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Abstract

The Science of Science (SoS) explores the mechanisms underlying scientific dis-1

covery, and offers valuable insights for enhancing scientific efficiency and fostering2

innovation. Traditional approaches often rely on simplistic assumptions and basic3

statistical tools, such as linear regression and rule-based simulations, which strug-4

gle to capture the complexity and scale of modern research ecosystems. The advent5

of artificial intelligence (AI) presents a transformative opportunity for the next6

generation of SoS, enabling the automation of large-scale pattern discovery and7

uncovering insights previously unattainable. This paper offers a forward-looking8

perspective on the integration of Science of Science with AI for automated research9

pattern discovery and highlights key open challenges that could greatly benefit from10

AI. We outline the advantages of AI over traditional methods, discuss potential11

limitations, and propose pathways to overcome them. Additionally, we present12

a preliminary multi-agent system as an illustrative example to simulate research13

societies, showcasing AI’s ability to replicate real-world research patterns and14

accelerate progress in Science of Science research.15

1 Introduction16

Science of Science (SoS), a pivotal and rapidly evolving field, serves as a strategic compass for17

guiding the trajectory of scientific and technological progress. By analyzing the complex dynamics18

of research collaboration and scientific output across geographic and temporal scales, it sheds19

light on the factors that drive creativity and the emergence of scientific discoveries, with the goal20

of developing tools and policies to accelerate scientific advancement [24]. Unlike broader social21

sciences that examine societal structures, SoS delves deep into the mechanisms that fuel scientific22

breakthroughs [9, 86, 47]—illuminating the hidden forces that propel discovery and transformation.23

Ultimately, SoS underscores that groundbreaking advancements are not solely the result of talented24

minds and quality data, but are profoundly shaped by effective resource allocation, supportive policies25

and well-designed organizational structures [96, 98].26

In recent years, the deep fusion of AI and SoS has become more feasible and promising than ever27

before. First, the increasing availability of large-scale scholarly data—publications, funding records,28

and collaboration networks—provides unprecedented opportunities to gain deeper insights into the29

evolution of scientific progress. Second, rapid advancements in AI technologies, such as large30

language models (LLMs), along with improvements in computational power, have greatly enhanced31

our ability to analyze and interpret complex scientific information with unprecedented accuracy and32

scale. These technological breakthroughs mark a critical moment for integrating AI into SoS, paving33

the way for a more data-driven approach to understanding and guiding research pattern discovery.34

While some recent works have begun exploring autonomous scientific discovery, the field remains in35

its infancy, and there is still much progress to be made before realizing its full potential.36
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Figure 1: An illustration comparing human-driven and AI-driven research processes in the SoS,
highlighting step-by-step differences across four key stages in order: data processing, data analysis,
system simulation, and pattern validation.

In this paper, we take a step forward by providing the first glimpse into the integration of AI and37

SoS for automated research pattern discovery. We take the position that AI has the potential to38

revolutionize SoS, enabling the next generation of research by not only automating traditional39

research processes but also providing a sandbox for SoS research, allowing scientists to observe40

research processes in action and validate their hypotheses. As illustrated in Fig. 1, traditional SoS41

methods have primarily relied on manual data processing, bibliometric-based data analysis, rule-based42

system simulations, and real-world pattern validation. In contrast, AI-driven SoS leverages automated43

techniques to assist scientists in processing and analyzing data while offering more advanced and44

comprehensive systems for simulation and validation. This shift from human-driven to AI-driven45

methodologies unlocks the potential for more efficient, scalable, and data-driven analysis, ultimately46

providing deeper and more actionable insights into the mechanisms that shape scientific progress.47

Thus, we define AI for SoS (AI4SoS) as a cross-disciplinary field that not only focuses on facilitating48

each step within the research process but also aims to achieve fully automated SoS research to49

uncover the hidden forces driving scientific innovation. This distinguishes AI4SoS from existing AI50

for Science (AI4S) approaches, which focus on using AI tools to solve domain-specific scientific51

problems [25, 1, 13]. To better differentiate AI4SoS from AI4S, we illustrate differences in Table 1.52

To consolidate our insights, we propose a forward-looking hierarchy of AI4SoS automation in Sec. 2.2.53

In Sec. 3, we highlight critical open problems in SoS where AI offers advantages. Despite its promise,54

we discuss challenges such as data bias in Sec. 4. We also propose possible pathways to overcome55

these challenges. Lastly, we introduce a preliminary multi-agent system to simulate research societies56

in Sec. 5, illustrating AI’s capability to enable fully automated pattern discovery. We show related57

work, alternative views and impact statement in Appx. A, D, and F, respectively.58

2 AI for Science of Science59

2.1 Definition60

AI for SoS (AI4SoS) refers to the application of AI techniques to analyze, simulate, and validate61

the pattern of scientific research. It aims to leverage AI to study key aspects of the scientific62

ecosystem, including research productivity (e.g. individual published paper count), collaboration63

network (e.g. interdisciplinary research collaboration), and the factors driving the advancement64

of scientific knowledge (e.g. funding and policy). Specifically, AI can drive the SoS research65

process by automatically applying methods such as machine learning, data mining, and computational66

simulations, thereby uncovering scientific patterns.67

2.2 Hierarchy of Automation Degree in AI4SoS68

The integration of AI techniques into scientific research follows a progressive hierarchy, reflecting69

the increasing autonomy and sophistication of AI systems in advancing the SoS field. As illustrated70

in Fig. 2, we define five levels of autonomy, ranging from no AI involvement in pattern recognition71

and analysis to full autonomy in uncovering new scientific insights and guiding research strategies.72
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Table 1: Comparison between AI for Science and AI for Science of Science.

Feature AI for Science AI for Science of Science

Focus Solving domain-specific scientific
problems.

Understanding mechanisms of scientific
progress to facilitate and accelerate research.

Approach Direct application of AI to address
scientific challenges.

Meta-level analysis to enhance the research
process.

