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Abstract

Recently, considerable efforts have been directed
towards compressing Large Language Models
(LLMs), which showcase groundbreaking capa-
bilities across diverse applications but entail sig-
nificant deployment costs due to their large sizes.
Meanwhile, much less attention has been given
to mitigating the costs associated with deploy-
ing multiple LLMs of varying sizes despite its
practical significance. Thus, this paper intro-
duces any-precision LLM, extending the concept
of any-precision DNN to LLMs. Addressing
challenges in any-precision LLM, we propose a
lightweight method for any-precision quantization
of LLMs, leveraging a post-training quantization
framework, and develop a specialized software en-
gine for its efficient serving. As a result, our solu-
tion significantly reduces the high costs of deploy-
ing multiple, different-sized LLMs by overlaying
LLMs quantized to varying bit-widths, such as
3, 4, ..., n bits, into a memory footprint compa-
rable to a single n-bit LLM. All the supported
LLMs with varying bit-widths demonstrate state-
of-the-art model quality and inference throughput,
proving itself to be a compelling option for de-
ployment of multiple, different-sized LLMs. The
code is available at https://github.com/
SNU-ARC/any-precision-llm.

1. Introduction
With the revolutionary success of Large Language Mod-
els (LLMs) across various applications, there have been
many recent efforts to reduce the costs of their deployment.
Specifically, there has been a considerable focus on com-
pressing LLMs using techniques like pruning (Frantar &
Alistarh, 2023; Zhang et al., 2023; Santacroce et al., 2023;
Ma et al., 2023) or quantization (Lin et al., 2023; Frantar
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et al., 2023; Kim et al., 2023b), as the parameter size is the
primary obstacle for their efficient deployment.

Meanwhile, there has been limited discussion on mitigat-
ing the costs associated with deploying multiple LLMs of
varying sizes, despite its practical significance. Real-world
scenarios often demand the dynamic adaptation of multiple
LLMs, each with distinct model quality/inference latency
trade-offs. This approach enables the effective handling of
queries with varied latency constraints, enhancing the user
experience. Moreover, it supports a popular generation ac-
celeration technique: speculative decoding (Leviathan et al.,
2023; Chen et al., 2023; Kim et al., 2023d). Despite these
benefits, deploying multiple LLMs of varying sizes presents
challenges. First, it exacerbates the already high memory
costs of LLM deployment, and second, it necessitates train-
ing of multiple model versions when models of desired sizes
are not readily available as open-source.

Any-precision LLM, an extension of the concept of any-
precision DNN (Yu et al., 2021) to LLM, is a promising solu-
tion for the low-cost deployment of multiple, different-sized
LLMs. Any-precision DNN refers to an n-bit quantized
model capable of generating lower bit quantized models ((n-
1)-bit, (n-2)-bit, ...) simply by taking its most significant
bits (MSBs). Applying this concept to LLM enables the
utilization of multiple LLMs with varying sizes by storing
only a single large LLM (n-bit model) in memory, while
avoiding the additional overhead of training multiple LLMs.

Meanwhile, two challenges need to be resolved for effective
implementation of any-precision LLM. First, a practical
method for any-precision quantization of LLM is needed.
The existing any-precision quantization method on DNN
requires training the model from scratch, limiting its appli-
cability to LLMs. Second, a new GPU kernel for quantized
matrix-vector multiplication is required, which will trans-
late the use of reduced bit-widths in any-precision LLMs
into shorter inference times. Existing kernels for quantized
matrix-vector multiplication are unable to load just a portion
of each quantized weight value’s bit-vector. Consequently,
with existing kernels, opting for a model with a lower bit-
width does not reduce memory bandwidth usage.

Thus, we in this paper make a strong case for any-precision
LLM by addressing the two aforementioned issues. First,
we build a lightweight method for any-precision quantiza-
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tion of LLM. Utilizing a post-training quantization (PTQ)
framework, it first generates a low-bit model and then in-
crementally upscales it to higher bit-widths, conserving the
any-precision property. Second, we develop a new software
engine specialized for any-precision support, that effectively
saves memory bandwidth for serving any-precision LLMs
by changing the memory layout of weights. Our exten-
sive experimental studies demonstrate that our solution is a
powerful approach for the deployment of multiple, different-
sized LLMs, achieving the following results:

• Our solution efficiently packs LLMs quantized to varying
bit-widths, such as 3, 4, ... up to n bits, into a memory
footprint comparable to a single n-bit LLM.

• Our solution yields a set of quantized LLMs of vary-
ing bit-widths that, while offering any-precision support,
match the quality of the state-of-the-art quantization tech-
niques at each bit-width.

• Our solution, despite having to adopt a bit-interleaved
(bitplane) memory layout for the support of any-precision,
showcases high inference throughput, matching or even
outperforming that of state-of-the-art quantized matrix-
vector multiplication engines that do not support any-
precision (Kim et al., 2023b).

2. Background
2.1. GPU Basics

GPU Architecture Fundamentals. A GPU, the de facto
standard platform for executing LLMs, comprises a large
number of processing elements called Streaming Multipro-
cessors (SMs). GPUs often include multi-level on-chip
SRAM caches. A part of the L1 cache can be configured
as shared memory, providing a memory space that can be
directly controlled by programmers.

Execution Model. GPUs use a large number of threads to
execute operations, which are known as kernels. Threads are
structured into thread blocks whose execution is scheduled
on SMs. All threads within a thread block share the same
shared memory space. Within each thread block, threads
are further organized into a set of warps, with each warp
consisting of 32 consecutive threads. All threads within a
warp execute the same instruction at the same time.

2.2. LLM Quantization

This section discusses recent advancements in LLM quanti-
zation with a specific emphasis on weight-only, post-training
quantization (PTQ). In LLMs, there is a pronounced shift
towards quantizing only the weights, as the dominant bot-
tleneck in inference throughput is the memory constraint
imposed by the size of weight parameters, rather than com-
putational requirements. Moreover, Post-Training Quanti-

zation (PTQ) has become a favored method for quantizing
LLMs due to its practicality. Although Quantization-Aware
Training (QAT) typically yields superior performance, its
high training expense frequently renders it impractical (Liu
et al., 2023; Dettmers et al., 2023; Kim et al., 2023a).

GPTQ (Frantar et al., 2023), a pioneering work on weight-
only PTQ for LLM, formulates quantization as a layer-
wise weight reconstruction problem. GPTQ methodically
quantizes each channel in iterations, simultaneously ad-
justing the remaining not-yet-quantized weights to correct
for quantization-induced errors. AWQ (Lin et al., 2023)
performs per-channel scaling to safeguard a small frac-
tion of salient weights as a preprocessing step. Similarly,
QuIP (Chee et al., 2023) preprocesses weights to be more
amenable to quantization, yielding impressive results even
at 2-bit precision. However, its practical utility is in question
as it adds a substantial runtime overhead.

While the aforementioned methods employ uniform quanti-
zation, non-uniform quantization may be a more effective
alternative as it better captures the weight distributions (Gho-
lami et al., 2021). SqueezeLLM (Kim et al., 2023b) pro-
poses a clustering-based LLM quantization that considers
the sensitivity of each weight. Somewhat orthogonal to the
aforementioned studies that primarily focus on rounding
schemes, there are also proposals to use mixed precision
as a way of allocating more bits to sensitive weights (Kim
et al., 2023b; Dettmers et al., 2024; Lee et al., 2024).

3. Motivation
3.1. Need for Deploying Multiple, Different-sized LLMs

Deploying a set of different-sized LLMs provides significant
practical advantages. It enhances user experience by effec-
tively handling queries with varying latency requirements.
Depending on the specific needs of users and applications,
some queries require quick responses, while others can tol-
erate slower response times. Latency requirements become
even more diverse when serving multiple different tasks
concurrently, a common use case of LLMs. For instance,
queries for interactive tasks like chatbots are mostly latency-
sensitive, while tasks like document analysis, often handled
in the background, allow for more relaxed response times.
In fact, the approach of adaptively selecting different DNN
models with various accuracy-latency trade-offs has been
widely studied as a way to effectively meet user require-
ments due to its practical significance (Wan et al., 2020;
Zhang et al., 2020; Han et al., 2016).

