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Abstract

Over the last ten years, persistent homology has been increasingly used to analyze the
structure and shape of various types of data, including time series. This article is a review
of persistent homology applied to (univariate or multivariate) time series data. We review
84 articles that apply methods involving persistent homology to time series data, published
between 2014 and 2025 in several domains of application, such as biomedicine, industry,
and economics. We introduce the main concepts of persistent homology, give an overview
of the application fields and tasks, and propose a general framework to describe the main
characteristics of all the methods.

1 Introduction

Topological data analysis (TDA) is a research area that uses tools from algebraic topology to study the
shape of data. More precisely, TDA assumes the existence of an underlying set (manifold, continuous
function) from which our data are a finite sample, and seeks to recover information about its topology by
structuring the data. Persistent homology (Edelsbrunner & Harer, 2010; Boissonnat et al., 2018) is a popular
tool of TDA that has had many applications (Chazal & Michel, 2021; Skaf & Laubenbacher, 2022) in the
last decades. The idea of persistent homology is to build a multi-scale structure on data by constructing
a sequence of simplicial complexes (a filtration) and to study features (homological classes) that persist
through many scales. Theoretical results, such as stability theorems (Chazal et al., 2014), guarantee that
persistent homology is relevant to handle noisy data.

Recently, an increasing number of studies have used persistent homology to analyze time series in several do-
mains of application, such as biomedicine, industry, and economics. Existing reviews on persistent homology
for time series (Seversky et al., 2016; Gholizadeh & Zadrozny, 2018; Ravishanker & Chen, 2019; Perea, 2019;
Xu et al., 2021; Hernández-Lemus et al., 2024) either focus on one application (cardiology, neuroscience),
do not mention certain important articles and methods, or do not describe a general framework to identify
different types of methods. Table 1 sums up the characteristics of existing reviews and ours. The “Type of
methods" column indicates if a review deals with univariate time series only or univariate and multivariate,
and if the reviewed methods focus on a specific type of data transformation (delay embedding, graph, or
other). The “Framework" column indicates if the review defines a general framework to decompose methods
into several steps. The “Number of references" column refers to the number of cited articles that directly
apply TDA to time series: articles introducing the fundamentals of TDA or applying other methods to time
series are not counted.

This article reviews studies applying persistent homology to the analysis of time series. While not exhaustive,
our aim is to summarize the main trends in the field and provide readers with a clear and comprehensive
overview of the key ideas and methods developed to date. Note that topological methods other than persistent
homology are also labeled as TDA, such as Mapper (Singh et al., 2007), UMAP (McInnes et al., 2018),
simplicial complex signal processing (Barbarossa & Sardellitti, 2020), or sheaves-based approaches (Robinson,
2014). The scope of this review is limited to persistent homology.

The paper is organized as follows. Section 2 gives an overview of the application fields of persistent homology
for time series. Section 3 introduces the main mathematical notions evoked in the rest of the paper. In Section
4, we propose a general framework to describe the main characteristics of the approaches in the 84 selected
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Review Year Type of data Type of methods Framework Number of
references

Seversky et al. (2016) 2016 All Delay embedding
(univariate and

multivariate data)

Yes 8

Gholizadeh & Zadrozny (2018) 2018 All Delay embedding
and graph

(univariate and
multivariate data)

No 22

Ravishanker & Chen (2019) 2019 All All types for
univariate data

Yes 12

Perea (2019) 2019 All Delay embedding
(univariate and

multivariate data)

No 15

Xu et al. (2021) 2021 EEG All Yes 12
Hernández-Lemus et al. (2024) 2024 Cardiovascular All Yes 12

Ours 2024 All All Yes 84

Table 1: Comparison of existing literature reviews

articles, which we organize thematically. Finally, in Section 5, we discuss some gaps in the literature and
outline perspectives for future research.

2 Application fields and tasks

Persistent homology has been applied to time series from many fields. Within the 84 selected papers, the
vast majority have biomedical applications. In particular, cardiology and neurology are by far the most
represented applications, and neurophysiology (the study of neurological diseases through physiological time
series such as motion sensor data). This can be explained by the fact that biomedical signals are often
very structured (periodicity for ECGs and motion signals, correlations for EEGs), which is suitable for
TDA-based methods (more concrete details will be provided in section 4), and by the fact that biomedicine
is an important field of research in data analysis in general. For example, persistent homology was used
to improve ECG classification for arrythmia detection (Umeda, 2017; Liu et al., 2023) or atrial fibrillation
detection and classification (Safarbali & Golpayegani, 2019; Jiang et al., 2022), and to define visualization
methods based on fMRI data that enabled researcher to better understand changes in brain connectivity
during motor learning (Stolz et al., 2017) or after consuming psychedelic mushrooms (Petri et al., 2014).

Another important field is dynamical systems, often with industrial applications such as chatter detection in
turning processes (Khasawneh & Munch, 2016; Khasawneh et al., 2018; Yesilli et al., 2022). This is mainly
because data from this field are also very structured, with different regimes such as regular behavior and
chaotic behavior. As explained in Section 4.3, delay embeddings are a popular tool to study dynamical
systems, and persistent homology can be useful to study their topology.

Persistent homology has also been applied to detect periodicity in video and motion capture data, classify
or identify musical signals (Sanderson et al., 2017; Reise et al., 2024), detect events or change in financial
time series (Ueda et al., 2022; Gidea, 2017; Gidea & Katz, 2018; Gidea et al., 2020), or classify/cluster time
series from biology (Corcoran & Jones, 2017), ecology (Chen & Ravishanker, 2023) and geography (Chen
et al., 2019). Persistent homology is also a subject of mathematical study (Perea & Harer, 2015; Perea, 2016;
Gakhar & Perea, 2024; Chazal et al., 2025).

The field of each article can be found in Tables 2, 3, 4.

Persistent homology was used to create new algorithms for generic tasks in time series analysis, such as change
point detection (Ueda et al., 2022; Fernández et al., 2023), anomaly detection (Bois et al., 2024a; Chazal
et al., 2024), motif detection (Germain et al., 2024), time series forecasting (Zeng et al., 2021), periodicity
quantification (Dłotko et al., 2019) or zero-crossing detection (Tanweer et al., 2024). In concrete applications,
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Figure 1: A filtration and the corresponding persistence diagram. (a): steps 0 to 6 (add vertices 0, 1, 2 and
3, edges 4 and 5, and edge 6). (b): steps 7 and 8 (add edges 7 and 8). (c): steps 9, 10, 11 (add triangle 9
and edges 10 and 11). (d): Persistence diagram in dimension 0 (red) and 1 (blue).

other common machine learning or data analysis tasks are performed on features from persistent homology,
such as time series classification using machine learning classifiers or deep learning, statistical analysis, or
data visualization. Note that most methods are generic and can be applied to other fields than the one they
were introduced in.

3 Background on persistent homology

Here, we introduce mathematical objects from persistent homology. We refer to Edelsbrunner & Harer
(2010); Boissonnat et al. (2018) for a more complete introduction and to Chazal et al. (2014; 2016) for more
theoretical aspects.

3.1 Simplicial complexes and filtrations

Definition 1 (Simplicial complexes). A k-simplex on a set X ⊂ Rd is an unordered tuple σ = [x0, ..., xk] of
k + 1 distinct elements of X. The elements x0, ..., xk are called the vertices of σ. If each vertex of a simplex
ρ is also a vertex of σ, then ρ is called a face of σ. A simplicial complex K is a set of simplices such that
any face of a simplex of K is a simplex of K.

Definition 2 (Filtration). A filtration of a simplicial complex K (or filtered simplicial complex) is a family
of simplicial complexes (Kα)α≥0 such that K0 = ∅, α < α′ ⇒ Kα ⊂ Kα′ and

⋃
α≥0 Kα = K.

The filtration value of a simplex σ ∈ K is the lowest α such that σ ∈ Kα. When the number of simplices
is finite, we will only use a finite set of indices αi such that ∅ = Kα0 ⊂ Kα1 ⊂ · · · ⊂ Kαm = K and
αi ≤ α < αi+1 ⇒ Kαi = Kα. Without loss of generality, we can also assume that for all i there exists a
simplex σi+1 ∈ K such that Kαi+1 = Kαi ∪ {σi+1}. See Figure 1 (a-c) for an example of filtration, where
vertices are added at steps 0, 1, 2, 3 and 6, edges are added at steps 4, 5, 7, 8 10 and 11, and a triangle is
added at step 9. In the remainder of this section, we discuss several key filtrations applicable to different
types of data structures.
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Sublevel set filtration. The most direct way to apply persistent homology to time series, as further
described in Section 4.2, is to filter the series (or a portion of it) using its sublevel sets. To formalize this
idea, let f : X → R be a real-valued function defined on some set X ⊂ Rd. Inspired by Morse theory
(Milnor, 1963), a natural way of constructing a filtration on X is to consider the sublevel sets f−1(] − ∞, α])
for increasing values of α ∈ R.
Definition 3. The d-dimensional simplicial complex Kα is then defined by:

σ ∈ Kα ⇐⇒ ∀v ∈ σ, v ∈ f−1(] − ∞, α]).

