
Guiding AMR Parsing with Reverse Graph Linearization

Anonymous ACL submission

Abstract

Abstract Meaning Representation (AMR) pars-001
ing aims to extract an abstract semantic graph002
from a given sentence. The sequence-to-003
sequence approaches, which linearize the se-004
mantic graph into a sequence of nodes and005
edges and generate the linearized graph directly,006
have achieved good performance. However,007
we observed that these approaches suffer from008
structure loss accumulation during the decod-009
ing process, leading to a much lower F1-score010
for nodes and edges decoded later compared011
to those decoded earlier. To address this issue,012
we propose a novel Reverse Graph Lineariza-013
tion (RGL) enhanced framework. RGL defines014
both default and reverse linearization orders015
of an AMR graph, where most structures at016
the back part of the default order appear at the017
front part of the reversed order and vice versa.018
RGL incorporates the reversed linearization to019
the original AMR parser through a two-pass020
self-distillation mechanism, which guides the021
model when generating the default lineariza-022
tions. Our analysis shows that our proposed023
method significantly mitigates the problem of024
structure loss accumulation, outperforming the025
previously best AMR parsing model by 0.8 and026
0.5 Smatch scores on the AMR 2.0 and AMR027
3.0 dataset, respectively. We will release the028
code and models for reproduction.029

1 Introduction030

Abstract Meaning Representation (AMR) (Ba-031

narescu et al., 2013) is a formalization of a sen-032

tence’s meaning using a directed acyclic graph033

that abstracts away from shallow syntactic features034

and captures the core semantics of the sentence.035

AMR parsing involves transforming a textual in-036

put into its AMR graph, as illustrated in Figure 1.037

Recently, sequence-to-sequence (seq2seq) based038

AMR parsing models (Xu et al., 2020b; Bevilacqua039

et al., 2021; Wang et al., 2021; Bai et al., 2022;040

Yu and Gildea, 2022b; Chen et al., 2022; Cheng041

come-01

study-01 learn-01

:op2

and

:purpose

:op1
Come to study and learn.

AMR Parsing

Figure 1: An example of AMR Parsing of the sentence
“Come to study and learn”.

0-9
10-19

20-29
30-39

40-49

Position

0.86

0.88

0.90

0.92

0.94

F1
 sc

or
e

F1-score of node prediction

(a) Node prediction

0-9
10-19

20-29
30-39

40-49
50-59

Position

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 sc

or
e

F1 score of relation prediction

(b) Relation prediction

Figure 2: There is a negative correlation between the F1-
score of the node or relation prediction and the position.
The results are obtained from AMRBART (Bai et al.,
2022) on the test set of AMR 2.0.

et al., 2022) have significantly improved the per- 042

formance of AMR parsing. In these models, the 043

AMR graph is first linearized into a token sequence 044

during traditional seq2seq training, and the output 045

sequence is then restored to the graph structure af- 046

ter decoding. AMR parsing has proven beneficial 047

for many NLP tasks, such as summarization (Liao 048

et al., 2018; Hardy and Vlachos, 2018), question an- 049

swering (Mitra and Baral, 2016; Sachan and Xing, 050

2016), dialogue systems (Bonial et al., 2020; Bai 051

et al., 2021), and information extraction (Rao et al., 052

2017; Wang et al., 2017; Zhang and Ji, 2021; Xu 053

et al., 2022). 054

In this study, we address the issue of structure 055

loss accumulation in seq2seq-based AMR parsing. 056

Our analysis (Figure 2) shows that the F1-score of 057

1

structure prediction (node and relation) decreases058

as the generation direction progresses. This phe-059

nomenon is a consequence of the error accumula-060

tion in the auto-regressive decoding process, a com-061

mon problem in natural language generation (Ing,062

2007; Zhang et al., 2019c; Liu et al., 2021).063

However, unlike natural language, the lineariza-064

tion of AMR graphs does not follow a strict order,065

as long as the sequence preserves all nodes and066

relations in the AMR graph. To this end, we de-067

fine two linearization orders based on the depth-068

first search (DFS) traversal, namely Left-to-Right069

(L2R) and Right-to-Left (R2L). The L2R order is070

the conventional linearization used in most previ-071

ous works (Bevilacqua et al., 2021; Bai et al., 2022;072

Chen et al., 2022), where the leftmost child cor-073

responding to the penman annotation is traversed074

first. In contrast, the R2L order is its reverse, where075

the structures at the end of the L2R order appear at076

the beginning of the R2L order. By training AMR077

parsing models with R2L linearization, it improves078

the accuracy of predictions for the structures at the079

end of the L2R order, which are less affected by080

the accumulation of structure loss.081

We propose to enhance AMR parsing with re-082

verse graph linearization (RGL). Specifically, we083

incorporate an additional encoder to integrate the084

reverse linearization graph and replace the orig-085

inal transformer decoder with a mixed decoder086

that utilizes gated dual cross-attention, taking input087

from both the hidden states of the sentence en-088

coder and the graph encoder. We design a two-pass089

self-distillation mechanism to prevent the model090

from overfitting to the gold reverse linearized graph091

as well as to further utilize it to guide the model092

training. Our analysis shows that our proposed093

method significantly mitigates the problem of struc-094

ture loss accumulation, outperforming the previ-095

ously best AMR parsing model (Bai et al., 2022)096

by 0.8 Smatch score on the AMR 2.0 dataset and097

0.5 Smatch score on the AMR 3.0 dataset.098

Our contributions can be listed as follows:099

1. We explore the structure loss accumulation100

problem in sequence-to-sequence AMR parsing.101

2. We propose a novel RGL framework to allevi-102

ate the structure loss accumulation by incorporating103

reverse graph linearization into the model, which104

outperforms previously best AMR parser.105

3. Extensive experiments and analysis demon-106

strate the effectiveness and superiority of our pro-107

posed method.108

Direction Linearized AMR Graph

Left-to-Right (c/come-01 :purpose (a/and :op1 (s/study-01) :op2 (l/learn-01)))

Right-to-Left (c/come-01 :purpose (a/and :op2 (l/learn-01) :op1 (s/study-01)))

Table 1: The AMR graph shown in Figure 1 with dif-
ferent linearization order. "Left-to-Right" follows the
standard DFS traversal order. "Right-to-Left" follows
the reverse DFS traversal order.

