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Abstract

Transfer learning has proven to be crucial in001
advancing the state of speech and natural lan-002
guage processing research in recent years. In003
speech, a model pre-trained by self-supervised004
learning transfers remarkably well on multi-005
ple tasks. However, the lack of a consistent006
evaluation methodology is limiting towards a007
holistic understanding of the efficacy of such008
models. SUPERB was a step towards intro-009
ducing a common benchmark to evaluate pre-010
trained models across various speech tasks. In011
this paper, we introduce SUPERB-SG, a new012
benchmark focused on evaluating the seman-013
tic and generative capabilities of pre-trained014
models by increasing task diversity and dif-015
ficulty over SUPERB. We use a lightweight016
methodology to test the robustness of repre-017
sentations learned by pre-trained models under018
shifts in data domain and quality across dif-019
ferent types of tasks. It entails freezing pre-020
trained model parameters, only using simple021
task-specific trainable heads. The goal is to be022
inclusive of all researchers, and encourage effi-023
cient use of computational resources. We also024
show that the task diversity of SUPERB-SG025
coupled with limited task supervision is an ef-026
fective recipe for evaluating the generalizabil-027
ity of model representation.028

1 Introduction029

Transfer learning is a paradigm in machine learn-030

ing that has been very effective for natural lan-031

guage processing (NLP) (Peters et al., 2018; De-032

vlin et al., 2019; Liu et al., 2019; Lan et al., 2019;033

Dong et al., 2019; Yang et al., 2019; Raffel et al.,034

2020; Lewis et al., 2019; Conneau et al., 2020),035

and speech processing (van den Oord et al., 2018;036

Rivière et al., 2020; Chung et al., 2019; Schneider037

et al., 2019; Baevski et al., 2020; Hsu et al., 2021;038

Liu et al., 2020b,a; Ravanelli et al., 2020; Ling039

et al., 2020; Ling and Liu, 2020). Self-supervised040

learning (SSL) is the main driver of this paradigm,041

an effective and scalable way to learn high-level042

representation of language that transfers to a vari- 043

ety of tasks. SSL entails learning from the input 044

or some perturbation of it without the need for la- 045

belled data. This has unlocked the usage of large 046

amounts of cheaply available unlabelled data. It 047

lends naturally to neural network models that have 048

been shown to possess impressive scaling charac- 049

teristics such that it is often enough to increase 050

the model and data sizes to improve downstream 051

performance (Hestness et al., 2017; Shazeer et al., 052

2017; Jozefowicz et al., 2016; Mahajan et al., 2018; 053

Radford et al., 2019). 054

Speech signal consists of acoustic, linguistic, 055

prosodic, and speaker characteristics. SSL algo- 056

rithms in speech must be evaluated in their ability 057

to produce representations that are useful for tasks 058

that demand understanding of linguistic, speaker, 059

and prosodic elements of spoken language as well 060

as high-level semantics. Researchers have used 061

auto-regressive, contrastive, discriminative and 062

multi-task learning objectives to pre-train mod- 063

els, and have investigated their capabilities across 064

tasks like phoneme recognition (van den Oord 065

et al., 2018; Chung et al., 2019), automatic speech 066

recognition (ASR) (Liu et al., 2020a; Schneider 067

et al., 2019; Ling and Liu, 2020; Ravanelli et al., 068

2020; Hsu et al., 2021; Chang et al., 2021), speaker 069

verification (Fan et al., 2020), speaker identifica- 070

tion (Chung et al., 2019; Liu et al., 2020b), emotion 071

recognition (Macary et al., 2021), speech transla- 072

tion (Chung et al., 2019), voice conversion (Lin 073

et al., 2020; Huang et al., 2021a), spoken lan- 074

guage understanding (Lai et al., 2021), and text-to- 075

speech (Álvarez et al., 2019). However, the method- 076

ology in such studies vary in the use of datasets, 077

fine-tuning strategy and task-specific model archi- 078

tecture. To bridge this gap, SUPERB (Yang et al., 079

2021) introduced a standardized benchmark of 10 080

speech tasks to compare 13 pre-trained models and 081

a Log Mel-Filterbank baseline. It studied the mod- 082

els’ performance in tasks focusing on linguistic 083
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Figure 1: Illustration of the detailed training procedure.
A trainable weighted-sum mechanism is used to sum-
marize all layers’ representations into a sequence of
vectors and then taken by downstream model as input.
Upstream is frozen through the whole process. Dashed
arrow (99K) is used to indicate the flow of gradient
when back propagating.