Examples Predicting weather, designing new
drugs, optimizing materials.

Studying research collaboration trends,
analyzing innovation triggers, mapping
knowledge growth.

Level 0: Non-automated SoS Discovery At this level, scientific pattern discovery is entirely human-73

driven and relies on traditional statistical methods. Researchers apply fundamental techniques such as74

probabilistic models, linear regression, and hypothesis testing to analyze scientific data and uncover75

patterns. AI is not involved in the process, and all tasks are conducted manually using well-established76

statistical procedures. Notable studies in this domain include the application of regression analysis to77

identify research trends [80], correlation analysis to examine relationships between variables [5], and78

statistical estimation methods to explain observed scientific phenomena [59, 106].79

Level 1: AI-Assisted SoS Discovery In Level 1, AI only supports scientific data processing. Specifi-80

cally, AI methods are able to transform real-world scientific data into a more comprehensible form,81

including tasks such as completing and structuring bibliometric data, extracting key features such as82

author networks and institutional collaborations, and converting text information (e.g., papers, scien-83

tists) into embedding representations, thereby enhancing the efficiency and accuracy of data handling.84

However, AI’s role remains supplementary, with human researchers still conducting data analysis,85

understanding and prediction. From the perspective of AI4SoS, some related works include: utilizing86

text-to-embedding methods for mapping papers to vector space [85], extracting key information from87

papers using named entity recognition [99], and constructing networks for faculty mobility [15].88

Level 2: Partially Automated SoS Discovery In Level 2, AI techniques (e.g., supervised learning),89

play a central role in analyzing scientific data, enabling tasks such as predicting emerging trends,90

research hotspots and collaboration opportunities, based on historical patterns. This marks a shift91

from AI-assisted data processing to AI-driven data analysis. However, in this level, AI struggles to92

design and implement experiments automatically. For instance, a simulation environment that can93

automatically conduct scientific experiments is not available, therefore it is difficult to model hidden94

dynamic processes within the scientific ecosystem. Related works include the use of machine learning95

models to predict individual paper citation counts [102], neural networks for forecasting research96

trends and generating novel ideas [48], clustering publications based on citation relationships [92],97

and applying structural topic models to extract topics from scientific texts [33].98

Level 3: Highly Automated SoS Discovery In Level 3, AI not only drives the analysis but also99

designs and implements experiments to simulate scientific patterns in the real world. In this case,100

researchers can compare results generated by simulation systems and those in the real world to101

explore strategies in SoS for potential real-world applications. While AI can support automatic102

experiment conduction, human supervision is required to define the specific application scenarios and103

corresponding experimental parameters (e.g., scientist information, boundary conditions) based on104

system feedback. Consequently, the authenticity and rationality of the system depends on whether105

the researchers have considered all relevant factors, making the automatic pattern validation difficult.106

Research at this level is still in its early stages, including systems simulating specific research107

scenarios to propose hypotheses [27], AI predicting outcomes under different simulation conditions108

to provide insights into collaboration patterns [90]. and systems reproducing historical events based109

on specific environmental settings [105].110

Level 4: Fully Automated SoS Discovery Level 4, the ultimate stage, represents complete automatic111

discovery in SoS. An AI-based virtual research society is conducted for end-to-end SoS discovery,112

including pattern analysis, prediction, and validation. Compared to systems in Level 3, systems in113

Level 4 function with continuous AI-based feedback loops to autonomously assess research plans and114

results to dynamically adjust parameters such as experimental settings, enabling virtual-world pattern115

validation as an alternative to real-world social experiments that may be aggressive. At this stage,116
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e.g., Text-to-Embedding methods for mapping papers to vector space, named entity recognition for 

extracting key information from papers, …
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Figure 2: An overview of the five progressively advancing levels of autonomy in AI4SoS, with
more green areas indicating that higher levels correspond to greater degrees of autonomy. Current
research is primarily at Level 2 or below, with very limited work at Level 3, while fully automated
SoS discovery remains in the prospective stage.

novel scientific insights can be discovered without human intervention, and systems can adapt to new117

data and incorporate new insights in real time. Ethical and governance frameworks are embedded,118

aligning the system’s actions with established guidelines for scientific integrity and accountability.119

Currently, most research remains at Level 2 or below, with limited progress observed at Level 3, while120

fully automated SoS discovery is still in the exploratory stage. Looking ahead, several potential tasks121

are envisioned, including automated discovery of new collaboration patterns within the simulated122

scientific community [90], systems capable of simulating and conducting experiments in real-world123

settings [52], and AI that continuously refines research directions based on emerging data [69].124

3 Advantages of Automatic SoS Discovery125

In this section, we delve into critical open problems within the SoS that stand to benefit substantially126

from AI-driven automation. These problems are categorized into two primary areas: Forecasting127

Trends in Technology and Innovation and Understanding the Dynamics of Research Society. For each128

subproblem, we provide a brief background and outline key opportunities where AI offers advantages.129

3.1 Forecasting Trends in Technology and Innovation130

3.1.1 Background of Problem131

Accurately forecasting the trajectory of science and technology is a crucial aspect of SoS, as it informs132

decisions related to funding, policy-making, and research prioritization. Two major challenges are133

predicting technological trends and identifying interdisciplinary opportunities.134

The Trend in Technological Development Technological development follows intricate and of-135

ten non-linear trajectories, making prediction difficult. To predict these trends, it is essential to136

understand which technologies are gaining momentum, identify emerging breakthroughs, and antici-137

pate when they will transition from research to real-world applications [35]. Traditional methods,138

such as historical data analysis, often fall short in scalability and struggle to keep pace with rapid139

advancements.140

The Interdisciplinary Future of Innovation Interdisciplinary research, which often serves as the141

pivotal role for major breakthroughs, presents another significant challenge. With the rapid growth142

of scientific literature across diverse fields, manual identification of promising cross-disciplinary143

opportunities has become increasingly unfeasible [11]. The complexity and scale of this task call for144

automated solutions capable of discovering novel connections across fields.145

3.1.2 Advantages of AI4SoS146

AI offers an opportunity for tackling challenges in the SoS by leveraging its capacity to process vast147

datasets and identify complex patterns beyond human discernment. In the context of forecasting tech-148
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nological development, AI models can analyze citation networks, research metadata, and publication149

trends to detect emerging technological trajectories with enhanced precision [12].150