Another scenario that necessitates multiple LLMs of varying
sizes is speculative decoding. This popular technique boosts
the throughput of a large model by additionally utilizing one
or more smaller draft models (Leviathan et al., 2023; Chen
et al., 2023; Kim et al., 2023d; Miao et al., 2023).
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Figure 1. Concept of any-precision quantization.

3.2. Challenges of Deploying Multiple, Different-sized
LLMs

In deploying multiple LLMs, we face two practical chal-
lenges: memory overhead and training costs.

Challenge 1: Memory Overhead. First, a large memory
capacity overhead is introduced. As LLMs are typically
substantial in size, maintaining even a few additional smaller
models incurs significant costs. For example, deploying
three tiers of LLMs with varying sizes — a large base model,
a half-sized model, and a quater-sized model — nearly
doubles on the total memory requirement.

Challenge 2: Training Costs. Acquiring multiple different-
sized LLMs is challenging in itself. While some open-
source LLMs such as OPT (Zhang et al., 2022) offer a com-
prehensive range of models with varying parameter counts,
this is usually not the case. Most open-source LLMs offer
only one to three variants, limiting their versatility across
different use scenarios. If a model in the desired size is
unavailable, users must create it by themselves. However,
training an LLM is very costly due to its high computational
needs and large corpus requirement. One approach is to
distill the available large model into smaller ones instead of
training smaller models from scratch (Hinton et al., 2015;
Hsieh et al., 2023; Gu et al., 2024; Zhao et al., 2022; Agar-
wal et al., 2024). While this approach reduces computation
costs, it still entails non-trivial engineering challenges, in-
cluding the need to assemble a proper set of training data
and finding favorable hyperparameters for training.

These two challenges become particularly prominent when
individuals run LLMs on personal platforms like desktops
and mobile devices. In these scenarios — unlike with
datacenter-scale inference — compute, memory, and even
engineering resources are severely limited. Thus, this paper
focuses on addressing the challenges associated with deploy-
ing multiple, different-sized LLMs for on-device inference.

3.3. Our Solution: Any-Precision LLM

Concept. Any-precision quantization, initially introduced
in prior work (Yu et al., 2021), is a promising solution
to mitigate the costs of deploying multiple different-sized

Table 1. Memory savings of any-precision LLM when deployed
on various sets of bit-widths for Llama-2-7B.

Supported
Bit-widths

Any-Precision
LLM

Separate
Deployment

Memory
Savings

{3,6} 5.6 GB 8.3 GB 1.49×
{4,8} 7.7 GB 10.8 GB 1.40×

{3,4,6} 5.6 GB 12.1 GB 2.15×
{3,4,8} 7.7 GB 13.7 GB 1.76×

{3,4,6,8} 7.9 GB 19.1 GB 2.41×
{3,4,5,6,7,8} 8.4 GB 29.9 GB 3.56×

LLMs. Figure 1 visualizes the concept of any-precision
quantization. The core is to derive smaller models (7-bit,
6-bit quantized model, ...) from a large model (8-bit quan-
tized model), referred to as the parent model, by taking
only the upper bits of its parameters. Of course, a special
method tailored for any-precision quantization is required
to ensure that taking just the prefixes of the parent model
parameters does not result in significant quality drops. The
any-precision approach is highly memory-efficient as it al-
lows the utilization of varying bit-width models by only
storing in memory 1) the quantized weights of the parent
model and 2) a set of quantization parameters (e.g. centroid
values) associated with each supported bit-width, relatively
small in size. Also, there is no need to train multiple models.

Table 1 gives a quantitative analysis on the memory sav-
ings of any-precision LLM, the application of any-precision
quantization to LLMs. Without any-precision quantization,
adaptively using models of different bit-widths requires the
deployment of separate models, each taking up its own mem-
ory space. We refer to this strategy as separate deployment.
We compare the required memory space of separate de-
ployment against any-precision LLM, for various scenarios
requiring different sets of bit-widths with the Llama-2-7B
model. Any-precision LLM significantly reduces memory
costs across a range of scenarios, achieving a maximum
saving of 3.56× when supporting all bit-widths from 3 to 8.

Challenges of Any-Precision LLM. While the concept
itself is appealing, there are critical issues in directly ap-
plying the method of the original work (Yu et al., 2021),
which mainly targets CNN models, to LLMs. First, it is a
quantization-aware training (QAT) scheme, requiring mod-
els to be trained from scratch. During training, the for-
ward pass quantizes parameters to varying bit-widths so that
the resulting model is robust to any-precision quantization.
However, for LLMs, training is not affordable to most users.
Second, this work has no regard for memory bandwidth
saving. The entire n-bit parameters of the parent model
are loaded into memory, only then being further quantized
into lower bit-width weights by bit-shifting as needed. This
strategy makes sense for CNN models, which are usually
compute-bound. On the other hand, on-device LLM in-

3



Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Step 1. Seed Model Generation

FP16
Model

Q
uantization

!!-bit
Model

Seed Model Parent Model

Step 2. Incremental Upscaling

!"-bit
Model

Upscaling

!#-bit
Model

Upscaling

!$-bit
Model

Upscaling

…

…
!! = !" + 1, !# = !! + 1,… , !$ = !$%" + 1

Figure 2. Any-precision quantization via incremental upscaling.
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Figure 3. Incremental upscaling from 2 to 3-bit on non-uniform
quantization methods.

ference is highly memory-bound due to its low arithmetic
intensity. Consequently, the memory load of weight param-
eters is the single primary performance bottleneck (Kim
et al., 2023c). Hence, when the original method is applied
to LLMs as-is, operating at low bit-widths may provide lit-
tle inference latency improvements over that of the parent
model. A new solution is required for LLMs, one that incor-
porates both a low-cost any-precision quantization method
and a specialized software engine wherein reduced precision
inference directly translates to actual speed-ups.

4. Any-Precision Quantization for LLM
4.1. Incremental Upscaling

We propose a novel approach to any-precision quantization
of LLMs, termed incremental upscaling. Figure 2 illustrates
the two-stage flow of the any-precision quantization, uti-
lizing incremental upscaling. Assuming a list of candidate
bit-widths ({nk}Kk=1), the initial step quantizes the model
to the minimum supported bit-width (n1), which we refer
to as seed model. Subsequently, we incrementally upscale
the seed model one bit at a time, until we obtain the final
nK -bit parent model. For every incremental upscale from an
ni-bit model to an ni+1-bit model, all parameters of the ni-
bit model are inherited to the ni+1-bit model, and a single
additional bit is appended to the end of each parameter.

4.2. Non-uniform Quantization-based Incremental
Upscaling

For our incremental upscaling-based approach of any-
precision quantization, a particular quantization method
must be adopted as a backbone for both the seed model
generation and the subsequent upscaling process. While any
PTQ method can be employed for this purpose, we rule out
the use of QAT method to ensure that our solution does not

Table 2. Perplexity increase observed in uniform quantization
methods (AWQ, GPTQ) with the application of incremental up-
scaling (IU). The evaluation is performed using Llama-2-7B on
Wikitext2.

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit
AWQ 6.24 5.59 5.50 5.48 5.47 5.47

AWQ+IU INF 22.50 8.16 6.07 5.67
GPTQ 6.73 5.68 5.52 5.48 5.47 5.47

GPTQ+IU 12.7 6.00 5.79 5.74 5.73

involve an expensive training process. Among various PTQ
methods, an optimal choice would be one that 1) demon-
strates state-of-the-art quantization results for the generation
of a quality seed model and 2) seamlessly extends to the
incremental upscaling process. To this end, we utilize the
state-of-the-art clustering-based non-uniform quantization
scheme, SqueezeLLM (Kim et al., 2023b), as the backbone
method. It delivers state-of-the-art results and is readily
compatible with incremental upscaling.

Incremental upscaling with the clustering-based quantiza-
tion method is straightforward. In SqueezeLLM, quantiza-
tion is a process of clustering the parameters, where values
within each cluster are rounded to its centroid. In this light,
incremental upscaling can be achieved by further dividing
each cluster into two sub-clusters. Specifically, we perform
a weighted K-means clustering on the values of each cluster
to generate the two sub-clusters. A sensitivity metric based
on an approximated second-order derivative is used during
clustering, like in the original method.

