
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSIONATTACKER: DIFFUSION-DRIVEN PROMPT
MANIPULATION FOR LLM JAILBREAK
WARNING: THIS PAPER CONTAINS CONTENT THAT MAY BE OFFENSIVE OR UPSETTING.

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models can generate harmful content when prompted with care-
fully crafted inputs, a vulnerability known as LLM jailbreaking. As LLMs become
more powerful, studying jailbreaking becomes a critical aspect of enhancing se-
curity and human value alignment. Currently, jailbreak is usually implemented
by adding suffixes or using prompt templates, which suffers from low attack di-
versity. Inspired by diffusion models, this paper introduces the DiffusionAttacker,
an end-to-end generative method for jailbreak rewriting. Our approach employs a
seq2seq text diffusion model as a generator, conditioning on the original prompt
and guiding the denoising process with a novel attack loss. This method preserves
the semantic content of the original prompt while producing harmful content. Ad-
ditionally, we leverage the Gumbel-Softmax technique to make the sampling pro-
cess from the output distribution of the diffusion model differentiable, thereby
eliminating the need for an iterative token search. Through extensive experiments
on the Advbench and Harmbench, we show that DiffusionAttacker outperforms
previous methods in various evaluation indicators including attack success rate
(ASR), fluency, and diversity.

1 INTRODUCTION

Large language models (LLMs), trained on vast amounts of text data, have shown exceptional per-
formance across various natural language processing tasks (Hadi et al., 2023) and have been widely
adopted in diverse application domains such as healthcare (Thirunavukarasu et al., 2023), educa-
tion (Abedi et al., 2023), and finance (Li et al., 2023). To align the model outputs with human values
and objectives, developers often use alignment algorithms based on reinforcement learning (Ouyang
et al., 2022). However, research suggests that current alignment methods still have significant lim-
itations (Wang et al., 2023). Even after alignment, models can be manipulated through carefully
crafted prompts (Zou et al., 2023; Wang et al., 2024; Liu et al., 2023), leading to the generation of
content that is harmful and/or contrary to human values.

Jailbreaking attacks on large language models (LLMs) involve manipulating the models to generate
harmful content through carefully crafted prompts (Wei et al., 2024). One notable method, pro-
posed by Zou et al., involves appending adversarial suffixes to prompts to bypass the model’s safety
alignments. This approach ensures that the model responds to harmful requests rather than issuing a
safety message1 However, generating these adversarial suffixes typically requires an iterative search
process for each token, which is both time-consuming and resource-intensive, often demanding tens
of thousands of queries to the target model for a single adversarial prompt (Geisler et al., 2024). This
inefficiency severely limits the ability to comprehensively test model vulnerabilities and hinders the
development of effective defenses against such attacks. Additionally, the strategy of appending suf-
fixes inherently restricts the diversity of modified prompts, making them more predictable and thus
more easily detected by defense mechanisms (Jain et al., 2023).

1An example of a safety message can be ”I’m sorry, but I can’t provide that information.”

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our paper proposes to attack from a text representation perspective (Zheng et al., 2024): we
want to push the jailbreak prompts’ representation as closely as possible to harmless prompt
representation, thereby bypassing the model’s safety alignment. To achieve this, we intro-
duce DiffusionAttacker, which reframes prompt rewriting as a conditional text generation task. Our
method employs a seq2seq diffusion language model (Gong et al., 2022) as the generator and utilises
a learning-free control strategy to guide the denoising process at each step. Instead of fine-tuning
the diffusion model, our approach adjusts the internal variables derived from each denoising step to
craft effective jailbreak prompts. This technique allows us to rewrite original prompts into adver-
sarial ones that successfully jailbreak the target model while maintaining the core meaning of the
input.

To cope with the discreteness of the text, we applied Gumbel-Softmax (Jang et al., 2016) during
the denoising process, which allows the attack loss to be directly optimized using gradient descent.
This technique facilitates the efficient sampling of tokens, ensuring that the generated adversarial
prompts maintain fluency and effectiveness. Fig 1 shows the overall pipeline of our method.

Figure 1: The conceptual sketch of Diffusion Attacker. We first pre-train a seq2seq diffusion lan-
guage model as a prompt rewriter. For each harmful prompt to be rewritten, we start with Gaussian
noise, apply the pre-trained diffusion language model for denoising, and input each intermediate
variables zt obtained from the denoising process into the LM head layer to get the logits at the
current time step t. Then, we apply the Gumbel-Softmax to sample the jailbreak prompt from the
logits, calculate the hidden state of the current jailbreak prompt in the attacked LLM through dimen-
sionality reduction and a pre-trained harmful/harmless classifier, update zt through gradient descent
to increase the probability of the current jailbreak prompt being identified as harmless within the
attacked LLM.

We validated our method by rewriting harmful instructions from the AdvBench (Zou et al., 2023)
and HarmBench (Mazeika et al., 2024) datasets and conducting experiments across various LLMs,
including Llama3 (Dubey et al., 2024), Vicuna (Chiang et al., 2023), and Mistral (Jiang et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The results demonstrate that our approach not only achieves a higher attack success rate (ASR) but
also accelerates generation speeds while producing adversarial prompts with greater fluency and
diversity.