Moreover, AI-driven methods excel in uncovering interdisciplinary opportunities by representing151

scientific knowledge as graph structures and employing advanced similarity metrics. Graph neural152

networks, for instance, have demonstrated the ability to model intricate relationships across scientific153

literature, facilitating the discovery of latent connections and novel collaborations across disparate154

domains [110]. This capability empowers researchers to target high-potential interdisciplinary155

collaborations, fostering innovation at the convergence of fields.156

3.2 Understanding the Dynamics of Research Society157

3.2.1 Background of Problem158

The dynamics of research societies play a fundamental role in shaping scientific progress, which159

encompass how scientist research patterns evolve, how different team constructions influence the160

impact of research output, and how current research society influences scientists.161

The Dynamics and Mechanics of Scientist Career The role of studying scientific careers is to162

provide personalized support to the academic community, thereby enhancing individual innovation163

capabilities, optimize team collaboration efficiency, and improving the allocation of research re-164

sources [24]. However, challenges include the highly individualized nature of career development165

paths, data scarcity and bias, and the complexity of external environmental factors [97].166

The Dynamics and Mechanics of Research Team The composition and dynamics of scientific167

teams play a crucial role in improving research outcomes, with elements such as size, diversity, and168

collaboration patterns influencing team creativity and productivity [5, 100]. Over time, shifts in169

team structures and researcher mobility have reflected broader changes in the research landscape.170

Understanding these evolving dynamics presents challenges, as the relationships between team171

composition and research impact are multifaceted [101, 104].172

The Dynamics and Mechanics of Research Society The organization and dynamics of research173

societies play a crucial role in shaping the progression and fairness of scientific endeavors. Studies174

have highlighted persistent inequalities in academic representation, participation, and recognition,175

both within and across nations [98, 56]. These disparities, influenced by systemic and structural176

factors, hinder the equitable generation and dissemination of knowledge. On a broader scale,177

imbalances in citation patterns and collaboration networks often reflect biases rooted in reputation178

and resources rather than research quality [28].179

3.2.2 Advantages of AI4SoS180

AI offers potential for understanding and improving the dynamics of research societies. By analyzing181

large-scale historical datasets—such as collaboration patterns, research trajectories, and external182

influences—AI can uncover critical factors driving individual career development. This enables183

personalized researcher support and helps institutions optimize talent management. Techniques such184

as predictive modeling have proven effective in tracking and forecasting team member mobility185

patterns [30].186

Moreover, AI-driven agents can simulate complex team dynamics, providing insights into how187

various factors, such as diversity and team size, influence research productivity and innovation.188

Taking this a step further, AI can simulate entire scientific societies, not only uncovering hidden189

patterns and problems but also guiding the policymaking process by validating potential policies190

within the simulated environment. For instance, multi-agent systems have been employed to model191

team formation processes and predict collaboration outcomes under varying settings [90].192

4 Challenges and Pathways193

Achieving fully automated SoS discovery centers on effectively utilizing AI techniques to process194

scientific data. This endeavor involves addressing four key challenges: data-related issues, compre-195

hensive system construction, robust system evaluation, and system explainability. For each of these196

challenges, we provide a detailed analysis along with potential pathways for resolution.197
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4.1 Data Issues198

Challenges Data issues mainly include data imbalance across disciplines and training data bias. For199

the first issue, many disciplines, such as computer science and engineering, produce large volumes of200

well-structured data readily used by AI systems [22, 41]. However, other fields, such as social sciences201

or humanities, often suffer from smaller datasets, less structured data, or incomplete information,202

which makes it difficult for AI models to provide accurate predictions [49, 39]. This imbalance203

can lead to skewed results where AI predictions are disproportionately driven by well-represented204

fields, neglecting potentially valuable insights from underrepresented areas of research. Another issue205

is training data bias. When predicting reproducible patterns from data, machine learning models206

inevitably incorporate and perpetuate biases present in the data, often in opaque ways [58]. For207

example, the training data and alignment methods of LLMs (whether open-source or closed-source)208

are not fully disclosed [2, 18, 103], making it impossible to objectively assess their bias and fairness.209

Therefore, the fairness of machine learning becomes a heavily debated issue in applications ranging210

from the criminal justice system to hiring processes [65].211

Pathway To address issues of data imbalance and biases in training data, constructing a large and212

diverse dataset is essential to improve data representativeness, ensuring coverage across various213

domains, groups, and contexts. Several large-scale, cross-disciplinary academic datasets are currently214

available for SoS research, including the Microsoft Academic Graph (MAG) [87], Open Academic215

Graph (OAG)[108], and SciSciNet [54], as summarized in Table 2. In the process of data auditing216

and filtering, it is crucial to examine data sources and mitigate any potential historical or socio-217

cultural biases to ensure the dataset is free from implicit biases [81]. Additionally, employing218

multi-annotator strategies, conducting group balance checks, and performing fairness evaluations can219

further ensure the fairness and diversity of the dataset [73]. These measures not only enhance the220

model’s generalization ability but also reduce unfairness stemming from data biases.221

4.2 Comprehensive System Construction222

Challenges Simulating a research society using AI for fully automated SoS discovery, particularly223

through an agent-based system, presents numerous challenges. Each scientist-agent requires detailed224

modeling of their research expertise, career trajectory, and collaborative networks, which are often225

too complex to be fully captured in the simulation system [68, 26]. Critical but unobservable226

factors, such as internal cognitive processes and informal discussions that drive real-world decision-227

making, remain challenging to replicate accurately. These limitations inevitably make simulations228

discrete and less representative of actual societal dynamics. Moreover, the simulation process itself229

introduces complexities. Aligning the simulated timeline with real-world events necessitates careful230

calibration; for instance, determining how many simulation epochs correspond to a year in reality [43].231