The collection (Kα)α∈R is called the sublevel sets filtration associated to f .

Note that if instead of the sublevel sets we are interested in the topology of the superlevel sets, we can define
a filtration similarly by simply replacing f−1(] − ∞, α]) by f−1(]α, +∞]).

Čech and Rips filtrations. For point cloud data, as is commonly obtained from a time series through
delay embedding (see Section 4.3), two standard filtrations are the Čech and Vietoris-Rips (or Rips, VR)
filtrations. In what follows, we let X = {x1, . . . , xn} be a point cloud and Bα(x) be the open ball of radius
α and centered at x.
Definition 4. The Čech complex Cech(X, α) is defined by:

[xi1 , . . . , xik
] ∈ Cech(X, α) ⇐⇒

k⋂
j=1

Bα(xij ) ̸= ∅.

The nerve theorem, a result in algebraic topology, implies that if the balls Bα(x) have empty or contractible
(homotopy equivalent to a point) intersections, then Cech(X, α) is homotopy equivalent to

⋃
x Bα(x). This

means that the simplicial complex carries the topology of the cover of X by open balls. The nerve theorem
is also used to prove the theorem from Niyogi et al. (2008) which, as mentioned above, guarantees that
there exists a scale such that Cech(X, α) is homotopy equivalent to the topological space of which X is a
sampling.

Definition 5. The Rips complex Rips(X, α) is defined by:

[xi1 , . . . , xik
] ∈ Rips(X, α) ⇐⇒ ∀j, l, ||xij

− xil
|| ≤ α

Figure 2 shows a cover of a point cloud by a union of balls with the same radius, and the corresponding
Čech and Rips complexes. Notice that the three lower balls have an empty intersection, but each pair of
balls intersects, so the triangle in the Rips complex is not present in the Čech complex.

The Rips filtration and the Čech filtration are obtained as explained above from the nested families of
simplicial complexes. The Rips filtration is easier to compute than the Čech filtration because only distances
are needed instead of intersections of balls.

Clique filtration. Our final example deals with network data, represented by a (weighted) graph, as often
encountered in analyses of the covariance structure of multivariate time series (see Section 4.4). In this
context, an important filtration is the clique filtration. Let G = (V, E, w) be a weighted graph, where V is
the set of vertices, E ⊂ V × V is the set of edges, and w : E → R+ is a weight function.
Definition 6. The ascending clique filtration is defined as follows: all the 0-simplices have a filtration value
of 0 and, for α > 0 and k ≥ 1:

[v0, . . . , vk] ∈ Kα ⇐⇒ ∀i ̸= j, (vi, vj) ∈ E and w(vi, vj) ≤ α.

The descending clique filtration is defined the same way, by adding all the vertices at the beginning and
working with decreasing values of α.
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Figure 2: An example of a cover of a point cloud by a union of balls, and the corresponding Čech and Rips
complexes.

Note that the ascending clique filtration is not exactly a sublevel set filtration because the function is defined
on edges instead of vertices. Also note that if V is a metric space and w is its distance, then the clique
filtration can be seen as a Rips filtration.

Of course, this list is not exhaustive, and many other filtrations can be considered, as we will see throughout
this survey. For additional examples of filtrations, we refer the reader to Boissonnat et al. (2018); De Silva
& Carlsson (2004); Anai et al. (2020).

3.2 Simplicial homology

Let K be a simplicial complex with maximal simplex dimension d, G be an abelian group, and 0 ≤ k ≤ d.
Definition 7. The space Ck(K;G) of k-chains is defined as the set of formal sums of k-simplices of K with
coefficients in G, that is to say, if all the k-simplices of K are σ1, . . . , σnk

, all the elements of the form:

c =
nk∑
i=1

aiσi, ai ∈ G.

Ck(K) is an abelian group whose addition is naturally defined: if c =
∑nk

i=1 aiσi and c′ =
∑nk

i=1 a′
iσi then:

c + c′ =
nk∑
i=1

(ai + a′
i)σi.

Using a group G gives the more general definition, but from now on, we will only consider G = Z/2Z, so
the coefficients are modulo 2, which allows us to avoid orientation considerations. Ck(K) is now a vector
space, with scalar multiplication defined as λc =

∑nk

i=1(λai)σi for λ ∈ Z/2Z.

Definition 8. Let σ = [v1, . . . , vk] be a k-simplex with vertices v1, . . . , vk, and [v1, . . . , v̂i, . . . , vk] be the
(k − 1)-simplex spanned by those points minus vi. The boundary operator ∂ is defined as:

∂ :
{

Ck(K) −→ Ck−1(K)
σ 7−→ ∂σ =

∑k
i=1(−1)i[v1, . . . , v̂i, . . . , vk].
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We have the following sequence of linear maps:

Cd(K) ∂→ Cd−1(K) ∂→ . . .
∂→ C1(K) ∂→ C0(K) ∂→ {0}.

They satisfy ∂ ◦ ∂ = 0 : we call such a sequence of maps a chain complex. This constitutes the setup for
homology. We can now define cycles and boundaries, homology groups, and Betti numbers.

Definition 9. We define the set Zk(K) of k-cycles of K as :

Zk(K) = Ker(∂ : Ck(K) → Ck−1(K))

and the set Bk(K) of k-boundaries of K as :

Bk(K) = Im(∂ : Ck+1(K) → Ck(K)).

We have Bk(K) ⊂ Zk(K) ⊂ Ck(K) (Boissonnat et al., 2018) so we can define the kth homology group as:

Hk(K) = Zk(K)/Bk(K)

and the kth Betti number:
βk(K) = dim(Hk(K)).

A k-cycle is a “loop" made of k-simplices. A k-boundary is a k-cycle made of all the faces of k + 1-simplices
in K. A k-dimensional “hole" is a cycle that is not a boundary. Each hole is represented by a homology class
in Hk(K), βk represents the number of k-dimensional “holes". For example, β0 is the number of connected
components of K, β1 is the number of loops, and β2 is the number of voids.

On the examples from Figure 2, the four highest edges and the three lowest ones form 1-cycles of the Čech
and Rips complex. In the Rips complex, the low one is the boundary of a triangle, which is not the case for
the Čech complex. Thus, the Betti numbers of the Čech complex are β0 = 1 and β1 = 2, and for the Rips
complex β0 = 1 and β1 = 1.

3.3 Persistence diagrams and barcodes

Persistent homology consists of studying the evolution of homology groups while increasing the filtration
parameter. Let (Kαi)0≤i≤m be a filtration such that for each index i, we go from Kαi to Kαi+1 by adding
a simplex σi+1 to Kαi .

We call Ci
k, Zi

k, Bi
k, Hi

k, βi
k the respective spaces of k-chains, k-cycles, k-boundaries, kth homology group and

kth Betti number of Ki. The goal is to follow the evolution of Hi
k as i increases. It can be shown (Boissonnat

et al., 2018) that when a k-simplex σi+1 (k > 0) is added, it either creates a new homology class in Hi+1
k

(i.e. a new k-cycle that is independent of those of Hi
k) or it closes a k − 1-dimensional hole of Hi−1

k−1, so Hi
k−1

has one less homology class than Hi−1
k−1, in that case we say that σi+1 killed a homology class (by convention,

we always consider that when two classes merge, the younger class gets killed). If k = 0, each new vertex
creates a homology class in H0.

The final result of persistent homology is the set of all so-called persistent pairs (σl(j), σj) such that for
each j, σl(j) creates a component and σj kills it. We say that the persistence (or lifetime) of such a pair is
j − l(j) − 1. We refer the reader to Boissonnat et al. (2018) for the detailed description of the algorithm to
compute persistent pairs. The k-dimensional persistence diagram (PD) is the set of points of coordinates
(αl(j), αj) such that σl(j) is a k-simplex (counted with multiplicity). The points of the diagonal y = x are
added with infinite multiplicity (it is useful to define distances). See Figure 1 (d) for an example of a
persistence diagram: a connected component is created each time a vertex is added, and edges 4, 5, 8, and
10 kill connected components, which gives the five red points on the 0D-persistence diagram. Edge 7 creates
a loop that is killed by triangle 9, an edge 11 creates a loop that is never killed, which gives the two blue
points on the 1D-persistence diagram. Figure 3a shows the persistence diagram corresponding to the Rips
filtration of the point cloud from Figure 6. The persistence barcode is a representation equivalent to the
persistence diagram, where each pair (σl(j), σj) is represented as a line that starts at l(j) and ends at (j).
See Figure 3b for an example of a persistence barcode.
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(a) Persistence diagram (b) Persistence barcode

Figure 3: Persistence diagram and barcode (0D and 1D) of the Rips filtration of the point cloud from Figure
6.