(phoneme recognition and automatic speech recog-084

nition, keyword spotting and query by example),085

shallow semantic (intent classification and slot fill-086

ing), speaker (speaker identification, speaker verifi-087

cation and speaker diarization), and prosodic (emo-088

tion recognition) characteristics.089

In this paper, we introduce SUPERB-SG, a090

benchmark with 5 new tasks, which are speech091

translation, out-of-domain ASR, voice conversion,092

speech separation, and speech enhancement, with093

an emphasis on evaluating the semantic and gener-094

ative capabilities of pre-trained models that require095

high-level representations to capture linguistic, se-096

mantic, and speaker characteristics. These tasks go097

beyond speech recognition by focusing on various098

other aspects that are essential to building intel-099

ligent speech interfaces. Further, we show that100

while SSL models achieve close to state-of-the-art101

performance on many tasks, there isn’t one model102

that outperforms all others, and that a simple Log103

Mel-Filterbank can perform competitively on some104

tasks. We also demonstrate the robustness of our105

methodology with an ablation study over different106

task-specific model architectures and data sizes.107

The introduction of these new tasks of varying108

difficulty takes us closer to a more comprehensive109

unified standard speech benchmark. We hope that110

this will motivate the development of more power-111

ful, generalizable, and reusable pre-trained models112

to democratize the advancement of speech research.113

To facilitate this, we will release the code and inte-114

grate the tasks with the SUPERB benchmark.115

2 Related Work 116

As more powerful SSL models are proposed 117

with promising performance on various tasks, re- 118

searchers continually try to find extensive evalu- 119

ation methods to assess model performance, and 120

wish to holistically understand the capability of the 121

learned representations in these models. 122

SUPERB (Yang et al., 2021) is a framework to 123

benchmark the SSL models on 10 speech tasks by 124

learning task-specific prediction heads on top of 125

the frozen shared SSL models. Although the tasks 126

in SUPERB span across different domains, most 127

of them are simple classification problems, or only 128

require utilization of shallow semantics. In contrast, 129

we focus on harder semantic and generative tasks. 130

Another recently proposed benchmark is the 131

LeBenchmark (Evain et al., 2021), investigating 132

the performance of SSL models trained on French 133

data with three semantic tasks. However, they only 134

consider wav2vec 2.0 (Baevski et al., 2020) with 135

different architectures as their upstream models 136

(i.e., networks pre-trained with SSL). Here, we 137

evaluate a diverse set of SSL models, and offer a 138

more comprehensive analysis. 139

The Zero Resource Speech Benchmark 140

2021 (Nguyen et al., 2020) introduces unsuper- 141

vised speech processing tasks, particularly the 142

spoken language modeling problem. They evaluate 143

the SSL models via zero-shot probings at four 144

linguistic levels. While their benchmark task is 145

specific for certain domain, we use various tasks to 146

evaluate different aspects of SSL models. 147

The HEAR 2021 Challenge1 aims to develop 148

general-purpose audio representation by focus- 149

ing on audio tasks beyond speech that include 150

sound event detection, speech commands and pitch 151

chroma classification. We specifically focus on var- 152

ious aspects of speech processing, thus providing a 153

wide variety of spoken language tasks. 154

3 SUPERB-SG 155

3.1 Tasks and Datasets 156

This section introduces the tasks in SUPERB-SG, 157

including why we choose these tasks and how 158

we design the task-specific heads for fine-tuning. 159

Following SUPERB’s methodology, we use a 160

lightweight fine-tuning approach wherein we freeze 161

the pre-trained model parameters and only keep 162

1https://neuralaudio.ai/hear2021-holistic-evaluation-of-
audio-representations.html
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Upstream Network #Params Stride Input Corpus Pretraining Official Github

FBANK - 0 10ms waveform - - -

PASE+ SincNet, 7-Conv, 1-QRNN 7.83M 10ms waveform LS 50 hr multi-task santi-pdp / pase

APC 3-GRU 4.11M 10ms FBANK LS 360 hr F-G iamyuanchung / APC
VQ-APC 3-GRU 4.63M 10ms FBANK LS 360 hr F-G + VQ iamyuanchung / VQ-APC
NPC 4-Conv, 4-Masked Conv 19.38M 10ms FBANK LS 360 hr M-G + VQ Alexander-H-Liu / NPC
Mockingjay 12-Trans 85.12M 10ms FBANK LS 360 hr time M-G s3prl / s3prl
TERA 3-Trans 21.33M 10ms FBANK LS 960 hr time/freq M-G s3prl / s3prl
DeCoAR 2.0 12-Trans 89.84M 10ms FBANK LS 960 hr time M-G + VQ awslabs / speech-representations

Modified CPC 5-Conv, 1-LSTM 1.84M 10ms waveform LL 60k hr F-C facebookresearch / CPC_audio
wav2vec 19-Conv 32.54M 10ms waveform LS 960 hr F-C pytorch / fairseq
vq-wav2vec 20-Conv 34.15M 10ms waveform LS 960 hr F-C + VQ pytorch / fairseq
wav2vec 2.0 Base 7-Conv 12-Trans 95.04M 20ms waveform LS 960 hr M-C + VQ pytorch / fairseq
wav2vec 2.0 Large 7-Conv 24-Trans 317.38M 20ms waveform LL 60k hr M-C + VQ pytorch / fairseq
HuBERT Base 7-Conv 12-Trans 94.68M 20ms waveform LS 960 hr M-P + VQ pytorch / fairseq
HuBERT Large 7-Conv 24-Trans 316.61M 20ms waveform LL 60k hr M-P + VQ pytorch / fairseq

