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ABSTRACT

Reinforcement learning (RL) agents can leverage batches of previously collected
data to extract a reasonable control policy. An emerging issue in this offline RL
setting, however, is that the bootstrapping update underlying many of our methods
suffers from insufficient action-coverage: standard max operator may select a
maximal action that has not been seen in the dataset. Bootstrapping from these
inaccurate values can lead to overestimation and even divergence. There are a
growing number of methods that attempt to approximate an in-sample max, that
only uses actions well-covered by the dataset. We highlight a simple fact: it is more
straightforward to approximate an in-sample softmax using only actions in the
dataset. We show that policy iteration based on the in-sample softmax converges,
and that for decreasing temperatures it approaches the in-sample max. We derive
an In-Sample Actor-Critic (AC), using this in-sample softmax, and show that it is
consistently better or comparable to existing offline RL methods, and is also well-
suited to fine-tuning. We release the code at github.com/hwang-ua/inac pytorch.

1 INTRODUCTION

A common goal in reinforcement learning (RL) is to learn a control policy from data. In the offline
setting, the agent has access to a batch of previously collected data. This data could have been
gathered under a near-optimal behavior policy, from a mediocre policy, or a mixture of different
policies (perhaps produced by several human operators). A key challenge is to be robust to this data
gathering distribution, since we often do not have control over data collection in some application
settings. Most approaches in offline RL learn action-values, either through Q-learning updates—
bootstrapping off of a maximal action in the next state—or for actor-critic algorithms where the
action-values are updated using temporal-difference (TD) learning updates to evaluate the actor.

In either case, poor action coverage can interact poorly with bootstrapping, yielding bad performance.
The action-value updates based on TD involves bootstrapping off an estimate of values in the next
state. This bootstrapping is problematic if the value is an overestimate, which is likely to occur when
there are actions that are never sampled in a state (Fujimoto et al., 2018; Kumar et al., 2019; Fujimoto
et al., 2019). When using a maximum over actions, this overestimate will be selected, pushing up the
value of the current state and action. Such updates can lead to poor policies and instability (Fujimoto
et al., 2018; Kumar et al., 2019; Fujimoto et al., 2019).

There are two main approaches in offline RL to handle this over-estimation issue. One direction
constrains the learned policy to be similar to the dataset policy (Wu et al., 2019; Peng et al., 2020;
Nair et al., 2021; Brandfonbrener et al., 2021; Fujimoto & Gu, 2021). A related idea is to constrain
the stationary distribution of the learned policy to be similar to the data distribution (Yang et al.,
2022). The challenge with both these approaches is that they rely on the dataset being generated by
an expert or near-optimal policy. When used on datasets from more suboptimal policies—like those
commonly found in industry—they do not perform well (Kostrikov et al., 2022). The other approach
is bootstrap off pessimistic value estimates (Kidambi et al., 2020; Kumar et al., 2020; Kostrikov et al.,
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2021; Yu et al., 2021; Jin et al., 2021; Xiao et al., 2021) and relatedly to identify and reduce the
influence of out-of-distribution actions using ensembles (Kumar et al., 2019; Agarwal et al., 2020;
Ghasemipour et al., 2021; Wu et al., 2021; Yang et al., 2021; Bai et al., 2022).

One simply strategy that has been more recently proposed is to constrain the set of actions considered
for bootstrapping to the support of the dataset D. In other words, if πD(a|s) is the conditional action
distribution underlying the dataset, then we use maxa′:πD(a′|s′)>0 q(s

′, a′) instead of maxa′ q(s
′, a′):

a constrained or in-sample max. This idea was first introduced for Batch-Constrained Q-learning
(BCQ) (Fujimoto et al., 2019) in the tabular setting, with a generative model used to approximate and
sample πD(a|s) (Fujimoto et al., 2019; Zhou et al., 2020; Wu et al., 2022). Implicit Q-learning (IQL)
(Kostrikov et al., 2022) was the first model-free approximation to use this in-sample max, with a
later modification to be less conservative (Ma et al., 2022). IQL instead uses expectile regression, to
push the action-values to predict upper expectiles that are a (close) lower bound to the true maximum.
The approach nicely avoids estimating πD, and empirically performs well. Using only actions in the
dataset is beneficial, because it can approach is be difficult to properly constrain the support of the
learned model for πD and ensure it does not output out-of-distributions actions.

There are, however, a few limitations to IQL. The IQL solution depends on the action distribution not
just the support. In practice, we would expect IQL to perform poorly when the data distribution is
skewed towards suboptimal actions in some states, pulling down the expectile regression targets. We
find evidence for this in our experiments. Additionally, convergence is difficult to analyze because
expectile regression does not have a closed-form solution. One recent work showed that the Bellman
operator underlying an expectile value learning algorithm is a contraction, but only for the setting
with deterministic transitions (Ma et al., 2022).

In this work, we revisit how to directly use the in-sample max. Our key insight is simple: sampling
under support constraints is more straightforward for the softmax, in the entropy-regularized setting.
We first define the in-sample softmax and show that it maintains the same contraction and convergence
properties as the standard softmax. Further, we show that with a decreasing temperature (entropy)
parameter, the in-sample softmax approaches the in-sample max. This formulation, therefore, is both
useful for those wishing to incorporate entropy-regularization and to give a reasonable approximation
to the in-sample max by selecting a small temperature. We then show that we can obtain a policy
update that relies primarily on sampling from the dataset—which is naturally in-sample—rather than
requiring samples from an estimate of πD. We conclude by showing that our resulting In-sample
Actor-critic algorithm consistently outperforms or matches existing methods, despite being a notably
simpler method, in offline RL experiments with and without fine-tuning.

2 PROBLEM SETTING

In this section we outline the key issue of action-coverage in offline RL that we address in this work.

2.1 MARKOV DECISION PROCESS

We consider finite Markov Decision Process (MDP) determined by M = {S,A, P, r, γ} (Puterman,
2014) , where S is a finite state space, A is a finite action space, γ ∈ [0, 1) is the discount factor,
r : S ×A → R and P : S ×A → ∆(S) are the reward and transition functions.1 The value function
specifies the future discounted total reward obtained by following a policy π : S → ∆(A), vπ(s) =
Eπ[
∑∞
t=0 γ

tr(st, at)|s0 = s] where we use Eπ to denote the expectation under the distribution
induced by the interconnection of π and the environment. The corresponding action-value function
is qπ(s, a) = r(s, a) + γEs′∼P (·|s,a)[v

π(s′)]. There exists an optimal policy π∗ that maximizes the
values for all states s ∈ S. We use v∗ and q∗ to denote the optimal value functions. The optimal
value satisfies the Bellman optimality equation,

v∗(s) = max
a

r(s, a) + γEs′ [v∗(s′)] , q∗(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′

q∗(s′, a′)
]
. (1)

In this work we more specifically consider the entropy-regularized MDP setting—also called the
maximum entropy setting—where an entropy term is added to the reward to encourage the policy to

1We use the standard notation ∆(X ) to denote the set of probability distributions over a finite set X .
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be stochastic. The maximum-entropy value function is defined as

ṽπ(s) = vπ(s) + τH(s, π) , H(s, π) = Eπ
[ ∞∑
t=0

−γt log π(a|s)
∣∣∣s0 = s

]
, (2)

for temperature τ and H the discounted entropy regularization. The corresponding maximum-entropy
action-value function is q̃π(s, a) = r(s, a) + γEs′∼P (s,a)[ṽ

π(s′)], with soft Bellman optimality
equations similarly modified as described in the next section. As τ → 0, we recover the original
value function definitions. The entropy-regularized setting has become widely used (Ziebart et al.,
2008; Mnih et al., 2016; Nachum et al., 2017; Asadi & Littman, 2017; Haarnoja et al., 2018; Mei
et al., 2019; Xiao et al., 2019), because it 1) encourages exploration (Ziebart et al., 2008), 2) often
makes objectives more smooth (Mei et al., 2019), and 3) provides these improvements even with
small temperatures that do not significantly bias the solution to the original MDP (Song et al., 2019).

2.2 OFFLINE REINFORCEMENT LEARNING

In this work, we consider the problem of learning an optimal decision making policy from a previously
collected offline dataset D = {si, ai, ri, s′i}

n−1
i=0 . We assume that the data is generated by executing a

behavior policy πD. Note that we do assume direct access to πD. In offline RL, the learning algorithm
can only learn from samples in this D without further interaction with the environment.

One primary issue in offline RL is that πD may not have full coverage over actions. Greedy decisions
based on a learned value q ≈ q∗ could be problematic, especially when the value is an overestimate
for out-of-distribution actions (Fujimoto et al., 2019). To overcome this issue, one popular approach
is to constrain the learned policy to be similar to πD, such as by adding a KL-divergence term:
maxπ Es∼ρ[

∑
a π(a|s)q(s, a) − τDKL(π(·|s)||πD(·|s))] for some τ > 0. The optimal policy for

this objective must be on the support of πD: the KL constraint makes sure π(a|s) = 0 as long as
πD(a|s) = 0 . This optimal policy, with closed-form solution π′(a|s) ∝ πD(a|s) exp(q(s, a)/τ), is
also guaranteed to be an improvement on πD. Many offline RL algorithms are based on this nice idea
(Wu et al., 2019; Peng et al., 2020; Nair et al., 2021; Brandfonbrener et al., 2021; Fujimoto & Gu,
2021).2 This KL constraint, however, can result in poor π′ when πD is sub-optimal, confirmed both
in previous studies (Kostrikov et al., 2022) and our experimental results.

