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Abstract
The challenge of interpreting the world from a
human perspective in Artificial Intelligence (AI)
is particularly evident in egocentric video ques-
tion answering, which grapples with issues like
small object recognition, noise suppression, and
spatial-temporal reasoning. To address these chal-
lenges, we introduce the Multi-Factor Adaptive
vision Selection (MFAS) framework. MFAS in-
tegrates a patch partition and merging module
for enhanced small object recognition, a prior-
guided patch selection module for noise suppres-
sion and focused analysis, and a hierarchical ag-
gregation network to aggregate visual semantics
guided by questions. Extensive experiments on
several public egocentric datasets have validated
the effectiveness and generalization of our frame-
work. Code and data are available in https://
github.com/Hyu-Zhang/EgoVideoQA.

1. Introduction
In the contemporary landscape of human-centric appli-
cations, the field of egocentric video understanding has
emerged as a crucial area of research within Computer Vi-
sion (CV) and embodied Artificial Intelligence (AI) (Plizzari
et al., 2023; Akiva et al., 2023). Distinct from third-person
or exocentric videos, egocentric videos are characterized by
their intricate scene composition, constrained informational
content, and irregular motion dynamics, posing significant
challenges for associated computational tasks (Xu et al.,
2023b; Radevski et al., 2023). Egocentric Video Question
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Answering (VideoQA) stands out as a particularly versatile
task in this domain, drawing extensive interest from both
the academic and industrial sectors. This line of research
holds potential for advancing smart assistive technologies
like visual assistants, and in broader applications such as
augmented reality and smart glasses (Nagarajan et al., 2023).

Egocentric VideoQA presents a higher level of complexity
compared to exocentric VideoQA, largely due to the diver-
gence in human perception from the representations in many
internet datasets. A notable domain gap exists, resulting in a
weak inductive bias between the exocentric and egocentric
domains and complicating the application of transfer learn-
ing techniques (Xu et al., 2023b). The release of specialized
egocentric VideoQA datasets, such as EgoVQA (Fan, 2019),
EgoTaskQA (Jia et al., 2022), and QAEgo4D (Bärmann &
Waibel, 2022), has spurred the development of methods tai-
lored for the egocentric domain (Lin et al., 2022; Pramanick
et al., 2023; Shen et al., 2023). For instance, Pramanick et
al. (Pramanick et al., 2023) adapted a dual-tower model to
the egocentric video-text dataset, followed by fine-tuning
on an egocentric VideoQA dataset. However, existing ap-
proaches predominantly employ a general framework,
addressing the egocentric VideoQA task through fine-
tuning strategies.

Despite these advancements, several egocentric VideoQA-
specific challenges remain unaddressed: 1) Small Object
Recognition. In cluttered settings such as kitchens and lab-
oratories, small objects in egocentric videos are particularly
challenging to detect and recognize due to problems such as
incompleteness, deformation, and blurring caused by mov-
ing shots (Pramanick et al., 2023), as shown in Figure 1(a).
2) Noise Suppression. Egocentric videos often contain
focused areas like hand-object interactions (highlighted in
Figure 1(b)), where redundant and noisy regions can hinder
visual information processing. 3) Spatial-Temporal Rea-
soning. The unique first-person perspective in egocentric
videos restricts the ability to observe complete behaviors
objectively, as illustrated in Figure 1(c). This limitation
increases the difficulty in understanding complete activities
based on partial observations.

To address these challenges, we introduce a Multi-Factor
Adaptive vision Selection (MFAS) framework for egocen-
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Figure 1. Illustration of three challenges. (a) Small object recogni-
tion, (b) Noise suppression (the images are the attention distribu-
tion of the baseline EgoVLPv2 (Pramanick et al., 2023)), and (c)
Spatial-temporal reasoning.

tric VideoQA, comprising three main components: a patch
partition and merging module, a prior-guided patch selec-
tion module, and a hierarchical aggregation network. The
patch partition and merging module targets small object
recognition by leveraging multi-scale patch information.
The prior-guided patch selection module, informed by ego-
centric data observations and eye gaze habits, aims to fil-
ter out redundancy and noise, emphasizing key semantic
regions. Lastly, the hierarchical aggregation network facil-
itates spatial-temporal reasoning by progressively fusing
visual information from local to global granularities, guided
by the posed question. Extensive experimental results on
multiple public datasets underscore the effectiveness of our
proposed framework, marking a significant advancement in
the field of egocentric VideoQA.

The contributions of our work are threefold:

• We pioneer in recognizing and addressing the unique
challenges of the egocentric VideoQA task, being the
first to concurrently tackle the issues of small object
recognition, noise suppression, and spatial-temporal
reasoning in this domain.

• We introduce a prior-guided patch selection module
that integrates prior knowledge with spatial and tempo-
ral cues, effectively reducing spatial redundancy and
highlighting crucial visual regions.

• We devise a patch partition and merging module to
integrate multi-scale visual cues, enhancing small ob-
ject recognition. Besides, we present a hierarchical
aggregation network to dynamically adjust the model’s
receptive field and improve spatial-temporal reasoning.

2. Related Work
2.1. Video Question Answering

VideoQA is a quintessential task within the visual-language
domain, playing a pivotal role in enhancing AI systems’
ability to interpret and interact with multimedia content.
This advancement is instrumental in fostering AI systems
that engage in more sophisticated, human-like interactions
with digital content, as highlighted in the recent study (Wu
et al., 2021; Zhang et al., 2023c). In VideoQA, the agent is
asked to analyze a video clip or sequence and answer ques-
tions pertinent to the visual content, thus testing its com-
prehension and inferential abilities (Liu et al., 2023a; Wang
et al., 2023b). Over recent years, VideoQA has garnered
substantial interest from the research community, leading
to diverse methodological advancements. The evolution
of this field can be categorized into several prominent ap-
proaches: 1) Early Attention-based Methods: Initiatives
such as those by (Zhao et al., 2017; Jang et al., 2017) em-
ploy attention networks to learn cross-modal representa-
tions, effectively bridging the gap between video content
and corresponding questions. 2) Memory Network-based
Methods: Techniques developed by (Gao et al., 2018; Fan
et al., 2019) utilize memory networks to store sequential
inputs, allowing for the strategic utilization of information,
even from earlier sequences. 3) Graph Neural Network-
based Methods: Approaches by (Jiang & Han, 2020; Xiao
et al., 2022; Urooj et al., 2023; Bai et al., 2024) lever-
age graph structures to enhance inference capabilities in
VideoQA, facilitating efficient information communication.
4) Modular Network-based Methods: Proposals by (Le et al.,
2020; Grunde-McLaughlin et al., 2021) address the limi-
tations of inflexible hand-crafted architectures in handling
varying data modalities, video lengths, and question types.
And 5) Transformer-based Methods: Recent developments
by (Buch et al., 2022; Gao et al., 2023) position transform-
ers at the forefront of VideoQA research, capitalizing on
their proficiency in modeling long-term relationships (Yan
et al., 2023; Xue et al., 2023).

