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Abstract001

Existing Multimodal Large Language Mod-002
els (MLLMs) are predominantly trained and003
tested on consistent visual-textual inputs, leav-004
ing open the question of whether they can han-005
dle inconsistencies in real-world, layout-rich006
content. To bridge this gap, we propose the007
Multimodal Inconsistency Reasoning (MMIR)008
benchmark to assess MLLMs’ ability to detect009
and reason about semantic mismatches in ar-010
tifacts such as webpages, presentation slides,011
and posters. MMIR comprises 534 challenging012
samples, each containing synthetically injected013
errors across five reasoning-heavy categories:014
Factual Contradiction, Identity Misattribution,015
Contextual Mismatch, Quantitative Discrep-016
ancy, and Temporal/Spatial Incoherence. We017
evaluate six state-of-the-art MLLMs, showing018
that models with dedicated multimodal reason-019
ing capabilities, such as o1, substantially out-020
perform their counterparts while open-source021
models remain particularly vulnerable to incon-022
sistency errors. Detailed error analyses further023
show that models excel in detecting inconsis-024
tencies confined to a single modality, partic-025
ularly in text, but struggle with cross-modal026
conflicts and complex layouts. Probing exper-027
iments reveal that single-modality prompting,028
including Chain-of-Thought (CoT) and Set-of-029
Mark (SoM) methods, yields marginal gains,030
revealing a key bottleneck in cross-modal rea-031
soning. Our findings highlight the need for032
advanced multimodal reasoning and point to033
future research on multimodal inconsistency.034

1 Introduction035

Recent advances in Large Language Models036

(LLMs) have demonstrated impressive reasoning037

abilities across a variety of tasks (OpenAI, 2024b;038

Guo et al., 2025; Kojima et al., 2022; Wei et al.,039

2022). Building on pre-trained LLMs, Multimodal040

Large Language Models (MLLMs) are fast evolv-041

ing. However, they usually face greater challenges042

as they need to reason across different modalities,043

Multimodal Inconsistency
Reasoning (MMIR)

Inconsistency Rationale: 
Brand identity is misattributed to IKEA AB in ID 15, which
conflicts with the Lorell branding in ID 25, 26.

15

25

26

Could you help me spot any errors?

Let me check, there
is a mismatched
element ...

Figure 1: An illustration of multimodal inconsistency
reasoning on a webpage. An agent examines a web-
page where the brand “IKEA AB” is mentioned, but
other elements clearly refer to “Lorell.” Detecting this
brand identity misattribution requires the ability to com-
pare text fields across different sections of the page
and reconcile them with accompanying images or con-
text—an inherently multimodal reasoning task.

especially when inconsistencies (i.e., mismatched 044

or contradictory contents) exist. We find that, be- 045

ing primarily trained and evaluated on consistent 046

visual-textual inputs, existing MLLMs are largely 047

untested in scenarios where the input contains mis- 048

aligned or contradictory information—a situation 049

that is common in real-world scenarios. For ex- 050

ample, in Figure 1, a user presents a web page 051
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containing conflicting visual and textual elements,052