2 Backgrounds 109

2.1 Seq2Seq based AMR Parsing 110

In our work, we followed previous methods 111

(Ge et al., 2019; Bevilacqua et al., 2021; Bai 112

et al., 2022), which formulate AMR parsing as 113

a sequence-to-sequence generation problem. For- 114

mally, given a sentence x = (x1, x2, ..., xN), the 115

model needs to generate a linearized AMR graph 116

y = (y1, y2, ..., yM) in an auto-regressive manner. 117

Assuming that we have a training set containing 118

N sentence-linearized graph pairs (xi, yi), the total 119

training loss of the model is computed by the cross- 120

entropy loss which is listed as follows: 121

LCE = −
N∑
i=1

mi∑
t=1

logp(yit|yi<t, x
i) (1) 122

where mi is the length of ith linearized AMR 123

graph, and yi<t is the previous tokens. 124

After obtaining the linearized AMR graph, 125

which is a sequence generated by the model, We 126

post-process the sequence with rules to restore it to 127

an AMR graph. 128

2.2 Graph Linearization Order 129

As shown in Table 1, we formalize two types of 130

graph linearization, the corresponding AMR graph 131

is shown in Figure 1. Left-to-Right (L2R) denotes 132

that when we use the depth-first search (DFS) to 133

traverse the children of a node, we first start from 134

the leftmost child and then traverse to the right, 135

which is identical to the order of penman annotation 136

and is the default order of sequence-to-sequence 137

based AMR parsers (Bevilacqua et al., 2021; Bai 138

et al., 2022; Chen et al., 2022). In contrast, Right- 139

to-Left (R2L) traverses from the rightmost child 140

to the leftmost child, which is the reverse of the 141

standard traversal order. When the input sentence is 142

long or contains multi-sentence, most of the nodes 143

or relationships that are positioned later in the L2R 144

sequence will appear earlier in the R2L sequence. 145

2

R2L Parser

Training

Training and Inference

silver linearization: ŷr

texutual input: x

gold graph of x
gold linearization: yr

Mixed Decoder

Sentence

Encoder

share parameters

R2L Linearize αi LCE

(1-αi) LCE

LKL

Graph

Encoder

texutual input: x

Mixed Decoder

Sentence

Encoder

Graph

Encoder

T

S

Teacher Pass

Student Pass

Figure 3: The overview of our method. In addition to the encoder-decoder model, an additional graph encoder is
used to incorporate reverse graph linearization. Following the paradigm of self-distillation, we regard the model
with the input of the gold linearization yr and x as the teacher model and ŷr parsed by a pre-trained R2L parser
and x as the student model. The model does twice forward pass to obtain the output probabilities of the teacher
and the student in each training step. We calculate the cross-entropy loss of teacher and student as well as their
KL divergence as the training loss. Given a sentence x during inference, the model generates the standard AMR
linearization using x and its silver linearization ŷr.

3 Methodology146

3.1 Overview147

Our method is illustrated in Figure 3. In addition148

to the traditional encoder-decoder architecture, we149

have incorporated a graph encoder to include the150

reverse linearization sequence. As a result, the151

model now takes both the sentence and its reverse152

linearization as input. We modify the original trans-153

former decoder with a mixed decoder that uses154

gated dual cross-attention in each decoder layer,155

allowing the integration of hidden representations156

from both the sentence encoder and the graph en-157

coder. During inference, we need an additional158

R2L AMR parser that generates the reverse lin-159

earization ŷr of the sentence and then feed both the160

input sentence x and ŷr to the model.161

To obtain reverse linearization during training, a162

common intuitive approach is to linearize the gold163

AMR graph into the gold reverse linearization, de-164

noted by yr. However, simply using yr and the165

source sentence x as input for all training data can166

lead to overfitting of the model to yr, causing it167

to ignore the importance of the source sentence.168

As a result, the model may simply copy from yr169

and generate y during training. This can limit the170

model’s performance during inference due to the171

noise introduced by the generated reverse lineariza-172

tion, denoted by ŷr.173

To prevent the model from overfitting to yr we174

introduce silver linearization ŷr during training. 175

While we still hope to utilize the gold lineariza- 176

tion yr to guide the training, we design a two-pass 177

self-distillation mechanism. Alongside yr, we in- 178

corporate ŷr, which is parsed by the additional R2L 179

AMR parser during training. The teacher model 180

takes yr and x as input, while the student model 181

takes ŷr and x. During each training step, the 182

model performs two forward passes and computes 183

cross-entropy losses, LT
CE for the teacher and LS

CE 184

for the student. We employ KL divergence LKL 185

to guide the student with the teacher’s output. We 186

also design a loss scheduler to balance the weight 187

αi for LT
CE and LS

CE at optimization step i. 188

3.2 Model Structure 189

As shown in Figure 3, our model mainly consists 190

of three parts: sentence encoder, graph encoder, 191

and mixed decoder. The major structural differ- 192

ence from standard pretrained models, e.g. BART 193

(Lewis et al., 2020), is that we use a graph encoder 194

to integrate the reverse linearized structural infor- 195

mation to guide the model. 196

Sentence Encoder The sentence encoder re- 197

ceives the given sentence s = (s1, s2, ..., sN), and 198

encodes it to the hidden representations Hs = 199

(hs
1,hs

2, ...,hs
N), which is the same as the encoder 200

of pretrained transformer models. 201

3

Graph Encoder Following (Bevilacqua et al.,202

2021; Bai et al., 2022), we adopt the standard203

transformer encoder to encode the structural in-204

formation. Given the reverse-linearized AMR205

graph, the output of the graph encoder is Hg =206

(hg
1,hg

2, ...,hg
M).207

Mixed Decoder Different from the traditional208

decoder, the mixed decoder takes the hidden states209

of the sentence Hs and the graph Hg via a gated210

dual cross-attention layer as shown in Figure 4.211

The gated dual cross-attention layer contains two212

cross-attention modules which are used to integrate213

Hs and Hg respectively. In the decoder layer, the214

output of the self-attention module is Sz ∈ Rk×d,215

where k is the number of tokens in the decoder in-216

put and d is the size of the hidden state. The output217

of each cross-attention module can be computed218

as:219

Ss = CrossAttns(Sz, Hs, Hs) (2)220
221

Sg = CrossAttng(Sz, Hg, Hg) (3)222

where the two cross-attention modules contains the223

same query Sz but different key-value Hs and Hg224

respectively.225

The output of the gated dual cross-attention mod-
ule So is the weighted sum of Ss and Sg.

