a channel MLP-mixer layer with hidden dimension
512. We provide two designs of GRepsMLP-mixers: GRepsMLP-mixer-1 and GRepsMLP-mixer-2,
where GRepsMLP-mixer-1 always treats the group dimension like a batch dimension, whereas
GRepsMLP-mixer-2 additionally uses a non-parametric fusion amongst the features in the group
dimension. Here, we simply use a layernorm along the group dimension without any learnable
parameters as our fusion layer.

We now describe the contruction of T1 tensors from input images.

Representations for image classification experiments using MLP-mixers Given an image

x ∈ R2d×2d, we can write it as x =

[
x1 x2

x4 x3

]
, where xi ∈ Rd×d for i ∈ {1, . . . , 4}. Let

G = {e, g, g2, g3} represent the group of 90◦ rotations. Define the group action of G on x naturally,

i.e. gx =

[
gx4 gx1

gx2 gx3

]
.

We use the following G representation of x as (x)G =

[
x1 g−1x2

g−3x4 g−2x3

]
. Each of the four entries

in the matrix (x)G are treated as separate channels with no data flowing between except when
intra-mixers are used. Further all the channels share the same parameters, say M. Then the output

of M would be M((x)G) =

[
M(x1) M(g−1x2)

M(g−3x4) M(g−2x3)

]
. We now verify the equivariance obtained

using this representation. First, note (gx)G =

[
g−3x4 x1

g−2x3 g−1x2

]
. Then, the output is M((gx)G) =[

M(g−3x4) M(x1)
M(g−2x3) M(g−1x2)

]
. Clearly, M((gx)G) is a permutation of M((x)G). To obtain invariance,

we simply average the four channels. This method is computationally more efficient than using
four transformed images as input as done in Basu et al. (2023b). We find this simple and efficient
representation is still able to gain the benefits of group equivariance.

1https://github.com/omihub777/MLP-Mixer-CIFAR
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D.3 ADDITIONAL DESIGN DETAILS FOR PDE SOLVING USING FNOS

Here we describe the construction of the T1 representation used. We directly use the T1 representation
from equitune (Basu et al., 2023b). We do not use the same T1 representations used for MLP-
mixers since the group dimension is treated like the batch dimension, which effectively reduces the
image dimension. This affects the available frequencies in the Fourier domains of the inputs to the
FNOs. Thus, we choose the naive T1 representations of equitune here that naturally preserves all the
frequencies since the effective image dimensions remain the same.

We provide two designs of GRepsFNO, similar to GRepsMLP-mixers: GRepsFNO-1 and GRepsFNO-
2, where GRepsFNO-1 always treats the group dimension like a batch dimension, whereas
GRepsFNO-2 additionally uses a non-parametric fusion amongst the features in the group dimension.
Here, we simply divide the features in the group dimension by the standard deviation across that
dimension. We avoid using layernorm like in GRepsMLP-mixers here since it requires implementa-
tion of layernorm in the complex Fourier domain. Instead, the choice of dividing by the standard
deviation is a much simpler alternative serving the same purpose.

Representations for solving PDEs using FNOs For FNOs, we use the traditional group repre-

sentations as used in Basu et al. (2023b), i.e. (x)G =

[
x gx
g3x g2x

]
. The reason for our choice here

are as follows: a) for FNOs, we preserve all the frequency modes by using transformed inputs, b)
for CNNs, we consider the setup of equituning and extend it to second-order representations, hence,
using the representation here gives a more direct comparison.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 COMPARISON WITH EMLPS

Here we provide the learning rate and model sizes used for the experiments on comparison with
EMLPs in §. 5.1.

In the O(5)-invariant regression task, for MLPs and EMLPs, we use a learning rate of 3× 10−3 and
channel size 384. Whereas for GRepsNets, we use a learning rate of 10−3 and channel size 100.

For the O(3)-equivariant task, we use learning rate 10−3 and channel size 384 for all the models.

For the O(1, 3)-invariant regression task, we use a learning rate of 3 × 10−3 for all the models.
Further, we use a channel size of 384 for MLPs and EMLPs, whereas for GRepsNets, a channel size
of 100 was chosen as it gives better result.