Table 1: Details of the investigated SSL representations. LibriSpeech and LibriLight are denoted as LS and LL,
respectively. For the pretraining methods, we abbreviate "vector quantization" as VQ, "future" as F, "masked" as
M, "generation" as G, "contrastive discrimination" as C, and "token prediction/classification" as P. Parameters for
both pretraining and inference are counted.

the task-specific head’s parameters trainable. This163

setting serves the dual purpose of evaluating the164

robustness as well as the generalizability of the165

speech representations, and provides a resource-166

efficient way of fine-tuning the models that is inclu-167

sive of participants with constrained compute re-168

sources. We call the pre-trained model as upstream169

model and the task-specific heads as downstream170

model. We now discuss the newly added tasks in171

SUPERB-SG in the following sub-sections.172

3.1.1 Speech Translation173

Speech translation (ST) involves translating the174

acoustic speech signals in the source language into175

the words in the target language. We use it to eval-176

uate the semantic capability of SSL models, and177

how they benefit the translation task. We use the178

CoVoST2 EnÑDe (Wang et al., 2020) dataset with179

their official train, validation, and test splits while180

removing all the samples containing "REMOVE",181

resulting in 425.8, 25.9 and 24.5 hours respectively.182

For text, we keep original case, normalize punctu-183

ation, and build character vocabulary with 100%184

train-set coverage. We report case-sensitive de-185

tokenized BLEU using sacreBLEU (Post, 2018).186

Our downstream model has an encoder-decoder ar-187

chitecture with 3 layers of Transformers (Vaswani188

et al., 2017) each. A convolutional sub-sampler is189

used to reduce the sequence length of the input be-190

fore feeding it to the encoder. We train our model191

with label-smoothing using a probability of 0.1. A192

beam size of 20 is used for inference.193

3.1.2 Out-of-domain ASR 194

Although an ASR is included in SUPERB, it only 195

examines SSL models on read English corpus Lib- 196

riSpeech (Panayotov et al., 2015). Therefore, we 197

introduce out-of-domain ASR (OOD-ASR), which 198

aims to evaluate the models’ capabilities across lan- 199

guages, and out-of-domain scenarios. The OOD- 200

ASR tasks are categorized into cross-lingual and 201

spontaneous speech tasks. For the cross-lingual 202

tasks, we choose the Mexican Spanish (es), Man- 203

darin (zh), and Arabic (ar) subsets from Common 204

Voice 7.0 (Ardila et al., 2020) containing 21.5, 31.2, 205

and 30.7 hours of training data respectively. The 206

validation set sizes are 1.2 hours, 14.4 hours and 207

12.24 hours, and the test set sizes are 0.6 hour, 15.3 208

hours and 12.5 hours for es, zh and ar respectively. 209

For the spontaneous speech task (spon), we use 210

the Santa Barbara Corpus of Spoken American En- 211

glish (SBCSAE) (Du Bois et al., 2000 – 2005), 212

consisting of 60 conversations over different topics 213

spanning 16.7 hours of data. The validation and test 214

set sizes are 1.6 hours and 2.2 hours respectively. 215

For evaluation, we use word error rate (WER) as 216

the metric except for Mandarin which character er- 217

ror rate (CER) is used. The error rates are averaged 218

across all sub-tasks to offer an overall score. The 219

ASR model is a 3-layer BLSTM (Hochreiter and 220

Schmidhuber, 1997) with hidden states of 1024 221

dimension. The training objective is to minimize 222

the Connectionist Temporal Classification (CTC) 223

loss (Graves et al., 2006). During inference, we 224

use CTC greedy decoding without language model 225
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re-scoring to simplify the process and to highlight226