Despite these significant strides in VideoQA, a common
limitation persists: the focus predominantly remains on
third-person videos. This orientation overlooks the nuanced
perspective of first-person (egocentric) videos, which em-
body a more direct, human-centric view of the world. Ad-
dressing this gap is crucial for developing AI systems that
can fully comprehend and interact with a broader spectrum
of visual content.

2.2. Egocentric Video Question Answering

The advent of wearable cameras like Google Glass, GoPro,
and Nreal X has spurred significant interest in first-person
video analysis. This burgeoning research area is character-
ized by its focus on understanding the unique perspectives
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Figure 2. The framework of our proposed MFAS, which consists of the patch partition and merging module, the prior-guided patch
selection module, and the hierarchical aggregation network.

captured through egocentric viewpoints (Hazra et al., 2023).

Pioneering contributions in this domain have been signifi-
cantly bolstered by the introduction of comprehensive ego-
centric datasets. For instance, the Ego4D dataset (Grau-
man et al., 2022) has been instrumental in advancing vari-
ous facets of egocentric video analysis. This includes no-
table work in egocentric action recognition (Radevski et al.,
2023; Wang et al., 2023a), object detection (Akiva et al.,
2023; Huang et al., 2023), human (hand)-object interac-
tions (Zhang et al., 2022; Xu et al., 2023b), and visual query
localization (Mai et al., 2023; Xu et al., 2023a).

Building upon this foundation, the specific field of egocen-
tric VideoQA has started to gain traction. Early endeavors
by (Fan, 2019; Jia et al., 2022; Pramanick et al., 2023) intro-
duced datasets such as EgoVQA and EgoTaskQA, respec-
tively, playing a pivotal role in propelling research in this
niche. Lin et al. (Lin et al., 2022) furthered this progress by
proposing a dual-encoder framework, adapted for egocentric
tasks through pre-training on the Ego4D dataset. Addition-
ally, Pramanick et al. (Pramanick et al., 2023) refined the
interplay between visual and textual encoders, tailoring it
more closely to the requirements of egocentric VideoQA.

Despite these advancements, there remains a discernible gap
in the current body of work. Existing approaches in ego-
centric VideoQA have not thoroughly addressed the distinct
differences between egocentric and exocentric VideoQA.
There is a clear need for more nuanced solutions that ex-
plicitly cater to the unique characteristics and challenges
inherent in first-person video analysis. This gap presents
an opportunity for future research to develop methodolo-
gies that are more finely attuned to the specificities of the
egocentric perspective.

3. Methodology
As depicted in Figure 2, our model is composed of three
components: a patch partition and merging module, a prior-
guided patch selection module, and a hierarchical aggre-
gation network. Detailed overall process is shown in Al-
gorithm 1 in the Appendix. In the subsequent sections of
our paper, we will provide a comprehensive and detailed
exploration of each of these components.

3.1. Patch Partition and Merging Module

For the video V , we follow the TimeSformer (Bertasius
et al., 2021) model and uniformly sample it to obtain
v ∈ RT×C×H×W , where T indicates the number of frames
and C, H , and W denote channel, height, and width, respec-
tively. To enhance the detection of small-scale objects in
the video, a straightforward approach would be to segment
the video into smaller patches before processing them with
TimeSformer. However, this approach has a critical consid-
eration: detecting objects at different scales is interrelated.
Over-emphasizing the recognition of small objects could
inadvertently compromise the detection quality of objects
at the original scale.

To address this challenge, we propose an extension to the
existing TimeSformer model to accommodate multi-scale
processing. This extension is based on two key adaptations:

(1) Patch Partition. As shown in Figure 2, we first split the
video frame into patches via convolution operations. These
patches are further subdivided into smaller sub-patches, rep-
resented as v̂ ∈ RT×N×d, where N denotes the number of
sub-patches and d signifies the feature dimension. In refin-
ing the spatial embedding within TimeSformer, we intro-
duce a dual spatial information scheme for each sub-patch.

3



Multi-Factor Adaptive Vision Selection for Egocentric Video Question Answering

Sub-spatial

Temporal

× 𝐿𝐿

Spatial

Temporal

𝛼𝛼 𝛽𝛽

Multi-Scale TimeSformer

Down-sampling Up-sampling

…

Figure 3. Illustration of the multi-scale TimeSformer (Bertasius
et al., 2021). It contains both sub-patch and patch branches.

This includes the sub-patch’s positional data in both sub-
space and space (see Figure 2), allowing for an innovative
update to the original position embedding as follows:

ṽ = v̂ + SSE(v̂) + SE(v̂) + TE(v̂), (1)

where SSE, SE, and TE denote sub-spatial embedding (sub-
patch in sub-space), spatial embedding (sub-patch in space),
and temporal embedding (sub-patch in time), respectively.
The sequence of sub-spatial embedding is 1, 2, ..., N , the
spatial embedding is 1, 2, ..., N/4, and the temporal embed-
ding is from 1 to T . The resultant ṽ ∈ R(T×N+1)×d is the
final sub-patch representations, including the addition of the
[CLS] token at the start of the sequence.