E.2 IMAGE CLASSIFICATION WITH MLP-MIXERS

In each of the models, every layer further consists of two smaller layers: a) one that applies a
layernorm followed by two-layered MLP on the channel dimension, and b) another that applies
layernorm followed by two-layered MLP on the spatial dimension, as done in traditional MLP-
Mixers (Tolstikhin et al., 2021). For GRepsMLP-Mixer-1, we simply replace the traditional scalar
representations of MLP-Mixers by T1 representations described in §. D.2. For GRepsMLP-Mixer-2,
we additionally add early fusion layer with no additional parameters. The early fusion layer is
constructed as follows: the four different components of the T1 representation for the rot90 group is
fused using a simple layernorm applied along this group dimension of the T1 representation of size
four.

For training our non-equivariant and equivariant MLP-Mixer models, we closely follow the training
setup of 2 and train each of the models for 100 epochs. In particular, we train each model with batch
size 128 for 100 epochs with learning rate 10−3 and use 5 warmup epochs with minimum learning
rate 10−6, use cosine scheduler (Loshchilov & Hutter, 2017) and Adam optimizer (Kingma & Ba,
2015) with (β1, β2) = (0.9, 0.99), weight decay 5× 10−5.

2https://github.com/omihub777/MLP-Mixer-CIFAR
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E.3 SECOND-ORDER IMAGE CLASSIFICATION

Training CNNs from scratch: The CNN used for training from scratch consists of 3 convolutional
layers each with kernel size 5, and output channel sizes 6, 16, and 120, respectively. Following the
convolutional layers are 5 fully connected layers, each consisting of features of dimension 120. For
training from scratch, we train each model for 10 epochs, using stochastic gradient descent with
learning rate 10−3, momentum 0.9. Further, we also use a stepLR learning rate scheduler with γ 0.1,
step size 7, which reduces the learning rate by a factor of γ after every step size number of epochs.
The T2 layers are computed by simply taking an outer product of the T1 features at the desired layer
where T2 representation is introduced, following which, we simply use the same architecture as for
T1 representation. It is easy to verify the equivariance is maintained for both T1 and T2 for regular
representations.

Second-Order Finetuning: For finetuning the pretrained Resnet18, we use 5 epochs, using stochastic
gradient descent with learning rate 10−3, momentum 0.9. For equivariant finetuning with T2 repre-
sentations, we first extract T1 featured from the pretrained model same as done for equituning (Basu
et al., 2023b), following which we convert it to T2 representations using a simple outer product.
Once the desired features are obtained, we pass it through two fully connected layers with a ReLU
activation function in between to obtain the final classification output.

Comparison to GCNNs and E(2)-CNNs: For each of the models, we use 3 convolutional layers
(either naive convolutions or group convolutions) followed by 5 fully connected layers. For all
variants of GRepsCNNs, the convolutional layers consist of kernel sizes 5, channel sizes 6, 16,
and 120. The linear layers are all of dimension 120 × 120 with ReLU activations in between and
residual connections. All GRepsCNNs consist of 153k parameters. For the GCNNs, we reduce
the channel sizes to 3, 10, 100, and the linear layers to be of dimension 100 × 100 to adjust the
number of parameters, which amounts to 175k. For E(2)-CNNs, we keep the channel sizes the
same as GRepsCNNs since we found the performance drop when reducing channel sizes. Thus, the
resulting models for C8-E(2)CNNs and C16-E(2)CNNs have 280k and 458k params, respectively.
The hyperparameters are kept the same as for training the CNNs from scratch.

We also provide comparisons with baseline architectures such as GCNNs Cohen & Welling (2016a)
and E(2)-CNNs Weiler & Cesa (2019). First, for comparison with GCNNs, we take the same CNN
architecture from above with 3 convolutional layers followed by 5 fully connected layers. We design
two GRepsCNN architectures: a) T1-GRepsCNN, where each layer has a T1 representation, and b)
T2-GRepsCNN, where all the layers except the last layer use T1 representation and the last layer uses
T2 representation. Similarly, we design two GCNN architectures, T1-GCNN and T2-GCNN. Both
architectures consist of 3 group convolutions followed by 5 layers of fully connected layers. Here the
group convolutions correspond to the C4 group of 90-degree rotations. We call the original GCNN
proposed by Cohen & Welling (2016a) as T1-GCNN since all the features are T1. Additionally, we
introduce a new variant of GCNN that we call T2-GCNN, which uses the same GCNN architecture,
except that it uses a T2 feature in the final layer. These models are compared on the Ro90-CIFAR10
dataset.