asking the model to identify errors.053

To comprehensively evaluate the ability of054

MLLMs in reasoning over multimodal inconsis-055

tency, we introduce the Multimodal Inconsistency056

Reasoning Benchmark (MMIR). MMIR is the057

first framework dedicated to evaluating how ef-058

fectively MLLMs can reason about and identify059

semantic mismatches within complex, layout-rich060

content with interleaved image and text compo-061

nents. Our benchmark is built on a diverse collec-062

tion of real-world artifacts (e.g. websites, slides,063

posters) which have been augmented with syn-064

thetic inconsistencies—realistic inconsistency er-065

rors injected into their original structures. These066

inconsistency errors span a range of reasoning-067

heavy categories: Factual Contradiction, Iden-068

tity Misattribution, Contextual Mismatch, Quan-069

titative Discrepancy, and Temporal/Spatial Inco-070

herence—posing a next-level reasoning challenge071

for models. For example, resolving a Identity072

Misattribution involves verifying entity alignment073

across modalities, while Quantitative Discrepancy074

requires cross-referencing chart data with textual075

claims. By challenging models to detect such in-076

consistencies, MMIR forces them to perform intri-077

cate reasoning that goes well beyond simple pattern078

recognition. This benchmark not only exposes the079

limitations of current MLLMs in handling real-080

world challenges of reasoning over multimodal081

content with inconsistency, but also provides a plat-082

form for developing more robust multimodal rea-083

soning systems.084

In our experiments, we evaluated the ad-085

vanced multimodal reasoning model o1 (OpenAI,086

2024b) and five other state-of-the-art MLLMs:087

GPT-4o (OpenAI, 2024a), Qwen2.5-VL (Team,088

2025), LLaVA-NeXT (Liu et al., 2024b), In-089

ternVL2.5 (Chen et al., 2024) and Phi-3.5-090

Vision (Abdin et al., 2024) using MMIR’s 534 test091

samples. The results overall underscore that cur-092

rent MLLM models struggle with multimodal in-093

consistency reasoning. Specifically, there is a stark094

contrast between proprietary and open-source mod-095

els. The open-source models evaluated only reach096

less than 25% accuracy. o1 with strong reasoning097

capability achieves the overall best performance098

with over 50% accuracy.099

To further understand the benchmarking results,100

we conduct analysis based on the inconsistency101

category, modality, and layout complexity of the102

artifact. We find the proprietary models excel in103

identifying factual contradiction and identity mis- 104

attribute types of inconsistency and inconsistency 105

within a single modality, either image or text. Last 106

but not least, we investigate some approaches to en- 107

hance the model performance in our probing exper- 108

iment. The results indicate that text-based Chain- 109

of-Thought prompting and visual-based prompt- 110

ing (Set-of-Mark annotations) offer minimal and 111

sometimes adverse effects, whereas an iterative 112

multimodal interleaved reasoning strategy shows 113

promising gains. Overall, these results highlight a 114

critical bottleneck in the ability of MLLMs to per- 115

form robust, integrated reasoning—a key challenge 116

for future research. 117

Our contributions are threefold: 118

• We introduce MMIR, a novel benchmark that 119

targets the critical yet underexplored task of 120

multimodal inconsistency reasoning in layout- 121

rich content. 122

• We perform a comprehensive evaluation of 123

one leading multimodal reasoning model and 124

five state-of-the-art MLLMs, revealing sig- 125

nificant gaps in their ability to detect incon- 126

sistency errors with detailed error analyses 127

across multiple error types, modalities, and 128

layout complexities. 129

• We provide detailed probing analyses that ex- 130

pose key challenges—from perceptual short- 131

comings to reasoning bottlenecks—and pro- 132

pose a framework that iteratively refines pre- 133

dictions by jointly leveraging visual and tex- 134

tual modalities. 135

2 Related Work 136

Multimodal Understanding and Reasoning 137

Multimodal Large Language Models (MLLMs) 138

process multimodal inputs by first processing vi- 139

sual inputs with pre-trained vision encoders such 140

as CLIP (Radford et al., 2021) to extract features, 141

and then projecting them into the textual repre- 142

sentation space with adapters (Liu et al., 2024a; Li 143

et al., 2023a). Significant efforts have been made to 144

bridge the gap between vision and text modalities 145

via integrating more cross-modality data such as in- 146

terleaved image-text sequences and visual ground- 147

ing data (Alayrac et al., 2022; Chen et al., 2023; 148

Peng et al., 2023). Also, some recent works de- 149

velop MLLMs with improved nuanced multimodal 150

abilities, such as Optical Character Recognition 151

(OCR) (Bai et al., 2023; Liu et al., 2024b), layout 152
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understanding (Feng et al., 2024; Fan et al., 2024a),153

Graphic User Interface (GUI) interpretation (Liu154

et al., 2024c; Team, 2025).155

As MLLMs typically leverage pre-trained large156

language models (LLMs) as the backbone, they157

inherent strong textural reasoning abilities from158

the advanced LLMs(Floridi and Chiriatti, 2020;159

Touvron et al., 2023; Bai et al., 2023; Taori et al.,160

2023; Chowdhery et al., 2023; OpenAI, 2024a;161

Team, 2024). To further enhance the reasoning162

ability of MLLMs, increasing efforts have focused163

on improving MLLMs in multimodal reasoning.164

The proprietery model, o1 (OpenAI, 2024b) first165

realize strong multimodal reasoning with reason-166

ing process similar to the Chain-of-Thought (Wei167

et al., 2022) and other following works have also168

explored the multimodal reasoning either through169

training (Wu and Xie, 2024; Qi et al., 2024; Shao170

et al., 2024) or prompting (Zhang et al., 2023,171

2024b; Zheng et al., 2023).172

Multimodal Reasoning Benchmarks To evalu-173

ate the reasoning capabilities of MLLMs, numer-174

ous benchmarks have been developed with vari-175

ous focuses. Broad-coverage benchmarks such as176

MM-Bench (Liu et al., 2024d), MMMU (Yue et al.,177

2024) and MM-Vet (Yu et al., 2024) cover compre-178

hensive reasoning challenges in real life scenarios,179

offering holistic insights into model performance.180

Others are developed with focuses on specific per-181

spectives, such as TextVQA (Singh et al., 2019),182

POPE (Li et al., 2023b) and MATHVERSE (Zhang183

et al., 2024a) respectively challenge models with184

tasks in domains of reasoning about text, objects,185

mathematics in multimodal contexts. Recently, ad-186

ditional benchmarks have emerged targeting artifi-187

cially created multipanel images—such as posters188

and screenshots—that combine several subfigures189

in structured layouts (Fan et al., 2024b; Hsiao et al.,190

2025), which require models to analyze spatial rela-191

tionships and hierarchical structures in complex vi-192

sual contexts. However, current multi-modal bench-193

marks assume visual-text alignment, overlooking194

detecting critical errors of vision-language incon-195

sistency in the input - a key challenge in real-world196

scenarios. Instead, we evaluate MLLMs’ ability197

to detect and localize such inconsistency via the198

proposed MMIR benchmark.199

Inconsistency Checking Existing works on tasks200

related to checking or verifying inconsistency in201

the input are primarily in the language domain. For202

example, fact-checking (Thorne et al., 2018) re-203

quires a model to first retrieve evidence and then 204

decide if a claim is supported, where the model 205

must reason if contradictive information existed in 206

the retrieved corpus. One step further, summary in- 207

consistency detection (Laban et al., 2022) focuses 208

on flagging any errors in summaries that create 209

contradictions regardless of correctness, including 210

incorrect use or hallucination of entities. As mod- 211

ern language models prosper, inconsistencies are 212

found existing within their outputs (Ravichander 213

et al., 2020) and across different outputs of para- 214

phrased queries (Elazar et al., 2021), and efforts 215

have been made towards the evaluation of those 216

inconsistencies (Fabbri et al., 2021; Wang et al., 217

2020; Lattimer et al., 2023). In our research, we 218

lead efforts in detecting inconsistencies in the field 219

of vision and language. 220

3 MMIR 221

The MMIR benchmark is designed to assess how 222

effectively MLLMs can detect and localize seman- 223

tic mismatches within complex, layout-rich arti- 224

facts. Unlike conventional benchmarks that assume 225

coherent visual–textual inputs, MMIR challenges 226

models with realistic errors that require deep, cross- 227

modal reasoning. In MMIR, errors are defined and 228

categorized along five semantic dimensions: 229

A. Factual Contradiction: Direct conflict be- 230

tween two elements (text–text, text–image, or im- 231

age–image) within the modified content. 232

B. Identity Misattribution: Mislabeling of enti- 233

ties (objects, locations, brands, people) that conflict 234

with other elements. 235

C. Contextual Mismatch: Tonal, thematic, or 236

situational incompatibility between elements. 237

D. Quantitative Discrepancy: Numerical or sta- 238

tistical inconsistencies between elements. 239

E. Temporal/Spatial Incoherence: Implied time- 240

lines, dates, or spatial relationships that are impos- 241

sible or conflicting. 242

Figure 2 provides one example from each error 243

type across web, office, and poster artifacts, illus- 244

trating the diverse challenges MMIR poses. 245

3.1 Data Curation 246

MMIR’s data is curated through a four-stage 247

pipeline (Figure 3), ensuring high-quality, diverse, 248

and challenging test cases. 249

Artifact Collection and Parsing We begin by 250

manually selecting a total of 521 original arti- 251

facts from two domains: 349 webpages (sub- 252
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B. Identity Misattribution

Inconsistency Rationale: 
Brand identity is misattributed to IKEA AB in ID 15, which conflicts with the
Lorell branding in ID 25, 26.