3.4 Distance between persistence diagrams.

Comparing persistence diagrams (or equivalently, barcodes) requires introducing a suitable notion of distance.
Among the various possibilities, the bottleneck distance is particularly popular in statistical contexts.
Definition 10. Let D and D′ be two persistence diagrams. The bottleneck distance between D and D′ is
defined as

dB(D, D′) = inf
γ∈Γ(D,D′)

sup
p∈D

∥p − γ(p)∥∞,

where Γ(D, D′) denotes the set of all bijections between D ∪ ∆ and D′ ∪ ∆, and

∥p − q∥∞ = max(|xp − xq|, |yp − yq|),

for points p = (xp, yp) and q = (xq, yq). Here, ∆ = {(x, x) ∈ R2} denotes the diagonal.

Informally, the bottleneck distance can be seen as a minimal-cost matching distance between the points of
two diagrams, with the subtlety that unmatched points are paired with the diagonal ∆. Its popularity is
largely due to its stability properties, which make the bottleneck distance robust to small perturbations in
the underlying filtration. The following result provides a simple illustration of these properties in the context
of filtrations induced by the sublevel sets of real-valued functions. For more general results, we refer the
reader to (Chazal et al., 2009; 2016).
Theorem 1. (Cohen-Steiner et al., 2007) Let X ⊂ Rd a compact sets and f and g two continuous functions
from X into R. We have:

dB(Df , Dg) ≤ ||f − g||∞,

with Df (resp. Dg) denotes the persistence diagram associated with the sub-level sets filtration of f (resp.
g).

In addition to the L∞ matching underlying the bottleneck distance, other norms on R2 can be used to define,
in a similar manner, Wasserstein distances between persistence diagrams.
Definition 11. For a given norm ||.||l, the q-Wasserstein distance is defined as:

dWq,l
(D, D′) = inf

γ∈Γ(D,D′)

∑
p∈D

||p − γ(p)||ql

 1
q

.

Although general Wasserstein distances do not enjoy stability properties as strong as those of the bottleneck
distance, they still possess useful stability guarantees (Skraba & Turner, 2020). An advantage of Wasserstein
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distances is that they downweight less the small topological features near the diagonal, which are often
regarded as noise but can also contain valuable information about the geometry of the underlying objects
(Bubenik et al., 2020b).

3.5 Alternative representations

Several alternative representations can be derived from a persistence diagram. For instance, a popular
representation called persistence landscapes (PL) (Bubenik, 2015) can be obtained by transforming the
diagram into a set of piecewise-affine functions, each of which is referred to as a landscape.
Definition 12. For each point (b, d) in a persistence diagram D, we define the function fb,d : R −→ [0, ∞]
as:

fb,d(x) =


0 if x /∈ [b, d]
x − b if x ∈ [b, b+d

2 ]
d − x if x ∈ [ b+d

2 , d]

The k-th persistence landscape of D is the function:

λk :
{

R −→ [0, ∞]
x − b 7−→ kmax({fb,d(x)}(b,d)∈D)

Where kmax(S) is the k-th largest value of the set S.

Landscapes represent persistence in a vector space of functions, so Lp norms and the induced distances can
be defined to compare landscapes. From a statistical perspective, this “vectorization” of the persistence
diagram is appealing, as it allows for the straightforward computation of standard statistics; for example, it
is possible to average landscapes. Figure 4 shows an example of a persistence landscape.

Figure 4: First three 1D persistence landscapes of the persistence diagram from Figure 3a.

Another prominent vectorization, especially in the context of time series analysis, is the Betti Curves,
introduced by Umeda (2017).
Definition 13. The k-th Betti curve of a filtered simplicial complex is the function α 7→ βk(Kα).

Beyond those important examples, several other vectorizations have been defined, such as persistence images,
silhouettes, paths, and kernels. These representations are more suitable than persistence diagrams for
analysis with usual machine learning methods. See Ali et al. (2023) for a survey on vectorization methods
where the above vectorizations are defined, and Hensel et al. (2021) for a survey on TDA for machine
learning.

4 Methods

This section is a review of the articles using persistent homology for time series analysis. We first introduce
the typical pipeline that is common to all methods, then review methods for univariate and multivariate
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data. Two subsections are dedicated to univariate time series, corresponding to the two main categories of
methods we distinguished: those using sublevel set filtrations and 0D persistent homology, and those that
transform time series into a point cloud via a delay embedding before studying persistent homology in higher
dimensions. A small number of methods do not exactly fit in those two categories; we describe them along
with the most related methods. The last subsection is about multivariate time series.

4.1 General framework

Throughout this review, we refer to a univariate time series (or signal) as a time-indexed sequence of real
numbers x = (x[t])t∈I , where I is a finite index set. A multivariate time series with m channels is defined
as a collection of m univariate time series sharing the same index set I, and is written as x = (x[t])t∈I =
((x1[t], . . . , xm[t]))t∈I . For clarity, we restrict the discussion to uniformly sampled time series, where the time
interval between two consecutive observations is constant, so that the index set can be written I = [1, n],
with n denoting the series length. This assumption is made solely for notational convenience and to provide
a common framework across the 84 papers considered. In practice, several presented approaches can be
applied, or readily adapted, to non-uniformly sampled data.

Each method of our review can be decomposed using the following framework:

time series → transformation → filtration → TDA tools → analysis

see Figures 5, 7 and 8 for illustrations. The input data is always a time series (univariate or multivariate).
It can be transformed into another object on which a filtration is defined. Then, persistent homology can
be studied with various TDA tools (persistence diagrams, vectorizations, homology representatives...), and
then a specific analysis (statistics, visualization, machine learning...) is performed. Tables 2, 3, 4 list all
the 84 methods reviewed here and decompose them in our framework. We also specify when articles include
theoretical contributions, such as new tools or mathematical results.

4.2 Sublevel sets methods

We first review methods involving the sublevel set filtration, which provides the most direct way to apply
persistent homology to time series. Figure 5 illustrates a typical framework using sublevel sets. This
filtration has been particularly popular in the analysis of univariate time series x = (xi)1≤i≤n (seen as
a real-valued function on N). In this context, [i] is a vertex of Kα if and only if xi ≤ α and [i, j] is an
edge of Kα if and only if max(xi, xj) ≤ α. This filtration can be computed in O(n) and its diagram in
O(n log(n)). Furthermore, as highlighted in the background section, the obtained diagram enjoyed nice
stability properties. Interestingly, the persistence diagram consists of pairs (i, j) such that xi is a local
minimum and xj is a local maximum. Alternatively, if one considers the superlevel set filtration instead
of the sublevel set filtration, the diagram consists of pairs (i, j) such that xj is a local minimum and xi

is a local maximum. Although this transformation may discard certain information about the signal, the
resulting persistence diagram still captures essential structural features and remains highly interpretable for
a wide range of practical tasks. We now highlight some important themes related to this approach.

Topological filtering, extrema detection, and application to truncated time series. Fol-
lowing the previous remark, a natural application of persistent homology to time series is the detection of
local minima and maxima. Beyond stability, this requires the ability to distinguish features arising from
noise from true topological features in empirical persistence diagrams. In general statistical contexts, this
question has received considerable attention, leading to the development of several “topological filtering”
approaches and thorough statistical studies (Chazal et al., 2013; Fasy et al., 2014; Bubenik, 2015). The
simplest approach consists of removing points in the diagrams that lie within a certain distance of the
diagonal. In the more specific context of time series analysis, Myers et al. (2020) proposes such an approach
for different additive noise models and provides statistical guarantees. They highlight that this consequently
yields a robust method for detecting local extrema.
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Similarly, sublevel set filtrations have also been used on truncated time series (time series where points
under or above a certain value are ignored) to create robust algorithms. One of the first such applications
was proposed by Khasawneh & Munch (2018), who introduced an algorithm for counting pulses in piecewise
constant (binary) industrial signals affected by noise, “digital ringing” (spurious pulses occurring near
genuine ones), and variable inter-pulse intervals. They define a model of their signals and use it to derive a
theorem stating that with small noise, dense enough sampling, and enough visible pulses, their algorithm
counts the right number of pulses. More recently, in Tanweer et al. (2024), sublevel set filtrations are
studied separately for the positive and negative values of the time series to find zero-crossings in noisy time
series. They threshold both persistence diagrams and merge the remaining values to define intervals with
potential zero crossings. Thresholding the diagrams makes the method robust by avoiding finding multiple
crossings around each true one due to noisy oscillations.