Determining the appropriate size of the simulated society is also crucial; an overly small-scale model232

risks failing to capture the emergent behaviors of a real research ecosystem, while an overly large233

model may become impractical to manage and analyze [82, 7]. Another pressing challenge lies in234

bias amplification when designing AI systems—a concern that builds on the broader implications235

of how AI interacts with societal structures. Since AI systems are often designed to optimize based236

on historical data of SoS, they risk perpetuating existing paradigms, funding trends, and citation237

networks. This aligns with the well-documented “rich get richer” effect in citation and funding238

dynamics [21, 79, 40]. If an AI system prioritizes high-impact metrics, it may inadvertently favor239

mainstream topics and established researchers, further marginalizing unconventional or disruptive240

ideas. Without explicit mechanisms to value novelty and diversity, such systems could unintentionally241

confine the scientific community to existing trends, hindering pathways to groundbreaking innovation.242

Lastly, the system must account for unexpected exceptions to ensure the simulation operates smoothly243

and continuously for fully automated scientific discovery. Striking a balance between realism and244

feasibility remains a persistent and fundamental challenge in these simulations.245

Pathway Several potential pathways can help address these complexities. With the continuous246

advancement of LLMs’ comprehensive capabilities, handling complex multi-level modeling is247

becoming increasingly feasible. By defining agent models with distinct roles and appropriately248

assigning tasks, the behaviors of scientists at various levels can be more accurately simulated [75].249

Fine-tuning LLMs on extensive academic datasets can further optimize the behavioral patterns of250

agents [31], enhancing their adaptability to reflect real-world research dynamics. One solution for251

timeline alignment is to build flexible, dynamic calibration techniques that adjust the simulation’s252
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temporal parameters based on context and event-driven data [105]. In determining the appropriate253

scale for the simulated society, agent-based sampling methods (random or rule-based) or dynamic254

population expansion techniques can be utilized [90]. When addressing bias in AI systems, it is crucial255

to consider the nature of SoS, a discipline dedicated to analyzing historical data and uncovering biases256

or patterns within the scientific community. To ensure alignment between simulations and real-world257

dynamics, it is essential to incorporate these biases into SoS studies, as AI designed for this field seeks258

to enhance and advance SoS research. At the same time, such biases can be mitigated through targeted259

adjustments to system parameters. For instance, to counteract the “rich get richer” effect in citations,260

one effective approach could involve reducing the likelihood of citing highly cited papers when an261

agent selects a reference. Instead, assigning higher probabilities to less-cited, more novel papers can262

help promote diversity in citation practices and encourage the exploration of unconventional ideas.263

Moreover, the system can integrate robust anomaly detection and recovery mechanisms to handle264

unexpected situations. Using unsupervised learning techniques (such as clustering), the model can265

identify deviations from expected behaviors and adjust simulation parameters accordingly to ensure266

stability and continuity [3]. These potential solutions try to strike a balance between realism and267

operational feasibility, providing a technological foundation for research society simulations.268

4.3 Comprehensive System Evaluation269

Challenges Evaluating the validity of outputs generated by AI systems in the field of SoS is a270

complex and multifaceted challenge. SoS research addresses a broad range of problems and lacks271

unified evaluation standards, with different tasks often necessitating tailored metrics [58]. Moreover,272

innovation—a key attribute of AI outputs—is inherently subjective and context-dependent, making it273

difficult to quantify accurately using traditional methods [90, 14]. Validity assessments also heavily274

rely on specific domain contexts. However, the interdisciplinary nature of SoS compounds the275

complexity, requiring the integration of knowledge and evaluation standards from diverse fields.276

Additionally, the dynamic nature and long-term implications of AI-generated outputs present further277

challenges, as their true impact on scientific progress often cannot be evaluated in the short term [8].278

Addressing this requires advanced tools, such as time-series analysis and virtual scientist simulations,279

to facilitate longitudinal tracking. Furthermore, AI-generated scientific recommendations may raise280

ethical issues and have far-reaching consequences for scientific communities and research prac-281

tices [55]. Therefore, a comprehensive and adaptable evaluation framework is necessary, integrating282

scientometric methodologies, multidisciplinary expert reviews, dynamic analytical approaches, and283

stringent ethical guidelines.284

Pathway To address these challenges, appropriate solutions can be implemented. First, collaborating285

with domain experts to define task-specific evaluation metrics is essential, and then quantitative286

evaluation methods based on scientometrics should be developed. For instance, citation counts can be287

used as a measure of influence when evaluating the impact of system outputs, and they can also track288

knowledge flow [58]. In simulating a scientist’s career, individual impact metrics such as the h-index,289

which reflects both productivity and impact, can be applied. Additionally, to assess output novelty,290

feasible approaches include large model-based peer-review scoring [61, 90] or calculating the Z-score291

for each pairing of referenced journals [14]. With the ongoing expansion of LLMs’ expertise and292

improved reasoning capabilities, interdisciplinary testing and long-term large-scale simulations have293

become increasingly feasible. Moreover, LLMs are now being employed in social simulations [105],294

assuming role-based agents. In terms of ethical and social impacts, aligning model preferences and295

improving transparency can partially address ethical concerns and enhance user trust, while ethical296

benchmarks [64, 37] can be used to test the validity of system outputs. By integrating these strategies,297

a multidimensional evaluation framework can be established.298

4.4 Explainability and Causal Inference299

Challenges While the AI framework emphasizes automated discovery and evaluation, it lacks300

mechanisms to explain the causal pathways behind AI-generated outputs [32, 78]. This limitation301

makes it difficult for researchers and policymakers to trust and adopt AI-driven insights, as they may302

not fully understand the underlying logic or relationships. Moreover, the complex and interdisciplinary303

nature of SoS often involves interactions between numerous variables, such as collaborations, funding304

patterns, and citation networks [88, 24], which cannot be adequately captured through correlation-305

based approaches. Without explicit causal explanations, it is challenging to ensure the auditability,306

accountability, and interpretability of the system, undermining its credibility and ethical alignment.307
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Figure 3: The overview of our preliminary multi-agent system for scientific collaboration simulation.
We place the simulation within a community of scientists. After a scientist leads his/her team in
submitting a paper, it undergoes peer review. If accepted, it is added to the reference database and can
be cited by other scientists in subsequent epochs. Due to varying author information, the citation count
of the final research output differs, then we can analyze the correlation between them—understanding
the dynamics of research organizations, which is important in the field of SoS.