15

25

26

3

6

Inconsistency Rationale: 
The expanded temperature range conflicts with ID6's
chart, which only goes from -5C to 25C, creating a
numerical inconsistency that's visibly contradictory.

E. Temporal/Spatial Incoherence

11

Inconsistency Rationale: 
Placing an 18th-century date in a slide promoting a
modern database creates a temporal mismatch.

A. Factual Contradiction

Inconsistency Rationale: 
The image (ID3) shows Arctic waters,
but ID6 mislabels it as the Rocky
Mountains.

3

6

D. Quantitative Discrepancy
4

C. Contextual Mismatch

Inconsistency Rationale: 
The camera sale context contrasts sharply with
"Warfare clips," creating a thematic mismatch.

Figure 2: There are five inconsistency categories in the MMIR benchmark, posing diverse challenges.

Figure 3: MMIR Data filtering process.

categories: shopping, classifieds, wiki) from Vi-253

sualWebArena (Koh et al., 2024) and 172 presen-254

tations from Zenodo (European Organization For255

Nuclear Research and OpenAIRE, 2013), catego-256

rized into Office (sub-categories: slides, charts, dia-257

grams) and Posters. Each artifact Ai is parsed using258

either using Document Object Model (DOM) or the259

python-pptx library to extract a set of elements260

Ei = {ej}ni
j=1, where each element ej is assigned261

a unique ID idj and labeled with its type, content,262

and a bounding box showing location information. 263

Additionally, each artifact is paired with a Set-of- 264

Marks (SoM) annotation ASoM
i derived from Ei. 265

This structured metadata forms the basis for subse- 266

quent error injection and question-answer curation. 267

Synthetic Inconsistency Generation To simu-
late real-world errors, we prompt an MLLM, o1-
1217 (OpenAI, 2024b), as a generator with the
annotated artifact and its element set {ASoM

i , Ei}.
The generator produces 2,534 proposals, each com-
prising a formatted edit instruction, the ground-
truth element or element pair introducing the incon-
sistency:

GT ∈ {idj} ∪ {(idj , idk)|j ̸= k},

the inconsistency error type, and the accompanying 268

rationale. Following a self-evaluation loop (de- 269

tails in Appendix A.2), 2,446 valid proposals are 270

retained. 271
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Table 1: MMIR Statistics. Breakdown of the dataset
by artifact category and error type.

Category #Questions Ave. #Elements

Artifact Categories
Web 240 38.8

- Shopping 108 46.1
- Wiki 28 44.9
- Classifieds 104 29.5

Office 223 9.1
- Slides 102 9.4
- Tables/Charts 61 4.1
- Diagrams 60 13.9

Poster 71 27.6
Total 543 24.9

Error Categories
Factual Contradiction 138 –
Identity Misattribution 84 –
Contextual Mismatch 141 –
Quantitative Discrepancy 76 –
Temporal/Spatial Incoherence 95 –

Total 543 –

Automated Editing and Human Verification272

An auto-verification process then filters these pro-273

posals based on format and backend constraints274

(e.g., ensuring the target elements are editable),275

reducing the candidate set to 1,273, and saves low-276

level edit details, such as the path of the new image277

for an image edit, as inputs to the editor.278

An automated editor-implemented using the279

Chrome DevTools Protocol (CDP) for web pages280

and python-pptx for presentations-executes the281

approved edits, generating for each successful op-282

eration a modified pair: {A′
i, E

′
i} where A′

i repre-283

sents the modified artifact and E′
i contains the up-284

dated element metadata after the edit. For each pair,285

a descriptive caption set Ci is generated, where286

each caption within Cj details the element ID, lo-287

cation, and content summary of e′j . These cap-288

tions serve as references for later evaluation. More289

details on the verifier and editor are provided in290

Appendix A.3.291

Finally, human experts review 747 edited292

samples, resulting in a final dataset of293

534 validated quintuples: DMMIR =294

{S′
i, E

′
i, GTi, categoryi, rationalei}534i=1,295

ensuring that only realistic and challenging296

samples remain. Table 1 provides a detailed297

breakdown by artifact type, subcategory, and298

error type. For example, webpages are further299

divided into shopping, wiki, and classifieds, each300

with its average number of elements, while errors301

are distributed across the five defined categories.302

Notably, the average word count in multiple-choice303

questions is 382.6, whereas open-ended responses304

are fixed at 59 words.305

3.2 Evaluation 306

MMIR assesses a model’s ability to detect incon- 307

sistency, i.e., identifying and localizing seman- 308

tic mismatches where elements deviate from their 309

expected roles within an artifact. To assess the 310

model’s performance comprehensively, each of the 311

534 test samples is provided to models under two 312

distinct settings: 313

Open-Ended Setting Models receive the artifact 314

A′
i with a fixed prompt Qopen_ended and generate 315

a free-form response that identifies the semantic 316

mismatch. This formulation evaluates the model’s 317

ability to detect inconsistencies without relying 318

on predefined answer options, thereby testing its 319

unsupervised perception and reasoning. 320

Multiple-Choice Setting Models receive the arti- 321

fact A′
i, but now with a combined prompt QMCQ = 322

(Qopen_ended, Ci). Each candidate in Ci is a textual 323

description of an element. The model must select, 324

from these options, the element(s) corresponding 325

to the introduced inconsistency. 326

Evaluation Setup For the MCQ setting, we uti- 327

lize regular expressions to compare the MLLM’s 328

predicted answers against the ground truth, using 329

accuracy as our metric. For the open-ended setting, 330

o1-mini (0912) is employed as an LLM judge (Hsu 331

et al., 2023; Hackl et al., 2023; Liu et al., 2023) 332

to map the model’s free-form response back to the 333

most likely ground-truth element IDs. The pre- 334

dicted IDs are then compared against GTi to calcu- 335

late accuracy. 336

4 Experiments and Analysis 337

We first evaluate the advanced multimodal rea- 338

soning model o1 (OpenAI, 2024b) and five other 339

state-of-the-art MLLMs: GPT-4o (OpenAI, 2024a), 340

Qwen2.5-VL (Team, 2025), LLaVA-NeXT (Liu 341

et al., 2024b), InternVL2.5 (Chen et al., 2024) and 342

Phi-3.5-Vision (Abdin et al., 2024) on the MMIR 343

benchmark. We implement open-source models us- 344

ing their default settings and select the 1217 version 345

of o1 and the 1120 version of GPT-4o for evalua- 346

tion. Model implementation details are provided in 347

Appendix B. We then examine error patterns across 348

different inconsistency types and layout complexi- 349

ties and finally explore how prompting strategies 350

affect multimodal reasoning under the open-ended 351

setting. 352
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Table 2: The accuracy of six MLLMs under the two evaluation settings. Proprietary models demonstrate higher
performance as well as larger performance gain in the MCQ setting.