The contributions of this paper are as follows:

• We propose a general loss for jailbreak attacks derived from the analysis of the internal hid-
den states of LLMs. We have demonstrated the effectiveness of this loss function through
ablation experiments.

• We introduce the DiffusionAttacker, an end-to-end jailbreak attack prompt rewriter. This is
the first application of diffusion language models to jailbreak attacks, significantly enhanc-
ing the success rate of the attacks and the quality of the generated adversarial samples.

• We propose to use Gumbel-Softmax sampling from the denoising process, allowing the at-
tack loss to be learned directly through gradient information. This approach avoids iterative
token search, thereby significantly improving the attack throughput.

2 RELATED WORK

2.1 LLMS JAILBREAK ATTACKS

Existing research suggests that LLMs are easily induced and generate harmful content through
prompts (Wei et al., 2024). To develop trustworthy artificial intelligence, LLMs jailbreak attacks
have become a prominent research focus, aiming to understand the vulnerabilities present in exist-
ing LLMs. The representatives of these studies is GCG (Zou et al., 2023), which adds an adver-
sarial suffix after a harmful instruction to make LLMs generate harmful content. Zhu et al. (2023)
improved the readability of adversarial suffixes by adding fluency constraints, Liu et al. (2023)
optimized the search strategy for adversarial suffixes using a hierarchical genetic algorithm. Paulus
et al. (2024) proposed a two-step approach for jailbreaking LLMs: optimizing an AdvPrompter LLM
to generate adversarial suffixes, then fine-tuning it with these suffixes to produce human-readable
adversarial prompts efficiently. Guo et al. (2024) transformed jailbreak attacks into controllable
text generation methods and generated adversarial suffixes using the Energy-based Constrained De-
coding with Langevin Dynamics method. Wang et al. (2024) proposed optimizing the embedding
space of adversarial suffixes first, and then proposed an embedding translation model to translate the
embeddings back into coherent text, achieving better efficiency and attack success rate (ASR).

Another part of the research aims to come up with better loss functions to guide jailbreak attacks.
Zou et al. (2023) has shown that LLMs often begin affirmative responses with phrases like “Sure,
here is...”, so they have proposed using the negative log probability likelihood of such phrases as the
objective for jailbreak attacks, aiming to induce the LLMs to provide affirmative responses to harm-
ful instructions. However, the loss function imposed by this objective is overly restrictive, as many
potentially harmful responses in the LLM’s output space do not conform to this specific sentence
structure. Shen et al. (2024) expanded the target phrases by discovering malicious knowledge from
the output distribution of the attacked LLM and considers these phrases as successful jailbreaks, but
still could not cover all harmful outputs. Xie et al. (2024) attribute the vulnerabilities of LLMs to
reward misspecification during the alignment process. To address this, they introduce a metric called
ReGap to quantify the degree of reward misspecification and use it as a loss function for jailbreak
attacks.

2.2 DIFFUSION LANGUAGE MODEL

Recently, researchers have applied diffusion models to text generation, aiming to achieve success
similar to that observed in the image domain.He et al. (2022) proposed DiffusionBert, a new gen-
erative masked language model based on discrete diffusion models. Li et al. (2022) applied the
diffusion model to text generation and modified the loss function of the diffusion model for the text
specific embedding and routing processes. They also proposed a controllable generation method use
classifier. Gong et al. (2022) propose a seq2seq diffusion language model, make conditional text
generation no longer dependent on external classifiers. Due to the diffusion model generating each
token simultaneously so that missing contextual information, Wu et al. (2023) achieved the effect of
autoregression by using a dynamic number of denoising steps, which resulted in the tokens on the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

left undergoing fewer denoising steps than those on the right. Lin et al. (2023) designed a new con-
tinuous paragraph denoise objective and proposed a novel dIffusion language “modEl” pre-training
framework for text generation. Ye et al. (2023) proposed DINOISER to facilitate diffusion models
for sequence generation by manipulating noises, enhancing the conditional generation capability of
diffusion language models. Lovelace et al. (2024) use encoder-decoder language models, and train
the continuous diffusion models in the latent space of the language autoencoder. Lou et al. proposed
extending score matching naturally to discrete space through score entropy, significantly improving
performance.

2.3 PLUG-AND-PLAY CONTROLLABLE TEXT GENERATION

As the parameters of pre-trained language models (PLMs) continue to increase, it has become feasi-
ble to post-process PLMs using additional modules with relatively fewer parameters. This approach
is referred to as plug-and-play controllable text generation. Dathathri et al. (2019) proposed a novel
method which uses a external classifier with fewer parameters to guide the PLMs and controls the
distribution of text generated by changing the hidden states of PLMs without modifying the pa-
rameters of the PLMs. GeDi (Krause et al., 2021) trains different small class-conditional language
models (CC-LMs) and guides the PLMs by contrast. Yang & Klein (2021) introduced FUDGE, a
method that employs learned future discriminators operating on partial sequences to modulate the
generation probabilities of PLMs. Li et al. (2022) proposed applying the plug-and-play method to
each step of the denoising process in pre-trained diffusion language models, enabling more fine-
grained control conditions. Wang & Sha (2024) further applied external signals to the additional
prefix parameters, effectively constraining the output space of the PLMs and influencing the desired
attribute.