the impact of the learned acoustic representations.227

3.1.3 Voice Conversion228

For voice conversion (VC), we consider the intra-229

lingual VC task in VCC2020 (Zhao et al., 2020)230

under the any-to-one (A2O) setting. A2O VC aims231

to convert speech from any arbitrary speaker into232

that of a predefined target speaker. We use the task233

to evaluate the speaker transferability as well as234

the generalizability of the SSL models. We use235

60 utterances from the target speaker that spans 5236

minutes for training, and 25 utterances for testing237

that span 2 minutes. No validation set was used.238

We use the commonly used mel-cepstrum distor-239

tion (MCD), word error rate (WER) and automatic240

speaker verification (ASV) accept rate from off-the-241

shelf ASR and ASV models as evaluation metrics.242

The downstream model is trained to reconstruct the243

acoustic feature from the upstream representations244

in a target-speaker-dependent manner. In the con-245

version phase, given the representations extracted246

by the upstream, the model generates the converted247

acoustic features, which are then sent to a neural248

vocoder to synthesize the converted waveform. We249

adopted Tacotron2 (Shen et al., 2018) as the down-250

stream model, which is an autoregressive network251

consisting of convolutional and LSTM layers. For252

the neural vocoder, we used the Hifi-GAN (Kong253

et al., 2020). We follow an implementation de-254

scribed in (Huang et al., 2021b).255

3.1.4 Speech Separation256

Speech separation (SS) is the task of sepa-257

rating target speech from background interfer-258

ence (Wang and Chen, 2018). It is an important259

step in speech processing, especially for noisy260

and multi-speaker scenarios. We investigate the261

speech separation problem on a dataset simulated262

from LibriSpeech (Cosentino et al., 2020) and263

WHAM! (Wichern et al., 2019) noise. We use264

16kHz version of the dataset containing 2 speakers,265

and focus on the mix_clean condition. The train266

and evaluation sets contain 43.3 and 4.2 hours of267

speech simulated from LibriSpeech’s train-clean-268

100 and test-clean. This task is used to evaluate the269

generative capability of SSL models when input is270

a mixture of acoustic signals. We use the scale-271

invariant signal-to-distortion ratio improvement272

(SI-SDRi) as the evaluation metric. For the down-273

stream model, we use a 3-layer BLSTM model274

with dimension of 896 for each direction to predict275

the short-time Fourier transform (STFT) masks for 276

each speaker, and the predictions are transformed 277

back to the time domain using inverse short-time 278

Fourier transform (iSTFT). Permutation invariant 279

training (PIT) (Yu et al., 2017) is performed to 280

optimize the mean square error between the pre- 281

dicted mask and Ideal Non-negative Phase Sensi- 282

tive Mask (INPSM) (Erdogan et al., 2015; Kolbæk 283

et al., 2017). We choose frequency domain method 284

instead of a time domain based method because of 285

the stride size constraint and computational cost. 286

3.1.5 Speech Enhancement 287

Speech enhancement (SE) is the task of remov- 288

ing background noise from a degraded speech sig- 289

nal, and it aims to improve the perceived quality 290

and intelligibility of the signal. We include this 291

task to evaluate the generative capability under 292

noisy conditions. In SUPERB-SG, we discuss the 293

speech enhancement problem on the Voicebank- 294

DEMAND (Veaux et al., 2013) corpus. The train, 295

validation, and test sets contain 8.8, 0.6 and 0.6 296

hours of speech respectively. Our evaluation met- 297

rics are Perceptual Evaluation of Speech Quality 298

(PESQ) and Short-Time Objective Intelligibility 299

(STOI). For the downstream model, we follow the 300

mask-based speech enhancement pipeline in (Kol- 301

bæk et al., 2017). A 3-layer BLSTM model similar 302

to the speech separation task is trained to predict the 303

spectral mask for the clean signal. The mean square 304

error between the predicted mask and INPSM is 305

used as the objective. 306

3.2 Self-supervised Models 307

We evaluate the tasks on 15 upstream models that 308

span across different architectures, sizes, and learn- 309

ing objectives. Some of these models also use 310

vector quantization which has an added benefit of 311

signal compression. For grounding, we use Log 312

Mel Filterbank as our baseline. The detailed prop- 313

erties of upstream models are shown in Table 1. 314

4 Experimental Setup 315

Following SUPERB, we fix upstream models pa- 316

rameters for all downstream tasks’ training. We 317

extract the frame-level representations for each hid- 318

den layer of the upstream models from raw wave- 319

form, and use a trainable task-specific weighted- 320

sum mechanism to summarize all layers’ represen- 321

tations into a sequence of vectors. The summarized 322

representations are then used as the downstream 323
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Upstream ST OOD-ASR VC SS SE

BLEUÒ WERÓ MCDÓ WERÓ ASVÒ SI-SDRiÒ PESQÒ STOIÒ

FBANK 2.32 63.58 8.47 38.3 77.25 9.23 2.55 93.6

PASE+ 3.16 61.56 8.66 30.6 63.20 9.87 2.56 93.9

APC 5.95 63.12 8.05 27.2 87.25 8.92 2.56 93.4
VQ-APC 4.23 63.56 7.84 22.4 94.25 8.44 2.56 93.4
NPC 4.32 61.66 7.86 30.4 94.75 8.04 2.52 93.1
Mockingjay 4.45 65.27 8.29 35.1 79.75 9.29 2.53 93.4
TERA 5.66 58.49 8.21 25.1 83.75 10.19 2.54 93.6
DeCoAR 2.0 9.94 53.62 7.83 17.1 90.75 8.54 2.47 93.2