Figure 3 visualizes the upscaling process on the clustering-
based non-uniform quantization method, assuming the case
of producing a 3-bit model from a 2-bit model. In this
instance, three weight parameters (w1, w3, w4) initially as-
signed to cluster 01— previously rounded to its centroid c01
— are now divided into two new sub-clusters, namely 010
and 011, each with its respective centroids c010 and c011.
The same process is applied to the remaining three clusters
(00, 10, 11), resulting in a final total of eight sub-clusters.

In contrast to clustering-based methods, state-of-the-art
uniform quantization methods often involve complicated
mechanisms such as weight reconstruction (Frantar et al.,
2023) and per-channel scaling (Lin et al., 2023) that are
not readily compatible with incremental upscaling. For ex-
ample, Table 2 presents the results of applying incremental
upscaling to two state-of-the-art uniform methods (AWQ,
GPTQ), using a 3-bit model as the seed model. The up-
scaled models consistently underperform the independently
quantized models, showing unacceptable degradation at low
bit-widths such as 4. We provide an in-depth discussion
on the challenges of applying incremental upscaling on ex-
isting uniform quantization methods, along with additional
experimental results, in Appendix E.
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5. Specialized Software Engine
5.1. Need for New Software Engine

There are multiple GPU kernels designed for the efficient
execution of weight-only-quantized LLMs (NVIDIA; Lin
et al., 2023; Frantar et al., 2023; Kim et al., 2023b; tur-
boderp; Park et al., 2024). While demonstrating promising
performance, most of these existing implementations can-
not support any-precision quantization because of their way
of representing quantized weights. They use a bitpacking-
based representation, illustrated in Figure 4-(a). Bitpacking-
based representations store quantized weights sequentially
in a single 1-D array. With this representation, the entire
weight array has to be loaded even when running a model in
a reduced bit-width. For example in Figure 4-(a), even when
executing a 2-bit or 3-bit model, the full 4-bit values have to
be read from memory. This is because of the coarse-grained
memory access granularity of GPUs, typically 128 bytes.
This results in virtually no performance improvements.

On the contrary, bitplane-based representation is a suit-
able choice for any-precision LLM support. Bitplane-based
representation decomposes quantized weights into n bit-
vectors, where n is the bit-width. Each bit-vector is formed
by taking each bit position of the quantized values. Fig-
ure 4-(b) illustrates the bitplane-based representation. In
this representation, any runtime request of reduced bit-width
directly translates into proportional speedup, as we can sim-
ply load the specified amount of bits. While relatively com-
mon in CPU GEMM implementations (Cowan et al., 2020;
Umuroglu & Jahre, 2017), its adoption in GPUs has not
gained much attention yet. Concurrent to our work, LUT-
GEMM proposes a quantized matrix-vector multiplication
kernel adopting a kind of bitplane-based weight representa-
tion (Park et al., 2024), but it lacks support for any-precision
as it necessitates the generation of distinct weight layouts
to accommodate different bit-widths. More importantly,
LUT-GEMM strictly requires weights to adhere to a specific
format called BCQ (binary-coding quantization) — BCQ
cannot support the codebook-based non-uniform quantiza-
tion method, which we identify as optimal for any-precision
LLM. Hence, a novel software engine that fully supports
both bitplane-based weight representation and non-uniform
quantization is needed.

5.2. System Overview

Figure 5 is an overview of our engine for any-precision
LLM. This figure assumes a scenario where support for 3,
4 and 8-bit is available, and the engine is requested to run
a 4-bit model. For simplicity, we show only a single linear
operation. Weight matrix bitplanes of bit 0 to bit 7, along
with tables containing centroid values for the supported
bit-widths (3, 4, 8-bit), are stored in memory. Assuming
channel-wise quantization, the centroid tables have rows

1 1 0 0 0 0 1 1 0 1 1 1
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Figure 4. Comparison of (a) bitpacking-based and (b) bitplane-
based representations of quantized weights.
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Figure 5. Overview of our specialized engine for any-precision
LLM. We illustrate the engine running a 4-bit model while support
for 3, 4 and 8-bit is available.

equal to the number of output channels (n), with each row
containing 2k values, where k refers to the bit-width. For
each operation, only necessary data is loaded from memory,
which in this case includes the centroid table for 4-bit and
the bitplanes for bit 4, 5, 6, and 7 in this example. The rows
of the centroid table are scattered across the shared memory
of different thread blocks since they are frequently accessed
by all the threads in the block. Meanwhile, the threads load
non-overlapping regions of the weight bitplanes.

Thread-Level Operations. Figure 6 depicts the five step
thread-level operation, assuming a bit-width of 4. 1 First,
each thread starts by loading 32 input activation values
along with their corresponding weights, which are four 32-
bit bit-vectors. 2 Next, the four bit-vectors are rearranged
so that the bits of each weight align contiguously. This
operation is equivalent to the bit-transpose of eight 4-by-4
bit matrices. 3 Subsequently, the bit-transposed bit-vectors
are shifted and masked to obtain the indices for centroid
lookup. 4 The dequantization process is then completed by
fetching centroids from the table in the shared memory. 5
As the final step, Multiply-Accumulate (MAC) operations
are conducted on the dequantized weights with the input
activations. Threads iteratively execute these five steps until
they collectively complete processing the channels assigned
to them, alongside other threads in the warp.
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(a) Input activation access pattern before weight bitplane layout optimization

(b) Input activation access pattern after weight bitplane layout optimization
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Figure 7. Memory access pattern of the 32 threads in a warp (a)
before and (b) after the weight bitplane layout optimization. Simul-
taneously accessed input activation blocks are in the same colors.

5.3. GPU Kernel Optimization

This section describes three GPU kernel optimization tech-
niques aimed at addressing inefficiencies stemming from
the characteristics of bitplane-based quantized GEMM.

Weight Bitplane Layout Optimization. The bitplane-
based representation causes a unique problem for input
activation loading. Figure 7-(a) illustrates this issue. When
reading from GPU memory, it is preferable for all 32 threads
in a warp to access consecutive memory locations so that
the memory accesses can be coalesced into a single request.
As memory access granularity is 128 bytes, it is optimal
when each one of the 32 threads in a warp load consecutive
4-byte blocks (32 weights) from each weight bitplane, to a
total of 128 bytes. Furthermore, threads should also load the
corresponding consecutive 32 input activation values. Since
each activation value is in FP16, each thread needs to load
a 64-byte (32×2) block. As CUDA limits the per-thread
maximum load size to 16 bytes, four memory accesses are
necessary. At each of the four memory accesses, the 32
threads access non-contiguous locations in memory — for
the first access, this is activations 0-7 for thread 0, activa-
tions 32-39 for thread 1, and so on — which is not ideal.

Hence, we suggest permuting bytes in the bitplanes to en-

1 void bit_transpose<4>(uint32_t qw[4], 
2 uint32_t qw_t[4]):
3 uint32_t mask0 = 0x88888888;
4 uint32_t mask1 = 0x44444444;
5 uint32_t mask2 = 0x22222222;
6 uint32_t mask3 = 0x11111111;
7
8 qw_t[0] = 
9 (qw[0]&mask0)|((qw[1]&mask0)>>1)| 
10 ((qw[2]&mask0)>>2)|((qw[3]&mask0)>>3);
11 qw_t[1] = 
12 ((qw[0]&mask1)<<1)|(qw[1]&mask1)| 
13 ((qw[2]&mask1)>>1)|((qw[3]&mask1)>>2);
14 qw_t[2] = 
15 ((qw[0]&mask2)<<2)|((qw[1]&mask2)<<1)| 
16 (qw[2]&mask2)|((qw[3]&mask2)>>1);
17 qw_t[3] = 
18 ((qw[0]&mask3)<<3)|((qw[1]&mask3)<<2)| 
19 ((qw[2]&mask3)<<1)|(qw[3]&mask3);

0 0 0 0 0 0 … 0 0 0

qw[0]&mask0

0 0 0 0 0 0 … 0 0 0

0 0 0 0 0 0 … 0 0 0

0 0 0 0 0 0 … 0 0 0OR

…qw_t[0]=

(qw[1]&mask0)>>1

(qw[2]&mask0)>>2

(qw[3]&mask0)>>3

32 bit

…

…

…

…

…

Figure 8. Efficient bit-transpose operation of our engine.

sure that threads access activations in a coalesced manner.
Figure 7-(b) visualizes the transformation in the weight bit-
plane layout and the resulting activation access pattern. The
indices of weights accessed by each thread are no longer
sequential; instead, the indices of weights in each byte of a
4-byte block are now 256 units apart . For instance, thread
0 processes weights 0-7, 256-263, 512-519, and 768-775,
as opposed to weights 0-31. Consequently, each memory
access of the 32 threads for the activations leads to a coa-
lesced memory access pattern. Such byte permutation of
bitplanes is performed as a part of pre-processing.