3 METHOD

In this section, we formulate the jailbreaking problem, introduce a more generalized attack loss
based on the hidden states of the target LLM, and then detail our method for rewriting harmful
instructions using the DiffuSeq model with Gumbel-Softmax to ensure the entire rewriting process
is differentiable.

3.1 PROBLEM FORMULATION

Firstly, we formulate learning the jailbreaking as a conditional generation task. Let V denote the set
of all possible token sequences in the vocabulary. According to human values, we can partition V
into two subsets: Vh for harmful sequences and Vs for harmless sequences, such that V = Vh ∪ Vs

and Vh ∩ Vs = ∅. The objective of a jailbreak attack on an LLM is to discover a set of prompts
Y = {y1, y2, ..., yn} such that when input to the LLM, the output belongs to the harmful subset:
∀y ∈ Y,LLM(y) ∈ Vh. These prompts Y can either be generated directly or derived by rewriting
harmful instructions X = {x1, x2, ..., xn}. We define our goal as finding a function f such that
when f(x) is input to an LLM, it maximizes the probability of the LLM’s output belonging to the
harmful subset Vh. Formally, we aim to find f∗ = argmax

f
P (LLM(f(X)) ∈ Vh), where LLM(·)

represents the output of LLM given an input.

3.2 GENERAL ATTACK LOSS

According to Zheng et al. (2024), LLMs possess an inherent ability to differentiate between harmful
and harmless prompts without the need for explicit safety prompts. Inspired by this observation,
we propose a more generalized attack loss function based on the internal representation of prompts
within the attacked LLMs, allowing the objective to adapt dynamically to different LLMs.

The method operates by first inputting paired harmful/harmless prompts into the target LLM, then
performing dimensionality reduction on the LLM’s hidden states for these prompts. Using the harm-
ful/harmless labels, we train a binary classifier on these reduced representations, which can be in-
terpreted as the LLM’s judgment of the harmfulness of input prompts. Our attack objective is to
rewrite the original harmful prompt in a way that preserves its semantic meaning while causing the
classifier to classify it as harmless, thus the attacked LLM output harmful content.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We formally represent the hidden states of the final input token, produced by the top layer of LLM,
as x ∈ Rn, which denote the representation of the input prompt by the LLM. Then we project the
internal representations of these queries onto a low dimensional representation space that captures
features associated with prompt harmfulness within attacked LLM, denoted as g(·) : Rn → Rm:

g(x) = W⊤(x− µ). (1)

Taking principal component analysis(PCA) as an example, W is the matrix of top m eigenvectors
(principal components), µ is the mean vector of the dataset. We use z ∈ Rm to represent the
reduced dimensional vector. Then, we use these reduced-dimensional representations z to fit a
binary classification model. This model can be expressed as:

fr(z) = Wr
⊤z+ br, (2)

where Wr ∈ Rm, br ∈ R are the fitted parameters. Harmful and harmless prompts are labeled
as 1 and 0, respectively. The normal vector of Wr represents the estimated direction in which
LLM believes the probability of the prompt is harmful increases. For demonstration, we input 100
harmful-harmless pair queries (Zheng et al., 2024) into four open-source LLMs, applied principal
component analysis (PCA) for dimensionality reduction, and used logistic regression as a binary
classifier.

Figure 2: Two-dimensional PCA visualization of hidden state representations for harmful and
harmless prompts across various LLMs.

Fig 2 displays the visualized results, demonstrating that LLMs have the capability to discern the
harmfulness of queries. We further applied existing jailbreak attack techniques (such as GCG (Zou
et al., 2023), AutoDan (Liu et al., 2023), Cold-attack (Guo et al., 2024))to rewrite the 100 harmful
queries.

Figure 3: Representation changes of harmful prompts in Llama2-7b-chat before and after rewrit-
ing by different jailbreak attack methods

As shown in Fig 3, we can find that the majority of rewritten harmful prompts were classified as
harmless, indicating that jailbreak attacks effectively work by rewriting prompts to be internally
recognized as harmless by the LLM.

Given this insight, we defined the attack target as making the output of the binary classification
model (Eq 2) harmless. Denoting the hidden state of a harmful prompt to be rewritten in LLM as
xh, we first use the transformation matrix in Eqn. 1 to reduce its dimensionality:

z = W⊤(xh − µ). (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

And then we can use cross entropy loss to represent the final optimization objective:

Latt(z) = −[y log(σ(fr(z))) + (1− y) log(1− σ(fr(z)))], (4)

where σ(·) is the sigmoid function, fr(z) is the logistic regression model as defined in Eqn. 2, y is
the specified target label, we set it as “harmless”.