Modified CPC 4.82 62.54 8.41 26.2 71.00 10.40 2.57 93.7
wav2vec 6.61 55.86 7.45 10.1 98.25 9.30 2.53 93.8
vq-wav2vec 5.66 60.66 7.08 13.4 100.00 8.16 2.48 93.6
wav2vec 2.0 Base 14.81 46.95 7.50 10.5 98.00 9.77 2.55 93.9
wav2vec 2.0 Large 12.48 44.69 7.63 15.8 97.25 10.02 2.52 94.0
HuBERT Base 15.53 46.69 7.47 8.0 98.50 9.36 2.58 93.9
HuBERT Large 20.01 44.08 7.22 9.0 99.25 10.45 2.64 94.2

Table 2: Evaluating various SSL representations on new semantic and generative downstream tasks. Ò indicates
the higher the better and Ó indicates the lower the better. The complete results of OOD-ASR are in Appendix A.

model’s input. An overview of the training proce-324

dure is demonstrated in Figure 1. This procedure325

is consistent for all experiments, offering a fair and326

simple evaluation strategy for all upstream models.327

5 Results and Discussion328

5.1 Main result329

The results of the upstream models evaluated on330

SUPERB-SG are shown in Table 2. We only report331

the averaged WER for OOD-ASR. Full results can332

be found in Appendix A. For speech-to-text tasks333

(ST and OOD-ASR), wav2vec 2.0 and HuBERT334

offer competitive results, while DeCoAR 2.0 shows335

some improvements. In speech generation tasks336

(VC, SS, and SE), FBANK yields comparable or337

superior performance than some SSL models, es-338

pecially for those metrics that take the quality of339

the output signal into account. For VC, the 3 re-340

ported metrics have the same trend for respective341

models. Here, vq-wav2vec achieves the best perfor-342

mance on MCD and ASV, while HuBERT performs343

the best on WER. For SS, Hubert-Large achieves344

the best performance, followed by Modified CPC.345

PASE+, which is pre-trained with denoising tasks,346

performs better than half the SSL models, but this347

observation doesn’t transfer to the other tasks. For348

SE, all upstream models perform comparably. The349

largest gap is only 0.17 in PESQ and 1.1 in STOI.350

Overall, no model outperforms all others on all351

tasks. However, HuBERT-Large performs most352

competitively on all downstream tasks, especially353

those requiring linguistic and semantic signals.354

5.2 Correlation between tasks 355

We analyze the correlations between tasks in 356

SUPERB-SG to understand the similarity between 357

tasks, and verify if the experimental results agree 358

with the common understanding of related tasks 359

based on shared representation they require. 360

To compute the correlation, we first change all 361

metrics into a higher-better manner. Then, we com- 362

pute the Spearman’s rank correlation coefficients 363

(Spearman’s ρ) between all pairs of tasks. For mul- 364

tiple metrics contained in a single task, such as 365

MCD/WER/ASV in VC as well as PESQ/STOI in 366

SE, we compute each of them separately. 367

To make our analysis more representative and 368

generalized to all speech domains, we bring back 369

the six tasks from SUPERB (Yang et al., 2021) that 370

are considered representative of the following four 371

domains: (i) Content recognition tasks contain- 372

ing Phoneme Recognition (PR), Automatic Speech 373

Recognition (ASR) (ii) Speaker identity tasks in- 374

cluding Identification (SID), Automatic Speaker 375

Verification (ASV) (iii) Semantics task which is 376

Intent Classification (IC) and (iv) Prosodic task 377

which is Emotion Recognition (ER). Together with 378

the 5 tasks introduced in this paper, we show the 379

results of total 11 downstream tasks with the 14 380

corresponding metrics in Figure 2. 381

Overall, results show that all tasks except SS and 382

SE have strong positive correlation among them. 383

One possible explanation for SS and SE not show- 384

ing strong correlation is that the low-level informa- 385

tion closely related to audio signals is more criti- 386
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Tasks Top 2 Last 2

ST ASR
(0.92)

IC
(0.92)

ASV
(0.75)

VC
(0.76)

OOD-ASR ASR
(0.92)

PR
(0.86)

ASV
(0.70)

VC
(0.72)

VC PR
(0.84)

ASR
(0.77)

SID
(0.64)

ER
(0.66)

SS SE
(0.65)

OOD-ASR
(0.46)

VC
(0.01)

ASV
(0.04)

SE SS
(0.65)

ER
(0.39)

VC
(0.17)

IC
(0.25)

Table 3: Top 2 and last 2 tasks correlated with the five
SUPERB-SG tasks ranked by Spearman’s ρ.