Analysis of periodic time series. The persistence diagrams obtained from sublevel set filtrations
are also invariant under reparametrization: the persistence diagrams are the same for a sampling of
f : R → R and of f ◦ γ, where γ : R → R is an increasing bijection. This property was used in Bonis
et al. (2024) and later in Chazal et al. (2025) to define methods to study noisy reparameterized samplings
of periodic functions. These articles also highlight the additivity property of the sublevel set filtration of
periodic functions: the persistence diagram corresponding to the sublevel filtration of N periods is related to
N times the persistence diagram corresponding to one period. In Bonis et al. (2024), the authors introduce
an algorithm to count the number of periods and find an odometric sequence for reparametrised periodic
signals, for an industrial application (magnetic odometry). They use the fact that, seeing a periodic function
as a function on the circle, the diagram of sublevel sets of N periods is equal to N times the diagram of one
period, so they count the multiplicity of points on the diagram. They show the correctness of their estimator
under some assumptions. In Chazal et al. (2025), topological signatures for periodic signals are defined
(each time series is assigned a signature time series that should be independent of reparametrisations). They
study the additivity property of diagrams of sublevel sets of periodic functions defined on any intervals,
and prove convergence and stability results for their signatures. The additivity property is also leveraged in
Bois et al. (2022) to study multiple sclerosis through motion sensor time series: barcodes from sublevel sets
are truncated to reduce the impact of the number of steps, then the bottleneck distance is used in UMAP
(McInnes et al., 2018) to globally analyze a cohort of healthy subjects and patients with different degree of
severity of the disease.

Featurization and integration in learning pipelines. Several studies, mostly with biomedical
applications, use the sublevel set filtration with vectorizations of persistence diagrams used as inputs
for machine learning or statistics. Importantly, such pipelines have been applied to EEG time series,
resulting in several notable studies published between 2018 and 2020. A prominent approach involves using
permutation-based statistical tests on persistence landscapes to detect statistically significant differences
between time series. This methodology has been applied to the study of epileptic seizures (Wang et al., 2018;
2019) and later aphasia (Wang et al., 2020b;a), by comparing time series recorded before and after a seizure,
or between pathological and healthy subjects. More precisely, in Wang et al. (2018; 2019), Fourier series
approximations of the EEGs are computed, and the test compares persistence landscapes obtained when
exchanging Fourier coefficients between time series. The authors empirically show that the test they defined
is invariant to translations, scaling, and frequency scaling and claim that it detects topological changes. Also
note that Wang et al. (2020a) introduces the gradient filtration, which generalises the sublevel set filtration
by allowing level lines with a non-zero slope. Alternatively, Piangerelli et al. (2018) uses persistent entropy
(Chintakunta et al., 2015) as a feature for classifiers to analyze EEGs in order to detect epileptic seizures.
A similar approach was later applied in Majumder et al. (2020) to detect autism spectrum disorders. In
Nasrin et al. (2019), a Bayesian learning approach is developed with Poisson point processes as prior for
the distribution of persistence diagrams, with an application to brain state classification from EEGs. More
recently, sublevel sets have also been used for heart rate variability detection in segmented ECG signals
(i.e., signals where heartbeats are isolated) in Graff et al. (2021), using various features describing the
persistence diagram in an SVM classifier.

11



Under review as submission to TMLR

Deep learning architectures have also been designed to leverage properties of sublevel sets filtrations. Betti
curves (Dindin et al., 2020) are fed to 1D convolutions in neural networks (Umeda (2017) claimed that 1D
convolutions are suitable for Betti curves) and added to non-TDA features to improve arrhythmia detection
and classification in ECG data. Zeng et al. (2021) aimed to integrate local topological information on time
series by using sublevel filtrations of subwindows and learnable barcode vectorizations (Carrière et al.,
2020; Hofer et al., 2019b;a) to design a topological attention mechanism (Vaswani et al., 2017) to improve
state-of-the-art time series forecasting neural networks.

Transformation of the time series. All the above methods perform a direct analysis of graphs
of time series. Another approach consists of transforming the time series into a more relevant form, such
as converting it to the frequency domain as did Chen et al. (2019); Chen & Ravishanker (2023), who then
used the Euclidean distance between persistence landscapes from sublevel set filtrations into a k-means
clustering algorithm. In Chen et al. (2019), the Walsh-Fourier Transform (a frequency domain transform
adapted to categorical time series) is applied to categorical time series (with few possible states), which
transforms it into a real-valued time series that is more suitable for signal processing tools such as sublevel
set filtrations. In Chen & Ravishanker (2023), the filtration is applied to the smoothed periodogram (a
Fourier-based transform that estimates the spectral density of a signal) to study environmental time series.
A related approach that does not use the sublevel set filtration but the filtered cubical complex (Kaczynski
et al., 2006), a related filtration used for image processing, is described in Reise et al. (2024). The authors
filter the spectrogram (Fourier-based 2D transform of a time series) of subwindows and use the L1 distance
between Betti curves in 0 and 1D, followed by a minimum-cost matching approach to perform audio signals
identification, with empirical evidence of robustness to several types of signal obfuscations (noise, reverb,
filtering, tempo/pitch shift). Finally, another relevant method to directly filter a time series’ graph is
introduced in Dlugas (2022) to detect P,Q,S, or T-waves in ECG signals. The authors study the graph of
the ECG (as a subset of R2) to which they add the x-axis to form loops (1-cycles) that are detected using
the Rips filtration and volume-optimal representatives (Obayashi, 2018). Each cycle is identified with a
kind of ECG wave according to criteria based on medical knowledge.

Table 2 sums up the characteristics of all the articles cited in this section.
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4.3 Delay embedding methods

For a univariate time series (xt)1≤t≤n, the subwindow of length l < n of a time series x is a sequence of the
form (x[i], x[i + 1], . . . , x[i + l − 1]). The delay embedding of x with dimension d ∈ N and delay τ ∈ N is the
following point cloud in Rd:

Xd,τ = (Xd,τ [t])1≤t≤n−(d−1)τ

= ((x[t], x[t + τ ], . . . , x[t + (d − 1)τ ]))1≤t≤n−(d−1)τ

Figure 6 shows a univariate time series (a sum of sinusoidal functions with period 2) and its delay embedding
in dimension d = 2 with delay τ = 5. The delay embedding is made of two concentric ellipses: the small one
corresponds to the smallest oscillations of the signal (roughly between -1 and 1) and the large one corresponds
to the largest oscillations (roughly between -3 and 3).

Figure 6: Left: A univariate time series: x[t] = sin(πt) + 2sin(2πt). Right: the corresponding delay
embedding with d = 2 and τ = 5.

Delay embeddings are a popular transformation of time series, originally introduced to study dynamical
systems. Takens’ theorem (Takens, 2006) states that a smooth attractor (a manifold of dimension m) of a
dynamical system can be reconstructed from a delay embedding of an observation function, provided that
the embedding dimension is at least 2m + 1. More generally, points of a delay embedding represent local
variations of the time series; in particular, if the delay is τ = 1, each point corresponds to a subsequence
of length d, forming a point cloud in Rd. This point cloud can be analyzed with various tools, including
persistent homology in dimensions 0 to d − 1, typically via persistence diagrams computed from the
Vietoris–Rips filtration of the delay embedding, as presented in Section 3.
Combining delay embeddings with persistent homology has led to numerous studies, demonstrating the
relevance of this approach for a wide variety of tasks and application domains. Figure 7 illustrates a typical
pipeline for coupling delay embeddings with persistent homology tools. We now review some key thematic
connections related to this approach.