The other strategy is to consider an in-sample policy optimization, maxπ�πD
∑
a∈A π(a|s)q(s, a),

where π � πD indicates the support of π is a subset of πD. This approach more directly avoids
selecting out-of-distribution actions. Though a simple idea, approximating this with a simple
algorithm has been elusive, as discussed above. The simplest idea is to estimate πω ≈ πD and directly
constrain the support by sampling candidate actions from πω, as proposed for Batch-Constrained
Q-learning (Fujimoto et al., 2019). This simple approach, however, may not avoid bootstrapping
from out-of-sample actions due to the error in the estimate πω .

Surprisingly, the small modification to the in-sample softmax (Section 3) has not yet been considered
for offline RL. Yet, moving from the in-sample (hard) max to the in-sample softmax facilitates
developing a simple algorithm, as we discuss in the remainder of this work.

3 THE IN-SAMPLE SOFTMAX OPTIMALITY

This section introduces the in-sample softmax optimality that provides a simple implementation of
in-sample bootstrapping. We first describe the standard soft Bellman optimality equations, then the
modification to consider in-sample bootstrapping. Our simple algorithm comes from stepping back
and recognizing the utility of considering in-sample bootstrapping for the entropy-regularized setting
rather than only for the hard-max.

The soft Bellman optimality equations for maximum-entropy RL use the softmax in place of the max,

q̃∗(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
τ log

∑
a∈A

eq̃
∗(s′,a′)/τ

]
. (3)

2Fujimoto & Gu (2021) use a behavior cloning regularization (π(s)−a)2, where a is action in the dataset. We
note it is exactly a KL regularization under Gaussian parameterization with standard deviation. Brandfonbrener
et al. (2021) propose a one-step policy improvement method: first learn the value of πD , then directly train a
policy to maximize the learned value. Thus this is indeed a behavior regularized approach.
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This comes from the fact that hard max with entropy regularization is maxp∈∆(A)

∑
a∈A p(a)q(s, a)+

τH(p) = τ log
∑
a∈A e

q(s,a)/τ . As τ → 0, softmax (log-sum-exp) approaches the max.3

We can modify this update to restrict the softmax to the support of πD:

q̃∗πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

τ log
∑

a′:πD(a′|s′)>0

eq̃
∗
πD

(s′,a′)/τ

 . (4)

We call Eq. (4) the in-sample softmax optimality equation. It is interesting to note that we can use a
simple reformulation that facilitates sampling the inner term. For any q,∑

a:πD(a|s)>0

eq(s,a)/τ =
∑

a:πD(a|s)>0

πD(a|s)πD(a|s)−1eq(s,a)/τ

=
∑

a:πD(a|s)>0

πD(a|s)e− log πD(a|s)eq(s,a)/τ

= Ea∼πD(·|s)

[
eq(s,a)/τ−log πD(a|s)

]
. (5)

This reformulation does not perfectly remove the role of πD(a|s), but it is significantly reduced. The
support is no longer constrained using πD and instead the values are simply shifted by this term
involving πD. We will use this strategy below to develop our algorithm.

There are a few interesting facts to note about in-sample softmax. First, we can show that similarly to
the standard maximum-entropy bootstrap (shown formally in Lemma 3), we have for any q

τ log
∑

a:πD(a|s)>0

eq(s,a)/τ = max
π�πD

∑
a

π(a|s)q(s, a) + τH(π). (6)

Though this outcome is intuitive, it is a nice property that restricting the support of the log-sum-exp
maintains the same relationship to the maximum-entropy update with the same support constraint.
It extends this result for the soft Bellman optimality update to the setting with a support constraint.
From this perspective, in-sample softmax can also be viewed as a tool for conservative exploration:
exploring to prevent getting stuck in a local optima, while still being suspicious of what the data does
not know. This is especially important when q is a learned value approximation.

Second, we can also obtain a closed-form greedy policy using the above (shown formally in Lemma
3), which we call the in-sample softmax greedy policy: for any q,

ππD,q(a|s) ∝ πD(a|s) exp

(
q(s, a)

τ
− log πD(a|s)

)
, (7)

This closed-form solution looks similar to the KL-regularized solution mentioned in Section 2.2,
where π′ is constrained to be similar to πD. The only difference is the additional − log πD term
inside the exponential. This small difference, however, has a big impact. It allows the resulting policy
to deviate much more from πD. In fact, because exp(− log πD(a|s)) = πD(a|s)−1, the above is
equivalent to ππD,q(a|s) = 0 when πD(a|s) = 0 and otherwise ππD,q(a|s) ∝ exp(q(s, a)/τ)4. The
new policy π̃πD is not skewed by the action probabilities in ππD,q; it just has the same support.

4 THEORETICAL CHARACTERIZATION OF IN-SAMPLE SOFTMAX

In this section we prove in-sample softmax maintains the convergence properties of the standard
softmax. In particular, Bellman updates with the in-sample softmax are convergent, and the result-
ing in-sample softmax optimal policy approaches the in-sample optimal policy as we reduce the
temperature to zero. All proofs are given in Appendix A.

3Note that this softmax operator for the soft Bellman optimality equation is different from the softmax
Bellman operator, which uses an expectation in the bootstrap over a softmax policy and which is know to have
issue with not being an contraction (Asadi & Littman, 2017). The log-sum-exp formula is a standard way to
approximate the max, and is naturally called a softmax.

4We define 0 · ∞ = 0
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We can contrast our in-sample softmax optimality equation in (4) to the in-sample Bellman optimality
equation introduced by Fujimoto et al. (2019) for the hard max,

q∗πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max

a′:πD(a′|s′)>0
q∗πD (s′, a′)

]
. (8)

We first show that the policy produced using the in-sample softmax optimality equation is a good
approximation to that given by the in-sample Bellman optimality equation.
Theorem 1. Let q̃∗πD be the in-sample softmax optimal value function. We have limτ→0 q̃

∗
πD = q∗πD .

Moreover, let I be an indicator function and ππD (a|s) = I(a = arg maxa:πD(a)>0 q
∗
πD (s, a)) be the

in-sample optimal policy w.r.t q∗πD . Define the in-sample softmax optimal policy,

π̃∗πD (a|s) ∝ πD(a|s) exp

(
q̃∗πD (s, a)

τ
− log πD(a|s)

)
. (9)

We have limτ→∞ π̃∗πD = π∗πD .

Now we show that we can reach the in-sample softmax optimal solution, using either value iteration
or policy iteration. For value iteration, we define the in-sample softmax optimality operator

(TπDq)(s, a) = r(s, a) + γEs′∼P (·|s,a)

τ log
∑

a′:πD(a′|s′)>0

eq(s
′,a′)/τ

 . (10)

The next result shows that TπD is a contraction, and therefore in-sample soft value iteration, using
qt+1 = TπDqt, is guaranteed to converge to the in-sample softmax optimal value in the tabular case.
Theorem 2. For γ < 1, the fixed point of the in-sample softmax optimality operator exists and is
unique. Thus, in-sample soft value iteration converges to the in-sample softmax optimal value q̃∗πD .

As highlighted by Equation (6), the in-sample softmax policy corresponds to the solution of the
maximum entropy policy optimization. This implies that similarly to Soft Actor-Critic (Haarnoja
et al., 2018), we can apply policy iteration to find this policy. Let πt be the policy at iteration t. The
algorithm first learns the value function q̃πt , then updates the policy πt+1 such that q̃πt ≤ q̃πt+1 . The
following result shows that this procedure guarantees policy improvement.
Lemma 1. Let πt be a policy such that πt � πD. Define

πt+1(a|s) ∝ πD(a|s) exp

(
q̃πt(s, a)

τ
− log πD(a|s)

)
. (11)

Then πt+1 � πD and q̃πt+1 ≥ q̃πt .

Note that πt+1 not only ensures policy improvement, but also stays in the support of πD. Now let us
define the on-policy entropy-regularized operator,

(T πq)(s, a) = r(s, a) + γEs′,a′∼Pπ(·|s,a)[q(s
′, a′)− τ log π(a′|s′)] . (12)

Since this operator is a contraction (shown formally in Lemma 5), we can evaluate q̃π by repeatedly
applying T πq from any q until converge. These updates give rise to the in-sample soft policy iteration
algorithm that iteratively updates the policy using (11) and evaluate its by using T π . The convergence
for the tabular case is given below.
Theorem 3. For γ < 1, starting from any initial policy π such that π � πD, in-sample soft policy
iteration converges to the in-sample softmax optimal policy π̃∗πD .