Pathway To address these challenges, it is crucial to introduce causal modeling [71, 23] and ex-308

plainable AI (XAI) [20, 60] techniques to assist in interpreting and validating simulation results.309

Approaches such as Counterfactual Analysis can clarify the logical origins of AI-driven recom-310

mendations or discoveries, making the reasoning process more transparent. Relevant methods in311

the SoS domain include causal inference techniques like Propensity Score Matching (PSM) and312

Coarsened Exact Matching (CEM), which are useful for identifying causal relationships in complex313

systems [46, 36]. Additionally, causal graphical models and structural equation modeling (SEM) can314

be applied to analyze scientific impact by modeling the flow of influence across variables such as315

collaboration networks or funding distributions [16, 44, 50]. These tools provide a robust foundation316

for explaining AI-generated outputs.317

5 Proof-of-Concept Studies318

In this section, we present case studies to illustrate a practical application scenarios in AI4SoS. Specif-319

ically, by constructing a simplified preliminary multi-agent system to replicate phenomena observed320

in real-world scientific societies and uncover underlying patterns in SoS, we aim to demonstrate the321

possibility of automated pattern discovery.322

5.1 Environment Construction323

We construct a preliminary multi-agent system to simulate a society-level scientific collaboration324

through an end-to-end pipeline, including collaborator selection, topic discussion, idea generation,325

novelty assessment, abstract generation, and peer review, inspired by [61, 74, 90]. The overview of our326

system is shown in Fig. 3. Existing studies primarily focus on simulating individual scientists or small327

research teams within specific fields (e.g., computer science) and are often constrained to isolated328

settings that do not capture the broader research ecosystem. In contrast, our work enhances the329

system’s complexity by incorporating realistic factors such as multidisciplinary data (In Appx. C.1),330

a review and indexing system (In Appx. C.2), and scalable simulation across multiple research teams331

(In Appx. C.3). More implementation details are provided in Appx. C.4.332

5.2 Experiments333

Involved Metrics Following the settings of [5, 51, 97], we measure the impact of scientific output by334

the number of citations a paper receives. In the simulation, the citation counts are updated each time335

a paper is retrieved during the idea generation phase. For validation, we analyze the citation counts336
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Figure 4: Comparison of real-world (2010) and AI-simulated scientific research patterns. The scatter
plots illustrate the relationships between Ethnicity Diversity, Affiliation Diversity, and Affiliation
Ranking with Citation Count in both real-world (top row) and simulated (bottom row) data. Correla-
tions observed in real data are partially reproduced by the AI-driven multi-agent system, showing its
potential to uncover meaningful research patterns and support automated SoS studies.

of agent-generated papers to assess whether the system can replicate patterns observed in real-world337

data from the years 2010 to 2011. To evaluate AI’s potential in pattern discovery, we examine the338

influence of three key factors on citation counts: ethnicity diversity, affiliation diversity, and average339

university ranking. Specifically, we measure diversity using Shannon entropy. For instance, the340

ethnicity diversity deth of paper s is calculated as: deth = −
∑k

i=1 pi(s) ln pi(s), where k represents341

the total number of ethnicity categories, and pi(s) is the proportion of authors from the i-th ethnicity342

category in paper s.343

Simulation Results The experimental results presented in Fig. 4 compare real-world data in 2010344

with the outcomes generated by our preliminary LLM-based multi-agent system. Both the real-345

world and simulated data show that higher citation counts are positively correlated with greater346

ethnicity diversity, which aligns with existing findings in SoS literature [5], although the correlations347

are slightly weaker in the simulation. Additionally, the negative correlation between affiliation348

ranking and citation counts is also reproduced in the simulated data, suggesting that institutions with349

higher rankings may achieve higher citation counts per research output (a similar comparison using350

real-world data from 2011 and the simulated results is provided in the Appx. C.5).351

Discussions However, while both real-world and simulated data indicate a positive correlation be-352

tween citation counts and affiliation diversity, the pattern observed in the simulation is not statistically353

significant (p>0.05). These results suggest that the preliminary AI-driven simulations have the354

potential to replicate and uncover key patterns in scientific research, but there remains significant355

room for improvement. For instance, the current system lacks several critical components, such as356

comprehensive modeling of individual research trajectories and realistic funding and policy influences.357

These limitations contribute to the preliminary nature of our approach, as the absence of such factors358

restricts the system’s ability to fully capture the complexity of real-world scientific ecosystems.359

Developing a more comprehensive and sophisticated simulation framework will enhance the system’s360

capability to automatically model complex scientific dynamics with greater accuracy and reliability.361

More details of outlook are provided in Appx. E.362

6 Conclusion363

This paper presents a forward-looking perspective on the future of AI4SoS, proposing a five-level364

autonomy framework toward automated SoS discovery. We show its potential in two critical domains:365

forecasting trends in technology and innovation, and analyzing the evolution of research communities.366

We discuss key challenges and future directions, supporting our vision with literature reviews and367

proof-of-concept studies that showcase early applications. Ultimately, AI4SoS holds the promise of368

automated SoS discovery, thereby enhancing scientific efficiency and interdisciplinary innovation.369
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A Related Work695