So = g · Sg + (1− g) · Ss

where g ∈ RK×1 is predicted by a feed-forward226

network:227

g = σ(VTtanh(WTSz + b1) + b2) (4)228

σ is the sigmoid function, W ∈ Rd×d , V ∈ Rd×1,229

b1 ∈ Rd×1 and b2 ∈ R are trainable parameters230

and bias.231

3.3 Training Objective232

The training objective of the RGL is:233

L = αiL
T
CE + (1− αi)L

S
CE + LKL (5)234

where αi is a balancing weight related to ith itera-235

tion. LT
CE and LS

CE are the cross-entropy loss of236

the teacher and the student respectively and LKL237

is the self-distillation loss.238

Self-distillation To further guide the model with239

gold reverse linearization yr during training as well240

as to avoid the model from overfitting to it and241

ignoring the sentence x, we propose a two-pass self-242

distillation mechanism during training. As shown243

Mixed�Decoder

Cross-Attentions Cross-Attentiong

Self-Attention

+
g1�-�g

Feed�Forward�Network

Linear�&�Softmax

Embeddings

HgSz

So

Hs

����Output��
Probabilities

×N

Figure 4: The illustration of the mixed decoder in
RGL. Hs and Hg are the hidden representations from
the sentence encoder and graph encoder. The module
enclosed by the dashed line is the gated dual cross-
attention, which integrates the outputs of the dual atten-
tion through a gate predicted by an FFN. For brevity
and focus, the residual connection and normalization
are omitted from the figure.

in Equation 6 and 7, we regard the forward pass 244

taking yr as input a teacher and ŷr as a student. To 245

obtain the output distribution of both the teacher 246

and the student, the model performs two forward 247

passes in one training step. Note that the teacher 248

and the student model share the same parameters. 249

p(y|x, yr) =
M∏
i=1

p(yi|(y1, y2, ..., yi−1), x, yr) (6) 250

251

q(y|x, ŷr) =
M∏
i=1

p(yi|(y1, y2, ..., yi−1), x, ŷr) (7) 252

To distill the knowledge from the teacher pass 253

to the student pass, we guide the output of stu- 254

dent pass with the teachers by minimizing the Kull- 255

back–Leibler divergence loss: 256

LKL(p, q) =

D∑
i=1

pilog(
pi
qi
) (8) 257

where p and q are the output probabilities of the 258

teacher and the student respectively, D is the num- 259

ber of classes which is the total size of the target 260

vocabulary. 261

Loss scheduler Inspired by the idea of curricu- 262

lum learning, we introduce a loss scheduler to bet- 263

ter balance the training process. We set an adaptive 264

4

coefficient αi to control the weights of LT
CE and265

LS
CE . αi gradually decays with the increase of266

training step i. The model is supposed to learn267

more from gold linearization when its capability268

is weak so that the model can converge quickly.269

When the model’s capability is strong, it is sup-270

posed to have the ability to infer from the noisy sil-271

ver linearization, which can make the model more272

capable and robust to noise during inference since273

we do not have a gold linearization graph during274

inference. The αi can be computed as exponential275

decay:276

αi = k1 ∗ e−k2∗i, 0 ≤ i ≤ total_steps (9)277

where k1 and k2 are hyper-parameters that can con-278

trol the upper- and lower-bounds of the αi. We set279

the upper bound of αi to 0.8 and the lower bound280

to 0.2 without further tuning.281

3.4 Inference282

Given a sentence, we first use the R2L AMR parser283

to generate its reverse linearization. Then the284

trained RGL model takes the reverse linearization285

and the sentence as input and decodes the standard286

L2R AMR linearization.287

4 Experiments288

4.1 Datasets289

We conducted our experiments on two AMR bench-290

mark datasets, AMR 2.0 and AMR 3.0. AMR 2.0291

contains 36521, 1368, and 1371 sentence-AMR292

pairs in training, validation, and testing sets, re-293

spectively. AMR 3.0 has 55635, 1722, and 1898294

sentence-AMR pairs for training validation and295

testing set, respectively.296

4.2 Evaluation Metrics297

We use the Smatch (Cai and Knight, 2013) and fur-298

ther the fine-grained scores (Damonte et al., 2017)299

to evaluate the performance. The detailed explana-300

tions of the metrics are shown in Appendix B.301

BLINK (Wu et al., 2019) is used to add wiki tags302

to the predicted AMR graphs in all the systems in303

our experiments. We do not apply any re-category304

methods and other post-processing methods are the305

same with Bai et al. (2022) to restore AMR from306

the token sequence.307

4.3 Main Compared Systems308

AMRBART We use the current state-of-the-art309

sequence-to-sequence AMR Parser proposed by310

Bai et al. (2022) as our main baseline model.311

RGL We initialize our model using AMRBART 312

(Bai et al., 2022). The sentence encoder and the 313

graph encoder are initialized the same as the AMR- 314

BART encoder, but they have individual gradients 315

during training. Full details of the compared sys- 316

tems are listed in Appendix A. 317

4.4 Main Results 318

We report the results of our method with several 319

Seq2seq baselines on two major datasets, AMR 2.0 320

and AMR 3.0 in table 2. Our method outperforms 321

previous methods significantly and provides a state- 322

of-the-art AMR parser. 323

In comparison with the baseline AMRBART, 324

our method outperforms it by 0.8 Smatch point on 325

AMR 2.0 and 0.5 Smatch point on AMR 3.0. More- 326

over, our method does not introduce any additional 327

data and is compatible with existing methods such 328

as Chen et al. (2022) and Bai et al. (2022). 329

4.5 Ablation Study 330

Model Training Table 3 presents the results of an 331

ablation study in which we analyze how different 332

training methods affect the performance of RGL. 333

We observed a significant drop in model perfor- 334

mance when we removed the silver linearization 335

from the training process. This approach involves 336

feeding the model with the gold linearization dur- 337

ing training while using the silver linearization at 338

inference. We believe this drop in performance 339

occurred for two reasons. First, since the gold re- 340

verse linearization and the target are highly similar 341

in structure, the model can be easily overfitted to 342

the gold reverse linearization and ignore the source 343

sentence. This can cause the model to simply repli- 344

cate the input yr to y instead of accurately parsing 345

the sentence to an AMR graph. Second, the lack 346

of a structure loss for the gold AMR sequence dur- 347

ing training means that the model does not learn 348

to differentiate the correct part of the graph from 349

the noisy part, which is required during inference. 350

Therefore, without the silver graph during training, 351

our model cannot be effectively trained. 352

We also observed a significant drop in perfor- 353

mance when we removed self-distillation from the 354

training process. This highlights the importance 355

of self-distillation in our method, which helps the 356

model avoid the error information caused by noise 357

in silver graphs during training. Nevertheless, our 358

method still outperformed AMRBART, even with- 359

out self-distillation, which demonstrates the effec- 360

tiveness of incorporating the reverse linearization 361

5

Model SMATCH NoWSD Wiki Conc. NER Neg. Unll. Reen. SRL

A
M

R
2.