(2) Patch Merging. To enhance the TimeSformer’s adapt-
ability to multi-scale visual information, we integrate a twin
spatial-temporal attention structure, as shown in Figure 3,
primarily to encode varied video semantics. This structure
allows for the down-sampling of sub-patches into patches,
utilizing temporal attention for modeling temporal patch
information, followed by spatial attention to facilitate inter-
patch interaction within the same frame. In the patch branch,
the initial step involves down-sampling ṽ to produce a con-
densed representation ṽp

0 . Subsequently, the operation at
the l-th layer of this branch is articulated as follows:

vp
l = S-Att(ṽp

l−1 +T-Att(ṽp
l−1)), (2)

where ṽp
l−1 is the video representations at the (l − 1)-

th layer for patch branch. T-Att and S-Att refer to tem-
poral attention and spatial attention, respectively, with
vp
l ∈ R(T×N/4+1)×d as the resultant output. In parallel, the

sub-patch branch, which bypasses down-sampling, produces
vsp
l ∈ R(T×N+1)×d. A fusion mechanism is employed to

facilitate the perception of spatial information at dual scales,

expressed as:{
ṽp
l = vp

l + ṽp
l−1 + β ·DnSample(vsp

l ),

ṽsp
l = vsp

l + ṽsp
l−1 + α ·UpSample(vp

l ),
(3)

where UpSample refers to interpolation-based up-sampling,
with α and β are learnable parameters. The symbols
ṽp
l ∈ R(T×N/4+1)×d and ṽsp

l ∈ R(T×N+1)×d are the out-
put patch and sub-patch representations at the l-th layer.
ṽp
l−1 and ṽsp

l−1 (ṽsp
0 = ṽ) are the output at the (l − 1)-

th layer for patch and sub-patch separately. Through the
sequential application of L layers, the framework yields
refined and effective representations, ṽp

L and ṽsp
L , encapsu-

lating the accumulated spatial-temporal insights at both the
patch and sub-patch scales.

For the question q, we use RoBERTa (Liu et al., 2019) as
our backbone to extract its representations q ∈ R(|q|+1)×d,
where d represents the feature dimension of the embeddings
and |q|+ 1 is the number of tokens, including the tokens in
the question q as well as the [CLS] token.

3.2. Prior-guided Patch Selection Module

In the realm of egocentric video analysis, it is observed that
the user’s gaze and the region of hand activity are predom-
inantly central, with peripheral regions often contributing
noise rather than informative content. Moreover, there ex-
ists a notable redundancy among neighboring sub-patches
within a video frame. To address these challenges, we
propose a novel prior-guided patch selection module, as
depicted in Figure 4 and Algorithm 2. This module syn-
thesizes prior knowledge with spatial and temporal cues to
dynamically assess the importance of each sub-patch.

Empirical studies on first-person videos reveal a concentra-
tion of user focus on hand-object interaction zones, typically
situated in the middle to lower sections of the frame (Xu
et al., 2023b; Ohkawa et al., 2023; Zhang et al., 2023a).
Leveraging this insight and data from human eye simula-
tions, we initialize a prior matrix A0 ∈ RN1/2×N1/2

, de-
fined as:{

A0[i, j] = 1, if i ≥ 1
3N

1
2 and 1

6N
1
2 ≤ j ≤ 5

6N
1
2 ,

A0[i, j] = 0, otherwise.

(4)
This matrix is stored in memory as an initial reference. Fur-
thermore, to incorporate multi-scale spatial relationships,
we integrate spatial attention scores Sp ∈ RM×T×N/4 and
sub-spatial attention scores Ssp ∈ RM×T×N derived from
the L-th layer of the modified TimeSformer:

S =
1

M

M∑
m=1

(Ssp
m +UpSample(Sp

m)), (5)

where M denotes the number of attention heads and S ∈
RT×N is the merged attention score. The patch selection
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module operates on the principle that the relevance of each
sub-patch in the t-th frame (t ∈ [1, T ]) is determined by a
combination of current spatial relationships, previous tem-
poral relationships, and data priors. The selection process is
formulated as:

At = At−1 ∪ (f(Top-k(St))) ∩N (At−1)), (6)

where At−1 represents the mask matrix for the (t − 1)-th
frame, while St signifies the merged attention score for the
t-th frame. The operations ∪ and ∩ are utilized for intersec-
tion and concatenation respectively. The Top-k operation
is employed to identify the k most important sub-patches
within St. Furthermore, the function f is designed to gen-
erate binary vectors, marking the positions of these top k
elements in St as 1, with other positions being assigned
a value of 0. The term N is used to denote the function
responsible for generating a first-order neighborhood. The
resulting mask for the t-th frame, denoted as At ∈ RN ,
highlights the key sub-patches by labeling their position as
1. It is worth noting that this description abstracts away
basic operations like flattening and repetition for clarity.

In summary, the selection process for each sub-patch within
a given frame (t-th frame) is determined by the interplay
of spatial dynamics present in the current frame, the tem-
poral context from the previous frame, and the influence of
pre-established data priors. This approach ensures a coher-
ent and connected representation of sub-patches by restrict-
ing expansion to the immediate neighborhood of regions
identified in the preceding frame. This approach enables a
detailed evaluation of the relevance of each sub-patch, ulti-
mately leading to the creation of a comprehensive mask for
the entire video sequence, denoted by A ∈ RT×N , which
encapsulates the vital regions across all frames.

3.3. Hierarchical Aggregation Network

To fully understand the visual semantics from different gran-
ularities, we design a hierarchical aggregation network us-
ing questions as clues. Specifically, we use a multi-layer
spatial-temporal cross-attention network as the backbone
for interaction between video and question, avoiding high
computational costs due to long sub-patch sequences.

For a video input represented as ṽsp
L ∈ R(T×N+1)×d and a

question input q ∈ R(|q|+1)×d, the computational process
within the r-th layer of spatial-temporal cross-attention is
expressed as:

qr = Cross-Att(qr−1, ē, ē),

ṽsp
L,r = Cross-Att(ē,qr−1,qr−1),

ē = S-Att
′
(ṽsp

L,r−1 +T-Att
′
(ṽsp

L,r−1)),

(7)

where qr−1 and ṽsp
L,r−1 denote the question and video repre-

sentations at the (r−1)-th layer, respectively. The notations
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Figure 4. The proposed prior-guided patch selection module. The
first-order neighbor is obtained by inflating the one-hop distance
(left, right, up, and down) of the core regions (dark marked) at
the previous frame. The tick indicates that the patch at current
frame lies within the first-order neighbor and satisfies first-order
connectivity, while the cross denotes that it does not.