A.1 AI for Science696

In recent years, AI has become increasingly common in science and is expected to become the697

center of research practice [93]. AI has demonstrated great potential to accelerate experimental698

design, data analysis, optimization problem solving, and discovery of new theories [29, 94, 62].699

Specifically, deep neural networks are used to predict the relationship between molecular structures700

and biological activity [95, 89], reinforcement learning is used to discover unknown materials with701

superior properties [91, 45], and agent-based systems are introduced to simulate social science sce-702

narios [53, 17]. In addition, as a subfield of science, AI has undergone some preliminary explorations703

in the SoS [5, 85, 90], revealing promising results.704

A.2 Large Language Models705

The role of large language models (LLMs) can be articulated from two perspectives: chat (T5 [76],706

GPT-4 [70], and LLaMA3.1 [19]) and embedding (BERT [42] and DNABERT [38]) generation. First,707

the capability of dialogue generation enables LLMs to understand user input in natural language and708

generate contextually relevant responses in various conversational contexts such as knowledge testing,709

game play, and software programming [107, 57, 109, 17]. Additionally, embedding generation710

allows LLMs to convert input text into fixed-dimensional vector representations, which effectively711

capture the semantic information of the text and can be used for tasks such as text similarity712

computation, information retrieval, and sentiment analysis [67, 63, 4, 72]. Therefore, the capabilities713

of LLMs in both text generation and embedding generation make them applications spanning from714

natural language processing tasks to more complex domains such as SoS, where they can assist in715

understanding research dynamics, scientific discovery, and scientific collaboration.716
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B Datasets for Science of Science Research717

Currently, there are several large-scale, cross-disciplinary academic datasets for SoS research: Mi-718

crosoft Academic Graph (MAG), Open Academic Graph (OAG), and SciSciNet, where the statistical719

information of each dataset is summarized in Table 2.

Table 2: Summary table of large-scale cross-discipline academic datasets.

Datasets MAG OAG SciSciNet

Due 2020 2023 2021
Domain Art, Biology, Business,

Chemistry, Computer
Science, Economics,
Engineering,
Environmental Science,
Geography, Geology,
History, Materials
Science, Mathematics,
Philosophy, Physics,
Political Science,
Psychology, Sociology

Art, Biology, Business,
Chemistry, Computer
Science, Economics,
Engineering,
Environmental Science,
Geography, Geology,
History, Materials
Science, Mathematics,
Philosophy, Physics,
Political Science,
Psychology, Sociology

Art, Biology, Business,
Chemistry, Computer
Science, Economics,
Engineering,
Environmental Science,
Geography, Geology,
History, Materials
Science, Mathematics,
Medicine, Philosophy,
Physics, Political
Science, Psychology,
Sociology

Author 261,445,825 35,774,510 134,197,162
Paper 247,389,875 130,710,733 134,129,188
Affiliation 25,811 143,749 26,998

720

C More Experimental Details721

C.1 Multidisciplinary Data722

We use the OAG 3.11 as the initial database for our system, which developed from the Open Academic723

Graph [108]. This data set includes 35,774,510 authors and 130,710,733 papers as of 2023, spanning724

diverse domains such as physics, chemistry, and computer science. In Table 3, we present the725

disciplines and fields of paper in the Open Academic Graph, which is used to analyze the potential726

different patterns in various areas. We use papers from 2002 to 2009 as the reference database727

and papers from 2010 to 2011 as the validation database. To address missing author ethnicity728

and paper field information—key elements for validating SoS findings—we employ several data729

completion strategies. Specifically, we adopt corresponding approaches for the various pieces of730

author information and paper information in this dataset for our simulation, shown in Table 4 and 5.731

Table 3: Summary table of disciplines and fields [5].

Field Discipline

Humanities, Literature & Arts [Art, History, Philosophy, Psychology]
Life Science & Earth Sciences [Biology, Environmental Science, Geography, Geology]
Business, Economics &
Management

[Business, Economics]

Engineering & Computer Science [Computer Science, Engineering]
Chemical & Material Sciences [Chemistry, Materials Science]
Physics & Mathematics [Mathematics, Physics]
Health & Medical Sciences [Medicine]
Social Sciences [Political Science, Sociology]

1https://open.aminer.cn/open/article?id=65bf053091c938e5025a31e2
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Table 4: Different strategies are adopted for various pieces of information regarding authors.

Field Name Strategy Example

Author Information
Name Use the anonymization technique Scientist 1
Ethnicity Use the name ethnicity classifier [6] British
Affiliation Retain the original content [King’s College

London]
Affiliation
Ranking

Use THE World University Rankings 2025 1 36

Citation Extract the author’s published papers between 2010 to
2020 and calculate the total number of citations for the
papers; In the simulation, it will be updated if his/her
paper is cited

1800

Co-author Extract the author’s published papers between 2010 to
2020 and record the collaborators in the papers; In the
simulation, it will be updated if there are new collabora-
tors

[Scientist 10,
Scientist 201,
Scientist 1002, . . . ]

Discipline Extract the author’s published papers between 2010 to
2020 and assign the author’s discipline as the one that
appears most frequently

Psychology

Research
topic

Extract the author’s published papers between 2010 to
2020 and record the keywords in the papers; Use GPT-4
to summarize these keywords into research topics

[Neuropsychology,
Cognitive flexibility,
Attentional bias, . . . ]

1 https://www.timeshighereducation.com/world-university-rankings/latest/w
orld-ranking

C.2 Review and Indexing System732

To better simulate and reveal the patterns of scientific collaboration mechanisms, we introduce a733

review and indexing system. Papers written by scientist teams are peer-reviewed and scored (ranging734

from 1 to 10), and those that exceed the acceptance threshold (with score larger than 5) are added to735

the reference paper database as newly published papers. In Table 6 and 7, we present the peer review736

criteria used in our simulation system, which is based on the modified Neural Information Processing737