0
SPRING (Bevilacqua et al., 2021) 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
SPRING (w/ silver) (Bevilacqua et al., 2021) 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
ATP (Chen et al., 2022) 85.2 85.6 84.2 90.7 93.1 74.9 88.3 74.7 83.3
AMRBART (Bai et al., 2022) 85.4 85.8 81.4 91.2 91.5 74.0 88.3 73.5 81.5
AMRBART (ours) 85.3 85.7 84.0 91.2 90.8 74.3 88.2 73.2 81.3
AMRBART+Multitask (ours) 85.8 86.2 83.9 91.4 91.2 75.7 88.6 74.3 81.9
RGL (ours) 86.1 86.4 84.5 91.5 91.7 76.1 88.9 74.8 82.1

A
M

R
3.

0

SPRING (w/ silver) (Bevilacqua et al., 2021) 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
ATP (Chen et al., 2022) 83.9 84.3 81.0 89.7 88.4 73.9 87.0 73.9 82.5
AMRBART (Bai et al., 2022) 84.2 84.6 78.9 90.2 88.5 72.1 87.1 72.4 80.3
AMRBART (ours) 84.2 84.6 83.3 90.1 88.2 73.2 87.1 71.9 80.0
AMRBART+Multitask (ours) 84.4 84.7 82.9 90.3 88.1 73.1 87.3 72.9 80.4
RGL (ours) 84.7 85.1 82.8 90.5 88.2 72.3 87.5 73.2 80.8

Table 2: SMATCH and fine-grained F1 scores on AMR 2.0 and 3.0. RGL outperforms AMRBART(ours) significantly
with p < 0.001 for both AMR 2.0 and AMR 3.0.

Model SMATCH

AMRBART (ours) 85.3
RGL (ours) 86.1

- w/o silver linearization 85.0
- w/o loss scheduler 85.9
- w/o self-distillation 85.7

Table 3: Ablation study results on the RGL. "w/o loss
scheduler": remove the loss scheduler in the training
process, where we simply add up all loss terms. "w/o
self-distillation": remove the LKL and LT

CE from train-
ing objective. "w/o silver linearization": remove the
LKL and LS

CE from training objective.

Number of Layers 12 10 8 6 4

SMATCH 86.1 86.0 85.7 85.9 85.6

Table 4: The influence of different number of layers of
graph encoder on AMR 2.0.

into AMR parsing.362

Finally, when we removed the loss scheduler,363

the performance of the model degraded. This em-364

phasizes the importance of the loss scheduler in365

balancing the teacher and the student during train-366

ing and enhancing the performance of our method.367

Graph Encoder Size We conduct an ablation ex-368

periment on how does the size of graph encoder369

influence the parsing performance. As shown in370

Table 4, we only retain the bottom few layers of the371

graph encoder and we observe that the performance372

generally declines when the number of layers de-373

creases. However, even when the graph encoder374

retains only four layers, our model still outperforms375

AMRBART, which demonstrates the effectiveness376

of incorporating reverse graph linearization during377

training.378

5 Analysis 379

5.1 On the Effect of R2L Linearization 380

In this section, we replace the input of the graph 381

encoder with different sequences to validate the ef- 382

fectiveness of R2L linearization, which is shown in 383

the upper parts of Table 5. ① is the proposed RGL 384

and achieves the best performance of all methods. 385

And we replace the input of the graph encoder with 386

the standard L2R linearization without changing 387

other conditions, which is shown at ②. Inspired by 388

the ideas of Zhou et al. (2019a,b), which explore 389

decoding from both sides for machine translation, 390

we can directly reverse the entire L2R linearization 391

token sequence as the input of graph encoder in- 392

stead of the R2L linearization, where all the nodes 393

and relations strictly appear at the opposite of L2R 394

linearization, which is the ③ of Table 5. 395

Comparing ① to ②, we observe a more signifi- 396

cant improvement when using R2L linearization. 397

This is because some nodes or relations in R2L lin- 398

earization are predicted earlier by the R2L parser, 399

resulting in less structure loss and higher accuracy, 400

which serves as a complementary source of infor- 401

mation for the model. The result proves the effec- 402

tiveness of incorporating reverse linearization. 403

Comparing ① to ③, we find that the performance 404

would drop if we replace the R2L linearization with 405

a simple reversed L2R token sequence. We believe 406

the main reason for this is that the dependencies be- 407

tween nodes and relationships within the linearized 408

AMR graphs are highly intricate. Simply revers- 409

ing the sequence can lead to unexpected changes 410

in the sequence, e.g. referential variables, making 411

it challenging for the model to accurately predict 412

after the inversion. In fact, the parsing performance 413

of the simple reverse parser is only 75.9 Smatch 414

6

Model SMATCH

① RGL w/ R2L Linearization 86.1
② RGL w/ L2R Linearization 85.8
③ RGL w/ reverse sequence 85.8

④ Double-decoder+KL 85.6
⑤ Multitask 85.8
⑥ Concatenate Input 85.3

Table 5: SMATCH of different reverse linearizations and
different integration methods. The upper part compares
different graph encoder inputs of the RGL. The lower
part compares different ways to incorporate R2L lin-
earization.

score, which is far less than the baseline model. In415

contrast, R2L linearization is a more reasonable416

reverse as it is meaning-equivalent to the original417

L2R linearization and can reach similar parsing418

performance to the original L2R parser.419

The combined findings demonstrate that incor-420

porating a reverse order is advantageous for AMR421

parsing. Moreover, the R2L linearization proves to422

be a more suitable form compared to reversing the423

input sequence token by token.424

5.2 On Incorporating R2L Linearization425

In this section, we compare different methods to426

incorporate the R2L linearization, including several427

works in other fields adapted into the setting of428

AMR parsing, which are shown in the lower part429

of Table 5.430

Double-decoder+KL Xie et al. (2021) using two431

decoders to generate two different linearizations i.e.432

DFS and BFS for code generation and leverages the433

mutual information to narrow the KL-divergence434

between the outputs. We adapt this method into435

AMR parsing settings, where the two different lin-436

earizations are L2R and R2L. Then we narrow the437

output distributions of corresponding nodes and438

relations of the two linearizations.439

Multitask A simple method to integrate extra440

linearization order is through multitask learning,441

where the model learns to predict both the L2R and442

R2L AMR graph. During training, a task identi-443

fier <L2R> or <R2L> is added to the beginning444

of the input sentence to differentiate the output’s445

order. During inference, we individually test the446

two orders and select the order with the higher447

Smatch score (L2R) as the final result. The differ-448

ence from ① in model architecture is that we share449

the decoder which learns to generate different lin-450

0-9
10-19

20-29
30-39

40-49

Position

0.86

0.88

0.90

0.92

0.94

F1
 sc

or
e

w/ RGL w/o RGL

(a) Node prediction

0-9
10-19

20-29
30-39

40-49
50-59

Position

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 sc

or
e

w/ RGL w/o RGL

(b) Relation prediction

Figure 5: F1-score of nodes and relations with the in-
crease of the predicted length of AMRBART (Bai et al.,
2022) represented by orange bars and RGL represented
by blue bars.