Efficient Bit-transpose. In order to dequantize weights,
we have to preform a bit-transpose step (step 2 in Figure 6)
as the weights are represented as bitplanes. This step re-
quires a large number of bitwise operations, becoming the
main overhead. Even an optimized bit-transpose algorithm
requires 38 bitwise operations just to process an 8×8 bit
matrix (Warren, 2012).

Figure 8 describes our optimized bit-transpose algorithm.
The example in the figure assumes a bit-width of 4, taking
four 32-bit bit-vectors as input (qw[4]) and outputting
four new 32-bit bit-vectors (qw_t[4]) in which the bits
of weights are arranged contiguously. The key is to treat a
32-bit bit-vector as eight 4-bit sub-bit-vectors, ensuring that
operations on them effectively function like SIMD (Single
Instruction Multiple Data) operations. With this approach,
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Figure 9. Operations to obtain centroid table lookup addresses (a)
before and (b) after table lookup merging.

we can pack bit positions 0, 4, ..., and 28 from the four input
bit-vectors into a single 32-bit bit-vector with 10 bitwise
operations. This process is repeated three more times for the
other bit positions, completing the entire task. This totals
to 40 bitwise operations — nearly half the number required
(76) if you were to apply the 8×8 bit matrix transpose
algorithm twice instead. This approach is also applicable for
bit-widths of 2 and 8-bit by interpreting a 32-bit bit-vector
as sixteen 2-bit and four 8-bit sub-bit-vectors, respectively.
For non-power-of-2 bit-widths, we seamlessly apply the
algorithm for the next larger bit-width that is a power of 2.

Merging Table Lookups. Bitwise operations for the cen-
troid table index calculation (Step 3 in Figure 6) can also
become a bottleneck, particularly at small bit-widths. Fig-
ure 9-(a) shows how this step works in detail, assuming a
bit-width of 3. After Step 2 of Figure 6, we obtain four 32-
bit bit-vectors (qw_t[0], ..., qw_t[3]), each containing
eight 3-bit indices (idx_0, ..., idx_7) zero-extended to
4 bits. To complete the dequantization for each bit-vector,
eight centroid table lookups are necessary, and each lookup
entails three bitwise operations: the first two for the shifting
and masking to derive indices, and the third for adding the
base address of the table to the indices. Thus, 24 bitwise
operations are required for each bit-vector.

To alleviate this overhead on the 3-bit case, we halve the
number of table lookups by merging two lookups into one,
as depicted in Figure 9-(b). Two adjacent 3-bit indices
([idx_0, idx_1], [idx_2, idx_3], ...) are merged into
a single 6-bit value, serving as a new index for the lookup.
The table is expanded to contain 64 entries instead of 8, con-
taining all possible pairs of centroids ([c0, c0], [c0, c1], ...).
Now we retrieve two centroid values with a single lookup.
The number of required bitwise operations is reduced to
16 for each 32-bit bit-vector: 12 for shifting, masking, and
adding the base address, and the remaining 4 for rearranging
the 32-bit bit-vector. By allowing an acceptable increase in
shared memory usage, we mitigate the compute costs.

6. Evaluation
Through extensive experiments, we demonstrate that our
proposal is an effective way of deploying multiple, different-
sized LLMs by proving the following two arguments:
• A set of quantized models generated from incremental

upscaling, when integrated with the non-unifrom quan-
tization method, match the state-of-the-art quantization
results at their respective bit-widths. (Section 6.1)

• Our specialized engine matches or even outperforms
existing engines while providing memory-efficient any-
precision support, a feature lacking in the existing engines.
(Section 6.2 & Section 6.3)

6.1. Any-Precision Quantization Results

Methodology. We evaluate 4 to 8-bit models obtained
through incremental upscaling, using a 3-bit SqueezeLLM
model as the seed model. The results are compared with
the 4 to 8-bit SqueezeLLM models. We benchmark our
method on LLaMA-2-7B (Touvron et al., 2023), Mistral-
7B (Jiang et al., 2023), and three OPT models (6.7B, 2.7B,
1.3B) (Zhang et al., 2022). We evaluate the models with
two metrics: perplexity on three datasets (WikiText2 (Mer-
ity et al., 2016), PTB (Marcus et al., 1994), C4 (Raffel
et al., 2023)) and zero-shot accuracy on five tasks (ARC-
easy/challenge (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), PIQA (Tata & Patel, 2003), WinoGrande (Sakaguchi
et al., 2021)). Experimental details are in Appendix A.

Results. Table 3 shows the perplexity results. The upscaled
models (SqLLM+IU) nearly match the independently quan-
tized models (SqLLM) across various models, datasets, and
bit-widths. Except in two cases (OPT-6.7B, OPT-1.3B 4-bit
on PTB), the increase in perplexity is negligible (< 0.1).

A similar trend is observed in the zero-shot task results. Ta-
ble 4 presents the average accuracy across five zero-shot
tasks. The upscaled models achieve the same level of accu-
racy as the independently quantized models. The accuracy
drop from upscaling is within 0.2%, with upscaled models
even outperforming in some cases. Full results for each task
are provided in Appendix B.

These results demonstrate that with a single n-bit parent
model generated through incremental upscaling, we can
utilize the full range of 3 to n-bit models, all achieving
state-of-the-art quality at their respective bit-widths.

Runtime of Any-Precision Quantization. Our any-
precision quantization scheme is efficient as it does not
require training and is highly parallelizable. We measure
the runtime of the any-precision quantization process, be-
ginning with a 3-bit seed model and progressing up to the
final 8-bit parent model, on an Intel i9-13900K CPU with 24
cores. Table 5 shows the results. It takes less than a minute
to complete the whole process, even for 7B-scale models.
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Table 3. Perplexity on Wikitext2 (Wiki), C4 and Penn Treebank (PTB) for vanilla SqueezeLLM (SqLLM) and SqueezeLLM integrated
with incremental upscaling (SqLLM+IU) using a 3-bit seed model. We also report the difference between the two methods, highlighting
cases in red where the increase in perplexity exceeds 0.1.

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit FP16
Wiki PTB C4 Wiki PTB C4 Wiki PTB C4 Wiki PTB C4 Wiki PTB C4 Wiki PTB C4 Wiki PTB C4

Llama-2-7B
SqLLM 6.13 8.95 8.20 5.61 8.24 7.44 5.50 8.13 7.30 5.47 8.11 7.27 5.47 8.10 7.27 5.47 8.10 7.26

5.47 8.10 7.26SqLLM+IU - - - 5.62 8.23 7.45 5.50 8.12 7.30 5.47 8.10 7.27 5.47 8.10 7.27 5.47 8.10 7.26
∆ - - - ▲ 0.01 ▼ 0.01 ▲ 0.01 - ▼ 0.01 - - ▼ 0.01 - - - - - - -

Mistral-7B
SqLLM 5.94 9.61 9.33 5.36 8.65 8.55 5.27 8.52 8.41 5.25 8.47 8.39 5.25 8.46 8.38 5.25 8.46 8.38

5.25 8.46 8.38SqLLM+IU - - - 5.39 8.68 8.57 5.28 8.52 8.42 5.25 8.48 8.39 5.25 8.46 8.38 5.24 8.46 8.38
∆ - - - ▲ 0.03 ▲ 0.03 ▲ 0.02 ▲ 0.01 - ▲ 0.01 - ▲ 0.01 - - - - ▼ 0.01 - -