Systems review guidelines 2 considering that the papers produced by cross-discipline agents are not738

all in the field of computer science. Although this criteria comes from a computer science conference,739

the basic evaluation metrics can be applied in multiple areas. Besides, the indexing system allows740

agents to retrieve published papers as references, and the citation count of referenced papers is741

updated accordingly, which is later used for metric evaluation.742

C.3 Scalable Simulation743

To better replicate the phenomenon of free collaboration in real scientific cooperation, we implement744

an adaptive concurrent distributed system based on the OASIS [105]. The system’s asynchronous745

mechanism achieves concurrent processing by queuing multiple requests from agents in an inference746

channel and then distributing them to different ports for sending and receiving, where each port747

has deployed an LLM responsible for chatting or embedding. Furthermore, to reduce CPU load,748

we set the channel allocation wait time based on the number of pending requests in the channel,749

thereby enabling long-term large-scale asynchronous simulation. This mechanism serves the two750

purposes: 1. Enabling scientist agents from different teams to communicate simultaneously, including751

both intra-team and cross-team collaboration, and 2. Accelerating the simulation process to enable752

large-scale simulations at the million-agent level. We test the time cost of our simulation system under753

different number of agents, illustrated in Fig. 5. It could be found that we realize a fast large-scale754

agent system, where a simulation of a million agent society takes only one week.755

2https://neurips.cc/Conferences/2024/ReviewerGuidelines
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Table 5: Different strategies are adopted for various pieces of information regarding papers.

Field Name Strategy Example

Paper Information
Title Retain the original content Linkages of plant

traits to soil
properties . . .

Abstract Retain the original content Global change is
likely to alter plant
community . . .

Year The year of the papers in the initial database is set to
-1, while the papers published by the agent are assigned
the epoch when the review is accepted

-1

Citation In the initial database, the citation count of the papers
is the original citation value plus the number of times
they are cited during the simulation, while the citation
count of the papers written by the agent is the number
of times they are cited during the simulation

82

Authors Retain the original content [Scientist 124,
Scientist 7923, . . . ]

Cited Paper The papers in the initial database have None for this in-
formation due to its absence, while the papers published
by the agent contain the names of the cited papers

None

Discipline Use GPT-4 to classify the papers into disciplines based
on their keywords and titles. Refer to Table 3 for all the
disciplines used

Environmental
Science
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Figure 5: The time taken for a complete scientific collaboration with agents of different scales. A
simulation of a million-agent society takes only one week.

C.4 Implementation Details756

We implement our system on 32 NVIDIA A100 GPUs, with 4 ports deployed on each GPU, and each757

port running the LLaMA3.1-8b model. We allow each agent to create up to 3 teams simultaneously,758

with team sizes following an exponential distribution. This is because we analyze the team sizes of759

papers published between 2002 and 2009 in the OAG (over 1,000,000 papers), as shown in Fig. 6.760

The red fitting line indicates that the team sizes in the real data follow an exponential distribution.761

Therefore, in our simulation, the team size of each agent is also modeled using an exponential762

distribution.763
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Table 6: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (1/2)
You are a researcher from a multidisciplinary background reviewing a paper that has been submitted
to a venue that involves multiple scientific disciplines. Be critical and cautious in your decision-
making. If the paper has significant weaknesses or you are uncertain about its quality, provide
lower scores and recommend rejection. Below are the questions you will be asked on the review
form for each paper and some guidelines on what to consider when answering these questions.
Reviewer Guidelines for Multidisciplinary Paper Review:
1. Summary: Provide a brief summary of the paper and its contributions. This is not the place to
critique the paper. The authors should generally agree with a well-written summary, which reflects
an accurate understanding of their work from a multidisciplinary perspective.
2. Strengths and Weaknesses: Please provide a thorough assessment of the strengths and weak-
nesses of the paper, touching on each of the following dimensions:

- Originality: Are the tasks or methods novel within each of the relevant disciplines? Does the
work represent an innovative combination of techniques or concepts from different fields? Is it
clear how this work distinguishes itself from previous contributions in each discipline involved?

- Quality: Is the submission technically sound in each of the relevant fields? Are claims well-
supported by evidence (e.g., theoretical analysis or experimental results)? Are the methods used
appropriately for each discipline involved? Is this a complete piece of work, or still a work in
progress? Are the authors transparent and honest in evaluating both the strengths and weaknesses
of their work?

- Clarity: Is the paper written in a way that is accessible to readers from multiple disciplines? Is
it well-organized, with clear explanations of concepts across different fields? If not, please suggest
improvements for clarity. Does it provide sufficient detail for an expert in each relevant field to
understand the methodology and reproduce results?

- Significance: Are the results important? Are others (researchers or practitioners) likely to
use the ideas or build on them? Does the submission address a difficult task in a better way than
previous work? Does it advance the state of the art in a demonstrable way? Does it provide unique
data, unique conclusions about existing data, or a unique theoretical or experimental approach?
3. Questions: Please list any questions or suggestions that could help clarify the paper’s limitations
or improve its quality. Responses from the authors could change your opinion or address areas of
confusion. This feedback can be critical for the rebuttal and discussion phase with the authors.