earizations simultaneously, rather than use an extra 451

decoder. 452

Concatenate Input Another intuitive way to di- 453

rectly introduce reverse linearization into the model 454

is to concatenate it with the textual input. Com- 455

pared with RGL, this method reduces the additional 456

graph encoder without changing other conditions. 457

Experimental results show that both ④ and ⑤ can 458

benefit the model, which implicitly incorporates the 459

R2L linearization to the model through the train- 460

ing loss. However, the proposed RGL explicitly 461

integrates reverse linearization into the model as 462

the extra input, achieving more significant improve- 463

ments. 464

However, integrating the R2L linearization 465

through directly concatenating them as the model 466

input is not as effective as the RGL. One possible 467

reason for this is that the linearized graph and the 468

sentence are different structures and simply con- 469

catenating them from the input text and letting the 470

model learn the extra structural information pro- 471

vided by R2L linearization through one encoder is 472

challenging. Therefore, the extra graph encoder is 473

necessary for encoding the R2L linearization. 474

Overall, this section demonstrates that RGL is 475

an effective method for incorporating reverse lin- 476

earization into the model. 477

5.3 Effect of RGL on structure loss 478

The decrease of F1 scores for nodes and relations 479

with prediction length is shown in Figure 5. Com- 480

pared with the baseline AMRBART, there is a sig- 481

nificant improvement in the F1 score of both the 482

node and relation prediction of the RGL when the 483

prediction length is greater than 30. 484

7

0-49
50-99

100-149
150-199

200-249
250-299

300-349
350-399

400-449
450-499

Position(token)

0.40

0.42

0.44

0.46

0.48

0.50

Th
e

va
lu

e
of

 g
at

e

The gated weight for reverse linearization

Figure 6: The histogram of the gated weight in the
gated dual cross-attention with the increase of the po-
sition during inference. A higher value indicates that
the model is attending more to the output of the reverse
graph encoder in the cross-attention layer. We divided
the positions into buckets of size 50 and computed the
average gate value across all positions and layers within
each bucket, represented by the blue bar in the diagram.

To quantify the results, we measured the Pearson485

coefficients between the F1 scores of nodes and486

relations and the prediction length. Compared to487

AMRBART, the Pearson correlation coefficient of488

node F1 scores with prediction position decreased489

from -0.42 to -0.26. The coefficient of relation490

F1 scores with prediction position decreased from491

-0.72 to -0.6. It proves that the RGL model can492

indeed alleviate the structure loss problem.493

Our analysis also reveals that node prediction is494

less affected by structure loss accumulation than495

relation prediction. We believe this is mainly be-496

cause node prediction in AMR parsing is relatively497

easier, whereas relation prediction requires correct498

node predictions as a precondition.499

5.4 Balancing source and reverse linearization500

Figure 6 shows the results of a quantitative analysis501

of the weight g in the gated dual cross-attention of502

RGL. We recorded the positions and gated values503

during model inference on the validation set1 .504

The diagram reveals that the average value of the505

gate is less than 0.5, indicating that the model pays506

more attention to the source sentence than to the507

reverse linearization. This suggests that the model508

is performing sentence-to-AMR conversion, rather509

than simply copying the reverse linearization.510

Furthermore, there is a positive correlation be-511

tween the gated weight and the position, which512

provides insight into how our method works. In513

1The value range of the x-axis is significantly longer than
that of Figure 2 because we count all the output tokens in this
experiment, instead of picking out tokens representing nodes
and relationships from all tokens.