S-Att
′

and T-Att
′

denote the adapted spatial and temporal
attention mechanisms, which are applied across distinct di-
mensions. These mechanisms are defined by the expression
Softmax(MaxPool(ee⊤)/

√
d+ (−∞ · ¬Ar−1))e, where

e is the embedding input and ¬ signifies the negation oper-
ation, converting 0s to 1s and vice versa. The term Ar−1

indicates the mask matrix at the (r − 1)-th layer, with an
added mask for the [CLS] token set to 1 for uniformity. This
mask remains unchanged as A through the initial R− 3 lay-
ers, where R stands for the total count of spatial-temporal
cross-attention layers. This consistency underscores our
belief in the criticality of detailed, fine-grained interactions
for achieving robust high-level hierarchical aggregation.

Before inputting the concluding three layers, a systematic
down-sampling operation is applied to the video representa-
tions, transitioning from sub-patch to patch, then to frame,
and ultimately to the video level. This process is defined as:

ṽsp
L,r,Ar = DnSample(ṽsp

L,r,Ar), (8)

where r ∈ {R− 2, R− 1, R} and DnSample is executed on
the spatial dimension (N ) at the R− 2 and R− 1 layers and
on the temporal dimension (T ) at the R layer. Correspond-
ingly, the mask Ar undergoes a similar down-sampling to
ensure consistency and retention of relevant information.

Overall, the video representations ṽsp
L,r reside in the space

R(T×N+1)×d for the first R − 3 layers of the network.
However, in the final three layers, there is a dimensional
transition, where the representations are first reduced to
R(T×N/4+1)×d, then to R(T+1)×d, and ultimately to R2×d.
Upon navigating through the R spatial-temporal cross-
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Table 1. Accuracy comparison with the latest methods on the EgoTaskQA direct/indirect split. The best results are highlighted in bold and
the second in underlined. ⋆ indicates the reproduced results using the open-source code.

Method Direct Indirect
Open Binary All Open Binary All

Most Likely (Jia et al., 2022) 0.70 50.46 15.40 - - -
HGA (Jiang & Han, 2020) 22.75 68.53 36.77 8.66 53.72 28.36

BERT (Kenton & Toutanova, 2019) - - - 11.22 58.24 31.78
PSAC (Li et al., 2019b) 26.97 65.95 38.90 15.31 57.75 32.72

VisualBERT (Li et al., 2019a) 24.62 68.08 37.93 21.05 57.61 37.01
HME (Fan et al., 2019) 27.66 68.6 40.16 18.27 52.55 33.06

ClipBERT (Lei et al., 2021) 27.70 67.52 39.87 11.17 40.71 24.08
HCRN(w/o vision) (Le et al., 2020) - - - 11.38 55.52 30.76

HCRN (Le et al., 2020) 30.23 69.42 42.20 27.82 59.29 41.56
CMCIR⋆ (Liu et al., 2023b) 35.49 65.92 46.04 28.36 58.86 42.00
EgoVLP (Lin et al., 2022) 31.69 71.26 42.51 27.04 55.28 38.69

EgoVLPv2 (Pramanick et al., 2023) 35.56 75.60 46.26 29.14 59.68 42.28
MFAS (Ours) 38.95 75.86 48.69 32.44 63.02 45.40

attention layers1, the network yields the final question-
enhanced video representations, denoted as ṽsp

L,R ∈ R2×d,
and the video-enhanced question representations, repre-
sented as qR ∈ R(|q|+1)×d.

3.4. Decoder and Optimization

3.4.1. DECODER

Our framework consists of a discriminative decoder and a
generative decoder, each tailored to distinct tasks.

Discriminative Decoder: The primary objective of this
decoder is to accurately select an answer from a set of
predefined options. This task is approached by employing a
Multi-Layer Perceptron (MLP) as a mapping function:

y = MLP(ṽsp
L,R[CLS]), (9)

where y represents the probability distribution over the can-
didate answers. During the inference phase, the answer
corresponding to the highest probability is selected as the
final response (Shi et al., 2023).

Generative Decoder: Contrary to the discriminative
approach, the target of the generative decoder for the
QAEgo4D dataset is to construct an answer, rather than
selecting from existing options. To this end, we employ
a lightweight Long Short-Term Memory (LSTM) model,
coupled with an FC layer, to enable this functionality:

y = FC(LSTM(qR, ṽ
sp
L,R[CLS])), (10)

where FC is the fully-connected layer and y denotes the
probability distribution across the vocabulary for each pre-

1At layers R − 1 and R, the network employs self-attention
rather than spatial-temporal attention due to the reduced sequence
length.

dicted word. Notably, the [CLS] token of ṽsp
L,R serves as

the initial hidden state for LSTM. During inference, we
employ an auto-regressive way to sequentially generate a
probability distribution for each word, thereby constructing
the complete answer (Lee et al., 2023).

3.4.2. OPTIMIZATION

The optimization of our model’s parameters is primarily
guided by the cross-entropy loss (Mao et al., 2023; Zhang
et al., 2023b) function, which is mathematically represented
as follows:

LCLS =
1

Y

Y∑
y

−g log(y), (11)

where y represents the predicted probability, g represents
the ground truth, and Y is the number of categories.

Additionally, for the QAEgo4D dataset, we enhance our
framework with a ranking supervision component, drawing
inspiration from prior research (Lei et al., 2020; Bärmann &
Waibel, 2022). In the penultimate layer of our hierarchical
aggregation network, we implement a unique approach for
managing positive and negative samples. For each target
frame (positive sample), two frames from different seg-
ments of the video are chosen as negative samples. This
process is facilitated by the availability of timestamp anno-
tations for target answers within the QAEgo4D dataset. The
ranking loss is computed using the Log-Sum-Exp (LSE)
loss (Kobayashi, 2023) function, formulated as:

LLSE = log(1+
∑
v/∈G

∑
u∈G

exp(fv(ṽ
sp
L,R−1)−fu(ṽ

sp
L,R−1))),

(12)
where fu(ṽ

sp
L,R−1) and fv(ṽ

sp
L,R−1) denote the scores of

positive and negative samples, respectively, computed using
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Table 2. Performance comparison with the latest methods on the QAEgo4D dataset and the results are grouped into generative and
discriminative settings. The best results are highlighted in bold and the second in underlined. ⋆ indicates the reproduced results using the
open-source code and † denotes the results utilizing LLSE supervision.