5 POLICY OPTIMIZATION USING THE IN-SAMPLE SOFTMAX

In this section, we develop an In-sample Actor-critic (AC) algorithm based on the in-sample softmax.
This is the first time we see the utility of the in-sample softmax, to facilitate sampling actions from
πD using only actions in the dataset. This contrasts other direct methods, like BCQ that approximate
the in-sample max by sampling from an approximate πω (Fujimoto et al., 2019). Throughout this
section we generically develop the algorithm for continuous and discrete actions. Instead of using
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sums, therefore, we primarily write formulas using expectations, which allow for either discrete or
continuous actions.

The In-sample AC algorithm is similar to SAC (Haarnoja et al., 2018), except that we carefully
consider out-of-sample actions. We similarly learn an actor πψ with parameters ψ, action-values
qθ with parameters θ and a value function vφ with parameters φ. Additionally, we learn πω ≈ πD.
We need this to define the greedy policy shown above in Equation (11), but do not directly use it to
constrain the support over actions.

The first step in the algorithm is to extract πω ≈ πD. We do so using a simple maximum likelihood
loss on the dataset: Lbehavior(ω) = −E(s,a)∼D [log πω(a|s)]. We do not add any additional tricks to
try to ensure action probabilities are zero where πD(a|s) = 0, because this πω only plays a smaller
role in our update. It will only be used to adjust the greedy policy, and will only be queried on actions
in the dataset.

Then we use a similar approach to SAC, where we alternate between estimating qθ and vφ for the
current policy and improving the policy by minimizing a KL-divergence to the soft greedy policy.
The main difference here to SAC is that we update towards the in-sample soft greedy. We cannot
directly use Equation (11), which involves πD in the update, but can replace πD in the update with
our approximation πω . We therefore update towards an approximate in-sample soft greedy policy

π̂πD,qθ (a|s) = πD(a|s) exp

(
qθ(s, a)− Z(s)

τ
− log πω(a|s)

)
where Z(s) = τ log

∫
a
πD(a|s) exp( qθ(s,a)

τ − log πω(a|s))da is the normalizer to give a valid distri-
bution. We minimize a forward KL to this in-sample soft greedy policy, because that allows us to
sample the KL by only sampling actions from the dataset. To see why, notice that

DKL(π̂πD,qθ (·|s)||πψ(·|s)) = −Ea∼π̂πD,qθ (·|s)[log πψ(a|s)− log π̂πD,qθ (a|s)] (13)

= Ea∼πD(·|s)

[
exp

(
qθ(s, a)− Z(s)

τ
− log πω(a|s)

)
(log πψ(a|s) + log π̂πD,qθ (a|s))

]
The expectation is now over samples a ∼ πD(·|s); the actions in the dataset are precisely sampled
from πD. To sample the gradient for this loss, we also need an estimate for Z(s). We use our
parameterized vφ to estimate Z; we discuss why this is reasonable below. The final loss function for
the actor πψ is

Lactor(ψ) = −Es,a∼D
[
exp

(
qθ(s, a)− vφ(s)

τ
− log πω(a|s)

)
log πψ(a|s)

]
. (14)

For the value function we use standard value function updates for the entropy-regularized setting.
The objectives are

Lbaseline(φ) = Es∼D,a∼πψ(s)

[
1

2
(vφ(s)− (qθ(s, a)− τ log πψ(a|s)))2

]
(15)

Lcritic(θ) = Es,a,r,s′∼D
[

1

2
(r + γvφ(s′)− qθ(s, a))

2
]
. (16)

The action-values use the estimate of vφ in the next state, and so avoids using out-of-distribution
actions. The update to the value function, vφ, uses only actions sampled from πψ, which is being
optimized to stay in-sample. Periodically, however, vφ may bootstrap off of out-of-distribution
actions because we do not guarantee that πψ � πD. In fact, in early learning we expect πψ will not
satisfy this property. Despite this, the actor update will progressively reduce the probability of these
out-of-distribution actions, even if temporarily the action-values overestimate their value, because
the actor update pushes πψ towards the in-sample greedy policy. This means that the overestimate is
unlikely to significantly skew the actor, and progressively the overestimate should be reduced as the
support of πψ is reduced.

Finally, instead of learning a separate approximation for Z, we opt for the simpler approach of using
vφ. The reason is that vφ should provide a reasonable approximation to Z because of the relationship
between soft values and Z. From Equations (7) and (8) (formally proved in Lemma 3), we know that
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the soft values for the in-sample soft greedy policy π̃πD,qθ correspond to the normalizer Z for that
policy. Therefore, given that πω ≈ πD, the soft values of approximate in-sample soft greedy policy
π̂πD,qθ should also be similar to Z. Since we optimize our policy to approximate π̂πD,qθ , we expect
its entropy-regularized value, which is the learning target of vφ as shown in Equation (15), to be a
good approximation of Z.

6 EXPERIMENTS

In this section, we investigate three primary questions. First, in the tabular setting, can our algorithm
InAC converge to a policy found by an oracle method that exactly eliminates out-of-distribution
(OOD) actions when bootstrapping? Second, in Mujoco benchmarks, how does our algorithm
compare with several baselines using different offline datasets with different coverage? Third, how
does InAC compare with other baselines when used for online fine-tuning after offline training? We
refer readers to Appendix B for additional details and supplementary experiments.

Baseline algorithms: Oracle-Max: completely eliminates OOD actions when bootstrapping in
tabular domains, by using counts to exactly estimate πD. FQI: the regular Q-learning update applied
to batch offline data. CQL (Kumar et al., 2020): conservative Q-learning. IQL (Kostrikov et al., 2022):
implicit Q-learning. TD3+BC (Fujimoto & Gu, 2021): TD3 with behavior cloning regularization.
AWAC (Nair et al., 2021): Advantage Weighted Actor-Critic.

6.1 SANITY CHECK: APPROACHING ORACLE PERFORMANCE IN THE TABULAR SETTING

In this experiment we demonstrate that InAC finds the same policy as found by an oracle algorithm that
completely removes out-of-distribution (OOD) actions. We use the Four Rooms environment, where
the agent starts from the bottom-left and needs to navigate through the four rooms to reach the goal in
the up-right corner in as few steps as possible. There are four actions: A = {up, down, right, left}.
The reward is zero on each time step until the agent reaches the goal-state where it receives +1.
Episodes are terminated after 100 steps, and γ is 0.9. We use three different behavior policies to
collect three datasets from this environment called Expert, Random, and Missing-Action. The
Expert dataset contains data collected by the optimal policy. In Random dataset, the behavior policy
takes each action with equal probability. For the Missing-Action dataset, we removed all transitions
taking down actions in the upper-left room from the Mixed dataset.

To magnify the impact of bootstrapping from OOD actions we used optimistic initialization for
each algorithm (i.e., initialized all action values to be larger than the actual values under the optimal
policy). This ensures overestimation occurs in some states and we can observe how well the algorithms
mitigate poor bootstrap targets.

(a) Policy evaluation performance (b) Four Room

Figure 1: Policy evaluation performance (return per episode) v.s. number of updates on Expert, Random, and
Missing-Action datasets. Each curve is averaged over 10 runs, and shaded areas show a 95% confidence interval.

The results in Figure 1 are exactly as expected. InAC converges to the same policy as found by
Oracle-Max. The FQI baseline cannot effectively remove OOD actions when bootstrapping, and
so performs poorly and sometimes completely fails when the dataset has poor action coverage (i.e.,
there are many OOD actions). Finally, IQL performs poorly when the offline data is highly skewed
towards suboptimal policies. It is likely because the upper expectile of the state value provides a poor
approximation to the in-sample maximum action value.
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Figure 3: Policy evaluation performance (normalized score) v.s. number of updates. M denotes Medium. The
results are averaged over 10 runs, after using a smoothing window of size 10. Results on additional offline
datasets are in Appendix B.1, showing that InAC still learned the best policy.

6.2 OOD EFFECTS IN CONTINOUS ACTION PROBLEMS

In this section we provide a suite of results from four Mujoco environments from D4RL (Fu et al.,
2020), now standard datasets for evaluating offline RL algorithms. Each dataset (named as Ex-
pert, Medium-Expert, Medium-Replay, and Medium) was designed to mimic different deployment
scenarios. In the Expert dataset all trajectories were collected using a policy learned by a SAC
agent. In Medium, all trajectories were collected with the policy learned by a SAC agent halfway
thought training. Medium-Expert combines the expert and medium datasets together, and similarly
Medium-Replay combines Medium with the replay buffer used during learning.

InAC
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Figure 2: Averaged score over environ-
ments v.s. different offline datasets. We
averaged the normalized score over four
Mujoco tasks and 10 runs. The shaded
area indicates the 95% confidence inter-
val. Comparing InAC and IQL with the
sign test over 40 runs, InAC was sig-
nificantly better in all datasets. Expert,
M-Expert, and M-Replay had p-value
close to 0, while Medium dataset gave
p = 0.002.