positions closer to the beginning, the model has 514

greater confidence, resulting in smaller structure 515

loss. The model can predict the AMR graph using 516

only the original source sentence. As the position 517

increases, the model needs to refer to the reverse 518

linearization to compensate for the accumulation 519

of structure loss. Consequently, the gated weight 520

for the reverse linearization becomes larger as the 521

position increases. 522

6 Related Work 523

AMR parsing aims to convert a textual input to 524

an AMR semantic graph (Banarescu et al., 2013). 525

There are mainly four AMR Parsing strategies 526

in previous work, two-stage approaches (Flani- 527

gan et al., 2014; Lyu and Titov, 2018; Zhang 528

et al., 2019a; Zhou et al., 2020), graph-based 529

approaches (Zhang et al., 2019b; Cai and Lam, 530

2020), transition-based approaches (Naseem et al., 531

2019; Lee et al., 2020; Fernandez Astudillo et al., 532

2020; Zhou et al., 2021), sequence-to-sequence ap- 533

proaches (Ge et al., 2019; Xu et al., 2020a; Bevilac- 534

qua et al., 2021; Wang et al., 2021; Bai et al., 2022; 535

Chen et al., 2022; Yu and Gildea, 2022b; Cheng 536

et al., 2022). In terms of AMR graph lineariza- 537

tion, Bevilacqua et al. (2021) explores which lin- 538

earization method is better for AMR parsing, and 539

Chen et al. (2022) studied how to linearize differ- 540

ent semantic resources like SRL to enhance AMR 541

parsing. Some methods have also been proposed 542

to incorporate graph information into sequence-to- 543

sequence models to compensate for the discrep- 544

ancy between graph and sequence (Yu and Gildea, 545

2022a; Bai et al., 2022). While previous seq2seq- 546

based AMR parsing models mostly take the L2R 547

linearization order by default, our work first ex- 548

plores how to leverage different graph linearization 549

orders to enhance AMR parsing. 550

7 Conclusion 551

In this work, we propose a novel Reverse Graph 552

Linearization (RGL) enhanced framework to ad- 553

dress the structure loss accumulation problem 554

observed in the seq2seq-based AMR parsing. 555

Through extensive experiments and analysis, it 556

shows that RGL significantly mitigates the prob- 557

lem of structure loss accumulation and outperforms 558

the previous state-of-the-art model on both AMR 559

2.0 and AMR 3.0 datasets, which demonstrates the 560

effectiveness of the proposed approach. 561

8

8 Limitation562

Compared to traditional sequence-to-sequence563

AMR parser, our model needs an additional R2L564

parser to generate the reverse linearizations, al-565

though it can be easily obtained by fine-tuning566

off-the-shelf AMR parser, e.g. AMRBART (Bai567

et al., 2022) and SPRING (Bevilacqua et al., 2021).568

Due to the necessity to generate the reverse lin-569

earization before AMR parsing, the inference is570

two times slower than the one-pass AMR parser.571

9 Ethics Consideration572

We collect our data from public datasets that permit573

academic use and buy the license for the datasets574

that are not free. The open-source tools we use for575

training and evaluation are freely accessible online576

without copyright conflicts.577

References578

Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue579
Zhang. 2021. Semantic representation for dialogue580
modeling. ArXiv, abs/2105.10188.581

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.582
Graph pre-training for AMR parsing and generation.583
In Proceedings of the 60th Annual Meeting of the584
Association for Computational Linguistics (Volume585
1: Long Papers), pages 6001–6015, Dublin, Ireland.586
Association for Computational Linguistics.587

Laura Banarescu, Claire Bonial, Shu Cai, Madalina588
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin589
Knight, Philipp Koehn, Martha Palmer, and Nathan590
Schneider. 2013. Abstract meaning representation591
for sembanking. In Proceedings of the 7th linguis-592
tic annotation workshop and interoperability with593
discourse, pages 178–186.594

Michele Bevilacqua, Rexhina Blloshmi, and Roberto595
Navigli. 2021. One spring to rule them both: Sym-596
metric amr semantic parsing and generation without a597
complex pipeline. In Proceedings of the Thirty-Fifth598
AAAI Conference on Artificial Intelligence.599

Claire Bonial, L. Donatelli, Mitchell Abrams,600
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,601
Ron Artstein, David R. Traum, and Clare R. Voss.602
2020. Dialogue-amr: Abstract meaning representa-603
tion for dialogue. In LREC.604

Deng Cai and Wai Lam. 2020. AMR parsing via graph-605
sequence iterative inference. In Proceedings of the606
58th Annual Meeting of the Association for Compu-607
tational Linguistics, pages 1290–1301, Online. Asso-608
ciation for Computational Linguistics.609

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation610
metric for semantic feature structures. In Proceed-611
ings of the 51st Annual Meeting of the Association612

for Computational Linguistics (Volume 2: Short Pa- 613
pers), pages 748–752, Sofia, Bulgaria. Association 614
for Computational Linguistics. 615

Liang Chen, Peiyi Wang, Runxin Xu, Tianyu Liu, Zhi- 616
fang Sui, and Baobao Chang. 2022. ATP: AMRize 617
then parse! enhancing AMR parsing with Pseu- 618
doAMRs. In Findings of the Association for Compu- 619
tational Linguistics: NAACL 2022, pages 2482–2496, 620
Seattle, United States. Association for Computational 621
Linguistics. 622

Ziming Cheng, Z. Li, and Hai Zhao. 2022. Bibl: Amr 623
parsing and generation with bidirectional bayesian 624
learning. In International Conference on Computa- 625
tional Linguistics. 626

Marco Damonte, Shay B. Cohen, and Giorgio Satta. 627
2017. An incremental parser for Abstract Meaning 628
Representation. In Proceedings of the 15th Con- 629
ference of the European Chapter of the Association 630
for Computational Linguistics: Volume 1, Long Pa- 631
pers, pages 536–546, Valencia, Spain. Association 632
for Computational Linguistics. 633

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira 634
Naseem, Austin Blodgett, and Radu Florian. 2020. 635
Transition-based parsing with stack-transformers. In 636
Findings of the Association for Computational Lin- 637
guistics: EMNLP 2020, pages 1001–1007, Online. 638
Association for Computational Linguistics. 639

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris 640
Dyer, and Noah A. Smith. 2014. A discriminative 641
graph-based parser for the Abstract Meaning Repre- 642
sentation. In Proceedings of the 52nd Annual Meet- 643
ing of the Association for Computational Linguistics 644
(Volume 1: Long Papers), pages 1426–1436, Bal- 645
timore, Maryland. Association for Computational 646
Linguistics. 647

DongLai Ge, Junhui Li, Muhua Zhu, and Shoushan Li. 648
2019. Modeling source syntax and semantics for 649
neural amr parsing. In IJCAI, pages 4975–4981. 650

Hardy Hardy and Andreas Vlachos. 2018. Guided neu- 651
ral language generation for abstractive summariza- 652
tion using abstract meaning representation. In Pro- 653
ceedings of the 2018 Conference on Empirical Meth- 654
ods in Natural Language Processing, pages 768–773. 655

Ching-Kang Ing. 2007. Accumulated prediction errors, 656
information criteria and optimal forecasting for au- 657
toregressive time series. 658

Young-Suk Lee, Ramón Fernandez Astudillo, Tahira 659
Naseem, Revanth Gangi Reddy, Radu Florian, and 660
Salim Roukos. 2020. Pushing the limits of amr pars- 661
ing with self-learning. In Proceedings of the 2020 662
Conference on Empirical Methods in Natural Lan- 663
guage Processing: Findings, pages 3208–3214. 664

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 665
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 666
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 667
BART: Denoising sequence-to-sequence pre-training 668

9

https://doi.org/10.18653/v1/2022.acl-long.415
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-669
prehension. In Proceedings of the 58th Annual Meet-670
ing of the Association for Computational Linguistics,671
pages 7871–7880, Online. Association for Computa-672
tional Linguistics.673

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-674
stract meaning representation for multi-document675
summarization. In Proceedings of the 27th Inter-676
national Conference on Computational Linguistics,677
pages 1178–1190.678

Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, and679
Jie Zhou. 2021. Scheduled sampling based on decod-680
ing steps for neural machine translation. In Proceed-681
ings of the 2021 Conference on Empirical Methods682
in Natural Language Processing, EMNLP 2021, Vir-683
tual Event / Punta Cana, Dominican Republic, 7-11684
November, 2021, pages 3285–3296. Association for685
Computational Linguistics.686