OPT-6.7B
SqLLM 11.60 13.35 13.83 10.96 12.59 13.17 10.84 12.55 13.07 10.84 12.57 13.05 10.86 12.52 13.05 10.86 12.52 13.05

10.86 12.52 13.05SqLLM+IU - - - 11.01 12.82 13.20 10.88 12.55 13.07 10.84 12.55 13.05 10.84 12.55 13.05 10.86 12.55 13.05
∆ - - - ▲ 0.05 ▲ 0.23 ▲ 0.03 ▲ 0.04 - - - ▼ 0.02 - ▼ 0.02 ▲ 0.03 - - ▲ 0.03 -

OPT-2.7B
SqLLM 13.97 15.86 16.11 12.70 14.75 14.95 12.42 14.47 14.78 12.47 14.41 14.75 12.45 14.41 14.73 12.47 14.44 14.73

12.47 14.44 14.73SqLLM+IU - - - 12.72 14.78 15.02 12.47 14.52 14.78 12.45 14.47 14.75 12.47 14.44 14.75 12.47 14.44 14.73
∆ - - - ▲ 0.02 ▲ 0.03 ▲ 0.07 ▲ 0.05 ▲ 0.05 - ▼ 0.02 ▲ 0.06 - ▲ 0.02 ▲ 0.03 ▲ 0.02 - - -

OPT-1.3B
SqLLM 16.30 18.39 18.39 14.93 16.45 16.81 14.64 16.20 16.62 14.61 16.20 16.55 14.61 16.20 16.55 14.61 16.17 16.55

14.64 16.17 16.55SqLLM+IU - - - 14.95 16.59 16.88 14.66 16.23 16.62 14.64 16.20 16.55 14.64 16.20 16.55 14.64 16.17 16.55
∆ - - - ▲ 0.02 ▲ 0.14 ▲ 0.07 ▲ 0.02 ▲ 0.03 - ▲ 0.03 - - ▲ 0.03 - - ▲ 0.03 - -

Table 4. Average zero-shot accuracy on five tasks — ARC-easy,
ARC-challenge, HellaSwag, PIQA, and WinoGrande — for vanilla
SqueezeLLM (SqLLM) and SqueezeLLM integrated with incre-
mental upscaling (SqLLM+IU) using a 3-bit seed model. We also
report the difference between the two methods.

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit FP16

Llama-2-7B
SqLLM 66.2 68.3 68.6 68.8 68.9 68.9

69.0SqLLM+IU - 68.2 68.8 68.9 68.9 69.0
∆ - ▼0.1 ▲0.2 ▲0.1 - ▲0.1

Mistral-7B
SqLLM 71.5 73.2 73.8 74.0 74.1 74.2

74.1SqLLM+IU - 73.3 73.8 74.0 74.2 74.1
∆ - ▲0.1 - - ▲0.1 ▼0.1

OPT-6.7B
SqLLM 58.6 59.9 60.6 60.7 60.7 60.8

60.8SqLLM+IU - 60.3 60.6 60.7 60.8 60.7
∆ - ▲0.4 - - ▲0.1 ▼0.1

OPT-2.7B
SqLLM 54.3 55.8 56.3 56.2 56.3 56.3

56.4SqLLM+IU - 55.7 56.1 56.2 56.4 56.3
∆ - ▼0.1 ▼0.2 - ▲0.1 -

OPT-1.3B
SqLLM 50.7 52.7 52.9 53.4 53.4 53.3

53.3SqLLM+IU - 52.6 53.1 53.3 53.4 53.3
∆ - ▼0.1 ▲0.2 ▼0.1 - -

Table 5. Runtime (sec) of the proposed any-precision quantization
scheme, composed of two stages: seed model generation (Seed
Gen) and incremental upscaling (IU).

Llama-2-7B Mistral-7B OPT-6.7B OPT-2.7B OPT-1.3B
Seed Gen 36.2 37.2 37.0 14.0 6.4

IU 15.6 18.2 12.8 6.2 3.0
Total 51.8 55.4 49.8 20.2 9.4

6.2. Kernel Microbenchmarks

Methodology. We evaluate the latency of matrix-vector mul-
tiplication of our kernel on the three matrix dimensions used
in Llama-2-7B, and compare with the existing kernel for
non-uniform quantization proposed in SqueezeLLM (Kim
et al., 2023b). Note that the SqueezeLLM kernel only sup-
ports 3 and 4 bits. We conduct experiments on three GPUs
of varying scales: RTX 4090 (desktop), RTX 4070 Laptop
(laptop), and Jetson AGX Orin 64 GB (mobile). We use
NVIDIA Nsight Compute to measure latency.

Results. Table 6 shows the results. Our kernel consistently
achieves low latency for various matrix sizes and platforms,
showing a near-linear improvement against the cuBLAS
FP16 baseline as the bit-width decreases. Compared to the

RTX 4090 RTX 4070 Laptop Jetson AGX Orin

+ WLO + WLO + IBT + WLO + IBT + TLM

8 7 6 5 4 3 8 7 6 5 4 3 8 7 6 5 4 3

60%

0%

40%

80%

20%

Figure 10. Ablation study of kernel optimization techniques. The
speedup over the baseline for matrix-vector multiplication of di-
mensions (1,4096) and (11008,4096) is reported.

SqueezeLLM kernel, our kernel performs on par on the RTX
4090 and RTX 4070 Laptop, and goes on to exhibit substan-
tial improvements on Jetson. Note that our kernel achieves
the performance despite adopting the bitplane-based weight
representation to support any-precision, which entails non-
trivial engineering challenges such as addressing the in-
creased amount of bitwise operations for bit-transpose. Ad-
ditional results with a wider range of matrix dimensions
and comparison against uniform quantization kernels can
be found in Appendix C.1 and C.2.

Ablation Study. Figure 10 shows how the kernel perfor-
mance improves with the introduction of each of the three
optimization techniques: 1) weight bitplane layout opti-
mization (WLO); 2) improved bit-transpose algorithm over
the existing one (Warren, 2012) (IBT); and 3) table lookup
merging (TLM) for the case of 3-bit. While all three opti-
mization techniques significantly contribute to improving
kernel performance, there are two notable trends. First, the
optimization effect is more pronounced on lower bit-widths.
This is because, at higher bit-widths, the global memory
bandwidth tends to be the sole bottleneck, whereas our tech-
niques primarily optimize cache access patterns (WLO) and
computations (IBT, TLM) — aspects that become more crit-
ical at lower bit-widths. Second, the optimization effect is
more pronounced on Jetson AGX Orin. This is attributed to
its limited on-chip cache and compute resources.
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Table 6. Matrix-vector multiplication speedup of our kernel over the cuBLAS FP16 baseline on three weight sizes of Llama-2-7B,
compared against the existing kernel for non-uniform quantization (SqLLM).

(1, 4096) × (4096, 4096) (1, 4096) × (11008, 4096) (1, 11008) × (4096, 11008)
3-bit 4-bit 5-bit 6-bit 7-bit 8-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

RTX 4090 Ours ×3.99 ×3.03 ×2.61 ×2.18 ×1.87 ×1.56 ×4.67 ×3.43 ×2.82 ×2.44 ×2.13 ×1.78 ×4.45 ×3.42 ×2.74 ×2.28 ×2.08 ×1.81
SqLLM ×3.69 ×3.07 - - - - ×4.08 ×3.12 - - - - ×4.22 ×3.17 - - - -

RTX 4070
Laptop

Ours ×4.97 ×3.73 ×3.01 ×2.51 ×2.10 ×1.76 ×5.15 ×3.84 ×3.07 ×2.46 ×2.06 ×1.72 ×5.29 ×3.66 ×3.05 ×2.52 ×2.13 ×1.87
SqLLM ×4.74 ×3.66 - - - - ×5.05 ×3.76 - - - - ×5.29 ×3.93 - - - -

Jetson
AGX Orin

Ours ×3.84 ×3.02 ×2.56 ×2.33 ×2.10 ×1.78 ×4.20 ×3.31 ×2.72 ×2.47 ×2.18 ×1.84 ×4.35 ×2.96 ×2.54 ×2.52 ×2.16 ×1.86
SqLLM ×3.15 ×1.94 - - - - ×3.30 ×1.98 - - - - ×3.36 ×2.04 - - - -
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Figure 11. Latency comparison of 4-bit quantized matrix-matrix
multiplication using our kernel, separate dequantization followed
by cuBLAS FP16 kernel, and cuBLAS FP16 kernel on RTX 4090.
Matrix dimensions are (M , 4096) and (11008, 4096), with M
varying from 1 to 512.