For comparison with E(2)-CNNs, we perform a similar comparison as that with GCNNs. Here
we work with Rot-CIFAR10 dataset, where the CIFAR10 dataset is rotated by random angles in
(−180◦, 180◦). This is because E(2)-CNNs are equivariant to larger groups than that of 90-degree
rotations, so, we want to test the model’s capabilities for these larger group symmetries. Here we build
four variants of GRepsCNNs: C8-T1-GRepsCNN, C8-T2-GRepsCNN, C16-T1-GRepsCNN, and
C16-T2-GRepsCNN. Here CN for N ∈ {8, 16} corresponds to the groups of 360

N -degree rotations.
All the GRepsCNN consist of 3 layers of convolutions followed by 5 fully connected layers. The
layer representations for CN -T1-GRepsCNN are all T1 tensors of the CN group. Whereas for
CN -T1-GRepsCNN, all layer representations except the last layer are T1 representations and the
last layer uses T2 representations. The input representation of type T1 for all the GRepsCNNs here
are directly constructed from the E(2)-CNN paper Weiler & Cesa (2019) and the T2 representations
are obtained by simple outer product of the T1 representation in the group dimension. Similar to
GCNNs, we construct two types of E(2)-CNNs, of types T1 and T2, for each group CN , N ∈ {8, 16}.
CN -T1-E(2)-CNN is the traditional E(2)-CNN for the CN group, which has T1 representation at
each layer. CN -T2-E(2)-CNN has T1 representations for each layer except for the last layer that uses
a T2 representation.
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Table 5: EMLP is computationally extremely expensive compared to MLPs and GRepsNet. Train
time per epoch (in seconds) for models with the same channel size of 384 for datasets of size 1000.
GRepsNets provide the same equivariance as EMLPs but at a much affordable compute cost that is
comparable to MLPs. Thus, EMLPs, despite their excellent performance on equivariant tasks, is not
scalable to larger datasets of practical importance.

Model \ Task O(5)-invariant O(3)-equivariant SO(1, 3)-invariant

MLP 0.0083 0.0087 0.008

GRepsNet 0.013 0.084 0.049

EMLP 3.00 3.19 2.86

(a) (b) (c)

Figure 5: Times per epoch (in seconds) for different MLPs, GRepsNets, and EMLPs for varying
dataset sizes. Note that MLPs and GRepsNets have comparable time per epoch, whereas EMLPs take
huge amount of time. Hence, EMLPs, despite its excellent performance on equivariant tasks, is not
scalable to larger datasets of practical importance.

F ADDITIONAL RESULTS

Comparison of training time with EMLP Fig. 5 compares the training times takes by EMLPs,
GRepsNets, and MLPs per epoch for varying dataset sizes on the three datasets considered in §. 5.1.
Results show that increasing the size of the train data significantly increases the training time for
EMLPs, whereas for MLPs and GRespNets, the increase in training time, although linear, is negligible.
It shows that GRepsNet are more suitable for equivariant tasks for larger datasets.

Comparison of time for forward passes in GNN models We present the results of forward pass
times for various equivariant and non-equivariant graph neural network models in Tab. 6 taken
directly from Satorras et al. (2021). It shows that networks constructed from equivariant bases such
as tensor field networks (TFNs) and SE(3)-equivariant transformers can be significantly slower than
non-equivariant graph neural networks.

Table 6: We know from previous results that EGNN is much faster than other equivariant networks
such as SE (3) Transformers and outperforms them in test loss performance. Results taken from
Satorras et al. (2021).

Model Test Loss Forward Time
Linear 0.0819 0.0001

SE (3) Transformer 0.0244 0.1346
Tensor Field Network 0.0155 0.0343
Graph Neural Network 0.0107 0.0032
Radial Field Network 0.0104 0.0039

EGNN 0.0071 0.0062
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Table 7: GRpesFNOs are much cheaper than G-FNOs while giving competitive performance. Table
shows mean forward time (in seconds) per epoch over 5 epochs for FNO, GRepsFNO-1, GRepsFNO-
2, and G-FNO models on Navier-Stokes and Navier-Stokes-Symmetric datasets as described in
Sec. 5.3.

Dataset \ Model FNO GRepsFNO-1 (ours) GRepsFNO-2 (ours) G-FNO

Navier-Stokes 49.8 53.9 70.3 109.9

Navier-Stokes-Symmetric 19.2 20.8 23.2 43.8

Table 9: T2-GCNN outperforms the traditional GCNN. T2-GRepsCNN also performs competitively,
showing the importance of use of higher order tensors. Table shows mean (std) of classification
accuracies on Rot90-CIFAR10 dataset for T1-GRepsCNN, T2-GRepsCNN, T1-GCNN and T2-GCNN
for 10 epochs. Results are over 3 seeds.