Method Video Acc BLEU METEOR ROUGE
BlindVQA (Bärmann & Waibel, 2022) - 9.0 3.6 17.4 25.9

SimpleVQA (Bärmann & Waibel, 2022) Full 9.3 6.1 17.4 26.1
SimpleVQA† (Bärmann & Waibel, 2022) Full 9.7 3.6 18.3 27.1

Longformer (Beltagy et al., 2020) Full 3.0 2.4 15.4 20.9
Longformer† (Beltagy et al., 2020) Full 6.7 5.4 16.9 24.4

MFAS (Ours) Sample 9.9 5.4 17.6 26.2
MFAS† (Ours) Sample 11.9 8.6 18.9 28.2

HCRN (Le et al., 2020) Full 10.3 7.6 17.2 25.7
JustAsk (Yang et al., 2021) Full 9.6 3.9 17.8 26.7
CMCIR⋆ (Liu et al., 2023b) Full 9.7 3.1 16.5 24.7
CMCIR⋆ (Liu et al., 2023b) Sample 9.4 3.9 17.0 25.4
EgoVLP⋆ (Lin et al., 2022) Sample 10.2 4.6 17.0 25.4

EgoVLPv2⋆ (Pramanick et al., 2023) Sample 10.3 6.6 17.4 25.8
EgoVLPv2†⋆ (Pramanick et al., 2023) Sample 11.9 8.6 17.6 26.2

MFAS (Ours) Sample 10.5 5.8 18.0 26.7
MFAS† (Ours) Sample 12.7 9.3 18.3 27.0

Table 3. Ablation study on the EgoTaskQA indirect split. The
best results are highlighted. PPM, PS, and HA denote the patch
partition and merging module, prior-guided patch selection module,
and hierarchical aggregation network, respectively.

Module Indirect
PPM PS HA Open Binary All
✓ ✓ 31.87 62.00 44.52

✓ ✓ 32.01 62.22 44.71
✓ ✓ 31.22 61.28 43.95
✓ ✓ ✓ 32.44 63.02 45.40

a multi-layer perceptron followed by a Softmax function.
And the symbol G denotes the set of frames corresponding
to the target moment.

Consequently, the composite loss function for our model
is defined as L = LCLS for the EgoTaskQA dataset. In
contrast, for the QAEgo4D dataset, the loss function is
augmented to L = LCLS + λLLSE, where λ serves as a
balancing coefficient.

4. Experiments
4.1. Datasets

Our method is rigorously evaluated using two public ego-
centric VideoQA datasets: EgoTaskQA and QAEgo4D.

EgoTaskQA Dataset (Jia et al., 2022): EgoTaskQA stands
as a comprehensive benchmark in the realm of egocentric
VideoQA, building upon the foundations set by the LEMMA
dataset (Jia et al., 2020). This dataset comprises a collection
of 2,336 real-world videos, each averaging 36.9 seconds

in length, accompanied by a rich set of 40,000 question-
answer pairs. EgoTaskQA is distinctive in its bifurcated
structure: the “direct” subset, where questions are randomly
sampled, and the “indirect” subset, which necessitates multi-
step reasoning for accurate answer derivation.

QAEgo4D Dataset (Bärmann & Waibel, 2022): QAEgo4D
is an egocentric VideoQA dataset focused on episodic mem-
ory (Ramakrishnan et al., 2023; Karuvally et al., 2023) task.
It encompasses 1,325 videos, notably longer in duration with
an average length of 495.1 seconds, and includes 14,513
question-answer pairs. The extended duration of videos
introduces additional complexity in video comprehension.

4.2. Performance Comparison

In the empirical evaluation of our proposed method, we
conducted comprehensive comparisons with several state-of-
the-art baselines on the EgoTaskQA and QAEgo4D datasets,
encompassing multiple settings. The comparative results 2

are systematically presented in Table 1 and 2.

As illustrated in Table 1, our method MFAS demonstrates a
significant improvement over all competing methodologies,
including the most recent baseline, EgoVLPv2. Notably,
under both the direct and indirect settings of EgoTaskQA,
MFAS achieves absolute gains of 2.43% and 3.12%, respec-
tively, in the “All” metric. This performance leap under-
scores the effectiveness of our comprehensive framework in
the realm of egocentric VideoQA.

Turning to the results from Table 2, which delineate both

2More experimental details can be found in the Appendix.
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Time

Question: Where was the pizza roll before I took it? Prediction: in the plastic stand GT: at refrigerator

Time

Question: How many vases were beside the cloth rack? Prediction: three GT: three
Figure 5. The generative case from QAEgo4D dataset.
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Figure 6. Visualization for prior-guided patch selection. The red boxes are the presentation of the suppressed noise.

generative and discriminative results, our method consis-
tently outperforms the leading baselines across both do-
mains, i.e., CMCIR in the exocentric and EgoVLPv2 in the
egocentric. Specifically, MFAS achieves an absolute accu-
racy improvement of 2.2% in the discriminative setting and
0.8% in the generative setting, compared to these optimal
baselines. These results not only validate the superiority
of our approach but also demonstrate its robust generaliza-
tion capabilities across diverse and challenging settings in
egocentric long VideoQA.

4.3. Ablation Study

To empirically validate the contribution of the key compo-
nents in our method, i.e., the patch partition and merging
module, the prior-guided patch selection module, and the
hierarchical aggregation network, we conducted ablation
studies on the EgoTaskQA indirect split. The corresponding
modules are individually removed, and the impact on the
model’s performance is measured. The comparative results
of these experiments are detailed in Table 3.

The ablation results provide clear evidence of the impor-
tance of each module. Specifically, when the patch partition
and merging module is removed and replaced by a combina-
tion of RoBERTa and the original TimeSformer, there is a

0.69% decrease in overall accuracy. Similarly, the omission
of the prior-guided patch selection module results in a more
substantial drop of 1.45% in accuracy. Lastly, replacing
the hierarchical aggregation network with a standard cross-
attention network leads to a decrease of 0.88% in accuracy.
These findings underscore the substantial contribution of
each component to the overall effectiveness of our model.

4.4. Case Study

Our investigation into the generative aspect of the QAEgo4D
dataset includes a detailed case study, illustrated in Figure 5,
with further instances detailed in the Appendix.

The instance highlighted in Figure 5 reveals the capacity of
our model to generate contextually coherent answers that
may not strictly align with the ground truth. Specifically, the
model identifies a “pizza roll” situated both in a refrigerator
and on a plastic stand within the video. Despite the deviation
from the ground truth, the response of our model, informed
by the context of the video, remains logically consistent
and pertinent to the narrative depicted. This result illus-
trates the adeptness of our model at not only comprehending
the posed questions and related video content but also its
ability to produce viable answers underpinned by a deep
understanding of the video context, even in cases where its

8
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responses diverge from the predefined ground truth.