Identifying periodic behavior. We have already presented in Section 4.2 several approaches for
analyzing periodic time series using sublevel sets. An alternative and historically older line of work, encom-
passing a larger body of research, focuses instead on studying the one-dimensional persistent homology of
a delay embedding of the time series. An important early theoretical contribution in this direction is the
work of Perea & Harer (2015), which provides a comprehensive theoretical study of the one-dimensional
persistent homology of the Rips filtration of delay embeddings of periodic functions. In particular, they
derived a lower bound for maximum persistence of Fourier series approximations (with N frequencies) and
their limits as N → ∞, when parameters d and τ satisfy dτ = T and d = 2N (T being the period of the
function). The idea is that the delay embedding of a continuous function is a closed curve, so it has at least
one persistent feature in its 1D persistent (singular) homology, so the same should happen from time series
that are samplings of periodic functions.
Building on these ideas, maximal persistence in one-dimensional persistent homology has been used to
quantify periodicity in various applications, such as detecting periodic patterns in gene expression time
series (Perea et al., 2015). It is also worth noting that the use of one-dimensional maximal persistence from
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a delay embedding was proposed earlier in Emrani et al. (2014) for wheeze detection in breathing sound
signals, predating the publications of Perea & Harer (2015) and Perea et al. (2015). In that work, the
authors introduce a model for wheeze signals and show that, with an appropriate choice of delay embedding
parameters, the Rips filtration produces at least one persistent feature in the one-dimensional persistence
diagram, a feature that is absent in non-wheeze signals. Similarly, Khasawneh & Munch (2016) employed
the maximal one-dimensional persistence of the Rips filtration of delay embeddings for chatter detection
in synthetic dynamical systems with industrial applications. This work was extended in Khasawneh
et al. (2018), introducing new features for both 0D and 1D homology, including maximal persistence and
polynomial features from Adcock et al. (2016), which are independent of points with zero persistence, and
applying them within a machine learning framework using a logistic regression classifier.
The results of Perea & Harer (2015) were extended to quasiperiodic functions (sums of complex-valued
trigonometric functions whose frequencies are linearly independent over Q) in Perea (2016) and very recently
in Gakhar & Perea (2024). In particular, it was shown that under some hypotheses, the delay embedding
of a quasiperiodic function with N frequencies is dense in an N -torus embedded in Cd+1. The authors of
Gakhar & Perea (2024) also derive lower bounds for the number of persistent features in dimension 1 to N
and for their persistence. They show that their work can be used to detect dissonance in music.
Another method for periodicity detection and period estimation was proposed by Dłotko et al. (2019),
also based on 1D persistent homology. They use the Čech filtration and total p-persistence (pth
root of the sum of all persistence values to the power p) to detect periodicity, then a symbolization-based
method for period estimation (note that the algorithm and choice of parameters are not explicitly described).

Identifying chaotic behavior. Closely related to the previous works, an emerging line of work is
dedicated to distinguishing chaotic from periodic behavior in time series using persistence diagrams (or
vectorizations of persistence diagrams) from delay embeddings. An important seminal work by Ichinomiya
is Ichinomiya (2023), later continued in Ichinomiya (2025). The proposed approach is based on recurrence
plots (see, e.g., Marwan et al., 2007), a popular and powerful tool for analyzing complex dynamical
systems. The idea is to first perform a delay embedding, then compute the distance matrix of the resulting
point cloud, and finally compute the 0-degree persistence diagram associated with the sublevel sets of
this distance matrix (viewed as a grayscale image). This approach has the advantage of a computational
complexity of order O(N2), where N denotes the number of points in the embedded cloud, regardless of the
embedding dimension. In the first paper (Ichinomiya, 2023), the author provides empirical evidence that
this method can qualitatively distinguish between chaotic and periodic behaviors from persistence diagrams.
In Ichinomiya (2025), the approach is further applied to the clustering of electromyograms (EMGs) and the
classification of electrocardiograms (ECGs). In this second work, the persistence diagrams are transformed
into persistence images (PIs), and the dimension is then reduced via nonnegative matrix factorization
(NMF) before applying standard clustering and classification techniques. In a similar direction, the recent
work of Shah et al. (2025) provides further insights into the link between persistent homology and important
parameters governing chaotic time series. More precisely, the authors show how CROCKER plots (Topaz
et al., 2015), Betti curves, and persistence landscapes obtained from delay embeddings can be used to
visualize and infer key information about chaotic phase transitions.

Change point detection and anomaly detection. Delay embeddings can be used to detect
changes in time series by studying topological changes in the embeddings of subwindows. Note that a
drawback is that this requires many computations of persistence diagrams and bottleneck distances. Ueda
et al. (2022) proposed a change point detection method (for financial data) based on this idea: they defined
statistical models of persistence diagrams and use them to compute a sequence a features from a sequence of
persistence diagrams corresponding to successive subwindows. Existing change point detection methods can
then be applied to those features. Fernández et al. (2023) studied the persistent homology of point clouds
using Fermat distances. The idea is that in order to recover topological properties of a manifold embedded
in Rd, Fermat distances are less dependent on the manifold embedding than the Euclidean distance, and
this applies to delay embeddings. The authors propose a method for time series analysis (best suited for
change point detection): they study delay embedding of subwindows starting at 0 and of increasing lengths,
compute the Rips filtration with the Fermat distance, which gives a sequence of persistence diagrams. The
sequence of bottleneck distances between consecutive diagrams has peaks that correspond to change points.
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This was only applied to a few examples, but the method comes with theoretical guarantees (convergence,
robustness).
Closely related to change point detection is the problem of anomaly detection. In a recent work (Bois
et al., 2024a), the anomaly detection problem for univariate time series is formalized using a convolutional
model: the studied time series are successions of patterns that are normal (i.e., frequent) or abnormal. The
above ideas are also relevant to this model. The authors defined an anomaly detection method along with a
theoretical analysis. They leverage properties of DTM filtrations (Anai et al., 2020) (robustness to outliers,
possibility of subsampling a point cloud while integrating density information from the whole point cloud)
to identify 1-cycles that correspond to normal patterns, and points far away from them are detected as
anomalies.

Computational improvements. Computation times for persistent homology of point clouds can
be reduced by using dimension reduction (Kim et al., 2018; Majumdar & Laha, 2020), filtrations that have
fewer vertices than there are points in the point cloud (Fraser et al., 2017; Sanderson et al., 2017; Yesilli
et al., 2022; Bois et al., 2022), or zigzag persistence (Tymochko et al., 2020). Zigzag persistence is an
extension of persistent homology to non-increasing sets of simplicial complexes (Carlsson & De Silva, 2010).
Kim et al. (2018) proposed a generic featurization algorithm for time series, which they applied to financial
data. They use delay embeddings and principal component analysis (PCA) for dimension reduction, Rips
complexes, and persistent landscapes and silhouettes as inputs for deep learning models. They derived
stability theorems with respect to noise, sampling, and PCA, under the assumption that, for l-dimensional
PCA, the point cloud lies in an l-dimensional linear subspace, and the PCA matrix X⊤X has at most l
positive eigenvalues. They also discuss how PCA can help denoise while preserving topology (under some
assumptions). Majumdar & Laha (2020) use PCA on delay embeddings of subwindows to save computation
time when computing on the persistent landscape per subwindow. They studied financial time series using
self-organising maps for clustering and random forests for classification. Beyond the techniques based on
PCA, it should also be noted that the methods developed in the previously mentioned works Ichinomiya
(2023) and Ichinomiya (2025) can also be regarded as dimensionality reduction techniques. The approach
based on the sublevel sets of the distance matrix significantly reduces computational complexity and can be
applied generally, beyond the specific contexts for which it was originally designed.
Fraser et al. (2017) proposed an ECG visualization method based on delay embeddings of subwindows and
for several delay values. Witness complexes (De Silva & Carlsson, 2004) are used to save computation time
and memory usage. They are complexes constructed using only a subset of the points as vertices. The
output is a 2D plot of the first Betti number of some simplicial complex (not detailed) as a function of time
and delay. Sanderson et al. (2017) also use the witness complex to perform binary classification of musical
signals using a feature computed from the 1D persistent rank function (Robins & Turner, 2016).
In an update of Khasawneh et al. (2018), Yesilli et al. (2022) use Bézier curves fitted on the delay embedding
to save computation time for the Rips filtration and persistent homology (method from Tsuji & Aihara,
2019, about 30 times faster). They experiment with several featurization methods: features from Khasawneh
et al. (2018), landscapes (Bubenik & Dłotko, 2017), persistent images (Adams et al., 2017), a kernel method
(Reininghaus et al., 2015), and persistence paths signatures (Chevyrev et al., 2018), and several classifiers
to classify real industrial data. In the work described above, Bois et al. (2024a) use a subsampled point
cloud but integrate density information from the whole point cloud into their DTM filtration.
Tymochko et al. (2020) use zigzag persistence (Carlsson & De Silva, 2010) to detect bifurcations (qualitative
changes in a system’s behavior) in dynamical systems. Their data is a sequence of time series (typically, a
parameterized dynamical system). They fix a radius and compute all Rips complexes for this radius. Then
zigzag persistence is applied to the obtained sequence of simplicial complexes. They identify the appearance
and disappearance of bifurcations as the birth and death times of persistent points on the 1D persistence
diagrams. One advantage over other approaches is that only one persistence diagram is computed instead
of one for each time series, but fixing the radius is a drawback.
A recent article (Salazar Martinez et al., 2025) proposes a method to approximate the birth–death pairs
of H1-persistent features in 2D point clouds without computing simplicial complexes, relying instead on
fitting ellipses that represent large-scale H1 features. Applied to synthetic data consisting of non-stationary
time series, the method is shown to accurately approximate persistence diagrams while greatly reducing
computation time (about 1900 times). An interesting research direction is to extend it beyond two
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dimensions.