Open-ended Multiple-choice

Models Web Office Poster Overall Web Office Poster Overall

Proprietary Models
o1 (1217) 47.91 59.19 38.73 51.40 47.91 58.52 46.47 52.15
GPT-4o (1120) 25.00 42.60 30.98 33.14 37.29 58.96 47.88 47.75
Open-sourced Models
Qwen2.5-VL-7B 8.54 29.14 11.97 17.60 14.37 33.18 16.90 22.56
LLaVA-NeXT-7B 10.20 21.97 7.04 14.70 11.45 25.33 5.63 16.47
InternVL2.5-8B 7.70 24.21 4.92 14.23 9.37 23.54 11.97 15.63
Phi-3.5-Vision-4B 6.87 24.43 7.04 14.23 1.66 8.52 0.00 4.30

4.1 Main Results353

As shown in Table 2, proprietary models (o1 and354

GPT-4o) significantly outperform open-source al-355

ternatives, though all models exhibit substantial356

room for improvement. Appendix A.4 shows357

a qualitative example with question-answer and358

model response.359

Performance Gap Between Reasoning, Propri-360

etary and Open-Source Models. In both open-361

ended and MCQ settings, the reasoning o1 model362

substantially outperforms the rest, surpassing all363

open-source models by over 30%. The other propri-364

etary model GPT-4o, although missing the explicit365

reasoning ability of o1, outperforms open-source366

alternatives, reflecting stronger multimodal align-367

ment and reasoning capabilities.368

Impact of Semantic Cues. GPT-4o sees a 14.61%369

accuracy boost in the MCQ setting with additional370

element descriptions as options, narrowing its gap371

with o1 from 18.26% to just 4.4%. This indicates372

that GPT-4o relies heavily on semantic context373

when available.374

Inconsistent Gains for Open-Source Models.375

Most open-source models gain moderate or little376

accuracy when provided with MCQ-style prompts.377

Phi-3.5-Vision-4B experiences a 9.93% drop, sug-378

gesting weaker reasoning capacity and less effec-379

tive use of textual cues. The gap between pro-380

prietary and open-source models widens further381

in MCQ (from 27.08% to 35.21%), highlighting382

the persistent challenge of integrating perceptual383

grounding with logical inference.384

4.2 Error Analysis385

4.2.1 Results Across Inconsistency Categories386

and Modalities387

To investigate how different types of inconsisten-388

cies affect model performance, we show the results389

across the category and modality of inconsistency 390

in Figure 4. 391

Inconsistency Categories Figure 4(a) breaks 392

down accuracy by the five inconsistency error cat- 393

egories. Proprietary models (o1, GPT-4o) outper- 394

form open-source models across the board, but the 395

gap is particularly pronounced for Factual Con- 396

tradictions and Identity Misattribution, implying 397

that high-capacity models may have stronger fac- 398

tual grounding and entity recognition. Interestingly, 399

Temporal/Spatial Incoherence also poses a substan- 400

tial challenge for all models, highlighting a limita- 401

tion in reasoning about time and space coherence. 402

Inconsistency Modalities In Figure 4(b), we ex- 403

amine how accuracy varies by the modality of 404

the inconsistency. Overall, single-modality errors 405

(those involving only one text or image field) yield 406

the highest performance, with text-text inconsisten- 407

cies proving especially tractable—likely because 408

these language-centric models excel at purely tex- 409

tual reasoning. Next in difficulty are inter-modality 410

errors (image-text), which require partial cross- 411

modal integration but can still leverage textual an- 412

chors. Finally, image-image inconsistencies pose 413

the greatest challenge, as they demand more ad- 414

vanced visual understanding and the ability to rec- 415

oncile two distinct visual elements without the 416

benefit of textual cues. These findings highlight 417

that while language-focused models cope relatively 418

well with purely textual conflicts, their capacity 419

for deep visual or cross-modal reasoning remains 420

underdeveloped. 421

4.2.2 Impact of Layout Complexity 422

We further examine the relationship between model 423

accuracy and the number of elements in an arti- 424

fact. To ensure statistical significance, we only 425

include data points where at least 10 samples share 426

6



A. Factual 
Contradiction

B. Identity 
Misattribution

C. Contextual 
 Mismatch

D. Quantitative 
 Discrepancy

E. Temporal/Spatial 
 Incoherence

0.02

0.18

0.34

0.50

0.65

(a) Model performance on error category.
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(b) Model performance on error modality.
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Figure 4: Fine-grained analysis of model performance.
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Figure 5: Model performance on layout complexity.

the same element count. As shown in Figure 7,427

the overall trend suggests that handling visually428

dense, information-rich artifacts remains a major429

challenge for current MLLMs. (1) Performance de-430

clines sharply as the number of elements increases,431

highlighting the difficulty in parsing cluttered lay-432

outs. (2) Proprietary models maintain higher ac-433

curacy in simpler layouts but degrade similarly in434

highly dense artifacts, indicating limitations in spa-435

tial reasoning. Open-source models struggle even436

in low-complexity settings, reinforcing the gap in437

perception and layout-aware inference.438

4.3 Probing on Prompting Methods439

We further investigate whether textual or visual440

prompts can alleviate the reasoning bottleneck. Ta-441

ble 3 compares Chain-of-Thought (CoT) prompt-442

ing (Wei et al., 2022) and Set-of-Mark (SoM) vi-443

sual augmentation (Yang et al., 2023), as well as444

their combination. We also explored an interleaved445

multimodal reasoning strategy, which we term Mul-446

timodal Interleaved CoT (MM-CoT) to further in-447

Table 3: Probing results of different prompting meth-
ods. Performance of each prompting method is directly
compared with the vanilla setting. Gains are in blue and
drops are in red.