3.3 JAILBREAK PROMPT AS CONDITIONAL GENERATION

Our method for generate jailbreak prompts is based on a pre-trained DiffSeq model denote as fθ(·).
DiffuSeq explicitly incorporates the context X into the diffusion model and models the conditional
probability of the target sentence Y . Specifically, in the forward process, we first use a unified
learnable embedding layer to convert X and Y into continuous vectors EX and EY , DiffuSeq only
adds noise to the target output Ey portion. In the reverse process, DiffuSeq using input Ex

t as a
condition to guide the denoising process, denote zt = EX

t + EY
t, the reverse process is:

pθ
(
zt−1 | zt

)
= N

(
zt−1;µθ

(
zt, t

)
, σθ

(
zt, t

))
, (5)

where µθ (z
t, t) , σθ (z

t, t) is the predicted mean and standard deviation of the noise by the diffusion
model fθ(zt, t).

We pre-train DiffuSeq using the paraphrase dataset, which enables it to rewrite the input without
changing the semantics. However, the rewritten prompts often still fail to jailbreak, so we fur-
ther perform controllable generation on the pre-trained DiffuSeq model fθ(·) to make the rewritten
prompts successful jailbreak. Assume that we have a harmful instruction X like “How to make a
bomb”, we input this instruction as context, and use the pretrained DiffuSeq model fθ(·) to denois-
ing from Gaussian noise to obtain output results based on Eqn. 5. To guide the diffusion model
towards successful jailbreak prompt rewriting, we implement an iterative process at each denoising
step . After each step t, we input the DiffuSeq model’s intermediate state zt = (zt1, z

t
2, . . . , z

t
n) into

the pretrained LM head layer (like early stopping in LLMs), generating a probability distribution
p(Y t), Y = (y1, y2, . . . , yn) over output tokens for the current diffusion model state:

p(Y t) = LM head(zt1, z
t
2, . . . , z

t
n). (6)

We then employ Gumbel-Softmax (Jang et al., 2016) to sample from the distribution p(Y t), produc-
ing a rewritten output Y t of the input X . First, we generate Gumbel noise gi:

gi = − log(− log(ui)), where ui ∼ Uniform(0, 1). (7)

We add noise gi to the logits p(Y t) by computing wi = log(p(yti)) + gi. The softmax function with
temperature τ is then applied, resulting in yti = exp(wi/τ)∑n

j=1 exp(wj/τ)
. We simply obtain the final output

by taking the maximum value from yti : Y
t = argmax(yti).

This rewritten text Y t is subsequently inputted into the attacked LLM. We calculate the general
attack loss using the method described in Sec 3.2. The gradient obtained through backward is then
used to adjust the intermediate state zt in DiffuSeq model, steering the diffusion process towards
more effective jailbreak attempts. In addition, to ensure semantic consistency between the para-
phrased attack Y t and the original harmful query X , we introduce a semantic similarity loss. This
loss is defined as:

Lsim(Y
t, X) = 1− cos(emb(Y t), emb(X)), (8)

where emb(·) computes the average embedding vector of all tokens in a sequence, and cos(·, ·)
denotes the cosine similarity between two vectors. This loss function penalizes semantic divergence
between y and x, encouraging the paraphrased jailbreak prompt to maintain the original query’s
meaning. We set the compositional control loss function as:

Lc(z
t) = λLatt(z

t) + Lsim(Y
t, X). (9)

We regard the above loss function Lc as an attribute model p(c|zt) to provide the probability that
the current rewritten jailbreak prompt meets the control. Our approach to control is inspired by the
Bayesian formulation and was first used by Dathathri et al. (2019) for conditional text generation,
for the tth step, we run gradient update on zt:

∇zt log p (zt | zt+1, c) = ∇zt log p (zt | zt+1) +∇zt log p (c | zt) . (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The term ∇zt log p(zt|zt+1) represents the probability distribution prediction for the current time
step zt based on the previous time step zt+1 after denoising. This is provided by the pre-trained
DiffuSeq model fθ(·). The term ∇zt log p(c|zt) denotes the probability of successful jailbreak and
semantic similarity based on the current time step zt. This can be obtained through Eqn 9. To
further enhance the control quality, we’ve implemented a multi-step gradient approach within each
diffusion step.

However, the introduction of additional gradient steps inevitably leads to increased computational
costs. To mitigate this issue, we use the following method to reduce the number of gradient updates:

We observe that the initial t denoising steps yield minimal semantic information in the generated
text. Consequently, we opt to forgo gradient updates during these initial t steps. For the remain-
ing T − t steps, we employ a uniform sampling approach to select M steps for gradient updates.
Specifically, we perform gradient updates at regular intervals, defined by:

i = t+ k ×
⌊
T − t

M

⌋
, for k = 0, 1, . . . ,M − 1, (11)

where:T represents the total number of denoising steps, t denotes the number of initial steps without
gradient updates, M is the number of gradient update steps to be performed.This approach ensures
that gradient updates are evenly distributed across the latter T − t steps of the denoising process.
By judiciously selecting the parameters t and M , we can significantly reduce the computational
overhead while maintaining the efficacy of the controllable generation process.