Featurization and integration in learning pipelines. Following our previous remarks on fea-
turization, several studies have explored alternative representations of persistent homology, often with the
goal of integrating them into learning pipelines. In particular, in the study of biomedical time series such
as ECG (Liu et al., 2023; Safarbali & Golpayegani, 2019; Jiang et al., 2022; Ling et al., 2022; Mjahad
et al., 2022; Ren et al., 2023; Ignacio et al., 2019; 2020), motion sensor data (Yan et al., 2020b;a; 2022;
Tong et al., 2021) or financial data (Gidea et al., 2020; Aguilar & Ensor, 2020; Guo et al., 2020; Zhang
& Wu, 2025; Guritanu et al., 2025). Applications include classifying diseases, detecting critical events
(arrhythmia, fibrillation, financial crisis), or finding different regimes. The general method consists of
computing persistent homology of the Rips or Čech filtration of a delay embedding (maybe after some
preprocessing), then using vectorized persistence diagrams or features from persistence diagrams as input
for classifiers (SVM, random forest, deep learning) or k-means clustering. See Table 3 for more details
about the application of each article and specific choices of vectorization and classifiers/clustering method.
In this context, a specific line of work, initiated by Umeda (2017), relies on the use of Betti curves. They
showed that Betti curves obtained from Čech filtrations of delay embeddings are sensitive to scale changes
in the time series. They claim that 1D convolutional neural networks are suitable to learn from Betti curves
and use them in neural networks to improve performance in time series classification on biomedical data.
Delay embeddings and Betti curves were used for other biomedical applications in later works. Yamanashi
et al. (2021) performed detection of delirium on bispectral EEG using the area under the 1D Betti curve as
a score for a statistical test. Yan et al. (2022) used features from Betti curves, persistent landscapes, and
silhouettes in several classifiers to detect freezing-of-gait episodes in motion sensor data (due to Parkinson’s
disease). Outside

Choosing delay embedding parameters. The choice of parameters d and τ can have a major
impact on the performance of delay embedding-based methods. When studying continuous periodic
functions, theory (Perea & Harer, 2015) suggests choosing d as high as possible, with the window size dτ
equal to the period (the fixed window size is also supported by empirical results from Bois et al., 2024a).
A high-dimensional embedding with a small delay will finely represent the local variations of the function.
However, there are several problems in practice. Firstly, working in high dimensions can be computationally
expensive. Secondly, “irrelevance" and “redundancy" (Tan et al., 2023) must be avoided. Irrelevance
happens when dτ is too large, and the coordinates of each point of the embedding are too far away. In
this case, the embedding fails to capture local variations, and a point can be influenced by events far apart
in time, making interpretation difficult. As τ cannot be chosen arbitrarily small in practice, this implies
that d should not be too high in practice. This also highlights the importance of signal sampling quality.
Redundancy, on the other hand, happens when τ is too small, so variations are slow between consecutive
points of the time series, leading to point clouds that are concentrated on the diagonal x1 = x2 · · · = xd,
making it difficult to identify persistent features, especially in the presence of noise.
Tan et al. (2023) review the main classical methods for selecting the delay τ and embedding dimension
d. These include dynamical approaches such as the false nearest neighbors method (Kennel & Abarbanel,
2002), the quarter-of-period heuristic (Judd & Mees, 1998), and criteria based on autocorrelation or mutual
information (see, e.g., Kantz & Schreiber, 2003), as well as more “geometric” methods such as fill-factor
(Buzug & Pfister, 1992) and noise amplification (Uzal et al., 2011). They also provide an overview of popular
techniques for selecting non-uniform time lags. In addition, they introduce the SToPS (Significant Times on
Persistent Strands) method, which constructs delay-embedding point clouds for candidate lags and computes
persistent homology to track the emergence of topological features. This produces a characteristic time
spectrum that highlights lags best capturing the underlying dynamics. SToPS can be used to select both
uniform and non-uniform delays, and is shown to be competitive with the classical approaches mentioned
above. Alternatively, Myers et al. (2024) propose guidelines for choosing d and a topological method for
selecting τ in order to compute the permutation entropy (Bandt & Pompe, 2002), a useful measure of the
complexity of the signal. Their approach identifies the maximum “significant” frequency present in the
time series (following the idea developed in Melosik & Marszalek, 2016), which they approximate via the
0-th persistence diagram of the sublevel sets of the time series, either in the time or frequency domain.
Empirically, they show that this method reliably identifies delays that capture the underlying dynamics
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(for various classical performance measures), performing comparably to or better than traditional heuristic
procedures across periodic, chaotic, and more complex time series.

Note that these methods are heuristics that are not guaranteed to perform well in every application. For
example, they can fail in the presence of noise or with non-periodic signals or for non-uniform samplings.
Moreover, complex methods can have parameters that are themselves hard to choose. Specific knowledge
about the application can help define better and/or simpler heuristics.
To overcome these calibration difficulties, some works, most notably Tran & Hasegawa (2018), depart
from the usual approach of fixing d and τ , and instead develop delay-variant methods that allow these
parameters to vary. Such methods reveal multi-timescale patterns in a time series by enabling the
observation of variations in topological features, with the time delay acting as an additional dimen-
sion in the topological feature space. In practice, this can be implemented by computing persistence
diagrams (or related summaries) for various values of τ and/or d. In Tran & Hasegawa (2018), the
authors demonstrate, in a time-series classification framework, that these delay-variant approaches outper-
form methods based on selecting a single pair (τ, d), and more generally compare favorably with standard
time-series analysis techniques. However, these methods come with a significantly higher computational cost.

Other delay embedding-based transformations. A few articles studying univariate time series
use transformations that are not exactly delay embeddings but have similarities. Germain et al. (2024)
proposed an algorithm for motif discovery in time series (a motif is a pattern that appears several times
in the time series). They use the LT-normalized distance (Germain et al., 2023) (distance invariant to
linear trend) to construct a weighted k-nearest-neighbors graph (k-nearest non-overlapping subsequences)
with additional temporal connections between successive points. Motifs are then reconstructed using a 0D
persistence-based clustering algorithm (Bois et al., 2024b). Although the set of subsequences can be seen
as a delay embedding with delay 1, only the distances to the non-overlapping k nearest neighbors are taken
into account for persistent homology (which saves computation time), and time is taken into account with
temporal connections, which is significantly different than a Rips filtration on a delay embedding. Temporal
connections were also used by Venkataraman et al. (2016) for action recognition on motion capture data
(note that they have multivariate data but study each dimension independently). They connected successive
points of the delay embedding, before computing the Rips filtration and using a nearest-neighbor classifier
on persistence diagrams endowed with the 1-Wasserstein distance.
In a series of works, Myers et al. (2019; 2022; 2023), use the ordinal partition network (McCul-
lough et al., 2015) to transform time series into unweighted graphs. This transformation takes
a delay embedding of parameters d, τ and associates a permutation π of [1, d] to each point
Xt = (xt, xt+τ,...,xt+(d−1)τ

) = (X1, X2, . . . , Xd) (the permutation that sorts the d coordinates, i.e.
such that Xπ(1) < Xπ(2) < ... < Xπ(d)). The set of permutations obtained is the set of vertices of the
graph, and an edge goes from i to j if there exists a time t such that permutations i and j respectively
correspond to Xt and Xt+1. The graph can then be filtered using the Rips filtration from the shortest path
distance (weighted or not) or diffusion distance. In Myers et al. (2019), the periodicity score from Perea
et al. (2015) is extended to unweighted graphs, and it is used along with other features from 1D persistent
homology, such as persistent entropy (Chintakunta et al., 2015), to distinguish periodic behavior from
chaotic behavior in dynamical systems. In Myers et al. (2022), the bottleneck distance between persistence
diagrams in multidimensional scaling is used, and then dynamic state detection in dynamical systems is
performed with an SVM classifier. The method proposed in Myers et al. (2023) in the case of univariate time
series (dynamical systems with intermittency, i.e., irregular transitions from periodic to chaotic dynamics)
computes a sequence of ordinal partition networks from subwindows and zigzag persistence. Then they
detect intermittency using the coordinates of the most persistent points on the 1D persistence diagram.
The multivariate applications of this method are described in Section 4.4.
Note that many of the methods presented in this section are designed for uniformly sampled data and
may yield unsatisfactory results when applied to irregularly sampled time series. In particular, irregular
sampling can introduce spurious topological features in the reconstructed state space. To address this
issue, a recent work (Dakurah & Cisewski-Kehe, 2024) proposes a novel embedding approach specifically
tailored for irregularly sampled time series, based on the extraction of uniformly spaced subsequences. This
embedding is proven to preserve the topology of the original state space, reduce spurious features, and be
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robust to noise. Additionally, the authors demonstrate that their method outperforms standard time-delay
embedding techniques on several irregularly sampled examples involving both synthetic and real datasets.
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4.4 Multivariate time series

In this section, we review applications of persistent homology to multivariate time series. A straightforward
way to extend the tools presented in the previous sections to this setting is to compute persistent-homology
descriptors separately for each channel. Several studies have adopted this strategy. Here, however, we
focus on approaches that explicitly account for the multivariate structure of the data. Figure 8 illustrates a
typical framework for the analysis of multivariate time series.