Figure 2 summarizes each algorithm’s performance averaged
over all environments under different datasets. Our algorithm’s
performance dominates the others across datasets. In Figure 3
we provide a more detailed view of the data with learning
curves in each environment. Overall InAC performs best or
nearly so across all domains. In Hopper M-Expert, the result is
likely a three-way tie, while in HalfCheetah M-Expert TD3+BC
learns faster initially, but the quickly converges to much lower
final performance compared with InAC. Naturally, all meth-
ods are dependent on the quality of the dataset. For example,
when shifting from the higher quality (medium-expert) to the
lower quality (medium-replay) data, TD3+BC—which regular-
izes the policy to stay close to the behavior policy—exhibits
a significant performance drop. Overall, TD3+BC and CQL’s
performance is problem dependent: in some problems perform-
ing well and in others basically failing to learn. Finally IQL
performs nearly as well as InAC on many problems, but notably
not on Walker2D and Hopper M-Replay.

These results provide evidence that explicitly avoiding boot-
strapping from OOD actions provides a significant benefit, but
that regularizing the learned policy to stay close to the behavior
policy can be problematic.

6.3 FROM OFFLINE TRAINING TO ONLINE FINE-TUNING

In real-world applications, it can be useful to take an offline-trained deep RL agent and fine-tune
it online. In this section, we investigate how the performance of different baselines changes in
fine-tuning. At the beginning of fine-tuning, the agent’s policy is initialized with the policy learned
offline and the buffer is filled with that same offline dataset. During online interactions, the agent
continually adds its new experience into the buffer.
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Figure 4: Online fine-tuned performance on Medium-Expert and Medium-Replay datasets across
four Mujoco environments. M represents Medium in this Figure. The results were averaged over 10
random seeds. The short vertical line indicates the range of 3 times standard error. Each colored bar
shows the performance after 0.8M steps of fine-tuning. The thinner black bar inside the colored
bar indicates the performance immediately after offline training (i.e., before online fine-tuning). We
also report numerical numbers in the Table 13 in Appendix B.1.

Figure 4 shows the policy performance before and after online fine-tuning. We see that InAC is
consistently one of the best algorithms across these environments and datasets. There are a few
particularly notable outcomes in these experiments. In Hopper and Walker2d for the Medium-Expert
data, the performance for IQL drops significantly after fine-tuning. This contrasts all the other
algorithms, which maintained or improved performance when fine-tuning. The cause of this drop is
as yet unclear. There is one new algorithm in this set, called AWAC, which was originally proposed
specifically for online fine-tuning setting (Nair et al., 2021). We do in-fact see that this algorithm
can have quite poor offline performance, but significantly improve after fine-tuning. Despite being
designed for this fine-tuning setting, however, it does not outperform the offline algorithms, except in
Hopper with Medium-Replay and more minorly on Walker2d with Medium-Replay. Overall, we find
that InAC performs well in both the fully offline setting as well as when incorporating fine-tuning.

7 CONCLUSION

In this paper we considered the problem of learning action-values and corresponding policies from
a fixed batch of data. The algorithms designed for this setting need to account for the fact that
action-coverage may be partial: certain actions may never be taken in certain regions of the state
space. This complicates learning with our algorithms that rely on action-values estimates q(s, a)
and bootstrapping. In particular, if an action a is not visited in s or similar states, the q(s, a) can be
an arbitrary value. If this arbitrary value is high, it is likely to be used in the max in the bootstrap
target and used to update the policy, which increases probability for high-value actions. This agent is
chasing hallucinations, that can produce poor policies or even divergence. We focused on a simple
approach to mitigate this issue: redefining the objectives to use an in-sample softmax and finally
obtaining an approach to update towards an in-sample soft greedy policy that only uses actions
sampled from the dataset. The resulting In-sample AC algorithm avoids these hallucinated values
when updating the actor, and so correspondingly avoids them when updating the values.

We had two clear findings from this work. First, the move to an in-sample softmax was a key step
towards a simple implementation of in-sample learning. Previous work, like BCQ, tried to produce a
simple algorithm built on an in-sample max algorithm, but needed to incorporate several tricks and
later algorithms significantly improve on it. In-sample AC, on the other hand, required only minor
modifications to existing AC approaches. The actor update was modified to consider the in-sample
softmax, but the resulting update was no more complex than typical actor updates. Second, our
results indicate that overall Implicit Q-learning (IQL) is quite a good algorithm. Like In-sample AC,
it also avoids relying on actions sampled from an approximation of πD, but does so using expectile
regression. Nonetheless, we find that In-sample AC is always competitive with IQL, and in some
cases significantly outperforms it when the dataset is generated by a more suboptimal behavior policy.
IQL can still be skewed by too many suboptimal actions in the dataset. In-sample AC provides a
simple, easy-to-use approach, for both discrete and continuous actions, with an update designed to
match only the support of πD and not the action probabilities.
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A APPENDIX: PROOFS

This section includes the proof of all main results.

A.1 RESULTS FOR ONE-STEP DECISION MAKING

We first introduce some results for one-step decision making that will be used in the derivations of
main results.

Maximum Entropy Optimization We consider a k-armed one-step decision making problem. Let
∆ be a k-dimensional simplex and q = (q(1), . . . , q(k)) ∈ Rk be the reward vector. Maximum
entropy optimization considers

max
π∈∆

π · q + τH(π) . (17)

The next result characterizes the solution of this problem (Lemma 4 of (Nachum et al., 2017)).

Lemma 2. For τ > 0, let

Fτ (q) = τ log
∑
a

eq(a)/τ , fτ (q) =
eq/τ∑
a e

q(a)/τ
= e

q−Fτ (q)
τ . (18)

Then there is

Fτ (q) = max
π∈∆

π · q + τH(π) = fτ (q) · q + τH(fτ (q)) . (19)

In-Sample Maximum Entropy Optimization Let β ∈ ∆ be an arbitrary policy. In-sample
maximum entropy optimization considers

max
π�β

π · q + τH(π) . (20)

We now characterize the solution of this problem. For τ > 0 define the in-sample softmax value,

Fβ,τ (q) = τ log

 ∑
a:β(a)>0

eq(a)/τ

 , (21)

and the in-sample softmax policy,

fβ,τ (q) =
βeq/τ−log β∑
a:β(a)>0 e

q(a)/τ
= βe

q−Fβ,τ (q)

τ −log β . (22)

Lemma 3.

Fβ,τ (q) = max
π�β

π · q + τH(π) = fβ,τ (q) · q + τH(fβ,τ (q)) . (23)

Proof. This result is directly implied by Lemma 2.

The next result shows that Fβ,τ is a contractor.

Lemma 4. For any two vectors q1, q2 ∈ Rk,

|Fβ,τ (q1)− Fβ,τ (q2)| ≤ ‖q1 − q2‖∞ . (24)
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Proof.

Fβ,τ (q1)− Fβ,τ (q2) = sup
π1�β

{π1 · q1 + τH(π1)} − sup
π2�β

{π2 · q2 + τH(π2)} (25)

= sup
π1�β

{
inf
π2�β

π1 · q1 − π2 · q2 + τH(π1)− τH(π2)

}
(26)

≤ sup
π�β
{π · q1 − π · q2} (27)

≤ max
a:β(a)>0

q1(a)− q2(a) (28)

≤ max
a

q1(a)− q2(a) , (29)

where the first step follows by Lemma 3, the third step follows by choosing π2 = π1. This finishes
the proof.

A.2 RESULT FOR ON-POLICY ENTROPY-REGULARIZED BACKUP

In this section we show some basic results for on-policy entropy-regularized backup. We note that
most results are generalized from Section C.2 of (Nachum et al., 2017) (which states for ṽ) to q̃.

Recall that the entropy-regularized value functions are defined as

q̃π(s, a) = r(s, a) + γEs′ [ṽπ(s′)] , ṽπ(s) = Eπ
[ ∞∑
t=0

γt(r(st, at)− τ log π(at|st))
∣∣∣s0 = s

]
.

(30)

Define the on-policy entropy-regularized Bellman operator

(T πq)(s, a) = r(s, a) + γEs′,a′∼Pπ(·|s,a)[q(s
′, a′)− τ log π(a′|s′)] . (31)

Lemma 5. For any policy π, q̃π satisfies that q̃π = T π q̃π. Moreover, suppose that |A| <∞, T π is
a contraction mapping.

Proof. By the definition of ṽπ and q̃π ,

ṽπ(s) = Eπ
[ ∞∑
t=0

γt(r(st, at)− τ log π(at|st))
∣∣∣s0 = s

]
(32)

= Eπ
[
r(s0, a0)− τ log π(a0|s0) + γ

∞∑
i=0

γi(r(si+1, ai+1)− τ log π(ai+1|si+1))
∣∣∣s0 = s

]
(33)

= Ea∼π(s)

[
r(s, a)− τ log π(a|s) + γEs′

[
Eπ
[ ∞∑
t=0

γt(r(st, at)− τ log π(at|st))
∣∣∣s0 = s′

]]]
(34)

= Ea∼π(s)

[
r(s, a)− τ log π(a|s) + γEs′∼P (s,a)[ṽ

π(s′)]
]

(35)

= Ea∼π(s) [q̃π(s, a)− τ log π(a|s)] . (36)

Thus

q̃π(s, a) = r(s, a) + Es′ [ṽπ(s′)] (37)

= r(s, a) + Es′ [Ea∼π(s′) [q̃π(s′, a′)− τ log π(a′|s′)]] (38)

= r(s, a) + Es′,a′∼Pπ(s,a)[q̃
π(s′, a′)− τ log π(a′|s′)] (39)

= T π q̃π . (40)

This finishes the proof of the first part. Since |A| <∞, log π(a|s) is bounded for any s, a. Then that
T π is a contraction mapping follows directly from standard argument (Puterman, 2014).
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This shows that q̃π is a fixed of T π . That is, starting from any value q, we can learn q̃π by repeatedly
applying q = T πq. The next result characterizes the convergence rate of this algorithm.