4.5. Visualization

To demonstrate the operational efficacy of our prior-guided
patch selection module, we visualized the selection pro-
cess, as exhibited in Figure 6, with additional visualizations
provided in the Appendix. These visualizations offer an
insightful perspective into how our module processes and
refines attention within the video frames.

The comparative analysis of Figure 6 highlights a clear con-
trast between the initial attention maps (second row) and
the refined attention maps (third row). Initially, the standard
attention mechanism sometimes highlights non-essential ar-
eas, which may detract from an accurate interpretation of the
video. However, the refined attention maps, generated by
our innovative prior-guided patch selection module, exhibit
a concentrated focus on pertinent regions. This approach ef-
fectively reduces background noise and emphasizes critical
zones, especially those involving interactions between hands
and objects. This visual evidence supports the efficacy of
our module in optimizing attention allocation, significantly
enhancing the ability of our model to discern and interpret
relevant video content accurately.

5. Conclusion and Future Work
In this paper, we propose the MFAS framework to ad-
dress small object recognition, noise suppression, and
spatial-temporal reasoning challenges present in egocen-
tric VideoQA. Specifically, we devise a patch partition and
merging module to enhance the recognition of small objects
and reduce the interference with large targets by consider-
ing both coarse and fine-grained spatial semantics. And to
reduce redundancy and suppress noise, we design a prior-
guided patch selection module to synthesize the prior, spa-
tial, and temporal information, highlighting critical visual
regions. Besides, we present a hierarchical aggregation net-
work to incrementally aggregate video semantics at different
granularities, improving the spatial-temporal comprehen-
sion of egocentric videos. Extensive experiments on two
public datasets demonstrate the superiority of the proposed
framework. In the future, we plan to mine shot-level seman-
tics for egocentric videos and unify the VideoQA task with
different perspectives.
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Rúa, J.-M. Where is my wallet? modeling object proposal
sets for egocentric visual query localization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2593–2603, 2023a.

Xu, Y., Li, Y.-L., Huang, Z., Liu, M. X., Lu, C., Tai, Y.-W.,
and Tang, C.-K. Egopca: A new framework for egocentric
hand-object interaction understanding. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 5273–5284, 2023b.

Xue, F., Chen, J., Sun, A., Ren, X., Zheng, Z., He, X.,
Chen, Y., Jiang, X., and You, Y. A study on transformer
configuration and training objective. In Proceedings of
the International Conference on Machine Learning, pp.
38913–38925, 2023.

Yan, W., Hafner, D., James, S., and Abbeel, P. Tempo-
rally consistent transformers for video generation. In
Proceedings of the International Conference on Machine
Learning, pp. 39062–39098, 2023.

Yang, A., Miech, A., Sivic, J., Laptev, I., and Schmid, C.
Just ask: Learning to answer questions from millions
of narrated videos. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1686–
1697, 2021.

Zhang, C., Gupta, A., and Zisserman, A. Helping hands:
An object-aware ego-centric video recognition model. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13901–13912, 2023a.

Zhang, H., Liu, M., Gao, Z., Lei, X., Wang, Y., and Nie,
L. Multimodal dialog system: Relational graph-based
context-aware question understanding. In Proceedings
of the ACM International Conference on Multimedia, pp.
695–703, 2021.

Zhang, H., Liu, M., Li, Y., Yan, M., Gao, Z., Chang, X., and
Nie, L. Attribute-guided collaborative learning for partial
person re-identification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(12):14144–14160,
2023b.

Zhang, H., Liu, M., Wang, Y., Cao, D., Guan, W., and Nie,
L. Uncovering hidden connections: Iterative tracking
and reasoning for video-grounded dialog. arXiv preprint
arXiv:2310.07259, 2023c.

Zhang, L., Zhou, S., Stent, S., and Shi, J. Fine-grained ego-
centric hand-object segmentation: Dataset, model, and
applications. In Proceedings of the European Conference
on Computer Vision, pp. 127–145, 2022.

Zhao, Z., Lin, J., Jiang, X., Cai, D., He, X., and Zhuang,
Y. Video question answering via hierarchical dual-level
attention network learning. In Proceedings of the ACM
International Conference on Multimedia, pp. 1050–1058,
2017.

12



Multi-Factor Adaptive Vision Selection for Egocentric Video Question Answering

A. Appendix

Algorithm 1 The Pseudo Code of Our MFAS Model
Input :The video V , question q, and prior A0; The patch partition and merging module Θ1, prior-guided patch selection

module Θ2, and hierarchical aggregation network Θ3.
Output :The answer a

1 Obtain v through sampling on video V
2 Output ṽsp

L and attention scores Sp and Ssp by entering v into Θ1

3 Get q by feeding q into pre-trained RoBERTa model
4 Feed A0, Sp, and Ssp into Θ2 to get visual mask A
5 Input ṽsp

L , q, and A into Θ3 to obtain ṽsp
L,R and qR

6 Output answer a by decoding ṽsp
L,R and qR

Algorithm 2 The Prior-guided Patch Selection Algorithm
Input : The attention scores Sp and Ssp, the selection number k
Output : The mask A ∈ RT×N

7 Initialize the prior A0 by Eqn. (5) and A = [ ]
8 Merge attention score S by Eqn. (6)
9 for t← 1 to T do

10 Ω = index(Top-k(S[t]))
11 Initialize a zero vector B
12 Generate the first-order neighbour Γ of At−1

13 for τ in Ω do
14 if τ in Γ then
15 B[τ ] = 1
16 end
17 end
18 At = At−1 ∪B
19 A← At

20 end
21 Stack and output the mask A

A.1. Experimental Settings

A.1.1. IMPLEMENTATION DETAILS

In our experimental setup, following the precedent set (Pramanick et al., 2023), we utilized TimeSformer-B (Bertasius et al.,
2021) and RoBERTa-B (Liu et al., 2019) as the foundational backbones for video and question processing, respectively.
Video inputs are standardized to a resolution of 224×224. For frame sampling, we adopted different strategies for each
dataset: 16 frames (i.e., T=16) for EgoTaskQA and 32 frames (i.e., T=32) for QAEgo4D, to capture the requisite temporal
granularity.