Graph-based methods. Beyond applications of channel-wise methods, the most popular way to
study multivariate time series is to transform them into an undirected weighted graph whose vertices
correspond to each channel of the time series and edge weights represent a distance or similarity between
them. The graph is then filtered using a clique filtration (ascending for distances, descending for similarity
measurements) to study vectorized persistence diagrams.
Graph-based methods are mainly applied to study brain signals (mostly EEG or fMRI) through a notion of
coherence, dependency, or correlation, which is motivated by the fact that neurons that are wired together
in the brain tend to have correlated activations. An early and influential application of graph-based
topological methods in neuroscience is the work of Petri et al. (2014). They introduced a new object for
topological data analysis: the homological scaffold (HS), which is a graph whose vertices are the ones from
the original graph and whose edge weights encode information about the number or persistence of the
homology generators containing each edge. They studied the effect of psychedelic mushrooms on the brain
with fMRI data. They built a correlation graph from time series and used a descending clique filtration to
compute persistence diagrams and homological scaffolds. They use scaffolds to visualize brain connectivity
and also analyze statistical features from persistence diagrams and homological scaffolds.
Later, Stolz et al. (2017; 2021) studied multivariate fMRI time series to study motor learning in healthy
subjects and schizophrenia. In their first article (Stolz et al., 2017), they use a functional connectivity
measure (coherence of the wavelet scale-2 coefficients), a descending clique filtration, and they interpret
changes in the persistence landscapes of different days in terms of synchronization. They insist on the fact
that low-persistence features can contain important information. In the second article (Stolz et al., 2021),
they use Pearson correlations, a descending clique filtration, and compute persistence landscapes (and
average persistence landscapes) and images for clustering and statistical tests.
More recently, El-Yaagoubi et al. (2023a;b) studied EEG time series from ADHD patients. They transform
their data into graphs using Fourier-based distances (respectively, dependency-based distance and frequency-
specific distance) and use ascending clique filtrations and statistical tests on persistence landscapes. The
test used in El-Yaagoubi et al. (2023a) is a permutation test from Robinson & Turner (2017) based on the
L2 distance between landscapes to compare EEGs of healthy subjects and patients with ADHD. In the
second article (El-Yaagoubi et al., 2023b), they introduce a hypothesis test based on persistence landscapes
and derive associated convergence results. Manjunath et al. (2023) used the same frequency-specific
distance, clique filtration, and permutation test on EEGs to study obstructive sleep apnea. El Yaagoubi
& Ombao (2023) also studied EEG signals by transforming them into a directed graph to study epileptic
seizures. Their goal is to integrate the directed flow of information between brain regions. First, they use a
non-symmetric distance function called the partial directed coherence, which is a Granger causality-based
dependence measure, to get a distance matrix. A distance is then defined from the anti-symmetric part of
the weight matrix, which is used to compute the directed graph and its clique filtration, and persistence
diagram. Diagrams are compared before and after seizures.
Interestingly, a very recent study by Bhattacharya et al. (2025) compares a graph-based approach with
the channel-wise featurization of persistent homology introduced in Aithal et al. (2024). In the context of
mild cognitive impairment (MCI) classification from fMRI data, the authors compare two models: a CNN
classifier that takes as input a matrix of pairwise distances between the persistence diagrams of each channel
(obtained via delay embedding and the construction of the corresponding Vietoris–Rips filtration), and a
stacked ensemble classifier that uses as input the persistence diagrams derived from the clique filtration of
the correlation graph between channels. In their case study, the channel-wise approach outperforms the
graph-based one. This result highlights that constructing a correlation graph may lead to a loss of important
information, likely because the correlation graph is a static representation of dynamic interactions.
Beyond biomedical data, studying sequences of local correlation networks has also proven to be useful to
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study stock markets (Gidea, 2017) or detect multivariate anomalies (Chazal et al., 2024). Both works use
a correlation-based graph transformation on subwindows and clique filtrations to obtain a time series of
persistence diagrams. Gidea (2017) studies the sequence of 2-Wasserstein distance between each diagram and
the initial one to detect critical transitions in financial markets. Chazal et al. (2024) introduce an algorithm
for anomaly detection in multivariate time series. They vectorize the obtained persistence diagrams using
a measure quantization algorithm (Royer et al., 2021), then estimate the mean and covariance matrix of
the time series of vectorized diagrams. This mean and covariance matrix represent the normal behavior.
An anomaly score is defined based on the Mahalanobis distance (i.e., the normalized distance from each
vectorized diagram to the mean of the normal model). They give a theoretical study of several aspects of
their method.

Point cloud-based methods. Multivariate time series with d channels can be seen as time-indexed point
clouds in Rd. This makes it possible to use usual persistent homology methods such as those from Section
4.3. As for delay embeddings of univariate time series, 1D persistent homology can be used to detect
periodic behaviors in multivariate time series. A seminal example is the work of Vejdemo-Johansson et al.
(2015), which studies periodic motion with position and orientation time series for several body parts. They
see the d-variate time series as a point cloud in Rd, compute its Rips filtration and 1D persistence barcode,
then parameterize the point cloud with circular coordinates for each persistent bar using a method from
De Silva & Vejdemo-Johansson (2009). They use a clustering technique to compute typical trajectories and
interpolate between different periodic motions while preserving periodicity. Later, Tralie & Perea (2018)
extended the delay embedding to multivariate data as a transformation from RW ×H to Rd×W ×H (W × H
is the number of pixels), and defined (quasi-) periodicity scores based on maximal 1D and 2D persistence
following ideas from Perea & Harer (2015); Perea (2016); Gakhar & Perea (2024), presented in the previous
section. They apply their method to (quasi-) periodicity quantification in videos (time series of images).
Gidea & Katz (2018) studied multivariate financial time series by seeing subwindows of length w as point
clouds of size w in Rd. They use the Rips filtration and compute the Lp norm of 1D persistence landscapes
(for p = 1, 2) as a function of time. They studied this new univariate time series using its variance and the
average spectral density at low frequencies, and gave empirical evidence that they increase before a financial
crisis.
In a methodological paper, Salch et al. (2021) study multivariate fMRI data as a time-varying function on
voxels f : (x, y, z, t) 7→ f(x, y, z, t) (i.e., a time series for each voxel). For each time t, they compute the
Čech filtration of the point cloud in R4 made of all points (x, y, z, f(x, y, z, t)). They propose to study the
corresponding 1D persistence vineyard (Cohen-Steiner et al., 2006), i.e., the time series of 1D persistence
diagrams, with a notion of spatial proximity between features at time t and t + 1. They use a statistical test
and visualization method to identify and study task-responsive structures. Note that this technique could
also be used in higher dimensions. A drawback is that vineyards are not robust as the temporal connection
between features depends on their representatives (Cohen-Steiner et al., 2006). The authors indicate that
using random representatives or specific ones could help improve the method.