Matrix-Matrix Multiplication Performance. Even for our
target setting of running a model on personal devices, where
a single query is typically served at a time, efficient matrix-
matrix multiplication is necessary for two reasons. First, the
batch size might not always be 1; it can be small (e.g., 2, 4,
8). Even in a single query, multiple tokens are generated
in parallel when using advanced decoding algorithms like
beam search (Sutskever et al., 2014) and parallel sampling.
Speculative decoding also requires the parallel processing
of multiple tokens. Second, during the prefill phase, the
tokens in the input prompt are processed together, with their
number potentially reaching into the hundreds or thousands.

The red line in Figure 11 illustrates the latency of our kernel
for 4-bit quantized matrix-matrix multiplication with dimen-
sions (M , 4096) and (11008, 4096) on an RTX 4090, with
M varying from 1 to 512. Our kernel performs robustly with
small M values such as 2, 4, and 8, showing a significant
latency gap compared to the cuBLAS baseline (green line).
This indicates that our kernel is also effective for generation
with small batch sizes. Similar results are observed for other
bit-widths and platforms, as detailed in Appendix C.3.

When M becomes very large, however, as in the prefill
phase, our kernel becomes slower than the cuBLAS FP16
baseline (green line). This slowdown occurs because our
kernel does not use tensor cores, making it more susceptible
to increases in computation with large M . To mitigate po-
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Figure 12. End-to-end throughput of Llama-2-7B.

tential slowdown of the prefill phase, our engine dequantizes
the weights using a separate kernel and then employs the
cuBLAS kernel when M exceeds a certain threshold (e.g.,
16). The latency gap between the dequantization + cuBLAS
(represented by the yellow line) and cuBLAS remains al-
most constant (about 100 µs), as dequantization time does
not scale with M . This limited performance degradation
of the prefill phase is small enough to be easily amortized
when the generation length is sufficiently long.

6.3. End-to-end Throughput

We evaluate the end-to-end inference throughput of our en-
gine by integrating it with TensorRT-LLM (NVIDIA). Fig-
ure 12 shows the throughput of Llama-2-7B in generating
128 and 1024 tokens on RTX 4090 and RTX 4070 Lap-
top. TensorRT-LLM currently lacks support for Jetson. The
enhanced kernel performance effectively translates into an
end-to-end speedup. A slightly lower speedup with a longer
sequence length (1024) is due to the increased overhead of
attention, which is not accelerated by weight quantization.
Results for the other models are in Appendix D.

7. Conclusion
We make a case for any-precision LLM, which enables
memory-efficient and cost-effective deployment of multiple,
different-sized LLMs. We propose a lightweight method for
any-precision quantization of LLM, along with a specialized
software engine to fully leverage its benefits.
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A. Evaluation Details
A.1. Datasets

For WikiText-2, we concatenate on the test set to form a
continuous string for perplexity evaluation. For C4, we
concatenate samples from the validation set, as using the
whole unsampled dataset is infeasible and impractical due to
the large size of the dataset. For the Penn Treebank dataset,
we concatenate on the test set. In its original state, rare
words are replaced with "<unk>" — we modify this by
splitting each "<unk>" into five separate characters: "<",
"u", "n", "k", and ">". This approach prevents the tokenizer
from recognizing "<unk>" as a special unknown token,
which would significantly increase model perplexity due to
the inability to predict occurrences of unknown words. By
treating each character of "<unk>" as a regular token, we
maintain consistent token processing.

A.2. Perplexity Calculations

To evaluate a given string, we start by tokenizing it with
the default HuggingFace tokenizer of each model. Then
we chunk the sequence into non-overlapping segments of
length 2048, as in the manner of previous works (Frantar
et al., 2023) (Kim et al., 2023b). We process these segments
through the model to collect the log-probabilities of subse-
quent token generation. The final perplexity we report is the
exponentiated average of these log-probabilities.

A.3. Zero-shot Tasks

We use the Language Model Evaluation Harness framework
(Gao et al., 2023) to evaluate our models on zero-shot tasks.
We report the byte-length normalized accuracy where appli-
cable.

B. Full Results on Zero-shot Tasks
The data in Table 8 presents the full results for each of the
five zero-shot tasks (ARC-easy, ARC-challenge, HellaSwag,
PIQA, WinoGrande). The results indicate that the SqLLM
models with incremental upscaling (SqLLM+IU) match the
independently quantized SqLLM models across a range of
tasks, models, and bit-widths.

C. Additional Kernel Microbenchmark
Results

C.1. Kernel Latency on Various Matrix Sizes

Table 9 presents the latency of of our kernel for matrix-
vector multiplication across various matrix sizes. We select
the matrix sizes that are used in Llama-2-7B, Mistral-7B,
OPT-6.7B, OPT-2.7B and OPT-1.3B.

C.2. Comparison with Kernels for Uniform
Quantization

Table 10 provides a comparison of our kernel’s matrix-
vector multiplication performance against existing kernels
designed for uniform quantization: ExLlamaV2 (turboderp),
LUT-GEMM (Park et al., 2024), AWQ (Lin et al., 2023),
TensorRT-LLM (NVIDIA). Note that this is not an apples-to-
apples comparison as they lack any-precision support. They
are specifically tailored for uniform quantization and/or
employ a bitpacking-based weight representation. Never-
theless, our kernel demonstrates competitive performance,
achieving the best results in the majority of cases.

C.3. Matrix-Matrix Multiplication Performance

Table 11 shows the matrix-matrix multiplication perfor-
mance with small batch sizes (2, 4, 8) on our kernel to
test its applicability on the small-batch use cases mentioned
above. Our kernel demonstrates impressive performance for
multiple batches on both the RTX 4090 and RTX 4070 Lap-
top, with less than a 30% drop in performance compared to
single-batch processing in most scenarios. The exceptions
are in cases with very low bit-widths, like 3 and 4-bit, where
the performance difference might be more pronounced. This
trend slightly varies for Jetson AGX Orin, which has highly
limited compute resources, but still delivers commendable
results, particularly for batch sizes of 2 and 4.

D. Additional End-to-End Throughput
Evaluation Results

Figure 13 shows the end-to-end inference throughput of
Mistral-7B, OPT-6.7B, OPT-2.7B and OPT-1.3B.

E. Incremental Upscaling with Uniform
Quantization Methods

In this section, we elaborate on our endeavor to apply incre-
mental upscaling to the two state-of-the-art uniform quan-
tization methods (GPTQ, AWQ), which ultimately results
in failure. Figure 14 illustrates the process of incremental
upscaling with uniform quantization methods. Upscaling on
uniform quantization methods requires that each bin in the
quantization grid be divided equally; this is in contrast with
non-uniform quantization, where each bin in the quantiza-
tion grid can be divided into two new bins of arbitrary sizes.
Naturally, each bin’s midpoint becomes its representative
value. With these premises, Appendix E.1 and E.2 discuss
issues with upscaling GPTQ and AWQ, respectively.

E.1. Incremental Upscaling with GPTQ

Algorithm 1 presents a modified version of GPTQ that addi-
tionally includes a clamping operation to preserve the essen-
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Figure 13. End-to-end throughput of Mistral-7B, OPT-6.7B, OPT-
2.7B and OPT-1.3B.

tial weight-inheriting characteristic of the upscaling process.
While clamping is necessary, it detrimentally forces weights
to suboptimal values — hence it is desirable for clamping
to occur sparingly. As the algorithm processes each col-
umn of the weight matrix, it updates the error-compensated
weights Wn+1 and, in correlation, generates the quantized
weights Qn+1. Therefore, to limit clamping, Wn+1 must
evolve similarly to Wn, the error-compensated weights of
the previous n-bit quantization, ensuring that Qn+1 remains
closely related to Qn. However, this is not the observed
case. Wn and Wn+1, despite both starting as the original
weight W , soon begin to diverge. The rounding functions
RTNn and RTNn+1 produce subtly different outcomes,
leading to varied compensation for Wn and Wn+1. Initially
minor, this divergence grows over time, eventually necessi-
tating clamping. Clamping then triggers a positive feedback
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Figure 14. Incremental upscaling from 2-bit to 3-bit with uniform
quantization methods.