Lemma 6. For any π and q, we have

‖(T π)kq − q̃π‖∞ ≤ γk‖q − q̃π‖∞ . (41)

Proof. We prove the result by induction. For the base case, k = 0, the result trivially follows. Now
suppose that the result holds for k − 1. Then

‖(T π)kq − q̃π‖∞ = max
s,a

∣∣(T π)kq(s, a)− q̃π(s, a)
∣∣ (42)

= max
s,a

∣∣T π(T π)k−1q(s, a)− T π q̃π(s, a)
∣∣ (43)

= γmax
s,a

∣∣Es′,a′∼Pπ(s,a)

[
(T π)k−1q(s′, a′)− q̃π(s′, a′)

]∣∣ (44)

≤ γmax
s,a

∣∣(T π)k−1q(s, a)− q̃π(s, a)
∣∣ (45)

= γk‖q − q̃π‖∞ , (46)

where the second step uses Lemma 5, the third step uses the definition of T π , the fourth step uses the
Holder’s inequality, the last step uses the induction hypothesis. This finishes the proof.

Finally, we also need the monotonicity property of the on-policy Bellman operation.

Lemma 7. For any π, if q1 ≥ q2, then T πq1 ≥ T πq2.

Proof. Assume q1 ≥ q2 and note that for any state-action s, a

(T πq1)(s, a)− (T πq2)(s, a) = γEs′,a′∼Pπ(s,a) [q1(s′, a′)− q2(s′, a′)] ≥ 0 . (47)

Policy improvement lemma.

Lemma 8. Let π be a policy such that π � β. Define π′

π′(·|s) ∝ β(·|s) exp

(
q̃π(s, :)

τ
− log β(·|s)

)
. (48)

Then π′ � β and q̃π
′ ≥ q̃π .

Proof. The first part trivially holds by the definition of π′.

For the second part, note that by Lemma 3, for any state s ∈ S,

π′(·|s) · (q̃π(s, :)− τ log π̃(·|s)) ≥ π(·|s) · (q̃π(s, :)− τ log π(·|s)) . (49)

Then by Lemma 5, for any s, a ∈ S ×A,

q̃π(s, a) = r(s, a) + γEs′,a′∼Pπ(·|s,a)[q̃
π(s′, a′)− τ log π(a′|s′)] (50)

≤ r(s, a) + γEs′,a′∼Pπ′ (·|s,a)[q̃
π(s′, a′)− τ log π′(a′|s′)] (51)

≤ . . . (52)

≤ q̃π
′
(s, a) , (53)

where we recursively apply Lemma 5 to expand the definition of q̃π and apply Eq. (49).
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A.3 RESULT FOR OFF-POLICY ENTROPY-REGULARIZED BACKUP

Given an arbitrary policy β, consider the following problem
max
π�β

ṽπ(s) for all s ∈ S (54)

For τ > 0, define the In-sample softmax Bellman operator

(T ∗β q)(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
τ log

∑
a′:β(a′|s′)>0

exp (q(s′, a′)/τ)

]
(55)

= r(s, a) + γEs′∼P (·|s,a) [Fβ,τ (q(s′, :))] (56)
Lemma 9. For γ < 1, the fixed point of the in-sample softmax Bellman operator, q∗ = T ∗β q∗, exists
and is unique.

Proof. We first show that T ∗β is a contraction. Let q1 and q2 be two value functions. Then∥∥T ∗β q1 − T ∗β q2

∥∥
∞ = γmax

s,a

∣∣T ∗β q1(s, a)− T ∗β q2(s, a)
∣∣ (57)

= γmax
s,a

∣∣Es′∼P (·|s,a) [Fβ,τ (q1(s′, :))− Fβ,τ (q2(s′, :))]
∣∣ (58)

≤ γmax
s
|Fβ,τ (q1(s, :))− Fβ,τ (q2(s, :))| (59)

≤ γmax
s,a
|q1(s, a)− q2(s, a)| (60)

= γ ‖q1 − q2‖ , (61)
where the second step uses the definition of T ∗β , the third step uses Holder’s inequality, the fourth
step uses Lemma 4.

Note that by definition, q̃∗β is the fixed point of T ∗β .
Lemma 10. If q is bounded and q ≥ T ∗β q, then for any π, q ≥ q̃π .

Proof. We first prove that for any π, q ≥ T ∗β q implies that q ≥ (T π)kq for k ≥ 0. Then the result
follows by applying Lemma 6. According to the assumption,

q ≥ T ∗β q = r(s, a) + γEs′ [Fβ,τ (q(s′, :))] (62)

≥ r(s, a) + γEs′
[∑
a′

π(a′|s′)(q(s′, a′)− τ log π(a′|s′))

]
(63)

= T πq , (64)
where the second inequality follows by Lemma 3. Then by Lemma 7,

q ≥ T πq ≥ T πT ∗β q ≥ T πT πq ≥ · · · ≥ (T π)kq . (65)
This finishes the proof.

We have the following key result.
Lemma 11. For any s ∈ S, ṽ∗β(s) = maxπ�β ṽ

∗(s).

Proof. We first show ṽ∗β ≥ maxπ�β ṽ
π . Using the definitions,

ṽ∗β = Fβ,τ (q̃∗β) (66)

= π̃∗β ·
(
q̃∗β − τ log π̃∗β

)
(67)

≥ π ·
(
q̃∗β − τ log π

)
(π � β) (68)

≥ π · (q̃π − τ log π) (π � β) (69)
= ṽπ , (70)
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where the second and third steps follow by Lemma 3, the fourth step follows by Lemma 10, the last
step follows by the definition.

We then prove maxπ�β ṽ
π ≥ ṽ∗β by first showing that q̃∗β = q̃π̃

∗
β . Since q̃∗β is the fixed point T ∗β , by

the uniqueness of the fixed point (Lemma 9), we only need to show that T ∗β q̃
π̃∗β = q̃π̃

∗
β . This holds

because for any (s, a),

T ∗β q̃π̃
∗
β (s, a) = r(s, a) + γEs′

[
Fβ,τ (q̃π̃

∗
β (s′, :))

]
(71)

= r(s, a) + γEs′
[∑
a′

π̃∗β(a′|s′)
(
q̃π̃
∗
β (s′, a′)− τ log π̃∗β(a′|s′)

)]
(72)

= T π̃
∗
β q̃π̃

∗
β (s, a) (73)

= q̃π̃
∗
β (s, a) , (74)

where the second step uses Lemma 3 and the last step uses Lemma 5. Then,

max
π�β

ṽπ ≥ ṽπ̃
∗
β = π̃∗β ·

(
q̃π̃
∗
β − τ log π̃∗β

)
= π̃∗β ·

(
q̃∗β − τ log π̃∗β

)
= ṽ∗β , (75)

where the second equality uses that q̃∗β = q̃π̃
∗
β , the last step uses Lemma 3. This finishes the proof.

A.4 PROOF OF THEOREM 1

Theorem 4 (Restatement of Theorem 1). Let q̃∗β be a value function recursively defined as

q̃∗β(s, a) = r(s, a) + γEs′∼P (·|s,a)

τ log
∑

a′:β(a′|s′)>0

exp
(
q̃∗β(s′, a′)/τ

) , (76)

and π̃∗β be a policy defined as

π̃∗β(a|s) ∝ β(a|s) exp
(
q̃∗β(s, a)/τ − log β(a|s)

)
. (77)

Then we have q̃∗β → q∗β and π̃∗β → π∗β as τ → 0.

Proof. By Lemma 11, we have q̃∗β(s, a) = maxπ�β q̃
∗(s, a) for any s, a. The result directly follows

by definition of q̃∗. The result for policy can be proved similarly.

B APPENDIX FOR EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTS

This section includes additional experiments to investigate the following questions.

1. We used optimistic initialization for all algorithms in the tabular domain. How do the
algorithms perform when using a zero/pessimistic initialization? We show this in Figure 5.
In the meanwhile, we added Mixed dataset, which has 1% optimal trajectories and 99%
random trajectories.

2. How do our algorithms work on the discrete action domains in the deep learning setting?
We show the learning curves on Mountain Car, Lunar Lander, Acrobot in Figure 7. The final
performance is listed in Figure 8 with a normalized score, while the absolute score can be
found in Figure 9.