Other methods. Santoro et al. (2023) generalize the notion of correlation between two time series
to any number k of time series by introducing the k-order co-fluctuation and using to define a simplicial
complex where, for all k ≥ 2, each (k − 1)-simplex represents a group of k channels of the multivariate time
series and is associated to the corresponding k-order co-fluctuation value. Then, the complex is filtered by
adding simplices by decreasing values, excluding those that do not respect the filtration condition (which
are labeled as violations). The persistent homology generators and violations are used to define features
(hyper-coherence and hyper-complexity) describing the persistence diagrams and homological scaffolds.
They show the relevance of their features for various types of multivariate time series (fMRI, financial, and
historical data of infectious diseases).
Zigzag persistence has also been applied to analyze multivariate time series by Corcoran & Jones (2017)
and more recently by Myers et al. (2023). Corcoran and Jones studied the swarm behavior of fish (position
of several agents through time) by using zigzag persistence on a sequence of simplicial complexes computed
from upper-level sets (with a fixed threshold) of a kernel density estimator. They obtain persistence
landscapes on which they use K-medoids clustering with the L2 distance. The previously described
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zigzag persistence-based method by Myers et al. (2023) applies to time-varying graphs, so it can apply to
multivariate time series with some of the graph transformations listed above.
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5 Discussion and perspectives

Throughout this survey, we have highlighted the usefulness of persistent homology for a variety of tasks
in time series analysis, with applications across several fields. We close with concluding remarks on the
strengths and limitations of persistent homology, highlight some literature gaps, and outline perspectives
for its use in time series analysis.

The value of persistent homology. Time series analysis has a long history, with the develop-
ment of efficient and well-understood tools grounded in well-established disciplines such as nonparametric
statistics, functional analysis, dynamical systems, and graph theory, among others. In this context, one
may naturally wonder about the value and relevance of methods based on persistent homology. The
relevance of persistent homology lies in its ability to capture the multi-scale geometric and topological
structure of complex data, revealing patterns (at different scales) that are often overlooked or obscured
by conventional statistical summaries. By translating the evolving topology of a signal into persistence
diagrams, it produces interpretable and geometrically grounded summaries. Further, as presented in
Section 3, persistence diagrams and related representations are stable under small perturbations or noise.
This combination of stability and interpretability makes persistent homology a distinctive tool for time
series analysis, bridging geometry and traditional statistical methodology. Yet, practitioners should be
aware that persistent homology and its standard representations are inherently invariant under several
transformations of the data (for instance, reparametrization). While these invariances can be interesting in
certain contexts, they also imply that some information is lost. Consequently, persistent homology is not
universally the most appropriate tool for every problem, and in many applications, it should be better used
as a complement to more classical statistical or machine learning methods. This point is often overlooked
in works proposing TDA-based tools for time-series analysis, which generally do not provide theoretical or
empirical comparisons with classical methods. We believe this is unfortunate, as such comparisons would
help clarify the added value of these new tools and thereby enhance their impact and adoption among
practitioners.

Interpretability, large and small scale features. As illustrated by several of the works we re-
viewed, representations of persistent homology can often be interpreted in a relatively straightforward way
and linked to meaningful dynamical or structural properties, such as local extrema (Myers et al., 2020)
and zero-crossings (Tanweer et al., 2024), periodicity (Khasawneh & Munch, 2018; Bonis et al., 2024;
Chazal et al., 2025), or chaos-related indicators (Ichinomiya, 2023; Shah et al., 2025), which are valuable in
many fields, notably biomedicine. However, many existing approaches use persistent homology merely as
a feature extractor for machine-learning pipelines, which tends to obscure these interpretative advantages.
Moreover, methods that rely directly on persistent-homology representations have the additional benefit
of being fully unsupervised, unlike most machine-learning-based techniques. Developing such methods,
therefore, appears to be an important direction for the future of the TDA research community. One
other appealing aspect of persistent homology is its genuinely multi-scale nature. Unlike many descriptors
that capture features of the data only at a fixed scale, persistent homology aggregates information about
homological structures across all scales, providing a comprehensive view of their evolution. However, most
existing work on persistence-based time-series analysis tends to focus exclusively on the most prominent
features (those corresponding, in some sense, to large-scale structures), typically by discarding points in
the persistence diagram that lie close to the diagonal. In many applications, such small-scale features are
treated as noise, which is often justified in practical settings such as those cited previously. Yet, recent
studies have shown that small-scale features can carry meaningful information. For instance, Bubenik
et al. (2020a) demonstrate, using toy examples, that points near the diagonal in persistence diagrams
obtained from sampled point clouds can be used to infer the curvature of the support of the underlying
distribution. Similarly, in his thesis, Perez (2022) shows that small bars in persistence diagrams of sublevel
sets of stochastic processes can be exploited to infer regularity and self-similarity parameters governing
these processes. These results offer new insights into the interpretation of persistence representations and
open the door to promising applications (particularly in the context of time-series analysis) that, to the best
of our knowledge, have not yet been explored. Further theoretical progress in understanding the informa-
tion contained in small-scale features would also be highly beneficial for future developments and applications.
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Delay embedding parameters. Points in delay embeddings capture local variations of a time se-
ries, while persistent homology provides tools to study their global organization through various filtrations
and methodological choices. However, as highlighted above, the embedding dimension and delay parameters
have a substantial influence on the resulting topology and on its subsequent interpretation. Existing proce-
dures for selecting these parameters are largely heuristic and often introduce additional hyperparameters.
Developing approaches that are less sensitive to these choices or that adaptively select them remains an
important challenge. Intrinsic metrics, such as the one proposed in Fernández et al. (2023), offer a promising
direction in this regard. More broadly, identifying an appropriate notion of distance for constructing
filtrations is crucial for fully exploiting the potential of TDA in time-series analysis.
On the other hand, methods that do not rely on a fixed choice of delay-embedding parameters, but instead
treat them as additional variables, such as in Tran & Hasegawa (2018), are appealing, yet suffer from high
computational cost. One interesting possibility would be, rather than computing a separate persistence
diagram for each pair (τ, d), to consider τ and/or d as additional filtration parameters and compute a
global topological descriptor associated with this multi-dimensional filtration, ideally, at a much lower
computational cost. This falls within the scope of multiparameter persistent homology, an emerging topic
that is briefly discussed below.
Additionally, existing delay-embedding approaches tend to be restricted to low-dimensional persistent
features (typically connected components and, at most, one-dimensional loops). Developing methods (and
theory) that reliably produce, interpret, and leverage higher-dimensional persistent features could therefore
open new perspectives.

Beyond correlation. For multivariate data, we have highlighted that a substantial portion of the
literature focuses on studying the topology of correlation graphs. As previously mentioned, this approach
can overlook important information and may, in some situations, be outperformed by simpler persistence-
based methods (Bhattacharya et al., 2025). A promising direction for future research is therefore to move
beyond correlation networks by incorporating richer structures such as k-order co-fluctuation patterns
(Santoro et al., 2023), directed (causality-based) graph transforms (El Yaagoubi & Ombao, 2023), or
even persistence vineyards (Salch et al., 2021). These tools have the potential to provide a more nuanced
characterization of dynamical interactions and could, in particular, offer valuable insights into brain function
through improved analyses of EEG and fMRI data.

Computation time. Although we have described several ways of getting around the problem of
computation time of persistent homology, it remains an important limitation that becomes a problem
when the number or length of the studied time series gets too high. Efficient implementations of the
persistent homology algorithm of Rips filtrations exist (Bauer, 2021; Zhang et al., 2020; Pérez et al.,
2021), as well as linear-size approximations (Sheehy, 2012) and efficient computation of representa-
tive cycles (Čufar & Virk, 2023). Developing similar algorithms for other filtrations and integrating them
into standard TDA libraries would help researchers use persistence-based methods in real-world applications.

Persistence parameters. In some of the reviewed methods, two (or more) parameters are relevant
to construct a filtered simplicial complex. For example, distance and time (Tymochko et al., 2020),
density and time (Corcoran & Jones, 2017), distance and density (Bois et al., 2024a) or distance and
delay-embedding parameters (Tran & Hasegawa, 2018). In the first two cases, a distance/density parameter
is fixed and zigzag persistence is used on a time-varying simplicial complex. In the third case, density
information is integrated into the Rips filtration by the DTM filtration (Anai et al., 2020), with a fixed
parameter (number of neighbors). In the fourth case, persistence diagrams are computed for embeddings
corresponding to multiple values of the parameter τ . Vasudevan et al. (2011) also use several thresholds for
sublevel sets but do not specify how they define the filtration, even though it is non-trivial.
A way to study the structure of data across all values of several parameters is multiparameter persistent
homology (Botnan & Lesnick, 2022). However, it is difficult to interpret because multiparameter persistence
modules do not have an interval-decomposition (the decomposition that gives the persistence diagram
for usual persistence). There exist invariants and vectorizations for multiparameter persistent homology
(usually based on 1-parameter reductions), and some are starting to be applied to time series classification
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(Loiseaux et al., 2024; Kim & Jung, 2022; 2024). We did not include multiparameter persistence in the
body of this review because this is still a mainly theoretical research topic that would require a lot only
to introduce a few applications. Nevertheless, it is a topic that readers should be aware of, as it offers
important perspectives for future developments.
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