Dataset \ Model CNN T1-GRepsCNN T2-GRepsCNN T1-GCNN T2-GCNN

Rot90-CIFAR10 46.6 (0.8) 53.3 (1.4) 57.9 (0.6) 56.7 (0.5) 57.9 (0.7)

Comparison of time for forward passed in FNO models In Tab. 7, we provide the forward times
for the various FNO models considered in Sec. 5.3 for Navier-Stokes and Navier-Stokes-Symmetric
datasets. We find that G-FNO takes significantly more time than naive FNOs. Whereas GRepsFNO-1s
take almost the same time as FNOs and GRepsFNO-2 takes a little more time than GRepsFNO-1.
Overall, from Tab. 2 and 7, we conclude that GRepsFNO models can provide a significant advantage
over FNOs with little computational overhead.

Results and Observations for Comparison to GCNN and E(2)-CNNs: From Tab. 9 and 10, we
make two key observations: a) T2-GRepsCNNs are competitive and often outperform the baselines
GCNNs and E(2)-CNNs, b) T2 features, when added to the baselines to obtain T2-GCNNs and CN -
T2-E(2)-CNNs, they outperform their original outperform. This shows the importance of higher-order
tensors in image classification. Thus, we not only provide competitive performance to baselines using
our models, but also improve the results from these baselines by adding T2 features in them.

G ON THE UNIVERSALITY OF THE GREPSNET ARCHITECTURE

We provide simple constructive proofs showing the universality properties of the GRepsNet architec-
ture.

We first show that GRepsNet can approximate arbitrary invariant scalar functions of vectors from
O(d) and O(1, d) groups. Then, we extend the proof for vector-valued functions for the same groups.

First, recall the Fundamental Theorem of Invariant Theory for O(d) as described in Lemma .1.
Lemma 1 (Weyl (1946)). A function of vector inputs returns an invariant scalar if and only if it can
be written as a function only of the invariant scalar products of the input vectors. That is, given input
vectors (X1, X2, . . . , Xn), Xi ∈ Rd, any invariant scalar function h : Rd×n 7→ R can be written as

h(X1, X2, . . . , Xn) = f(⟨Xi, Xj⟩ni,j=1), (2)

where ⟨Xi, Xj⟩ denotes the inner product between Xi and Xj , and f is an arbitrary function.

As mentioned in Villar et al. (2021), a similar result holds for the O(1, d) group. In Thm. 1, we show
that GRepsNet can approximate arbitrary invariant scalar functions for O(d) or O(1, d) groups.
Theorem 1. For given T1 inputs (X1, X2, . . . , Xn) corresponding to O(d) or O(1, d) group, Xi ∈
Rd, any invariant scalar function h : Rd×n 7→ R, there exists a GRepsNet model that can approximate
h.

Proof. Let the tensors of type i at layer l be written as H l
i . Given input (X1, X2, . . . , Xn) ∈ Rd

of type T1, we construct a GRepsNet architecture that can approximate h by taking help from the
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Table 10: T2-E(2)CNN outperforms the traditional E(2)CNN. T2-GRepsCNN also perform competi-
tively, showing the importance of use of higher order tensors. Table shows mean (std) of classification
accuracies on Rot-CIFAR10 dataset (CIFAR10 with random rotations in (-180◦, +180◦]) for various
GRepsCNNs and E(2)-CNNs with different group equivariances, and tensor orders. All models are
trained for 10 epochs and results are over 3 fixed seeds.

Model Equivariance Tensor Orders Test Acc.

CNN – – 43.2 (0.2)

C8-T1-GRepsCNN C8 (T1) 48.1 (1.2)
C8-T2-GRepsCNN C8 (T1, T2) 53.1 (0.7)
C8-T1-E(2)CNN C8 (T1) 51.7 (1.8)
C8-T2-E(2)CNN C8 (T1, T2) 54.3 (1.2)

C16-T1-GRepsCNN C16 (T1) 48.4 (1.4)
C16-T2-GRepsCNN C16 (T1, T2) 53.6 (0.7)
C16-T1-E(2)CNN C16 (T1) 50.6 (1.6)
C16-T2-E(2)CNN C16 (T1, T2) 53.7 (1.2)

approximation properties of a multi-layered perceptron Hornik et al. (1989). Let the first layer
consist only of T1-layers, i.e., linear layers without any bias terms such that the obtained hidden layer
H1