In terms of spatial granularity, the videos are partitioned into patches of size 32×32, which are further subdivided into
sub-patches of size 16×16, resulting in N=196 sub-patches per frame. The model parameters are meticulously configured,
with the selection threshold k set to 3, the number of attention heads M to 12, and the hidden dimension d to 768. The
architecture incorporates 6 spatial-temporal attention layers (L) and an equal number of cross-attention layers (R). The
balancing coefficient λ in the loss function is fixed at 2. The training regimen extends over 40 epochs with a batch size of
32. Optimization uses the AdamW optimizer (Loshchilov & Hutter, 2017), with a peak learning rate of 2e-4. To ensure
computational efficiency and scalability, all experiments were conducted using the PyTorch framework (Paszke et al., 2019)
on a cluster of 8 V100 GPUs.
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A.1.2. EVALUATION METRICS

Following (Jia et al., 2022), we adopted accuracy as the primary evaluation metric for the EgoTaskQA dataset. For the
QAEgo4D dataset, we expanded our evaluation criteria to encompass more than just accuracy. Echoing the methodologies
established in preceding research (Zhang et al., 2021; Bärmann & Waibel, 2022), we incorporated a comprehensive set of
standard metrics typically employed in machine translation evaluation. This suite includes LEU-4 (Papineni et al., 2002),
METEOR (Banerjee & Lavie, 2005), and ROUGE-L (Lin, 2004).

A.2. Comparison under Different Questions

In the EgoTaskQA dataset, questions are categorized into four distinct types to facilitate a comprehensive analysis of models’
spatial, temporal, and causal reasoning capabilities. These categories include descriptive (What is the status?), predictive
(What will happen next?), explanatory (What caused this?), and counterfactual (What if?) questions. To provide a nuanced
evaluation, we have detailed the performance of our MFAS model against various baselines across these question types,
with results for both direct and indirect settings presented in Tables 4 and 5.

The comparative analysis reveals that our method consistently surpasses existing methods across most question types in
both settings, with particularly notable performance in the “object” category. Here, MFAS demonstrates significant accuracy
improvements, notably outperforming the EgoVLPv2 baseline with absolute gains of 6.38% and 3.92% under direct and
indirect settings, respectively. This underscores the effectiveness of our patch partition and merging strategy in enhancing
object recognition capabilities. However, it is observed that in the direct setting, our model shows a notable performance dip
in the “action” category when compared to the CMCIR baseline. This could be attributed to CMCIR’s utilization of more
comprehensive video information and the straightforward nature of the questions that require minimal inference. Conversely,
in the more challenging indirect setting, our model demonstrates superior performance, highlighting the efficacy of our
hierarchical aggregation network in facilitating complex visual inference tasks.

Table 4. Comparative accuracy analysis against recent methodologies across all question types within the EgoTaskQA direct split. The
highest-performing results are emphasized in bold, and the second-best results are underlined.

Category ClipBERT HCRN CMCIR EgoVLP EgoVLPv2 Ours ∆

Sc
op

e world 42.15 44.27 46.97 45.35 50.25 52.96 2.71↑
intent 40.94 49.77 44.95 50.41 53.69 56.00 2.31↑

multi-agent 27.63 31.36 30.03 31.90 40.64 43.45 2.81↑

Ty
pe

descriptive 38.45 43.48 43.79 46.12 52.19 54.85 2.66↑
predictive 31.50 36.56 36.63 38.91 41.41 44.71 3.30↑

counterfactual 46.75 48.00 49.14 44.47 48.16 51.45 2.31↑
explanatory 42.39 40.60 48.76 40.22 42.36 44.35 4.41↓

Se
m

an
tic action 22.91 14.92 30.08 15.96 16.80 17.34 12.74↓

object 21.80 45.31 41.72 51.47 63.87 70.25 6.38↑
state 54.36 68.28 53.44 64.02 70.90 76.37 5.47↑

change 66.58 67.38 66.08 69.14 72.87 73.88 1.01↑

O
ve

ra
ll open 27.70 30.23 35.49 31.69 35.56 38.95 3.39↑

binary 67.52 69.42 65.92 71.26 75.60 75.86 0.26↑
all 39.87 42.20 46.04 42.51 46.26 48.69 2.43↑

A.3. Parameter Analysis

We explored the impact of three critical parameters, the selection number k, the balance coefficient λ, and the training epoch
number, on the performance of our model. The results are shown in Figure 7.

In Figure 7 (a), we present the accuracy trend as the hyperparameter k ranges from 0 to 5 within the EgoTaskQA direct split.
This graph reveals an initial increase in accuracy with rising k values, peaking at k=3, before experiencing a subsequent
decline. This pattern underscores the importance of an optimal selection number in maximizing model accuracy.

The influence of the balance coefficient λ was similarly assessed, with its values explored between 0 and 5 in the context of
the QAEgo4D dataset. As depicted in Figure 7 (b), the accuracy of our model achieves its zenith at λ=2, highlighting the
critical role of this parameter in attaining peak performance.
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Table 5. Comparison of accuracy for various question types in the EgoTaskQA indirect split against contemporary approaches. The best
results are highlighted in bold and the second in underlined.

Category ClipBERT HCRN CMCIR EgoVLP EgoVLPv2 Ours ∆
Sc

op
e world 26.51 44.04 41.55 41.45 44.90 48.62 3.72↑

intent 14.66 47.02 38.13 33.61 40.48 42.55 4.47↓
multi-agent 20.09 30.11 40.36 29.06 32.24 31.21 9.15↓

Ty
pe

descriptive 24.35 42.02 41.36 40.30 45.84 48.79 2.95↑
predictive 10.32 46.32 35.38 22.61 43.69 46.74 0.42↑

counterfactual 26.29 43.64 44.80 37.70 38.94 41.43 3.37↓
explanatory 22.46 39.69 38.04 35.91 39.10 39.06 0.63↓

Se
m

an
tic action 25.25 29.61 38.47 29.71 29.09 30.13 0.42↑

object 10.49 32.20 36.85 32.94 40.19 44.11 3.92↑
state 15.29 41.81 39.79 36.52 41.69 44.63 2.82↑

change 35.26 56.27 48.76 51.84 56.38 60.78 4.40↑

O
ve

ra
ll open 11.17 27.82 28.36 27.04 29.14 32.44 3.30↑

binary 40.71 59.29 58.86 55.28 59.68 63.02 3.34↑
all 24.08 41.56 42.00 38.69 42.28 45.40 3.12↑

Additionally, Figure 7 (c) showcases the evolution of training loss and test accuracy for 1 to 40 epochs. The depicted trends
indicate a consistent reduction in loss and a corresponding enhancement in accuracy, culminating in model convergence.
These observations collectively provide valuable insights into the parameter sensitivities and training dynamics of our model.