3. How do our algorithms work on more datasets in the continuous action domains? We put
learning curves for the expert and medium dataset in Figure 10, then list the performance
of policies learned with all baselines and all datasets in Figure 11 with a normalized score,
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while the absolute score can be found in Figure 12. For more Fine-tuning results, we
put them in Figure 13 with a normalized score, while the absolute score can be found in
Figure 14.

4. Will longer run reduce the gap between InAC and baselines? Can InAC still learn better
or similar policy compared to baselines, if we use another common batch size setting in
Mujoco tasks (256)? We changed the batch size to 256 and increased the number of iteration
to 1.2 million, then show the performance in Figure 15.

5. How does InAC perform in AntMaze? We used antmaze-umaze-v0 and antmaze-umaze-
diverse-v0 to test InAC, then added the learning curve comparing InAC to IQL in Figure 16.
We followed the set up in previous work (Kostrikov et al., 2022).

B.2 REPRODUCING DETAILS

This section includes all experimental details to reproduce any empirical results in this paper. We use
python version 3.9.6, gym version 0.10.0, pytorch version 1.10.0.

B.3 REPRODUCING DETAILS ON TABULAR DOMAIN

Four room environment: The environment is a 13× 13 gridword, with walls separating the whole
space into 4 rooms (as shown in Figure 6). The black area refers to the wall. The agent starts from
the lower-left corner and learns to stay in the upper-right corner. When an agent runs into the wall, it
returns to its previous state. The agent gets a +1 when it transits to the state in the upper-right corner
and gets 0 otherwise. The discount rate is 0.9. Thus the upper bound of state value is 10. In tabular
experiments, each trajectory was limited to 100 steps. τ was set to 0.01. A mini-batch update was
used. The agent sampled 100 transitions at each iteration. Among the 4 datasets we used, mixed and
random datasets used the random restart to ensure full state-action pairs coverage, while expert and
missing-action datasets did not.

Offline data collection: We used value iterations to find the optimal policy (10k iterations). For
the expert dataset, we collect 10k transitions with the optimal policy. For the random dataset, we
collected 10k transitions with a random restart and equal probability of taking each action. The mixed
dataset consists of 100 transitions from the expert dataset and 9900 transitions from the random
dataset. The missing action dataset is constructed by all going-down transitions in the upper-left
room from the mixed dataset.

Algorithm parameter sweep: The learning rate of InAC, Oracle-Max, and
FQI was swept in [0.1, 0.03, 0.01, 0.003, 0.001]. Sarsa had a larger range:
[0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003]. The τ of in-sample methods was
fixed to 0.01.

B.4 REPRODUCING DETAILS OF DEEP RL ALGORITHMS

Network architecture: In mujoco tasks, we used 2 hidden layers with 256 nodes each for all neural
networks. In discrete action environments, we used 2 hidden layers with 64 nodes each.

Offline data generation details: In continuous control tasks, we used the datasets provided by
D4RL. In discrete control tasks, we used a well-trained DQN agent to collect data. The DQN agent
had 2 hidden layers with 64 nodes on each, with FTA (Pan et al., 2021) activation function on the last
hidden layer and ReLU on others. In Acrobot, the agent was trained for 40k steps with batch size
64. In Lunar Lander and Mountain Car, we trained the agent for 500k and 60k steps separately, with
other settings the same as in Acrobot. The expert dataset contains 50k transitions collected with the
fixed policy learned by the DQN agent. The mixed dataset has 2k (4%) near-optimal transitions and
48k (96%) transitions collected with a randomly initialized policy.

Offline training details: In all tasks, we used minibatch sampling, and the mini-batch size was set to
100. We used the ADAM optimizer and ReLU activation function. The target network is updated by
using Polyak average: 0.995× target weight+ 0.005× learning weight. We trained the agent
for 0.8 million iterations and 70k iterations in mujoco and discrete action environments respectively.
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Figure 5: Learning curves under different initialization on our four room gridworld tabular domain.
(a) used 10 to initialize weights, (b) used 0, and (c) used −20. InAC learns reasonable policy with 1)
expert trajectories, 2) missing action trajectories, 3) mixed trajectories, and 4) random trajectories,
where 3) and 4) have full state-action coverage. The results were averaged over 10 random seeds,
except that CQL had 5 seeds. The shaded area indicates 95% confidence interval.

Fine Tuning details: We kept all settings as same as in offline learning, and used the learned policy
as initialization. The offline data was filled into the buffer at the beginning of fine-tuning. New
interactions would be appended to the buffer later in fine-tuning. No data were removed. The
fine-tuning had 0.8M steps.

Policy evaluation details: The policy was evaluated for 5 episodes in the true environment with a
timeout setting. Acrobot and Lunar Lander had timeout=500, Mountain Car used 2000, and mujoco
tasks used 1000. The numbers reported were averaged over 10 random seeds.

Algorithm parameter setting:
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InSample FQI SARSA

(a) Expert

InSample FQI SARSA

(b) Missing Action

Figure 6: Visualization of the learned policy of each algorithms and the estimated values at each
state. The blue colors indicate the action value of the corresponding policy and the arrow indicates
the action taken by the learned policy. A deeper color refers to a higher action value. It is clear that
both FQI and SARSA have serious overestimation and found an incorrect policy when the offline
data lacks action coverage (i.e., on the Expert and Missing-action offline data).
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Figure 7: Learning curves on the discrete action domains. InAC learns the best policy or a comparable
policy to the strongest baseline. From left to right, we show the result in Acrobot, Lunar Lander,
and Mountain Car. In each environment, we tested 2 datasets: Expert and Mixed. In expert dataset,
all trajectories were collected with the near-optimal policy, while in mixed dataset, 4% trajectories
were optimal and 96% were collected with a randomly initialized neural network policy. The y-axis
is a normalized return reflecting the performance. The return was normalized according to returns
obtained by a well trained DQN agent (upper bound) and a randomly initialized network (lower
bound). The higher the normalized value, the better the performance. The curves were smoothed
with window length10. The results were averaged over 10 random seeds. The shaded area indicates
95% confidence interval.

Mujoco tasks: For all algorithms, the learning rate was swept in {3× 10−4, 1× 10−4, 3× 10−5}.
InAC swept τ in {1.0, 0.5, 0.33, 0.1, 0.01}. AWAC swept λ in {1.0, 0.5, 0.33, 0.1, 0.01}. IQL swept
expectile in {0.9, 0.7} and temperature in {10.0, 3.0}. The number came from what was reported in
the original IQL paper. TD3+BC used α = 2.5 as in the original paper. CQL-SAC used automatic
entropy tuning as in the original paper.

Discrete action environments: For all algorithms, the learning rate was swept in
{0.003, 0.001, 0.0003, 0.0001, 3e− 5, 1e− 5}. For InAC, τ was swept in {1.0, 0.5, 0.1, 0.05, 0.01}.
IQL had the same parameter sweeping range as in mujoco tasks. AWAC used λ = 1.0 as in the
original paper. CQL used α = 5.0.
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Environment Dataset InAC FQI SARSA CQL IQL AWAC Oracle-Max

Acrobot
opt 1.0116 (0.0006) 0.3373 (0.0162) 0.0597 (0.0061) 1.0040 (0.0011) 1.0047 (0.0015) 1.0069 (0.0007)

mixed 0.8851 (0.0036) 0.4041 (0.0153) 0.0934 (0.0084) 0.9861 (0.0012) 0.8796 (0.0041) 0.8589 (0.0074)

Lunar Lander
opt 0.9956 (0.0014) -0.0176 (0.0105) 0.3872 (0.0088) 0.9229 (0.0031) 0.9648 (0.0017) 0.9424 (0.0035)

mixed 0.2960 (0.0057) 0.2281 (0.0099) 0.1087 (0.0109) 0.0783 (0.0105) 0.1832 (0.0095) 0.3064 (0.0103)

Mountain Car
opt 1.0017 (0.0004) 0.7802 (0.0124) -0.0254 (0.0021) 0.9423 (0.0050) 1.0037 (0.0004) 0.9973 (0.0006)

mixed 0.7226 (0.0152) 0.0130 (0.0065) 0.0330 (0.0066) 0.9405 (0.0015) 0.8182 (0.0073) 0.9628 (0.0016)

1.0214 (0.0007)
0.9970 (0.0009)

1.0108 (0.0008)
0.3632 (0.0094)
1.0061 (0.0001)

0.9833 (0.0006)

Figure 8: The offline-trained final performance of each algorithm in discrete action space environ-
ments. The number in bracket is the standard error. Scores are normalized. The bold numbers are the
best performance in the same setting. Performance was averaged over 10 random seeds.