Models Vanilla + CoT + SoM + Both MM-CoT

Proprietary Models
o1 (1217) 51.40 – -0.66 – +0.09
GPT-4o (1120) 33.14 – +5.34 – +4.40
Open-sourced Models
Qwen2.5-VL-7B 17.60 +0.28 +0.09 +0.28 +4.59
LLaVA-NeXT-7B 14.70 -1.78 -2.53 -0.47 +3.65
InternVL2.5-8B 14.23 +2.24 -0.66 -1.41 -0.85
Phi-3.5-Vision-4B 14.23 -0.38 +0.47 +0.84 +0.65

tegrate and refine reasoning across both visual and 448

textual modalities. 449

4.3.1 Chain-of-Thought (CoT) Prompting 450

To assess whether explicit reasoning instructions 451

can enhance performance, we apply CoT prompt- 452

ing (Wei et al., 2022) to the four open-sourced 453

models (benchmarked proprietary models have API 454

guides to not include additional CoT prompting). 455

As shown in Table 3, CoT prompting yields neg- 456

ligible or even negative effects on accuracy. This 457

suggests that simply injecting explicit reasoning 458

steps is insufficient when the underlying model 459

lacks strong cross-modal alignment or robust logi- 460

cal inference mechanisms. 461

4.3.2 Set-of-Mark (SoM) Prompting 462

We next examine the effect of SoM visual prompt- 463

ing (Yang et al., 2023). By overlaying bounding 464

boxes onto the artifact screenshots (example in Fig- 465

ure 6), we aim to enhance the models’ ability to 466

perceive and localize elements. 467
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Original Artifact Artifact annotated with SoM

Figure 6: Example of original artifact in MMIR (left)
and artifact annotated with Set-of-Mark in the probing
analysis (right).

The result shows that these additional visual cues468

yield moderate improvements for GPT-4o (5.34%)469

yet confuse the rest of the models, leading to little470

or even slightly degraded performance, likely be-471

cause the additional visual cues interfere with the472

model’s initial perception.473

When combined with CoT prompting, SoM pro-474

vides little gains for some open-source models but475

remains largely inconsistent or even detrimental for476

others. This indicates that simply stacking CoT and477

SoM techniques does not guarantee improved per-478

formance, underscoring the need for more sophis-479

ticated strategies to unify visual cues with explicit480

reasoning steps.481

4.3.3 Multimodal Interleaved CoT (MM-CoT)482

Our previous analyses indicate that single-modality483

prompts (CoT or SoM) often yield minimal or even484

detrimental gains in the open-ended setting when485

models receive no textual hints about which ele-486

ments might be inconsistent. We hypothesize that487

MMIR tasks demand iterative reasoning that tightly488

integrates both visual and textual modalities. To489

address this, we propose Multimodal Interleaved490

CoT (MM-CoT), a two-stage approach explicitly491

designed to weave visual cues into a step-by-step492

reasoning process:493

Stage 1: Initial Candidate Generation The494

model receives the same input in Stage 1 as in495

the open-ended setting, generating its top five pre-496

dictions (along with associated reasoning). Using497

o1-mini (0912) to interpret these responses, we498

map each prediction back to one or a pair of ele-499

ment IDs from the artifact’s metadata Ci. We then 500

highlight the bounding boxes of those elements on 501

the artifact image, producing an SoM-annotated 502

version to be used in the next stage. 503

Stage 2: Multimodal Refinement The model 504

is subsequently given the SoM-annotated artifact 505

from Stage 1, alongside the textual reasoning it 506

generated previously. This additional visual con- 507

text helps the model refine its earlier predictions, 508

integrating both the visual bounding-box annota- 509

tions and the initial textual reasoning to arrive at a 510

final answer. 511

Results As shown in Table 3, MM-CoT outper- 512

forms all other prompting methods. GPT-4o, for 513

example, improves by 4.40% over its vanilla base- 514

line, while open-source models gain an average 515

of around 2% improvements. These findings un- 516

derscore the importance of iterative cross-modal 517

reasoning: once textual inferences guide which vi- 518

sual elements to focus on, SoM annotations become 519

more informative, and the overall reasoning process 520

becomes more accurate. Although the bounding 521

boxes used for SoM are derived from ground-truth 522

references, this probing experiment demonstrates 523

that interleaved multimodal interaction is a promis- 524

ing direction for closing the reasoning gap in chal- 525

lenging, inconsistency-heavy scenarios. 526

5 Discussion and Conclusion 527

In this work, we introduce the Multimodal Incon- 528

sistency Reasoning Benchmark (MMIR) to evalu- 529

ate how well MLLMs detect and localize seman- 530

tic mismatches in complex real-world artifacts. 531

MMIR challenges models across five error cate- 532

gories and two reasoning settings for a detailed 533

assessment of multimodal reasoning. Our experi- 534

ments show that even advanced proprietary mod- 535

els struggle with open-ended inconsistency detec- 536

tion. Although providing natural-language descrip- 537

tions in a multiple-choice format offers modest 538

gains, standard prompting techniques (e.g., Chain- 539

of-Thought and Set-of-Mark) yield inconsistent or 540

negative effects, while a proposed Multimodal In- 541

terleaved CoT (MM-CoT) method that iteratively 542

refines reasoning by integrating visual and textual 543

modalities, yielding greater performance improve- 544

ments. Despite these advances, significant chal- 545

lenges remain, motivating further research on ro- 546

bust multimodal reasoning for real-world inconsis- 547

tency detection. 548
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Limitations549

While MMIR provides a rigorous framework for550

evaluating multimodal inconsistency reasoning, it551

is not without its limitations. Annotating and ver-552

ifying inconsistencies in layout-rich artifacts re-553

mains a labor-intensive process. Although MMIR’s554

pipeline integrates automated editing and verifica-555

tion, the overall scale is still limited by the need for556

careful human review. Although these domains cap-557

ture a range of layouts and content types, they do558

not encompass the full variety of real-world multi-559

modal artifacts (e.g., multi-page documents, social560

media feeds, or mobile application interfaces). On561

the other hand, synthetic error generation—while562

effective for systematically introducing controlled563

inconsistencies—may not perfectly mirror the nu-564

anced mistakes that occur in human-generated con-565

tent. This could lead to discrepancies between566

model performance on MMIR and in truly open-567

ended, real-world scenarios. Scaling up the dataset568

to cover broader domains, more intricate layouts,569

and diverse error types would strengthen its ability570

to serve as a comprehensive benchmark for real-571

world multimodal inconsistency detection.572
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A Benchmark Details862