Algorithm 1 Incremental Upscaling of GPTQ
Input: W, Qn // original weight, n-bit quantized weight
Output: Qn+1 // (n+1)-bit quantized weight

Qn+1 = 0K×N

Wn+1 = W
for i = 0, ..., N do

Qn+1[:, i]← RTNn+1(Wn+1[:, i])
Qn+1[:, i]← clamp(Qn+1[:, i],Qn[:, i]× 2,Qn[:, i]×
2 + 1)
E← compute_err(Qn+1[:, i],Wn+1[:, i])
Wn+1[:, i :]← compensate_err(Wn+1[:, i :],E)

return Qn+1

loop, exacerbating disturbances in the upscaling process and
further increasing clamping occurrences.

In Figure 15 we have randomly sampled six different weight
matrices to demonstrate this runaway clamping effect. The
error-compensated weight values W3 and W4 evolve differ-
ently in the seed 3-bit and upscaled 4-bit quantizations of
the Llama-2-7B model. As the algorithm iterates over the
columns, we plot the root-mean-square deviation (RMSD)
of W4 against W3 on the left axis, along with the average
clamping amount per weight value on the right axis. For
all six matrices, the divergence between W3 and W4 starts
small, but once the clamping amount starts to grow, it does
so exponentially — eventually leading to drastic errors.

The resulting instability of the upscaling process leads to
the large quality drops shown in Table 7, making GPTQ
unfavorable for any-precison support. GPTQ-R refers to
GPTQ with activation reordering.

E.2. Incremental Upscaling with AWQ

The AWQ process comprises two main steps, as depicted
in Figure 16(a). Initially, weight parameters, denoted as W ,
undergo a preprocessing phase to become Wn, involving
channel-wise scaling and clipping adjustments tailored to
the rounding function in use. For instance, in 3-bit quan-
tization, the preprocessing involves W and a specific 3-bit
rounding function, RTN3, which segments the value range

14
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Figure 15. RMSD between the error-compensated weight matrices
W3 and W4, along with the average clamping amount per weight,
as the modified GPTQ algorithm progresses along the columns of
Llama-2-7B.

into 23 equal parts for rounding. This step includes a grid
search to determine the optimal scaling and clipping for
minimal error post-rounding. Once preprocessing is final-
ized, applying RTN3 to Wn yields the quantized weights,
Q3. This methodology is adaptable for other bit-widths by
substituting the appropriate rounding function, like RTN4

or RTN5, to suit the desired quantization precision.

When applying upscaling to AWQ, however, the preprocess-
ing step used for the initial 3-bit model is reused across all
bit-widths during upscaling, rather than tailoring preprocess-
ing to each specific bit-width. This approach is depicted
in Figure 16(b) and is necessary to support any-precision
quantization. For instance, upscaling from a 3-bit to a 4-
bit model involves using the preprocessing result W3 from
the 3-bit model and applying a function, RTN3→4, that
redistributes values into 24 bins by further dividing each
3-bit bin. This uniform preprocessing strategy is maintained
for all upscaling steps to higher bit-widths. Although this
method ensures consistency across quantizations, it relies
on preprocessing factors optimized only for the seed model,
which may not be ideal for upscaled models. The round-
ing functions used during upscaling, such as RTN3→4 and

𝕎 Preprocess

𝑅𝑇𝑁!

𝕎$ 𝑅𝑇𝑁!

Preprocess

𝑅𝑇𝑁"

𝕎% 𝑅𝑇𝑁"

Preprocess

𝑅𝑇𝑁#

𝕎& 𝑅𝑇𝑁#

𝕎 Preprocess

𝑅𝑇𝑁!

𝕎$ 𝑅𝑇𝑁! ℚ$

𝑅𝑇𝑁!→" ℚ%

𝑅𝑇𝑁"→# ℚ&

ℚ$

ℚ%

ℚ&
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(a) (b)

Figure 16. High-level abstraction of (a) original AWQ method and
(b) AWQ with incremental upscaling.

RTN4→5, differ from the seed model’s RTN3 in both the
number of bins, the distribution of values, as well as whether
a zero-point exists, which can lead to performance degrada-
tion as demonstrated in Table 7.
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Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Table 9. Latency of our kernel on matrix-vector multiplication of various dimensions.
GPU Model Matrix Size 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit FP16

RTX 4090

OPT-1.3B
2048 x 2048 4.73 5.95 6.63 7.13 7.95 9.06 12.16
8192 x 2048 9.72 12.65 14.82 17.82 22.42 27.92 38.66
2048 x 8192 9.78 12.88 15.60 18.15 21.45 24.14 42.62

OPT-2.7B
2560 x 2560 5.89 7.45 8.26 9.00 10.16 11.77 19.55

10240 x 2560 14.29 20.34 24.30 28.26 32.81 38.80 58.50
2560 x 10240 13.88 18.83 22.68 26.80 37.60 40.59 60.90

Llama-2-7B
4096 x 4096 9.67 12.73 14.80 17.72 20.64 24.69 38.59

11008 x 4096 21.90 29.80 36.26 41.95 48.13 57.44 102.34
4096 x 11008 23.16 30.09 37.56 45.19 49.55 56.98 103.04

Mistral-7B 14336 x 4096 28.73 39.00 46.13 52.06 62.16 74.44 132.38
4096 x 14336 27.69 36.43 43.65 50.57 61.83 69.77 134.78

OPT-6.7B 16384 x 4096 30.72 42.12 49.84 59.13 69.99 86.55 150.34
4096 x 16384 30.80 40.63 48.83 57.47 69.96 79.35 156.70

RTX 4070 Laptop

OPT-1.3B
2048 x 2048 9.64 12.63 15.04 17.79 20.85 24.79 36.74
8192 x 2048 28.93 38.26 47.46 58.08 71.17 87.97 142.05
2048 x 8192 29.27 39.49 48.17 56.01 68.52 77.58 145.76

OPT-2.7B
2560 x 2560 13.92 18.94 22.56 26.00 29.94 35.26 57.66

10240 x 2560 43.90 60.75 75.12 90.90 107.90 134.34 219.30
2560 x 10240 42.78 58.30 71.78 85.25 102.77 116.97 220.10

Llama-2-7B
4096 x 4096 28.57 38.12 47.16 56.55 67.48 80.65 142.05

11008 x 4096 71.71 96.22 120.09 149.99 179.50 214.07 369.12
4096 x 11008 72.21 104.42 125.35 151.54 179.48 204.47 382.21

Mistral-7B 14336 x 4096 92.42 124.22 161.02 193.62 232.61 276.84 478.08
4096 x 14336 92.53 134.28 164.77 197.07 223.79 258.43 484.10

OPT-6.7B 16384 x 4096 105.06 145.05 182.29 220.29 261.84 311.81 545.12
4096 x 16384 104.97 151.25 191.31 224.63 253.72 291.27 546.66

Jetson AGX Orin

OPT-1.3B
2048 x 2048 20.81 25.88 28.88 31.58 34.70 39.86 57.66
8192 x 2048 58.37 72.80 85.00 94.15 106.76 126.68 198.18
2048 x 8192 53.22 67.72 81.98 88.53 108.69 112.26 207.14

OPT-2.7B
2560 x 2560 30.49 38.88 43.60 47.57 51.97 58.90 84.83

10240 x 2560 92.90 118.15 142.74 154.36 171.82 191.68 304.90
2560 x 10240 77.66 99.02 119.97 130.06 148.89 170.22 322.56

Llama-2-7B
4096 x 4096 53.87 68.54 80.96 88.65 98.43 116.01 206.88

11008 x 4096 128.10 162.52 198.02 217.67 246.35 291.93 538.21
4096 x 11008 127.33 186.92 218.29 219.58 256.50 297.60 553.73

Mistral-7B 14336 x 4096 164.20 209.12 255.67 282.39 321.54 377.20 691.33
4096 x 14336 158.01 206.10 252.93 284.34 328.82 359.19 717.70

OPT-6.7B 16384 x 4096 186.25 237.60 289.68 321.12 361.60 430.34 788.32
4096 x 16384 179.27 236.02 288.04 312.59 352.66 404.15 805.25
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Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Table 10. Comparison of matrix-vector multiplication latency against existing uniform quantization kernels. The best results are highlighted
for each case.