Environment Dataset InAC FQI SARSA CQL IQL AWAC Oracle-Max

Acrobot
opt -85.14 (0.22) -357.48 (6.56) -469.58 (2.45) -88.18 (0.44) -87.92 (0.60) -87.04 (0.29)

mixed -136.22 (1.45) -330.48 (6.20) -455.96 (3.41) -95.44 (0.50) -138.44 (1.66) -146.80 (2.99)

Lunar Lander
opt 201.20 (0.90) -460.09 (6.85) -195.86 (5.76) 153.71 (2.05) 181.06 (1.11) 166.49 (2.29)

mixed -255.43 (3.73) -299.73 (6.48) -377.64 (7.11) -397.51 (6.85) -328.99 (6.18) -248.59 (6.70)

Mountain Car
opt -118.14 (0.66) -516.46 (22.35) -1965.74 (3.86) -224.92 (8.95) -114.46 (0.65) -125.90 (1.12)

mixed -620.12 (27.34) -1896.60 (11.64) -1860.62 (11.84) -228.16 (2.68) -448.14 (13.10) -187.94 (2.88)

-81.18 (0.28)
-91.02 (0.38)

211.09 (0.50)
-211.53 (6.13)
-110.08 (0.22)

-151.18 (1.11)

Figure 9: The offline-trained final performance of each algorithm in discrete action space environ-
ments. This table reports the return per episode before normalization. The number in bracket is the
standard error. The bold numbers are the best performance in the same setting. Performance was
averaged over 10 random seeds.

InAC IQL AWAC TD3+BC CQL

0 20 40 60 80
0

30
60
90

120
Ant Expert

0 20 40 60 80
0

30
60
90

120
Ant Medium

0 20 40 60 80
0

25
50
75

100
Hopper Expert

0 20 40 60 80
0

25
50
75

100
Hopper Medium

0 20 40 60 80
0

25
50
75

100 HalfCheetah Expert

0 20 40 60 80
0

25
50
75

100 HalfCheetah Medium

0 20 40 60 80
0

25
50
75

100
Walker2D Expert

0 20 40 60 80
0

25
50
75

100

No
rm

al
ize

d 
Sc

or
e

Iteration (x104)

Walker2D Medium

Figure 10: Learning curve on the mujoco tasks. InAC learns the best policy or a comparable policy
to the strongest baseline. The results were averaged over 10 random seeds, except that CQL had 5
seeds. The shaded area indicates 95% confidence interval.
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Environment Dataset InAC IQL AWAC TD3+BC CQL

Ant

expert 118.80 (0.50) 100.60 (0.89) 93.30 (1.04) 86.00 (1.50)
medium expert 120.90 (0.58) 97.80 (1.55) 88.70 (0.89) 111.40 (0.88)
medium replay 88.40 (0.63) 65.00 (1.15) 59.20 (0.39) 85.00 (0.84)

medium 94.20 (0.88) 94.50 (0.49) 84.10 (0.30) 69.80 (0.71)

HalfCheetah

expert 91.50 (0.20) 10.00 (0.10) 92.10 (0.03) 5.20 (0.17)
medium expert 83.40 (0.46) 38.50 (0.30) 54.10 (0.38) 22.20 (0.12)
medium replay 44.30 (0.02) 45.00 (0.03) 44.80 (0.01) 35.00 (0.20)

medium 48.30 (0.02) 37.40 (0.43) 32.10 (0.36) 47.60 (0.02)

Hopper

expert 89.40 (0.74) 45.00 (0.97) 78.90 (0.91) 94.40 (0.61)
medium expert 61.80 (0.95) 23.30 (0.34) 50.80 (0.26) 77.60 (1.10)
medium replay 60.30 (0.49) 71.20 (0.97) 20.30 (0.19) 77.20 (0.92)

medium 60.30 (0.20) 59.00 (0.28) 50.20 (0.13) 69.80 (0.47)

Walker2D

expert 102.90 (0.60) 110.20 (0.03) 79.40 (1.04) 106.00 (0.35)
medium expert 96.00 (0.35) 51.20 (1.32) 89.70 (0.64) 104.60 (0.25)
medium replay 69.80 (0.57) 66.30 (0.53) 77.40 (0.32) 17.20 (0.35)

medium 71.10 (0.53) 13.20 (0.87) 54.10 (0.65) 82.40 (0.06)

128.40 (0.42)
121.00 (0.58)
89.30 (0.44)

99.20 (0.10)
93.60 (0.04)
83.50 (0.34)

46.60 (0.02)
48.50 (0.02)

103.40 (0.38)
93.80 (0.69)
92.10 (0.38)

72.70 (0.45)
110.60 (0.09)
109.00 (0.10)

80.40 (0.18)
82.70 (0.16)

Figure 11: The final performance in continuous action space environments. The number in bracket is
the standard error. Scores are normalized. The bold numbers are the best performance in the same
setting. Performance was averaged over 10 random seeds, except that CQL had 5 seeds.

Environment Dataset InAC IQL AWAC TD3+BC CQL

Ant

expert 4665.41 (20.71) 3911.03 (37.60) 3593.61 (43.41) 3288.60 (63.46)
medium expert 4750.21 (24.21) 3787.70 (65.10) 3403.58 (37.71) 4369.70 (37.01)
medium replay 3391.06 (26.64) 2410.17 (48.23) 2161.59 (16.45) 3259.72 (31.60)

medium 3637.89 (36.90) 3642.84 (20.60) 3211.47 (12.66) 2606.69 (29.86)

HalfCheetah

expert 11089.65 (24.91) 959.41 (12.87) 11151.42 (4.46) 354.04 (21.25)
medium expert 10054.46 (56.34) 4511.98 (36.84) 6431.29 (47.99) 2485.94 (13.24)
medium replay 5209.87 (2.66) 5289.54 (3.22) 5275.87 (1.27) 4096.27 (24.64)

medium 5716.72 (2.29) 4359.90 (52.57) 3696.49 (44.49) 5650.65 (3.18)

Hopper

expert 2885.90 (24.07) 1445.60 (31.53) 2544.39 (29.50) 3053.66 (19.96)
medium expert 1992.49 (31.03) 733.59 (10.99) 1635.83 (8.51) 2504.53 (36.45)
medium replay 1942.17 (15.85) 2294.38 (31.45) 638.10 (6.33) 2501.46 (30.08)

medium 1945.62 (6.19) 1897.93 (9.11) 1609.48 (4.22) 2252.67 (15.40)

Walker2D

expert 4725.18 (27.57) 5061.92 (1.02) 3644.09 (47.59) 4868.31 (15.62)
medium expert 4410.62 (16.43) 2361.18 (60.66) 4120.01 (29.44) 4804.33 (11.52)
medium replay 3205.26 (26.23) 3034.25 (24.45) 3553.79 (14.45) 789.40 (15.84)

medium 3269.64 (24.45) 600.84 (39.67) 2474.75 (29.75) 3778.23 (2.69)

5077.97 (17.92)
4763.72 (24.29)
3427.12 (18.50)

3846.52 (4.00)
11347.06 (5.12)

10086.43 (42.11)
5495.89 (1.68)

5742.89 (2.02)
3346.42 (12.48)
3032.05 (22.29)
2975.21 (12.04)

2340.96 (14.89)
5076.38 (4.04)
5006.62 (4.27)

3698.78 (8.32)
3790.83 (7.16)

Figure 12: The absolute final performance in continuous action space environments. This table
reports the score before normalization. The number in bracket is the standard error. The bold numbers
are the best performance in the same setting. Performance was averaged over 10 random seeds,
except that CQL had 5 seeds.
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Environment Dataset Performance After InAC IQL AWAC TD3+BC

Ant

expert
Offline 128.40 (0.42) 118.80 (0.50) 100.60 (0.89) 93.30 (1.04)

FineTune 112.90 (0.69) 134.70 (0.26) 116.30 (0.73)
Change 6.4 -5.9 34.1 23

medium expert
Offline 120.90 (0.58) 121.00 (0.58) 97.80 (1.55) 88.70 (0.89)

FineTune 117.20 (1.03) 102.50 (2.80) 117.00 (0.27)
Change 11.7 -3.8 4.7 28.3

medium replay
Offline 88.40 (0.63) 89.30 (0.44) 65.00 (1.15) 59.20 (0.39)

FineTune 109.40 (0.36) 49.40 (2.68) 71.40 (0.41)
Change 26.8 20.1 -15.6 12.2

medium
Offline 94.20 (0.88) 94.50 (0.49) 84.10 (0.30) 69.80 (0.71)

FineTune 109.20 (0.30) -42.20 (0.25) 82.30 (0.53)
Change 28.3 14.7 -126.3 12.5

HalfCheetah

expert
Offline 93.60 (0.04) 91.50 (0.20) 10.00 (0.10) 92.10 (0.03)

FineTune 92.40 (0.08) 54.80 (0.27) 90.90 (0.03)
Change -1.2 2.5 44.8 -1.2

medium expert
Offline 83.50 (0.34) 83.40 (0.46) 38.50 (0.30) 54.10 (0.38)

FineTune 92.60 (0.05) 85.60 (0.17) 50.80 (0.32)
Change 9.4 9.2 47.1 -3.3

medium replay
Offline 44.30 (0.02) 45.00 (0.03) 44.80 (0.01) 35.00 (0.20)

FineTune 51.70 (0.10) 34.70 (0.12)
Change 11.3 6.7 10.8 -0.3

medium
Offline 48.30 (0.02) 48.50 (0.02) 37.40 (0.43) 32.10 (0.36)