Cluster Metrics

A ST, OOD-ASR, PR
VC (WER), ASR, IC

B SID, ASV, ER

C VC (MCD), VC (ASV)

D SS

E SE (PESQ)

F SE (STOI)

Table 4: K-means clustering result based on the corre-
lation between each downstream tasks.

cal as they need to reconstruct clean speech from387

interfering speakers and background noise by es-388

timating the STFT masks. As a result, high-level389

information extracted from SSL models has little390

benefit for these tasks but is helpful for other tasks.391

As noted earlier, there is only a small gap in per-392

formance between FBANK and SSL models. If393

we leave SS and SE out, all correlation coefficients394

are greater than 0.58, showing that the SSL model395

representations are useful for multiple domains.396

Although the Spearman’s ρ are large in general397

in Figure 2, differences between tasks are observ-398

able. Here, we focus on the relation between cor-399

relation and similarity of tasks. We list the most400

and the least two correlated tasks comparing with401

ST, OOD-ASR, VC, SS, and SE. SS and SE are402

skipped as candidates for for the least correlated403

tasks since they dominate the results. For VC, we404

average the correlation coefficients across the three405

metrics. The results are shown in Table 3. ST406

and OOD-ASR are highly correlated with ASR407

since they both transform speech signals into dis-408

crete text tokens. IC is also correlated with ST409

since semantic information is required to perform410

Figure 2: Spearman’s ρ between tasks.

Figure 3: Spearman’s ρ between tasks rearranged by
clustering result.

both tasks. Moreover, ASV and VC are the least 411

correlated tasks since they primarily focus on the 412

speaker information with lesser regard to the se- 413

mantic content. However, the absolute correlation 414

values are still larger than 0.7. For VC, the speaker 415

information needs to be removed while the con- 416

tent has to be kept, similar to PR and ASR but 417

different from SID. SS and SE are correlated with 418

each other and have a much lower correlation with 419

speaker identity and semantics tasks, supporting 420

our assumption. Overall, we find that empirically 421

highly-correlated tasks require similar knowledge 422

or understanding ability. 423

To give a broader view of our correlation results, 424

we further cluster the downstream tasks by their 425
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Architecture ST OOD-ASR SS

architecture #params architecture #params architecture #params

default
3-layer encoder
3-layer decoder

Transformer
28.8M 2-layer BLSTM 53.4M 3-layer BLSTM

dim 896 51.4M

small
no encoder

1-layer decoder
Transformer

10.9M
(ˆ 0.38) 1-layer BLSTM 24.1M

(ˆ 0.45)
2-layer BLSTM

dim 768
24.4M

(ˆ 0.47)

large
12-layer encoder
6-layer decoder

Transformer

69.8M
(ˆ 2.42) 4-layer BLSTM 112.2M

(ˆ 2.10)
4-layer BLSTM

dim 1152
114.50M
(ˆ 2.23)

Table 5: A detailed comparison of dowsntream model architectures. We report the number of trainable parameters
when using TERA as upstream model while minor difference (< 10%) exists due to different upstream dimensions.
For OOD-ASR, we average values across all sub-tasks since sub-tasks have different vocabulary sizes.

Upstream ST OOD-ASR SS

BLEUÒ WERÓ SI-SDRiÒ

default

FBANK 2.32 63.58 9.23
TERA 5.66 58.49 10.19
Modified CPC 4.82 62.54 10.40
wav2vec 2.0 Base 14.81 46.95 9.77
HuBERT Base 15.53 46.69 9.36

small

FBANK 0.58 70.86 8.19
TERA 1.84 64.80 9.20
Modified CPC 1.44 67.83 9.56
wav2vec 2.0 Base 8.55 50.75 8.83
HuBERT Base 9.24 50.32 8.73

large

FBANK 3.02 60.49 9.77
TERA 6.64 57.95 (Ĳ) 10.87
Modified CPC 4.56 59.73 (İ) 10.61
wav2vec 2.0 Base 16.81 (Ĳ) 45.61 9.86
HuBERT Base 17.59 (İ) 45.78 9.83

Table 6: Results on SS, ST, OOD-ASR when using dif-
ferent architectures. Ĳ and İ are used to denote the rank
changing. The complete results of OOD-ASR are in
Appendix A.