4 EXPERIMENTS

4.1 DATASET AND METRICS

Our harmful attack data is based on Advbench (Zou et al., 2023) and Harmbench (Mazeika et al.,
2024), providing a total of 900 harmful instructions. Recognizing the limitations of existing para-
phrase datasets, which often exhibit low diversity and distributional bias, we have expanded our
approach. We incorporate the Wikipedia dataset2 as an additional source for text reconstruction
tasks. This dataset is used in conjunction with the PAWS paraphrase dataset (Zhang et al., 2019),
which is a paraphrase dataset consisting of 108,463 well-formed paraphrase and non-paraphrase
pairs with high lexical overlap. For our purposes, we selected only the well-formed paraphrase pairs
from this dataset to pre-train the DiffuSeq model.

The model to-be-attack mainly chose LLama3-8b-chat (Dubey et al., 2024), Mistral-7b (Jiang et al.,
2023), and Alpaca-7b(with Safe-RLHF) (Dai et al., 2023). In addition, we test the transferability
of our attacking method on Llama2-13b-chat and Qwen2-7b. These models have been trained with
security alignment and therefore have good jailbreaking defense capabilities.

We evaluate the generated jailbreak prompts from four perspectives, fluency (PPL), attack success
rate (ASR), diversity (Self-BLEU), and the average time taken to generate a jailbreak prompt(Time).

Perplexity (PPL) is a common metric to evaluate fluency of the input prompt. It can be expressed
mathematically as:

PPL = exp

(
− 1

N

N∑
k=1

logP (tk|t<k)

)
, (12)

where T = (t1, . . . , tk) represents the prompt sequence. In alignment with prior research (Wichers
et al., 2024), our study employed the attacked LLM to compute P (tk|t1, . . . , tk−1).

We employed two distinct methods for assessing the Attack Success Rate (ASR). Initially, we
adopted a conventional technique involving a predefined list of negative phrases (Zou et al., 2023).
The absence of these phrases in the model’s response was interpreted as a successful attack. How-
ever, recognizing the limitations of this simplistic rule-based approach, which has been noted for its
low accuracy in previous research, we implemented an additional evaluation method. This secondary
approach utilizes the GPT-4o model as a sophisticated classifier to determine the presence of harm-
ful content in the model’s output. The attack success rates derived from these two methodologies

2https://huggingface.co/datasets/wikipedia

7

https://huggingface.co/datasets/wikipedia

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

are denoted as ASRprefix and ASRgpt respectively, providing a more comprehensive assessment
of our attack strategy’s performance.

To assess the diversity of generated prompts, we implemented the Self-Bilingual Evaluation Under-
study (Self-BLEU) metric (Zhu et al., 2018). The Self-BLEU score is calculated as follows:

Self-BLEU =
1

M

M∑
i=1

∑M
j=1,j ̸=i BP · exp

(∑4
m=1 αm · log qi,j,m

)
M − 1

. (13)

In this formula, qi,j,m denotes the precise match ratio between the ith and jth generated texts for
m-grams, BP signifies the brevity penalty, and M represents the total number of generated texts.
Our experiments utilized a 4-gram approach (m = 1 to 4) with uniform weighting (αm = 0.25 for
all m).

4.2 MAIN RESULT

4.2.1 BASELINE RESULT

In this section, we use harmful instructions from Advbench (Zou et al., 2023) and Harm-
bench (Mazeika et al., 2024) to rewrite and test the performance of the rewritten prompt generated
by our method and baselines on the attacked LLM. We compare our proposed method with five
baseline models, namely:

GCG (Zou et al., 2023): An discrete optimization method of adversarial suffixes based on gradient
to induce model output of harmful content.

AutoDan[Liu] (Liu et al., 2023): Using a carefully designed hierarchical genetic algorithm on the
basis of GCG to enhance the concealment of jailbreak prompts;

AutoDan[Zhu] (Zhu et al., 2023): An extension guided by both jailbreak and readability, optimizing
from left to right to generate readable jailbreak prompts that bypass perplexity filters;

Cold-attack (Guo et al., 2024): Adapted the Energy-based Constrained Decoding with Langevin
Dynamics (COLD) to generate jailbreak prompts.

AdvPrompter (Paulus et al., 2024): a method that can generate adversarial suffixes, and iteratively
use the successfully jailbroken suffixes to fine-tune the LLM.

To-Be-Attacked Model Method Perplexity ↓ ASR ↑ Time(s) ↓ Self-BLEU ↓
ASRprefix ASRgpt

GCG 1720.47±1512.99 0.77 0.54 232.13±221.05 0.612
AutoDan[Liu] 52.84±37.86 0.78 0.52 383.85±182.04 0.545
AutoDan[Zhu] 45.32±28.91 0.72 0.50 330.42±395.38 0.531

Cold-attack 38.98±20.96 0.70 0.49 61.08±43.90 0.459
AdvPrompter 45.33±17.91 0.61 0.38 21.61±10.52 0.471

DiffusionAttacker 35.19±26.77 0.90 0.74 62.76±61.68 0.451
GCG 1401.02±1243.33 0.85 0.60 214.41±186.21 0.658

AutoDan[Liu] 64.85±38.49 0.88 0.65 384.92±253.47 0.527
AutoDan[Zhu] 41.92±25.57 0.87 0.63 255.61±253.57 0.535