FineTune 54.80 (0.14) 62.20 (0.09) 42.60 (0.02)
Change 15.5 6.3 24.8 10.5

Hopper

expert
Offline 103.40 (0.38) 89.40 (0.74) 45.00 (0.97) 78.90 (0.91)

FineTune 67.40 (1.02) 77.90 (1.17) 91.40 (0.52)
Change 5.3 -22 32.9 12.5

medium expert
Offline 93.80 (0.69) 61.80 (0.95) 23.30 (0.34) 50.80 (0.26)

FineTune 49.00 (1.48) 89.10 (0.83) 54.90 (0.23)
Change -0.5 -12.8 65.8 4.1

medium replay
Offline 92.10 (0.38) 60.30 (0.49) 71.20 (0.97) 20.30 (0.19)

FineTune 97.80 (0.17) 61.10 (1.33) 25.50 (0.26)
Change 5.7 0.8 31.4 5.2

medium
Offline 60.30 (0.20) 59.00 (0.28) 72.70 (0.45) 50.20 (0.13)

FineTune 80.30 (0.35) 62.40 (0.61) 51.10 (0.15)
Change 20 3.4 21.9 0.9

Walker2D

expert
Offline 110.60 (0.09) 102.90 (0.60) 110.20 (0.03) 79.40 (1.04)

FineTune 105.50 (0.21) 107.40 (0.44) 108.70 (0.03)
Change 0.3 2.6 -2.8 29.3

medium expert
Offline 109.00 (0.10) 96.00 (0.35) 51.20 (1.32) 89.70 (0.64)

FineTune 44.20 (0.48) 84.30 (1.48) 93.90 (0.54)
Change 3.2 -51.8 33.1 4.2

medium replay
Offline 69.80 (0.57) 66.30 (0.53) 77.40 (0.32) 17.20 (0.35)

FineTune 95.50 (0.10) 85.80 (0.51) 13.90 (0.23)
Change 25.7 19.5 19.6 -3.3

medium
Offline 82.70 (0.16) 71.10 (0.53) 13.20 (0.87) 54.10 (0.65)

FineTune 79.50 (0.26) 10.10 (0.99) 66.40 (0.27)
Change 7 8.4 -3.1 12.3

134.80 (0.11)

132.60 (0.46)

115.20 (0.10)

122.50 (0.04)

94.00 (0.04)

92.90 (0.05)

55.60 (0.13) 55.60 (0.08)

63.80 (0.07)

108.70 (0.17)

93.30 (1.03)

102.60 (0.08)

94.60 (0.27)

110.90 (0.03)

112.20 (0.03)

97.00 (0.10)

89.70 (0.07)

Figure 13: The performance changes during fine-tuning. The number in bracket is the standard error.
Scores are normalized. Performance was averaged over 10 random seeds.
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Environment Dataset Performance After InAC IQL AWAC TD3+BC

Ant

expert
Offline 5077.97 (17.92) 4665.41 (20.71) 3911.03 (37.60) 3593.61 (43.41)

FineTune 4423.00 (29.06) 5336.47 (10.96) 4573.23 (30.96)
Change 265.57 -242.41 1425.44 979.62

medium expert
Offline 4750.21 (24.21) 4763.72 (24.29) 3787.70 (65.10) 3403.58 (37.71)

FineTune 4599.00 (43.19) 3983.42 (117.36) 4596.49 (11.26)
Change 503.83 -164.72 195.72 1192.91

medium replay
Offline 3391.06 (26.64) 3427.12 (18.50) 2410.17 (48.23) 2161.59 (16.45)

FineTune 4269.35 (15.13) 1752.88 (112.71) 2673.63 (17.31)
Change 1121.54 842.24 -657.3 512.04

medium
Offline 3637.89 (36.90) 3642.84 (20.60) 3211.47 (12.66) 2606.69 (29.86)

FineTune 4266.09 (12.80) -2103.99 (10.54) 3132.12 (22.55)
Change 1188.5 623.25 -5315.46 525.43

HalfCheetah

expert
Offline 11347.06 (5.12) 11089.65 (24.91) 959.41 (12.87) 11151.42 (4.46)

FineTune 11196.82 (9.57) 6546.81 (33.36) 11010.34 (4.78)
Change -150.24 319.15 5587.4 -141.08

medium expert
Offline 10086.43 (42.11) 10054.46 (56.34) 4511.98 (36.84) 6431.29 (47.99)

FineTune 11218.53 (5.95) 10347.94 (20.20) 6034.64 (40.49)
Change 1176.45 1164.07 5835.96 -396.65

medium replay
Offline 5209.87 (2.66) 5289.54 (3.22) 5275.87 (1.27) 4096.27 (24.64)

FineTune 6156.15 (12.87) 4021.84 (15.08)
Change 1425.45 866.6 1352.48 -74.42

medium
Offline 5716.72 (2.29) 5742.89 (2.02) 4359.90 (52.57) 3696.49 (44.49)

FineTune 6513.38 (16.75) 7439.24 (11.91) 5005.84 (2.67)
Change 1922.45 770.49 3079.34 1309.35

Hopper

expert
Offline 3346.42 (12.48) 2885.90 (24.07) 1445.60 (31.53) 2544.39 (29.50)

FineTune 2168.89 (33.35) 2515.50 (37.96) 2955.99 (16.71)
Change 170.75 -717.02 1069.9 411.61

medium expert
Offline 3032.05 (22.29) 1992.49 (31.03) 733.59 (10.99) 1635.83 (8.51)

FineTune 1568.84 (48.16) 2878.82 (27.02) 1769.68 (7.49)
Change -16.21 -423.65 2145.23 133.85

medium replay
Offline 2975.21 (12.04) 1942.17 (15.85) 2294.38 (31.45) 638.10 (6.33)

FineTune 3160.03 (5.50) 1965.99 (43.32) 806.58 (8.47)
Change 184.82 23.82 1023.93 168.47

medium
Offline 1945.62 (6.19) 1897.93 (9.11) 2340.96 (14.89) 1609.48 (4.22)

FineTune 2593.49 (11.20) 2006.70 (20.02) 1637.37 (4.88)
Change 647.86 108.76 723.94 27.89

Walker2D

expert
Offline 5076.38 (4.04) 4725.18 (27.57) 5061.92 (1.02) 3644.09 (47.59)

FineTune 4852.04 (9.34) 4922.00 (20.22) 4984.13 (1.37)
Change 12.41 126.86 -139.92 1340.04

medium expert
Offline 5006.62 (4.27) 4410.62 (16.43) 2361.18 (60.66) 4120.01 (29.44)

FineTune 2036.23 (21.97) 3858.85 (67.75) 4314.14 (24.81)
Change 142.98 -2374.39 1497.67 194.13

medium replay
Offline 3205.26 (26.23) 3034.25 (24.45) 3553.79 (14.45) 789.40 (15.84)

FineTune 4391.99 (4.74) 3937.08 (23.09) 634.43 (10.68)
Change 1186.73 902.83 900.16 -154.97

medium
Offline 3790.83 (7.16) 3269.64 (24.45) 600.84 (39.67) 2474.75 (29.75)

FineTune 3650.39 (12.29) 453.01 (45.64) 3045.55 (12.63)
Change 322.79 380.75 -147.82 570.8

5343.54 (4.65)

5254.04 (19.83)

4512.61 (4.01)

4826.40 (1.55)

11408.80 (4.98)

11262.88 (6.22)

6635.32 (16.13) 6628.35 (9.20)

7639.17 (8.72)

3517.17 (5.66)

3015.84 (33.73)

3318.32 (2.89)

3064.90 (8.81)

5088.79 (1.54)

5149.60 (1.53)

4453.95 (4.48)

4113.62 (3.28)

Figure 14: The performance changes during fine-tuning. This table reports the score before normal-
ization. The number in bracket is the standard error. Performance was averaged over 10 random
seeds.
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Figure 15: Offline learning curves with 1.2 million iterations. The x-axis is the number of iterations
and the y-axis is the normalized score. Performance was averaged over 5 random seeds, after using a
smoothing window of size 10.
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Figure 16: Offline learning curves with 1 million iterations. The x-axis is the number of iterations
and the y-axis is the normalized score. Performance was averaged over 5 random seeds, after using a
smoothing window of size 10.

24


	Introduction
	Problem Setting
	Markov Decision Process
	Offline Reinforcement Learning

	The In-Sample Softmax Optimality
	Theoretical Characterization of In-Sample Softmax
	Policy Optimization using the In-sample Softmax
	Experiments
	Sanity Check: approaching oracle performance in the Tabular Setting
	OOD effects in continous action problems
	From Offline training to Online fine-tuning

	Conclusion
	Appendix: Proofs
	Results for one-step decision making
	Result for on-policy entropy-regularized backup
	Result for off-policy entropy-regularized backup
	Proof of thm:kwik-optimal-approximation

	Appendix for experiments
	Additional Experiments
	Reproducing Details
	Reproducing Details on Tabular Domain
	Reproducing Details of Deep RL Algorithms