GPU RTX 4090 RTX 4070 Laptop Jetson AGX Orin
Matrix Size 4096x4096 11008x4096 4096x11008 4096x4096 11008x4096 4096x11008 4096x4096 11008x4096 4096x11008

ExLlamaV2 12.15 24.89 24.95 31.8 74.72 74.94 67.1 137.5 134.45
LUT-GEMM 12.52 25.03 25.39 35.04 83.23 85.05 61.9 131.66 140.363-bit

Ours 9.67 21.90 23.16 28.57 71.71 72.21 53.87 128.10 127.33
ExLlamaV2 14.89 31.11 31.88 41.57 97.25 97.28 81.1 171.61 172.68

AWQ 13.89 30.96 30.21 41.04 100.83 105.26 73.12 176.69 177.77
TRT-LLM 12.58 29.34 27.94 39.58 96.86 98.98 - - -

LUT-GEMM 14.78 31.73 31.78 45.35 108.33 109.87 71.64 164.27 170.49
4-bit

Ours 12.73 29.8 30.09 38.12 96.22 104.42 68.54 162.52 186.92
ExLlamaV2 16.1 35.92 36.11 48.39 120.49 120.75 90.68 194.54 194.19
LUT-GEMM 17.52 38.39 38.72 54.17 137.43 138.76 87.37 203.21 221.475-bit

Ours 14.80 36.26 37.56 47.16 120.09 125.35 80.96 198.02 218.29
ExLlamaV2 19.74 43.06 43.48 58.15 147.21 147.84 101.75 228.82 223.38
LUT-GEMM 19.37 45.14 46.26 66.45 165.59 166.18 100.46 236.18 251.026-bit

Ours 17.72 41.95 45.19 56.55 149.99 151.54 88.65 217.67 219.58
LUT-GEMM 22.54 51.81 51.54 73.23 191.64 192.36 117.89 273.49 301.487-bit Ours 20.64 48.13 49.55 67.48 179.50 179.48 98.43 246.35 256.50
ExLlamaV2 23.52 53.07 53.55 75.79 193.00 192.91 129.96 303.93 292.41
LUT-GEMM 25.04 59.27 59.01 83.61 216.59 217.3 125.12 308.45 328.928-bit

Ours 24.69 57.44 56.98 80.65 214.07 204.47 116.01 291.93 297.6
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Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Table 11. Matrix-matrix multiplication latency of our kernel with batch sizes of 2, 4 and 8. We also present the rate of latency increase
against single-batch for each case. Cases with latency increases of less than 30% are highlighted in blue, while those which exhibit more
than a twofold increase are highlighted in red.

GPU RTX 4090 RTX 4070 Laptop Jetson AGX Orin
BS 4096x4096 11008x4096 4096x11008 4096x4096 11008x4096 4096x11008 4096x4096 11008x4096 4096x11008

3-bit

1 9.67 21.90 23.16 28.57 71.71 72.21 53.87 128.10 127.33
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 10.73 23.77 28.36 33.72 72.87 88.15 59.81 141.49 152.23
(×1.11) (×1.09) (×1.22) (×1.18) (×1.02) (×1.22) (×1.11) (×1.10) (×1.20)

4 11.98 32.27 30.45 32.65 76.79 80.50 87.93 215.84 216.02
(×1.24) (×1.47) (×1.31) (×1.14) (×1.07) (×1.11) (×1.63) (×1.68) (×1.70)

8 15.65 44.29 40.55 51.12 121.58 125.21 151.02 388.55 378.78
(×1.62) (×2.02) (×1.75) (×1.79) (×1.70) (×1.73) (×2.80) (×3.03) (×2.97)

4-bit

1 12.73 29.80 30.09 38.12 96.22 104.42 68.54 162.52 186.92
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 13.93 37.92 39.12 41.38 100.14 107.57 75.91 183.80 191.78
(×1.09) (×1.27) (×1.30) (×1.09) (×1.04) (×1.03) (×1.11) (×1.13) (×1.03)

4 14.93 38.53 39.17 41.99 101.35 106.85 95.10 232.20 240.12
(×1.17) (×1.29) (×1.30) (×1.10) (×1.05) (×1.02) (×1.39) (×1.43) (×1.28)

8 17.53 48.71 45.45 57.37 135.49 140.48 175.37 452.44 430.61
(×1.38) (×1.63) (×1.51) (×1.51) (×1.41) (×1.35) (×2.56) (×2.78) (×2.30)

5-bit

1 14.80 36.26 37.56 47.16 120.09 125.35 80.96 198.02 218.29
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 15.40 36.33 42.67 49.26 122.81 138.92 85.92 208.13 218.24
(×1.04) (×1.00) (×1.14) (×1.04) (×1.02) (×1.11) (×1.06) (×1.05) (×1.00)

4 18.33 42.45 47.52 51.62 124.37 135.16 104.15 254.89 263.17
(×1.24) (×1.17) (×1.27) (×1.09) (×1.04) (×1.08) (×1.29) (×1.29) (×1.21)

8 22.53 50.97 54.47 61.49 134.38 152.76 136.60 334.85 446.29
(×1.52) (×1.41) (×1.45) (×1.30) (×1.12) (×1.22) (×1.69) (×1.69) (×2.04)

6-bit

1 17.72 41.95 45.19 56.55 149.99 151.54 88.65 217.67 219.58
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 17.89 43.41 48.21 61.90 158.64 173.25 93.35 223.61 236.13
(×1.01) (×1.03) (×1.07) (×1.09) (×1.06) (×1.14) (×1.05) (×1.03) (×1.08)

4 20.61 47.45 53.43 59.48 153.59 161.73 110.99 271.59 284.77
(×1.16) (×1.13) (×1.18) (×1.05) (×1.02) (×1.07) (×1.25) (×1.25) (×1.30)

8 25.19 55.84 60.69 70.47 165.17 177.89 148.84 362.45 502.36
(×1.42) (×1.33) (×1.34) (×1.25) (×1.10) (×1.17) (×1.68) (×1.67) (×2.29)

7-bit

1 20.64 48.13 49.55 67.48 179.50 179.48 98.43 246.35 256.50
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 21.74 49.79 56.18 70.92 183.65 189.63 105.25 255.30 268.83
(×1.05) (×1.03) (×1.13) (×1.05) (×1.02) (×1.06) (×1.07) (×1.04) (×1.05)

4 23.92 52.73 60.77 69.44 181.75 185.54 122.35 295.96 319.96
(×1.16) (×1.10) (×1.23) (×1.03) (×1.01) (×1.03) (×1.24) (×1.20) (×1.25)

8 28.15 59.43 67.21 79.33 193.08 205.41 157.09 384.32 517.72
(×1.36) (×1.23) (×1.36) (×1.18) (×1.08) (×1.14) (×1.60) (×1.56) (×2.02)

8-bit

1 24.69 57.44 56.98 80.65 214.07 204.47 116.01 291.93 297.60
(×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00) (×1.00)

2 26.64 58.35 67.43 81.81 220.69 218.08 123.00 300.90 319.13
(×1.08) (×1.02) (×1.18) (×1.01) (×1.03) (×1.07) (×1.06) (×1.03) (×1.07)

4 27.46 59.28 68.35 82.97 217.70 212.40 136.70 335.56 351.07
(×1.11) (×1.03) (×1.20) (×1.03) (×1.02) (×1.04) (×1.18) (×1.15) (×1.18)

8 31.75 66.29 71.24 90.61 224.79 225.71 172.31 416.19 529.39
(×1.29) (×1.15) (×1.25) (×1.12) (×1.05) (×1.10) (×1.49) (×1.43) (×1.78)

FP16 38.59 102.34 103.04 142.05 369.12 382.21 206.88 538.21 553.73
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