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as687
graph prediction with latent alignment. In Proceed-688
ings of the 56th Annual Meeting of the Association for689
Computational Linguistics (Volume 1: Long Papers),690
pages 397–407, Melbourne, Australia. Association691
for Computational Linguistics.692

Arindam Mitra and Chitta Baral. 2016. Addressing a693
question answering challenge by combining statis-694
tical methods with inductive rule learning and rea-695
soning. In Proceedings of the AAAI Conference on696
Artificial Intelligence, volume 30.697

Tahira Naseem, Abhishek Shah, Hui Wan, Radu698
Florian, Salim Roukos, and Miguel Ballesteros.699
2019. Rewarding smatch: Transition-based amr700
parsing with reinforcement learning. arXiv preprint701
arXiv:1905.13370.702

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal703
Daumé III. 2017. Biomedical event extraction using704
abstract meaning representation. In BioNLP 2017,705
pages 126–135.706

Mrinmaya Sachan and Eric Xing. 2016. Machine com-707
prehension using rich semantic representations. In708
Proceedings of the 54th Annual Meeting of the As-709
sociation for Computational Linguistics (Volume 2:710
Short Papers), pages 486–492.711

Peiyi Wang, Liang Chen, Tianyu Liu, Baobao Chang,712
and Zhifang Sui. 2021. Hierarchical curriculum713
learning for amr parsing. In Annual Meeting of the714
Association for Computational Linguistics.715

Yanshan Wang, Sijia Liu, Majid Rastegar-Mojarad, Li-716
wei Wang, Feichen Shen, Fei Liu, and Hongfang Liu.717
2017. Dependency and amr embeddings for drug-718
drug interaction extraction from biomedical literature.719
In Proceedings of the 8th acm international confer-720
ence on bioinformatics, computational biology, and721
health informatics, pages 36–43.722

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian 723
Riedel, and Luke Zettlemoyer. 2019. Scalable zero- 724
shot entity linking with dense entity retrieval. arXiv 725
preprint arXiv:1911.03814. 726

Binbin Xie, Jinsong Su, Yubin Ge, Xiang Li, Jianwei 727
Cui, Junfeng Yao, and Bin Wang. 2021. Improving 728
tree-structured decoder training for code generation 729
via mutual learning. In Proceedings of the AAAI Con- 730
ference on Artificial Intelligence, volume 35, pages 731
14121–14128. 732

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan 733
Wang, Hongtao Xie, and Yongdong Zhang. 2020a. 734
Curriculum learning for natural language understand- 735
ing. In Proceedings of the 58th Annual Meeting of 736
the Association for Computational Linguistics, pages 737
6095–6104, Online. Association for Computational 738
Linguistics. 739

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and 740
Guodong Zhou. 2020b. Improving amr parsing with 741
sequence-to-sequence pre-training. In Proceedings 742
of the 2020 Conference on Empirical Methods in 743
Natural Language Processing (EMNLP), pages 2501– 744
2511. 745

Runxin Xu, Peiyi Wang, Tianyu Liu, Shuang Zeng, 746
Baobao Chang, and Zhifang Sui. 2022. A two-stream 747
amr-enhanced model for document-level event argu- 748
ment extraction. In North American Chapter of the 749
Association for Computational Linguistics. 750

Chen Yu and Daniel Gildea. 2022a. Sequence-to- 751
sequence AMR parsing with ancestor information. 752
In Proceedings of the 60th Annual Meeting of the 753
Association for Computational Linguistics (Volume 754
2: Short Papers), pages 571–577, Dublin, Ireland. 755
Association for Computational Linguistics. 756

Chenyao Yu and Daniel Gildea. 2022b. Sequence-to- 757
sequence amr parsing with ancestor information. In 758
Annual Meeting of the Association for Computational 759
Linguistics. 760

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin 761
Van Durme. 2019a. AMR parsing as sequence-to- 762
graph transduction. In Proceedings of the 57th An- 763
nual Meeting of the Association for Computational 764
Linguistics, pages 80–94, Florence, Italy. Association 765
for Computational Linguistics. 766

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin 767
Van Durme. 2019b. Broad-coverage semantic pars- 768
ing as transduction. In Proceedings of the 2019 Con- 769
ference on Empirical Methods in Natural Language 770
Processing and the 9th International Joint Confer- 771
ence on Natural Language Processing (EMNLP- 772
IJCNLP), pages 3786–3798, Hong Kong, China. As- 773
sociation for Computational Linguistics. 774

Wen Zhang, Yang Feng, Fandong Meng, Di You, and 775
Qun Liu. 2019c. Bridging the gap between train- 776
ing and inference for neural machine translation. In 777

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426

Proceedings of the 57th Annual Meeting of the Asso-778
ciation for Computational Linguistics, pages 4334–779
4343, Florence, Italy. Association for Computational780
Linguistics.781

Zixuan Zhang and Heng Ji. 2021. Abstract meaning782
representation guided graph encoding and decoding783
for joint information extraction. In Proceedings of784
the 2021 Conference of the North American Chap-785
ter of the Association for Computational Linguistics:786
Human Language Technologies, pages 39–49.787

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-788
tudillo, and Radu Florian. 2021. AMR parsing with789
action-pointer transformer. In Proceedings of the790
2021 Conference of the North American Chapter of791
the Association for Computational Linguistics: Hu-792
man Language Technologies, pages 5585–5598, On-793
line. Association for Computational Linguistics.794

Long Zhou, Jiajun Zhang, and Chengqing Zong. 2019a.795
Synchronous bidirectional neural machine translation.796
Transactions of the Association for Computational797
Linguistics, 7:91–105.798

Long Zhou, Jiajun Zhang, Chengqing Zong, and Heng799
Yu. 2019b. Sequence generation: From both sides to800
the middle. arXiv preprint arXiv:1906.09601.801

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.802
2020. AMR parsing with latent structural informa-803
tion. In Proceedings of the 58th Annual Meeting of804
the Association for Computational Linguistics, pages805
4306–4319, Online. Association for Computational806
Linguistics.807

11

https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397

A Training Details808

AMR Parsing on AMR 2.0/3.0
Model Name AMRBART (Bai et al., 2022)
Pretrained Model AMRBART-Large
Learning Rate 8e-6
Batchsize 16
Accumulation Steps 4
Max Epochs 30
Validation Interval 1 epoch
Early Stopping 10
Beam size 5
Warmup Steps 200
Entity Linking BLINK (Wu et al., 2019)

Table 6: The Hyper-Parameters for all of our imple-
mented models including RGL and baseline models.