This appendix provides a comprehensive overview of the MMIR benchmark. It details the dataset curation863

process, including error category definitions, the synthetic inconsistency generation mechanism, the864

auto-verification and human validation processes, and the task prompts for evaluation. These details are865

intended to facilitate reproducibility and provide clarity on the inner workings of MMIR.866

A.1 Inconsistency Error Category Definitions867

The MMIR benchmark employs five pre-defined error categories. These categories are designed based on868

semantic guidelines so that the generator model can propose diverse and generalizable inconsistencies869

without being tied to any specific artifact type.870

• A. Factual Contradiction871

Direct conflict between two or more elements (text–text, text–image, or image–image) within the872

modified content.873

Example (Text–Text): The product title says “Caffeinated,” while the description states “Caffeine-874

free.”875

Example (Text–Image): The image shows a green tea bag, but the accompanying text describes a876

“fruit infusion.”877

• B. Identity Misattribution878

Mislabeling of entities (objects, locations, brands, people) that conflict with other elements.879

Example: A product lists “Country of Origin: China” while the manufacturer is described as880

“Elmwood Inn (USA).”881

• C. Contextual Mismatch882

Tonal, thematic, or situational incompatibility between elements.883

Example: A celebratory image of diplomats shaking hands is paired with an article about violent884

clashes.885

• D. Quantitative Discrepancy886

Numerical or statistical inconsistencies between elements.887

Example: A graph labeled “50% growth” shows flat bars.888

• E. Temporal/Spatial Incoherence889

Implied timelines, dates, or spatial relationships that are impossible or conflicting.890

Example: A map labeled “North America” depicts landmarks from Europe.891

These definitions serve as guidelines during the synthetic inconsistency generation process, ensuring892

that the proposed errors are semantically meaningful and cover a broad spectrum of potential real-world893

mistakes.894

A.2 Generator Model and Self-Evaluation Loop895

A.2.1 Generator Model Prompt896

To create adversarial examples, the generator model (o1, 1217) is provided with rich context consisting of897

the annotated artifact ASOM
i and its set of elements Ei. The task prompt includes detailed instructions898

regarding the types of modifications to propose, along with the following guidelines:899

• Modification Format: Each modification must be expressed as:900

“‘Modify [id] [original_content] [new_content]“‘901

12



For image fields, the original content includes the full details (e.g., URL), and the new content is a 902

caption starting with "Image, description: ". For text fields, the new content should be of similar 903

length to the original. 904

• Error Categories: The generator must propose one modification per error category. If it cannot 905

propose an inconsistency for a given category, it may skip that category. 906

The generator output is structured as: 907

Pm = { edit m,GTm, category m, rationale m}

where the ground-truth GTm is defined as: 908

GTm ∈ {idj} ∪ {(idj , idk) | j ̸= k}

indicating either a single-element ID (for single-element inconsistencies) or a pair of distinct element 909

IDs (for relational inconsistencies). 910

A.2.2 Self-Evaluation Loop 911

We follow a generator-evaluator loop that refines proposals through iterative self-assessment. A simplified 912

Python snippet of the loop function is provided below: 913
914

1 def loop(client , image_dir , frame_id , task: str , evaluator_prompt: str , 915
generator_prompt: str) -> tuple[str , list[dict ]]: 916

2 """ Keep generating and evaluating until requirements are met.""" 917
3 memory = [] 918
4 chain_of_thought = [] 919
5 920
6 thoughts , result = generate(client , image_dir , frame_id , generator_prompt , task) 921
7 memory.append(result) 922
8 chain_of_thought.append ({"thoughts": thoughts , "result": result }) 923
9 924

10 loop_count = 1 925
11 while True: 926
12 all_pass = True 927
13 evaluation , feedback = evaluate(client , image_dir , frame_id , 928

evaluator_prompt , result , task) 929
14 for eval_line in evaluation.split("\n"): 930
15 if eval_line.strip() != "PASS": 931
16 all_pass = False 932
17 break 933
18 if all_pass or loop_count == 2: 934
19 return result , evaluation 935
20 936
21 context = "\n".join([ 937
22 "Previous attempts:", 938
23 *[f"- {m}" for m in memory], 939
24 f"\nFeedback: {feedback}" 940
25 ]) 941
26 thoughts , result = generate(client , image_dir , frame_id , generator_prompt , 942

task , context) 943
27 memory.append(result) 944
28 chain_of_thought.append ({"thoughts": thoughts , "result": result }) 945
29 loop_count += 1 946947

In this loop, the generator produces proposals which are then evaluated against the following criteria 948

(as specified in the evaluator prompt): 949

• Category Compliance: The edit must match the intended error category. 950

• Atomic Modification: Exactly one inconsistency should be introduced. 951

• Visual Consistency: The modified screenshot must visibly reflect the error without relying on 952

external context. 953
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• Element Validity: The referenced element IDs must exist in the artifact.954

Only proposals receiving a "PASS" in the evaluation are retained. The loop iterates until either all955

criteria are met or a maximum of two iterations is reached.956

A.2.3 Prompt details for generator-evaluator proposal generation framework957

This is the task prompt as input to the o1 generator model.958
959

1 task_prompt = f"""960
2 <user input >961
3 Your task is to modify a {category_str} to create inconsistency. For each given962

category of inconsistency , you will propose a modification action that963
introduces the inconsistency in the modified {category_str }.964

4965
5 Here's the information you'll have:966
6 Screenshot of the urrent {category_str }: This is a screenshot of the {category_str},967

with each editable element assigned a unique numerical id. Each bounding box968
and its respective id share the same color.969