0 1 2 3 4 54 4

4 5

4 8

4 9

5 0

Ac
cur

acy
 (%

)

k

 D i r e c t
 I n d i r e c t

(a) Parameter k

0 1 2 3 4 59

1 0

1 1

1 2

1 3

1 4

�

Ac
cur

acy
 (%

)

 G e n e r a t i v e
 D i s c r i m i n a t i v e

(b) Parameter λ

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

0

2

4

6

8

Tr
ain

 Lo
ss

E p o c h

 T r a i n  L o s s
 T e s t  A c c u r a c y

1 0

2 0

3 0

4 0

5 0

6 0

Te
st A

ccu
rac

y

(c) Epoch

Figure 7. Parameter Analysis for (a) Parameter k, (b) Parameter λ, and (c) Epoch.

A.4. More Case Study

We provided two illustrative examples for each scenario across both the QAEgo4D and EgoTaskQA datasets, depicted in
Figure 8 to 11. These examples elucidate the following insights:

• Discriminative cases from QAEgo4D. Figure 8 showcases instances where our model adeptly navigates the question
and video context to identify suitable answers from available options. The first case illustrates the proficiency of our
model in context comprehension, albeit with some limitations due to question ambiguity. The second case highlights
the challenges of information loss due to sampling, which occasionally hinders accurate answer retrieval.

• Generative cases from QAEgo4D. In Figure 9, the first example demonstrates the capability of our model to synthesize
a correct response by integrating multimodal information. The second example reveals an instance of potential
mislabeling in the dataset, where our model, interestingly, generates a coherent and contextually appropriate answer.

• Direct cases from EgoTaskQA. As depicted in Figure 10, the first example underscores the ability of our model to
decode complex queries and align its responses with the ground truth. The second example, however, suggests a partial
comprehension of the query by our model, reflected in the similarity of its response to the expected answer.
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• Indirect cases from EgoTaskQA. In Figure 11, the first scenario indicates a misinterpretation of temporal frame
relationships by our model, leading to an incorrect answer. Conversely, the second scenario illustrates the adeptness of
our model at handling intricate questions and selecting accurate answers.

These eight cases collectively offer a detailed perspective on the performance of our model, showcasing its strengths and
areas for improvement. Despite the inherent challenges posed by the EgoTaskQA and QAEgo4D datasets, complex questions
in the former and extended video lengths in the latter, our model demonstrates commendable efficacy and adaptability.

A.5. More Visualization

Due to spatial constraints in the main manuscript, we provide an expanded visualization in Figure 12, which includes both
attention maps and heatmaps to elucidate the operation of our prior-guided patch selection module.

The attention maps (2nd row) and heatmaps (3rd row) in Figure 12 reveal that the standard attention mechanism often
erroneously emphasizes irrelevant areas, introducing noise that can obscure the semantic understanding of the video. In
contrast, our prior-guided patch selection module adeptly incorporates predefined priors with spatial and temporal data from
consecutive frames, refined by local connectivity considerations. This results in more focused attention maps (4th row),
directing our model’s focus towards pivotal visual elements and thereby bolstering video comprehension.

Additionally, the heatmaps for selected areas (5th row) illustrate a notable observation: in the initial frame (Frame 1), the
areas of focus are relatively stable, but as the sequence progresses, these regions adapt dynamically, reflecting the integration
of evolving contextual information. This dynamic adjustment underscores the capability of our module to respond to
changing visual cues in egocentric videos, showcasing its utility in enhancing the model’s interpretative performance.

Time

Question: Where was the plate before I picked it?

A1: at the table    A2: at the top of drawer    A3: at the dish drainer    A4: in the top of shelf    A5: a piece of small wood

Prediction: A1 GT: A2

Time

Question: Who was with me when I was machining the engine body?

A1: a man with blue pants    A2: a woman with sunglasses    A3: a man with black shirt A4: on the floor A5: clothes

Prediction: A3 GT: A1

Figure 8. The two discriminative cases from QAEgo4D dataset.

16



Multi-Factor Adaptive Vision Selection for Egocentric Video Question Answering

Time

Question: Where was the pizza roll before I took it? Prediction: in the plastic stand GT: at refrigerator

Time

Question: Where did I put the bottle of oil? Prediction: inside the cabinet GT: yes

Time

Question: How many vases were beside the cloth rack? Prediction: three GT: three

Figure 9. The two generative cases from QAEgo4D dataset.

Time

Question: Which object changed its status when the other person open something?

A1: fridge    A2: on top of plate    A3: get watermelon from cutting-board    A4: pour from kettle into cup    
A5: put meat and pan to plate and stove using fork and hand    A6: stove    A7: microwave

Prediction: A1 GT: A1

Time

Question: How did the person changed the openness of coffee?

A1: put knife to cutting-board    A2: pour from coffee into cup A3: close coffee    A4: put bowl to the other person   
A5: yes    A6: can not be turned on    A7: get tomato from cutting-board using fork

Prediction: A2 GT: A3

Figure 10. The two discriminative cases from EgoTaskQA direct split.
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Time

Question: How did the person changed the spatial relationships of the last object that has status change in the video?

A1: get bread from fridge    A2: get remote from shelf    A3: get controller from table    A4: put remote to shelf   
A5: put milk to table    A6: in juicer    A7: get fish from basin using fishing-net

Prediction: A4 GT: A2

Time

Question: If the person did not get something from something, what remaining actions in the video is not executable?

A1: in watermelon    A2: put tomato to cutting-board    A3: put controller to game-console    A4: get coffee from table    
A5: get remote from table    A6: get cutting-board and knife from table and cutting-board    A7: close tank

Prediction: A3 GT: A3

Figure 11. The two discriminative cases from EgoTaskQA indirect split.
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Figure 12. Visualization of our prior-guided patch selection process. “Heatmap” illustrates the initial distribution of attention across
sub-patches, and “Selected Heatmap” showcases the refined attention post-prior-guided selection. “Attention Map” and “Selected
Attention Map” provide a more intuitive depiction of these distributions.
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