R2L parser For the R2L parser for inference, we809

fine-tune AMRBART (Bai et al., 2022) using sen-810

tences and their corresponding reverse linearized811

AMR graphs of the training sets.812

During training, we also need an R2L parser to813

parse the sentence into the silver graph of the total814

training set. If we use the R2L parser exactly the815

same as that in inference, it will generate silver816

graphs that are almost the same as the gold graphs,817

because the R2L parser has already seen all of818

these data during training. To solve this problem,819

we use 30% of the training set (10000 samples in820

AMR 2.0, 15000 samples in AMR 3.0) to train a821

“weaker” R2L parser, and then use it to infer the822

entire training set to obtain the silver linearizations2823

during training.824

We use hyper-parameters shown in table 6 to825

train all of our implemented models, including the826

baseline and R2L parser for inference. Before train-827

ing the RGL, we use the state dict of the encoder of828

AMRBART to initialize the graph encoder and then829

train the model using the same configuration. As830

for the R2L parser for training, we random select a831

part of the training set in the ratio of 0.3, then we832

use these gold labeled data to train the R2L parser.833

We implemented our models on the Pytorch834

framework. All the models are trained on a sin-835

gle NVIDIA A100 GPU. Training takes 17 hours836

on AMR 2.0 and 24 hours on AMR 3.0.837

2Gold linearization means that the AMR sequence is ob-
tained by linearization of the gold AMR graph, which is the
ground truth AMR graph of the sentence and is free from
any errors. Silver linearization means that the AMR graph
is parsed from a sentence using an AMR parser, possibly
containing noise.

0 5 10 15 20 25 30
training epoch

0.830

0.835

0.840

0.845

0.850

0.855

ev
al

 sm
at

ch

w/o RGL
w/ RGL

Figure 7: The convergence curve of the RGL and AMR-
BART.

B Detailed Evaluation Metrics 838

We use the Smatch scores (Cai and Knight, 2013) 839

to evaluate the performance. The further the break 840

down scores (Damonte et al., 2017) is shown as 841

follows. i) No WSD, compute while ignoring Prop- 842

bank senses (e.g., duck-01 vs duck-02), ii) Wiki- 843

fication, F-score on the wikification (:wiki roles), 844

iii) Concepts, F-score on the concept identification 845

task, iv) NER, F-score on the named entity recog- 846

nition (:name roles), v) Negations, F-score on the 847

negation detection (:polarity roles), vi) Unlabel, 848

compute on the predicted graphs after removing all 849

edge labels, vii) Reentrancy, computed on reentrant 850

edges only, viii) Semantic Role Labeling (SRL), 851

computed on :ARG-i roles only. 852

C Convergence Curve 853

Figure 7 presents the convergence curves of RGL 854

and AMRBART on the AMR2.0 dataset. The train- 855

ing process consists of 30 epochs. After each epoch, 856

we compute the SMATCH of RGL and AMRBART 857

on the validation set. Results in Figure 7 indicate 858

that RGL outperforms AMRBART significantly. 859

D Error propagation vs. structure loss 860

Figure 8 highlights the distinction between error 861

propagation and structure loss. Error propagation 862

is typically evaluated position-wise or within a lim- 863

ited window (Liu et al., 2021), and is observed 864

in almost every autoregressive method, including 865

sequence-to-sequence based AMR parsing. Once a 866

previous prediction is misplaced or incorrect, sub- 867

sequent predictions tend to follow the same pattern. 868

In contrast, structure loss evaluates the validity of a 869

node or relation based on its existence in the entire 870

gold graph, rather than its position or window. We 871

12

F1
 sc

or
e

ac
cu

ra
cy

 position

(a) Error Propagation (b) Structure Loss

 position

relation F1
node F1

0 20 40

1

0.8

0.6

0.4

0.2 0.5

60 80 100 0 10 20 30 40 50

0.9

0.8

0.7

0.6

relation F1
node F1

Figure 8: The descent of (a) position-wise accuracy and
(b) graph-wise F1-score of nodes and relations as the
decoding progresses. The results are from AMRBART
(Bai et al., 2022) on the test set of AMR 2.0.

argue that structure loss provides a more accurate872

reflection of the challenges in AMR parsing and873

other structure generation tasks because it measures874

the overall quality of the generated AMR graph.875

E Case Study876

The illustrated example in figure 9 shows the ac-877

cumulation of structural loss more intuitively. We878

align the variables predicted by the model with the879

standard AMR graph and mark the prediction er-880

rors in red. From the figure, we can see that there881

are more errors in the later part of the predicted882

AMR graph. What’s more, the relation ":snt2" is883

wrongly predicted due to the error of the previous884

relations ":op1" and ":op2", which shows that the885

duplicate dependencies imposed by sequence-to-886

sequence manner on AMR parsing have a negative887

effect.888

13

AMR graph
(m / multi-sentence

 :snt1 (m2 / many

 :ARG0-of (s / sense-01

 :ARG1 (u / urgency)

 :time (w / watch-01

 :ARG0 m2

 :ARG1 (t3 / thing

 :manner-of (d / develop-02

 :ARG0 (t / thing)))

 :manner (q / quiet-04

 :ARG1 m2))))

 :snt2 (d2 / dragon

 :domain (y / you)

 :ARG0-of (c / coil-01))

 :snt3 (t2 / tiger

 :domain (y2 / you)

 :ARG0-of (c2 / crouch-01))

 :snt4 (a / admire-01

 :ARG0 (i / i)

 :ARG1 (p / patriot

 :ARG0-of (m3 / mind-04

 :mod (n / noble)))))

AMR graph predicted by AMRBART
(m / multi-sentence

 :snt1 (m2 / many

 :ARG0-of (s / sense-01

 :mod (u / urgency)

 :time (w / watch-01

 :ARG0 m2

 :ARG1 (t3 / thing

 :manner-of (d / develop-02

 :ARG0 (t / thing)))

 :manner (q / quiet-04

 :ARG1 m2))))

 :op1 (d2 / dragon

 :ARG0 (y / you)

 :ARG0-of (c / coil-01))

 :op2 (t2 / tiger

 :ARG0 (y2 / you)

 :ARG0-of (c2 / crouch-01))

 :snt2 (a / admire-01

 :ARG0 (i / i)

 :ARG1 (p / patriot

 :ARG0-of (m3 / mind-04

 :mod (n / noble)))))

Sentence
There are many who have a sense of urgency, quietly watching how things develop,you are dragons coiling, you are tigers crouching,

I admire noble-minded patriots.

Figure 9: An example of AMR parsing of the long sentence from the validation set of AMR 3.0.

14