7 The Observation , which lists the IDs of all editable elements on the current {970
category_str} with their content , in the format [id] [tagType] [content],971
separated by "\n". Each id is mapped with the id in the screenshot. tagType is972
the type of the element , such as button , link , or textbox. For example , "[21] [973
SPAN] [Add to Wish List]" means that there is a span with id 21 and text content974
'Add to Wish List' on the current {category_str }. "[23] [IMG] [Image ,975

description: a beige powder on a white background , url: http :// localhost :7770/976
media/catalog/product/cache /829 a59e57f886f8cf0598ffca4f8a940/B/0/ B074DBMG66 .0.977
jpg]" means that there is an image on the current screen with id 23, with a978
description of the image and its url specified.979

8980
9 Here are the categories of errors you can introduce:981

10 A. Factual Contradiction - Direct conflict between two or more elements (text -text ,982
text -image , or image -image). For example , The product title says "Caffeinated ,"983
while the description states "Caffeine -free." Another example: The image shows984

a green tea bag , but the text describes a "fruit infusion ."985
11 B. Identity Misattribution - Mislabeling of entities (objects , locations , brands ,986

people) that conflict with other elements. Example: Product "Country of Origin:987
China" contradicts manufacturer info "Elmwood Inn (USA)."988

12 C. Contextual Mismatch - Tonal , thematic , or situational incompatibility between989
elements. Example: A celebratory image of diplomats shaking hands paired with an990
article about violent clashes.991

13 D. Quantitative Discrepancy - Numerical or statistical inconsistencies between992
elements. Example: A graph labeled "50%\ growth" shows flat bars.993

14 E. Temporal/Spatial Incoherence - Implied timelines , dates , or spatial relationships994
that are impossible or conflicting. Example: A map labeled "North America"995

depicts landmarks from Europe996
15997
16 Here are the rules for the modification action:998
17 The modification action you can propose to introduce inconsistency must be in the999

format of "Modify [id] [original_content] [new_content ]": This action proposes1000
to edit the orignal field assigned with the id to the new content to introduce1001
inconsistency. If you propose to modify an image field , the [original_content]1002
field should include the full content from observation including the url; the [1003
new_content] field should be a caption describing the updated image , starting1004
with "Image , description: ", no url needed. If you propose to modify a text1005
field , the new content string should be about the same length as the original1006
text field. For each inconsistency category , you should try to propose a1007
modification action that introduces an inconsistency in that category. If you1008
can't find a way to introduce an inconsistency in a category , you can skip it.1009
Prioritize proposing edits on text fields over image fields.1010

181011
19 Generate the response in the correct format. For each inconsistency , the format1012

should be:1013
20 <proposal >1014
21 <cat >[A-E]</cat > <-- Category letter1015
22 <ele >[ID1 ,ID2]</ele > <-- Conflicting element IDs1016
23 <mod >Modify [ID] [Original Content] [New Content]</mod > <-- Modification plan1017
24 <rationale >Visible conflict explanation </rationale > <-- Visual verification1018
25 </proposal >1019
26 </user input >1020
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27 """ 10211022

These are prompts for the generator and evaluator model. 1023
1024

1 evaluator_prompt = """ 1025
2 Evaluate the following proposals one by one for: 1026
3 1. Category Compliance: Introduced inconsistency matches the category definition (A- 1027

E) 1028
4 2. Atomic Modification: Introduce EXACTLY ONE inconsistency without side effects 1029
5 3. Visual Consistency: Conflict visible in the modified screenshot (with NO reliance 1030

on original page knowledge or external context) 1031
6 4. Element Validity: Conflict IDs exist in observations 1032
7 1033
8 You should be evaluating only and not attemping to solve the task. 1034
9 For each proposal , only output "PASS" if all criteria are met and you have no 1035

further suggestions for improvements. 1036
10 Output your evaluation concisely in the following format. 1037
11 1038
12 <evaluation > 1039
13 PASS , NEEDS_IMPROVEMENT , or FAIL <-- For each proposal 1040
14 </evaluation > 1041
15 <feedback > 1042
16 What needs improvement and why. <-- For proposals that need improvement 1043
17 </feedback > 1044
18 """ 1045
19 1046
20 generator_prompt = """ 1047
21 Your goal is to complete the task based on <user input >. If there are feedback 1048
22 from your previous generations , you should reflect on them to improve proposals that 1049

NEEDS_IMPROVEMENT or FAIL. Leave the PASS proposals as they are. 1050
23 1051
24 Output your answer concisely in the following format: 1052
25 1053
26 <thoughts > 1054
27 [Your understanding of the task and feedback and how you plan to improve] 1055
28 </thoughts > 1056
29 1057
30 <response > 1058
31 [Your response here] 1059
32 </response > 1060
33 """ 10611062

A.3 Auto-Verification and Editing Process 1063

Following proposal generation, an auto-verification step filters the proposals based on format and backend 1064

constraints. Specifically: 1065

• Edit Format Verification: The system uses a regular expression to ensure that each proposed edit 1066

adheres to the required format: "Modify [id] [old_content] [new_content]". 1067

• Element Matching: For web-sourced artifacts, the proposal’s element ID is used to locate the 1068

corresponding element and its bounding box in the metadata. The system checks that both the 1069

content and bounding box match an editable element in the HTML/PPTX structure. For image edits, 1070

the new content (a caption) is cross-referenced against an MSCOCO image database to verify its 1071

appropriateness. 1072

Proposals that pass these checks are automatically saved for further processing. 1073

For web pages, we use the CDP to perform edit: 1074
1075

1 # text edit 1076
2 client.send( 1077
3 "Runtime.callFunctionOn", 1078
4 { 1079
5 "objectId": object_id , 1080
6 "functionDeclaration": f"function () {{ this.nodeValue = '{new_content }'; }}" 1081

, 1082
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7 "arguments": [],1083
8 "returnByValue": True1084
9 }1085

10 )1086
11 # image edit1087
12 with open(new_content , "rb") as image_file:1088
13 img = Image.open(image_file)1089
14 new_image_width , new_image_height = img.size # get original width and height1090

for resizing1091
15 aspect_ratio = new_image_width / new_image_height1092
16 if w / h > aspect_ratio:1093
17 w, h = w, int(w / aspect_ratio)1094
18 else:1095
19 w, h = int(h * aspect_ratio), h1096
20 img = img.resize ((w, h), Image.Resampling.LANCZOS)1097
21 buffer = BytesIO ()1098
22 img.save(buffer , format="JPEG")1099
23 buffer.seek (0)1100
24 base64_image = base64.b64encode(buffer.read()).decode("utf -8")1101
25 new_image = f"data:image/jpeg;base64 ,{ base64_image}"1102
26 client.send(1103
27 "Runtime.callFunctionOn",1104
28 {1105
29 "objectId": object_id ,1106
30 "functionDeclaration": f"""1107
31 function () {{1108
32 this.src = '{new_image}';1109
33 }}1110
34 """,1111
35 "arguments": [],1112
36 "returnByValue": True1113
37 }1114
38 )11151116