1 is of dimension Rd×(n2+n) and consists of the T1 tensors Xi +Xj for all i, j ∈ {1, . . . , n} and
Xi for all i ∈ {1, . . . , n}. This can be obtained by a simple linear combination. Now, construct the
second layer by first taking the norm of all the T1 tensors, which gives ∥Xi∥+ ∥Xj∥+2× ⟨Xi, Xj⟩
for all i, j ∈ {1, . . . , n} and ∥Xi∥ for all i ∈ {1, . . . , n}. Then, using a simple linear combination
of the converted T0 tensors give ⟨Xi, Xj⟩ for all i, j ∈ {1, . . . , n}. Finally, passing ⟨Xi, Xj⟩ for all
i, j ∈ {1, . . . , n} through an MLP gives H2

0 . Now, from the universal approximation capability of
MLPs, it can approximate f from equation 3. Thus, we obtain the function h from Lem. 1.

Now, recall from Villar et al. (2021), a statement similar to Lem. 1, but for vector functions.
Lemma 2 (Villar et al. (2021)). A function of vector inputs returns an equivariant vector if and only
if it can be written as a linear combination of invariant scalar functions times the input vectors. That
is, given input vectors (X1, X2, . . . , Xn), Xi ∈ Rd, any equivariant vector function h : Rd×n 7→ Rd

can be written as

h(X1, X2, . . . , Xn) =

n∑
t=1

ft(⟨Xi, Xj⟩ni,j=1)Xt, (3)

where ⟨Xi, Xj⟩ denotes the inner product between Xi and Xj , and fts are some arbitrary functions.

Now, in Thm. 2 we prove the universal approximation capability of GRepsNet architecture for vector
functions.
Theorem 2. For given T1 inputs (X1, X2, . . . , Xn) corresponding to O(d) or O(1, d) group, Xi ∈
Rd, any equivariant vector function h : Rd×n 7→ Rd, there exists a GRepsNet model that can
approximate h.

Proof. The proof closely follows the proof for Thm. 1. Let the tensors of type i at layer l be written as
H l

i . Given input (X1, X2, . . . , Xn) ∈ Rd of type T1, we construct a GRepsNet architecture that can
approximate h by taking help from the approximation properties of a multi-layered perceptron Hornik
et al. (1989). Let the first layer consist only of T1-layers, i.e., linear layers without any bias terms such
that the obtained hidden layer H1

1 is of dimension Rd×(n2+n) and consists of the T1 tensors Xi +Xj

for all i, j ∈ {1, . . . , n} and Xi for all i ∈ {1, . . . , n}. This can be obtained by a simple linear
combination. Let the second layer consist of both a T0 layer and a T1 layer. Let the T0 layer output,
H1

0 , be ⟨Xi, Xj⟩ for all i, j ∈ {1, . . . , n} and ∥Xi∥ for i ∈ {1, . . . , n} in a similar way as done in
the proof for Thm. 1. And let the T1 layer output, H1

1 , be Xi for i ∈ {1, . . . , n}. Again, let the
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third layer also consist of a T0 layer and a T1 layer. Let the T0 layer consist of MLPs approximating
the output ∥Xt∥ × ft(⟨Xi, Xj⟩ni,j=1) for t ∈ {1, . . . , n}. Denote ∥Xt∥ × ft(⟨Xi, Xj⟩ni,j=1) as H3,t

0 .
Then, let the T1 layer consist of first mixing the scalars H3,t

0 with Xt as described in Sec. 4.1 as

H3,t
1 = Xt ×

H3,t
0

∥Xt∥
,

where H3,t
1 for t ∈ {1, . . . , n} represent the output of the T1 layer of the third layer. Note that from

the universal approximation properties of MLPs Hornik et al. (1989), we get that H3,t
1 approximates

Xt × ft(⟨Xi, Xj⟩ni,j=1). Finally, the fourth layer consists of a single T1 layer that sums the vectors
H3,t

1 for t ∈ {1, . . . , n}, which combined with Lem. 2 concludes the proof.

Thus, we find that a simple architecture can universally approximate invariant scalar and equivariant
vector functions for the O(d) or O(1, d) groups. This is reminiscent of the universality property
of a single-layered MLP. However, in practice, deep neural networks are known to have better
representational capabilities than a single-layered MLP. In a similar way, in practice, we design deep
equivariant networks using the GRepsNet architecture that provides good performance on a wide
range of domains.
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