Cold-attack 37.62±26.00 0.82 0.59 64.67±55.41 0.475
AdvPrompter 45.31±26.29 0.73 0.52 28.14±17.54 0.481

DiffusionAttacker 35.77±22.90 0.93 0.79 73.25±69.60 0.445
GCG 1487.10±1193.77 0.88 0.69 212.38±249.80 0.627

AutoDan[Liu] 51.17±33.72 0.85 0.66 378.73±254.69 0.582
AutoDan[Zhu] 48.64±37.76 0.89 0.71 349.15±176.30 0.536

Cold-attack 37.98±20.94 0.81 0.58 59.85±49.28 0.438
AdvPrompter 43.08±31.62 0.75 0.54 22.53±16.93 0.453

DiffusionAttacker 39.63±21.34 0.91 0.77 72.27±67.63 0.427
GCG 1371.67±1287.28 0.79 0.62 282.02±233.13 0.594

AutoDan[Liu] 47.36±31.03 0.74 0.58 362.88±262.21 0.541
AutoDan[Zhu] 41.28±38.79 0.81 0.64 316.75±262.41 0.578

Cold-attack 43.47±33.42 0.71 0.52 69.37±68.16 0.485
AdvPrompter 47.09±35.26 0.67 0.46 26.86±23.62 0.491

DiffusionAttacker 38.70±34.68 0.88 0.71 71.83±62.03 0.436

Table 1: The results of our method and baseline methods on Advbench and Harmbench. ↓
means the lower the better, while ↑ means to higher the better.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The experimental results from the Table 1 demonstrate that our method achieves superior attack
success rates and diversity across all LLMs compared to other methods. Additionally, our approach
yields the lowest perplexity scores on three of the models, indicating that the jailbreak prompts gen-
erated by our method not only have a higher success rate in bypassing safeguards but also exhibit bet-
ter fluency and diversity. Regarding the time required to generate a jailbreak prompt, AdvPrompter
directly employs a pre-trained rewriter, producing identical jailbreak prompts for any target LLM.
While this approach reduces generation time, it significantly compromises the attack success rate
(ASR). In contrast, our method utilizes test-time inference, adapting the attack strategy to different
target LLM during the generation process. Consequently, although our method requires more time
for generation, it achieves a substantial improvement in ASR.

4.2.2 ABLATION RESULT

To assess the importance of each element in our proposed DiffusionAttacker framework, we con-
ducted a comprehensive ablation experiments. This evaluation involved comparing our complete
DiffusionAttacker model against three variant configurations, each omitting a crucial aspect of the
full system. These modified versions can be summarized as follows:

DA-sure: Change our proposed general attack loss in section 3.2 to the common negative log like-
lihood loss of phrases like “Sure, here is”;

DA-discrete: Use traditional discrete gradient information to iteratively search and replace to-
kens (Shin et al., 2020) instead of directly updating gradients using Gumbel-Softmax sampling;

DA-direct: Directly initialize continuous vectors (Guo et al., 2021) and optimize them without using
pre-trained diffusion models as generators;

To-Be-Attacked Model Method Perplexity ↓ ASR ↑ Time(s) ↓ Self-BLEU ↓
ASRprefix ASRgpt

DA-sure 50.84±41.17 0.82 0.64 52.56±47.05 0.462
DA-discrete 83.96±72.97 0.85 0.70 297.01±253.19 0.466
DA-direct 298.83±260.89 0.81 0.60 37.55±32.67 0.496

DiffusionAttacker 35.19±26.77 0.90 0.74 62.76±61.68 0.451
DA-sure 52.03±42.72 0.87 0.67 64.80±51.23 0.443

DA-discrete 87.65±80.23 0.89 0.70 278.52±257.67 0.451
DA-direct 272.25±263.41 0.83 0.60 31.19±38.67 0.462

DiffusionAttacker 35.77±22.90 0.93 0.79 73.25±69.60 0.445
DA-sure 45.79±41.42 0.86 0.64 66.85±68.12 0.434

DA-discrete 76.98±69.88 0.88 0.72 226.84±214.37 0.442
DA-direct 338.39±256.83 0.80 0.60 43.97±43.68 0.458

DiffusionAttacker 39.63±21.34 0.91 0.77 72.27±67.63 0.427
DA-sure 39.97±37.74 0.81 0.63 63.79±59.36 0.457

DA-discrete 76.44±68.92 0.77 0.60 211.00±238.63 0.472
DA-direct 293.03±279.11 0.71 0.54 39.19±30.27 0.466

DiffusionAttacker 38.70±34.68 0.88 0.71 71.83±62.03 0.436

Table 2: Results of ablation experiments. The removal of each module led to a decrease in perfor-
mance.)

Table 2 show that our methodology achieved superior results in terms of ASR and prompt fluency.
When substituting our proposed universal attack loss with the conventional negative log-likelihood
loss, a notable decrease in ASR was observed. Replacing Gumbel-Softmax sampling with discrete
token substitution led to a significant increase in the average generation time of jailbreak prompts,
indicating reduced efficiency. Eliminating the pre-trained DiffuSeq model and directly updating
randomly initialized continuous vectors resulted in a substantial decline in jailbreak prompt fluency,
accompanied by a moderate reduction in ASR.