For Zenodo presentation, we use the python-pptx library:1117
1118

1 # text edit1119
2 if target_shape.has_text_frame: # text edit1120
3 text_frame = target_shape.text_frame1121
4 for paragraph in text_frame.paragraphs:1122
5 for run in paragraph.runs:1123
6 if edit_info["old_content"] in run.text:1124
7 try:1125
8 run.text = run.text.replace(edit_info["old_content"], edit_info[1126

"new_content"])1127
9 success = True1128

10 break1129
11 except:1130
12 success = False1131
13 # image edit1132
14 left , top , orig_width , orig_height = target_shape.left , target_shape.top ,1133

target_shape.width , target_shape.height1134
15 pic = target_shape._element1135
16 pic.getparent ().remove(pic)1136
17 new_image_path = f"{coco_image_dir }/{ edit_info['new_img_path ']}"1137
18 with Image.open(new_image_path) as img:1138
19 new_width , new_height = img.size1139
20 new_aspect = new_width / new_height1140
21 orig_aspect = orig_width / orig_height1141
22 if new_aspect > orig_aspect:1142
23 scaled_width = orig_width1143
24 scaled_height = int(scaled_width / new_aspect)1144
25 else:1145
26 scaled_height = orig_height1146
27 scaled_width = int(scaled_height * new_aspect)1147
28 new_left = left + (orig_width - scaled_width) // 21148
29 new_top = top + (orig_height - scaled_height) // 21149
30 try:1150
31 slide.shapes.add_picture( # Add the new image in the same location and size1151
32 new_image_path , new_left , new_top , scaled_width , scaled_height1152
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33 ) 1153
34 success = True 1154
35 except: 1155
36 success = False 11561157

A.4 A Qualitative Example 1158

o1: "Rocky Mountain Range" (text, top-right label on the map) -> [6]
4o: "Rocky Mountain Range" <-- text, label located on the top-right portion of the map image -> [6]
Qwen2.5-VL: "Rocky Mountain Range" or "Canonical value for IFR-overflow: 1 Sv" -> [4, 6]
LLaVA-NeXT: "Rocky Mountain Range" -> [6]
InternVL2.5: "[element 1]" Is at the location of the text "Canonical value for IFR-overflow: 1 Sv."
The issue here is semantic, as it does not provide specific meaning regarding what "1 Sv" stands for.
Sv, or steradian per second, is a unit of luminous intensity, making this error in context since it is
unrelated to the flow values. -> [4]
Phi-3.5-Vision: "[element 1]" -> [1]

You are given a slide that contains inconsistency/error. Identify which element(s) from the given
options pose semantic inconsistency/error. In the given slide, each element in the given options is
assigned a unique numerical id and highlighted with bounding box sharing the same color.
Options:
[1] Wide text span at top-center: 'Overflow through the Western Valley of the Iceland-Faroe
Ridge is negligible'
[2] Wide text span at top-center: 'Bogi Hansen, Karin M. H. Larsen, Steffen Olsen, Detlef
Quadfasel, Kerstin Jochumsen, Svein \u00d8sterhus'
[3] Image, description: the location of arctic mediterranean waters at center-center
[4] 451.79px-wide text span at bottom-center: 'Canonical value for IFR-overflow: 1 Sv'
[5] Compact text span at center-center: 'IFR'
[6] 651.41px-wide text span at center-right: 'Rocky  Mountain Range'
[7] 343.31px-wide text span at center-center: 'WV-overflow:'

Your answer must follow the following format:

<ans>
"[ID1]\" or \"[ID1],[ID2]\" <-- one problematic element ID, or two problematic element IDs
separated by comma
</ans>

<reason>
A brief rationale explaining your choice.
</reason>
"

You are given a slide that contains inconsistency/error. Identify which element(s) pose semantic
inconsistency/error. 

Your answer must follow the following format:

<ans>
"[element 1]\" or \"[element 1],[element 2]\" <-- detailed description of one/a pair of problematic
element(s), including type (image/text), content and location
</ans>

<reason>
A brief rationale explaining your choice.
</reason>
"

Input image to both settings Question in the open-ended setting

Question in the multiple-choice setting

SoM-annotated image for referecne

Model answer in <ans> tags -> IDs mapped by LLM as judge 

Ground-truth answer to both settings: [6]

o1: [6] 
4o: [6]
Qwen2.5-VL: [3]
LLaVA-NeXT: [1]
InternVL2.5: [6]
Phi-3.5-Vision: [1,3] 

Model answer in <ans> tags

Figure 7: A test sample with model responses under the two main settings in MMIR: open-ended and multiple-
choice.

B Model Application Details 1159

Here are the generation methods for the open-sourced models. 1160

For o1 and GPT-4o, we utilized the API following API guidelines available at https://platform. 1161

openai.com/docs/models#gpt-4o. 1162

For Qwen2.5-VL, we implemented the 7B version following the official repository: https://github. 1163

com/QwenLM/Qwen2.5-VL. 1164
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For LLaVA-NeXT, we followed the implementation from https://github.com/LLaVA-VL/1165

LLaVA-NeXT.1166

For InternVL2.5 we implemented the 8B version at https://github.com/OpenGVLab/InternVL.1167

For Phi-3.5-Vision we implemented the 4B version at https://github.com/instill-ai/models/1168

tree/main/phi-3-5-vision.1169

C Data Release1170

We will publicly release a comprehensive dataset that includes the artifacts and question-answer pairs1171

in both the open-ended and multiple-choice settings. The licensing terms for the artifacts will follow1172

those set by the respective dataset creators, as referenced in this work, while the curated artifacts will be1173

provided under the MIT License. Additionally, our release will include standardized evaluation protocols,1174

and evaluation scripts to facilitate rigorous assessment. The entire project will be open-sourced, ensuring1175

free access for research and academic purposes.1176
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