correlation with each other using K-means. In this426

way, all the tasks are considered simultaneously,427

and the grouping is driven automatically by the em-428

pirical correlation results. If more than one metric429

are used in a downstream task, we cluster them430

independently. The clustering results are shown in431

Table 4 and a rearranged correlation map is shown432

in Figure 3. The result shows that the clusters of433

the tasks align with our empirical knowledge. Clus-434

ter A includes tasks that require content informa-435

tion, while tasks in cluster B are more sensitive to436

speaker and prosodic features. Cluster C contains437

metrics MCD and ASV of VC, which are used to438

evaluate the signal quality and the rates of speaker439

transfer. It is worth noting that WER in VC be- 440

longs to cluster A, showing that it is more similar 441

to content-related tasks. Furthermore, clusters D, 442

E, and F each contain one of the metrics in SS and 443

SE, aligning with our assumption that these tasks 444

utilize different types of information compared to 445

other tasks. Overall, the clustering results roughly 446

categorize tasks with respect to the signals they 447

need from the SSL representations. 448

With the analysis of the correlation between 449

tasks, we empirically confirm the reliability of the 450

results, and show that we increase the heterogene- 451

ity among speech tasks over SUPERB. We further 452

discover shared properties between tasks with clus- 453

tering, and the result is aligned with our common 454

understanding of related tasks. 455

5.3 Robustness of SUPERB-SG 456

To study the impact of downstream model archi- 457

tecture and the data sizes used in SUPERB-SG we 458

evaluate the robustness of SUPERB-SG with varia- 459

tions in downstream model as well as training data 460

size, and show that our conclusions still hold true. 461

We choose ST, OOD-ASR and SS as the down- 462

stream tasks for evaluation with an aim to cover 463

semantic, content recognition, and generative task 464

types. For the upstream models, FBANK, TERA, 465

CPC, wav2vec 2.0 Base and HuBERT Base are 466

used to cover different SSL algorithms. 467

5.3.1 Downstream model 468

For each task, 2 additional downstream architec- 469

tures are created by modifying the number of layers 470

and the hidden dimensions compared to our default 471

setting. We create small and large models that are 472

roughly the half and twice of default in terms of the 473

number of trainable parameters. A detailed com- 474
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Partition ST
OOD-ASR

SS
es zh ar spon

Train
100% 425.80 21.44 31.05 30.39 11.43 43.27
10% 42.58 2.15 3.11 3.04 1.14 4.34
5% 25.91 1.07 1.56 1.52 0.57 2.17
1% 4.26 0.22 0.31 0.31 0.12 0.43

Dev 25.91 1.19 14.41 12.24 1.59 1.52

Test 24.51 0.62 15.32 12.46 2.15 4.19

Table 7: Hours of data in pseudo datasets.

parison of the downstream architectures is shown475

in Table 5. The results are shown in Table 6.476

We show that the ranking of the upstream models477

is almost fixed when the model sizes are varied. As478

expected, the small architecture has worse perfor-479

mance than default, while large has better. More-480

over, the scores causing the change in ranking are481

negligible, e.g., TERA/CPC in SS and wav2vec 2.0482

Base/HuBERT Base in OOD-ASR with large. The483

results show that the relative performance achieved484

by different upstream models is agnostic to the485

downstream architecture, confirming the robust-486

ness of the framework used in SUPERB-SG.487

5.3.2 Training data size488

To study the effect of data size, we create 3 pseudo489

datasets per task by sub-sampling 10%, 5% and490

1% from the original training set while fixing the491

validation and test sets. The statistics of the datasets492

are shown in Table 7, and the results are in Table 8.493

The ranking of the upstream models remains al-494

most the same for 10% of training data. When that495

is further reduced to 5%, there is a change in rank-496

ing in SS due to a performance drop in Modified497

CPC. Excluding Modified CPC, the ranking is still498

fixed showing that the relative performance of the499

upstream models is agnostic to data size.500

Furthermore, when using only 1% of training501

data, most of the SSL models fail on the 3 down-502

stream tasks. This phenomenon is caused by in-503

sufficient task-specific knowledge due to limited504

training data size. Although SSL models learn high-505

level representations from the unlabeled speech sig-506

nal, acquisition of task-specific knowledge such as507

translingual ability in ST, text-level token mapping508

in OOD-ASR, and mask prediction in SS, requires509

non-trivial supervision.510

We note that fewer training examples speeds511

training up but sacrifices the evaluation quality.512

Overall, we show the robustness of SUPERB-SG513

Upstream
ST OOD-ASR SS

BLEUÒ WERÓ SI-SDRiÒ

100%

FBANK 2.32 63.58 9.23
TERA 5.66 58.49 10.19
Modified CPC 4.82 62.54 10.40
wav2vec 2.0 Base 14.81 46.95 9.77
HuBERT Base 15.53 46.69 9.36

10%

FBANK 0.46 85.39 5.65
TERA (İ) 0.88 80.32 (Ĳ) 6.72
Modified CPC (Ĳ) 1.30 85.32 (İ) 6.59
wav2vec 2.0 Base 5.04 63.85 6.45
HuBERT Base 5.57 63.43 6.13

5%

FBANK 0.27 89.70 4.52
TERA 0.44 86.95 (Ĳ 1) 5.59
Modified CPC 0.37 87.97 (İ 3) 4.95
wav2vec 2.0 Base 2.91 69.88 (Ĳ 1) 5.36
HuBERT Base 3.35 69.33 (Ĳ 1) 5.03

1%

FBANK 0.03 99.53 2.29
TERA 0.04 98.31 3.24
Modified CPC 0.03 98.37 (İ 3) 2.87
wav2vec 2.0 Base 0.33 92.46 (Ĳ 2) 3.34
HuBERT Base 0.38 92.17 (Ĳ 1) 3.01

Table 8: Results on ST, OOD-ASR and SS when us-
ing different amount of training data. Ĳ and İ are used
to denote the rank changing. The complete results of
OOD-ASR are in Appendix A.