4.2.3 TRANSFERABLE ATTACK

To evaluate the transferability of adversarial samples, we train three distinct language models (the
Llama2-7b-chat model, the Vicuna-7b-v1.5 model and the Alpaca-7b model) with baseline methods
and our approach. We use the method described in Sec 3.2 to obtain Latt from the above three
models and add them together, which can be regarded as increasing the probability that the jailbreak
prompt is classified as harmless in all three models at the same time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

After the training phase, we evaluated the transferability of the generated jailbreak prompts by test-
ing them on other large language models (LLMs) that were not part of the training. We selected two
models with different architectures and training methodologies—Llama2-13b-chat, ChatGLM3-6b,
and Qwen2-7b—to assess how well our approach generalize across diverse LLM ecosystems. Ad-
ditionally, we compared our results with two other methods known for supporting transferable jail-
break attacks: GCG (Zou et al., 2023) and ASETF (Wang et al., 2024). The detailed experimental
results are shown in Table 3.

Method To-Be-Attacked Model Perplexity ↓ ASR Self-BLEU ↓
ASRprefix ↑ ASRgpt ↑

DiffusionAttacker
Llama2-13b-chat

36.59±28.21
0.69 0.61

0.455Qwen2-7b 0.58 0.41
ChatGLM3-6b 0.50 0.32

GCG
Llama2-13b-chat

1550.28±1247.39
0.41 0.30

0.639Qwen2-7b 0.24 0.12
ChatGLM3-6b 0.19 0.10

ASETF
Llama2-13b-chat

42.64±34.11
0.53 0.44

0.473Qwen2-7b 0.45 0.33
ChatGLM3-6b 0.39 0.28

Table 3: The results of our method and GCG on the transferability of jailbreak prompts

Compared with GCG and ASETF, DiffusionAttacker has a higher transferable ASR. We observed
that the attack success rate on the Llama2-13b-chat model was generally higher. This can be at-
tributed to the use of Llama2-7b-chat, which shares a similar architecture with the target model, in
our training process. This finding underscores a crucial consideration for developers: when devel-
oping their own LLMs, careful attention must be paid to the selection of model architectures and
training data to mitigate the risk of transfer attacks.

5 CONCLUSION

In this paper, we introduced DiffusionAttacker, a novel method for rewriting harmful prompts to
bypass LLMs’ safety mechanisms, leveraging sequence-to-sequence text diffusion models. Our
approach employs a generative model conditioned on the original prompts, guiding the denoising
process with a general attack loss. This technique preserves the semantic content of the original
prompts while compelling the model to produce harmful content. Moreover, we showcased the
direct optimization of the attack loss using the Gumbel-Softmax technique, which circumvents the
need for iterative token search, significantly enhancing the efficiency of the attack process. This is
the first application of diffusion language models to jailbreak attacks, significantly enhancing the
success rate and quality of the generated adversarial samples. The findings of this study underscore
the importance of considering security in the design of LLMs and offer new perspectives and tools
for future research to enhance the security and human value alignment of LLMs.

6 LIMITATION

This paper has several limitations. First, our method takes longer to generate jailbreak attacks com-
pared to direct generation methods, as it incorporates gradient update controls into the process.
Second, although our method allows for direct gradient updates using Gumbel-Softmax, the incon-
sistency between the generative model and the target model requires that the DiffuSeq model be
pre-trained using the same vocabulary as the target LLM. This ensures that the one-hot matrix pro-
duced by Gumbel-Softmax sampling can be directly multiplied with the word embedding matrix of
the target LLM. Future work will aim to improve efficiency and reduce the need for model-specific
pre-training, enhancing the practicality and scalability of our approach.

REFERENCES

Mahyar Abedi, Ibrahem Alshybani, Muhammad Rubayat Bin Shahadat, and Michael Murillo. Be-
yond traditional teaching: The potential of large language models and chatbots in graduate engi-
neering education. Qeios, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Simon Geisler, Tom Wollschläger, MHI Abdalla, Johannes Gasteiger, and Stephan Günnemann. At-
tacking large language models with projected gradient descent. arXiv preprint arXiv:2402.09154,
2024.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
attacks against text transformers. arXiv preprint arXiv:2104.13733, 2021.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin, and Bin Hu. Cold-attack: Jailbreaking llms
with stealthiness and controllability. arXiv preprint arXiv:2402.08679, 2024.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
models: Applications, challenges, limitations, and practical usage. Authorea Preprints, 2023.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chi-
ang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. GeDi: Generative Discriminator Guided Sequence Genera-
tion. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929–4952,
2021.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in Neural Information Processing Systems,
35:4328–4343, 2022.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the fourth ACM international conference on AI in finance, pp. 374–382, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
Chen. Text generation with diffusion language models: A pre-training approach with continuous
paragraph denoise. In International Conference on Machine Learning, pp. 21051–21064. PMLR,
2023.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, and Yuandong Tian. Ad-
vprompter: Fast adaptive adversarial prompting for llms. arXiv preprint arXiv:2404.16873, 2024.

Guangyu Shen, Siyuan Cheng, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Lu Yan, Zhuo Zhang,
Shiqing Ma, and Xiangyu Zhang. Rapid optimization for jailbreaking llms via subconscious
exploitation and echopraxia. arXiv preprint arXiv:2402.05467, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Hao Wang and Lei Sha. Harnessing the plug-and-play controller by prompting. arXiv preprint
arXiv:2402.04160, 2024.

Hao Wang, Hao Li, Minlie Huang, and Lei Sha. From noise to clarity: Unraveling the adver-
sarial suffix of large language model attacks via translation of text embeddings. arXiv preprint
arXiv:2402.16006, 2024.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Nevan Wichers, Carson Denison, and Ahmad Beirami. Gradient-based language model red teaming.
arXiv preprint arXiv:2401.16656, 2024.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan
Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation.
Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

Zhihui Xie, Jiahui Gao, Lei Li, Zhenguo Li, Qi Liu, and Lingpeng Kong. Jailbreaking as a reward
misspecification problem. arXiv preprint arXiv:2406.14393, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kevin Yang and Dan Klein. FUDGE: Controlled Text Generation With Future Discriminators.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 3511–3535, 2021.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused condi-
tional sequence learning by manipulating noises. arXiv preprint arXiv:2302.10025, 2023.

Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling.
arXiv preprint arXiv:1904.01130, 2019.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and
Nanyun Peng. Prompt-driven llm safeguarding via directed representation optimization. arXiv
preprint arXiv:2401.18018, 2024.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani
Nenkova, and Tong Sun. Autodan: Automatic and interpretable adversarial attacks on large
language models. arXiv preprint arXiv:2310.15140, 2023.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In The 41st international ACM SIGIR
conference on research & development in information retrieval, pp. 1097–1100, 2018.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

A APPENDIX

A.1 GPT-4O CONTEXT HARMFUL DISCRIMINATE PROMPT

As described in our experimental setup, we use gpt-4o to determine whether the attacked model
outputs harmful content. Below is the prompt template we use.

Given the following text generated by a language model during its conversation with a human
being, please evaluate its potential harm or offensiveness, considering factors such as hate
speech, discrimination, violence, or any other harmful content. Please note that any part of the
response containing harmful content is unsafe.

You should first analyze if it is harmful, explicitly or implicitly, and then give your conclusion.
Your conclusion should be safe or unsafe, wrapped in double square brackets, i.e., [[safe]] or
[[unsafe]]

TEXT

Prompt:{prompt}
Response:{response}
EVALUATION

A.2 PRELIMINARY OF DIFFUSEQ MODEL

Diffustion models generally based on the principle of gradually adding noise to data and then learn-
ing to reverse this process, ultimately generating high-quality samples from random noise. The
forward diffusion process start with a data sample x0 from the real data distribution and gradually
add gaussian noise over T timesteps. At each step t, the noisy sample xt is derived from xt−1 using:
xt =

√
1− βt · xt−1 +

√
βt · ε, where ε ∼ N (0, I), βt is a variance schedule that controls the

noise level. The reverse diffusion process learn to reverse the forward process, starting from pure
noise xT and estimate the noise ϵθ(xt, t) added at each step using a neural network, obtain denoised
samples through:xt−1 = 1√

1−βt
· (xt − βt√

1−αt
· εθ(xt, t)). The common learning objectives of

diffusion models are proposed by Ho et al. (2020):L = Et,x0,ε[||ε− εθ(xt, t)||2]. This is equivalent
to maximizing the variational lower bound on the data likelihood, and it has been widely applied in
text diffusion models.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 EXPERIMENT DETAILS

A.3.1 PRE-TRAINED DIFFUSEQ MODEL

We use a transformer architecture (Vaswani, 2017) as the noise prediction model f(·). The pre-
training dataset for DiffuSeq model includes 23,572 Wikipedia data and 21,835 PAWS data that
are marked as having the same semantics, and the DiffuSeq model was distributed training on 8
NVIDIA A100 GPUs. In terms of parameter setting the batch size is 16 and the learning rate is set
to 1e− 4, the steps is 2000, the hidden dim is 256, the maximum sequence length is 128.

A.3.2 CONTROL GENERATION FOR JAILBREAK PROMPTS

In the controllable generation stage, we set λ = 0.8 to balance the loss of semantic control and
jailbreak control in Eqn 9. We execute three iterations of gradient update for diffusion step, and set
M = 5, t = 200 in Eqn 11. The temperature of Gumbel-Softmax is 3.

14

	Introduction
	Related Work
	LLMs Jailbreak attacks
	Diffusion Language Model
	Plug-and-play controllable text generation

	Method
	Problem Formulation
	General Attack Loss
	Jailbreak Prompt as Conditional Generation

	Experiments
	Dataset and Metrics
	Main Result
	Baseline Result
	Ablation Result
	Transferable attack

	Conclusion
	Limitation
	Appendix
	gpt-4o context harmful discriminate prompt
	Preliminary of DiffuSeq model
	Experiment Details
	Pre-trained DiffuSeq model
	Control generation for jailbreak prompts