to variations in data size even when the training 514

data is reduced to 5%, showing the reliability of 515

the benchmark. 516

6 Conclusion 517

We introduce SUPERB-SG, a set of 5 new tasks 518

that include speech translation, out-of-domain 519

ASR, voice conversion, speech separation, and 520

speech enhancement to evaluate the deep seman- 521

tic and generative capabilities of SSL models. We 522

evaluate 15 SSL models, and do a comprehensive 523

analysis of the task correlations to demonstrate the 524

reliability of our methodology. We test and con- 525

firm the robustness of SUPERB-SG in terms of 526

the downstream model architecture as well as the 527

training data size. The latest introduction of the se- 528

mantic and generative tasks increases the diversity 529

and difficulty of SUPERB, which can boost a more 530

comprehensive understanding of the capability of 531

various SSL models’ representations, and help re- 532

searchers discover the hidden properties of SSL 533

techniques in development. 534
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A Complete Out-of-domain ASR Results807

Here, we provide complete results of OOD-ASR808

tasks, as shown in Tables 9, 10, 11. All upstream809

models used in this paper are trained with English810

speech data, but we are also interested in multi-811

lingual pre-trained models in OOD-ASR. There-812

fore, we evaluate the wav2vec 2.0 XLSR model813

on the OOD-ASR tasks, as shown in the last row814

of Table 9. XLSR has identical architecture as815

wav2vec 2.0 Large, but is trained with 56k hours816

of speech including 53 different languages. The817

pre-training data of XLSR cover our cross-lingual818

tasks’ training data. As expected, using multilin-819

gual data improves OOD-ASR tasks and achieves820

the best performance among all upstream models.821

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

FBANK 54.03 35.44 72.07 92.78 63.58

PASE+ 52.11 35.52 70.47 88.15 61.56

APC 55.23 36.38 70.79 90.07 63.12
VQ-APC 55.32 37.06 71.56 90.292 63.56
NPC 51.07 35.85 69.87 89.86 61.66
Mockingjay 58.11 38.13 73.57 91.27 65.27
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
DeCoAR 2.0 43.18 28.77 61.00 81.53 53.62
wav2vec 46.16 31.69 60.85 84.72 55.86
vq-wav2vec 52.02 36.55 66.19 87.89 60.66
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
wav2vec 2.0 Large 35.75: 25.07: 54.29: 63.64: 44.69
HuBERT Base 37.15 26.23 54.94 68.41 46.69
HuBERT Large 30.90 23.73: 50.60; 71.09; 44.08

wav2vec 2.0 XLSR 26.90: 22.97: 49.63: 63.05: 40.64:

Table 9: Results of OOD-ASR tasks, where spon de-
notes spontaneous speech. : Normalized across dimen-
sionality of representation to stabilize training and en-
sure convergence. ; Uses linear warmup of learning
rates in the first 8k steps to stabilize training and ensure
convergence.

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

default

FBANK 54.03 35.44 72.07 92.78 63.58
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
HuBERT Base 37.15 26.23 54.94 68.41 46.69

small

FBANK 63.86 41.97 80.30 97.30 70.86
TERA 57.13 37.66 73.92 90.49 64.80
Modified CPC 60.81 41.47 76.45 92.59 67.83
wav2vec 2.0 Base 41.84 30.22 61.72 69.23 50.75
HuBERT Base 41.45 29.68 59.93 70.21 50.32

large

FBANK 46.39 37.71 65.35 92.52 60.49
TERA 45.41 37.40 64.48 84.53 57.95
Modified CPC 48.70 35.16 69.15 85.93 59.73
wav2vec 2.0 Base 34.02 27.60 54.10 66.73 45.61
HuBERT Base 33.91 27.22 53.43 68.57 45.78

Table 10: Complete results of OOD-ASR tasks with
different model sizes.

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

100%

FBANK 54.03 35.44 72.07 92.78 63.58
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
HuBERT Base 37.15 26.23 54.94 68.41 46.69

10%

FBANK 84.82 62.97 93.27 100.49 85.39
TERA 76.44 58.54 88.49 97.79 80.32
Modified CPC 83.84 64.78 91.20 101.44 85.32
wav2vec 2.0 Base 61.26 43.50 72.98 77.65 63.85
HuBERT Base 58.08 42.94 72.78 79.94 63.43

5%

FBANK 89.48 71.99 96.69 100.65 89.70
TERA 83.98 71.04 93.15 99.62 86.95
Modified CPC 88.61 67.61 95.71 99.93 87.97
wav2vec 2.0 Base 67.09 50.58 78.53 83.33 69.88
HuBERT Base 66.29 50.72 76.59 83.74 69.33

1%

FBANK 96.79 96.73 99.85 104.73 99.53
TERA 94.73 98.82 99.77 99.93 98.31
Modified CPC 95.93 97.94 99.80 99.84 98.37
wav2vec 2.0 Base 82.00 94.38 92.41 101.06 92.46
HuBERT Base 82.36 94.34 90.37 101.60 92.17

Table 11: Complete results of OOD-ASR tasks with
different data sizes.
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