In idea generation and novelty assessment, each agent can cite up to 9 references per speech, where the764

retrieval results are obtained based on the similarity between the embeddings of the query terms and765

the embeddings of the papers in the database. The model used for embedding is mxbai-embed-large.766

To avoid storage issues, each agent’s memory retains a maximum of 5 entries. Each paper undergoes767

peer review by 3 reviewers. In terms of the timeline, each epoch allows for 1 action, meaning a768

complete scientific collaboration can be completed in 6 epochs if the team progresses without any769

delays or interruptions. In our final experiment, the size of our society is maintained at 1 million770

agents, with a total of 40 epochs.771

C.5 More Experimental Results772

A similar comparison using real-world data from 2011 and the simulated result is provided in Fig. 7.773

The statistical analysis of the 2011 data exhibits similar trends to those observed in Fig. 4, which774

presents the comparison using 2010 data. The positive correlation between citation counts and775

ethnicity diversity, as well as the negative correlation between affiliation ranking and citation counts,776

are consistently reflected in both years. However, minor variations in correlation strength are observed,777

highlighting the dynamic nature of scientific collaboration trends over time.778

D Alternative Views779

The application of AI in SoS is often seen as transformative, promising to accelerate discovery.780

However, critics highlight significant limitations and risks, questioning its unqualified benefits. These781

concerns focus on systemic issues and unintended consequences [10, 77, 66]. Key counterarguments782
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Table 7: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (2/2)
4. Ethical Concerns: Flag any ethical concerns, particularly those that may arise from interdisci-
plinary collaboration. Ensure any ethical issues related to research design, data usage, or broader
implications are addressed.
5. Overall Score: Provide a final score based on the paper’s strengths and weaknesses. Use the
following scale:

- 10: Award Quality: A technically flawless paper with groundbreaking impact across one or
more disciplines, with exceptionally strong evaluation, reproducibility, and resources, and no
unaddressed ethical concerns.

- 9: Very Strong Accept: A technically flawless paper with groundbreaking impact in at least one
area and strong impact on multiple areas, with flawless evaluation, resources, and reproducibility,
and no unaddressed ethical concerns.

- 8: Strong Accept: A technically strong paper with novel ideas, significant impact on at least
one discipline or moderate-to-high impact on multiple areas, with excellent evaluation, resources,
and reproducibility, and no unaddressed ethical concerns.

- 7: Accept: A technically solid paper with moderate-to-high impact in one or more subfields,
good-to-excellent evaluation, reproducibility, and resources, and no unaddressed ethical concerns.

- 6: Weak Accept: A solid paper with moderate impact, no major concerns in terms of evaluation,
reproducibility, and ethical considerations.

- 5: Borderline Accept: A technically solid paper where reasons to accept outweigh reasons to
reject, e.g., limited evaluation. Use sparingly.

- 4: Borderline Reject: A technically solid paper where reasons to reject outweigh reasons to
accept, e.g., limited evaluation. Use sparingly.

- 3: Reject: A paper with technical flaws, weak evaluation, inadequate reproducibility, or
incompletely addressed ethical concerns.

- 2: Strong Reject: A paper with major technical flaws, poor evaluation, limited impact, poor
reproducibility, or mostly unaddressed ethical considerations.

- 1: Very Strong Reject: A paper with trivial results, poor evaluation, or unaddressed ethical
issues.

include: (1) Reinforcement of Existing Inequalities: AI systems rely heavily on historical data, which783

often mirror long-standing inequities within the scientific community. For instance, datasets may784

disproportionately represent well-established disciplines, regions, or researchers, thereby perpetuating785

an imbalanced view of scientific contributions. Critics argue that this could stifle innovation by786

overlooking emerging fields and underrepresented groups, ultimately reinforcing the leading trend787

rather than fostering diversity. (2) Overreliance on Traditional Metrics: Academic evaluation metrics,788

such as citation counts and journal impact factors, are central to many AI applications in SoS. These789

metrics have been criticized for prioritizing mainstream research while marginalizing unconventional790

or nascent ideas. Opponents caution that AI-driven analyses might amplify this bias, narrowing the791

scope of scientific discovery and undervaluing novel contributions.792

While these critiques highlight significant challenges, they underscore the importance of addressing793

fairness, and inclusivity in AI applications for SoS [34, 83, 84]. To mitigate these concerns, the794

following strategies can be adopted: (1) Promoting Diversity in Data and Metrics: Expanding data795

curation efforts to include a wider range of disciplines, regions, and research communities is critical796

for minimizing biases. Additionally, developing diversified scientific impact metrics beyond citation797

counts can ensure a more equitable evaluation of research contributions. (2) Incorporating Bias798

Mitigation Techniques: Embedding bias detection and correction mechanisms in AI systems can help799

identify and address inequities in the data and algorithms. These techniques should be complemented800

by rigorous validation to ensure fairness and reliability.801

E Outlook802

As AI4SoS progresses toward full autonomy, we envision a future where scientific discovery itself be-803

comes a more self-reflective, adaptive, and strategically guided process. In this envisioned landscape,804

AI agents are trained on vast corpora of scholarly data and historical innovation patterns, which will805
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Figure 6: The statistics of team sizes for papers published between 2002 and 2009 in the OAG, with
the red fitting line revealing that the distribution follows an exponential pattern.

Figure 7: Comparison of real-world (2011) and AI-simulated scientific research patterns.

not only map the contours of scientific fields but also anticipate emerging disciplines and recommend806

actionable research agendas.807

Automated SoS systems will continuously monitor the evolving structure of scientific collaboration,808

offering dynamic guidance to policymakers, institutions, and individual researchers. Research teams809

may be formed or optimized based on predicted synergy and complementary expertise, while funding810

strategies could adapt in real time to maximize long-term innovation impact. Moreover, AI4SoS811

could democratize scientific foresight, making sophisticated analyses accessible to a broader range of812

stakeholders, from early-career researchers to global research organizations. The resulting ecosystem813

would be one where science is not only accelerated but also made more transparent, inclusive, and814

responsive to societal needs.815

To enhance real-world applicability, we also envision deployment scenarios in which AI4SoS in-816

tegrates directly with existing scientific ecosystems. For instance, it could serve as a sandbox817

environment for evaluating national research policies, allowing simulated assessments before imple-818

mentation. Within academic institutions, AI4SoS could support internal research strategy formulation,819

identifying growth areas and optimizing resource allocation. Additionally, it could assist governmen-820

tal and funding bodies in planning emerging discipline layouts and national innovation agendas. These821

integration pathways would significantly boost the practical value, societal impact, and credibility of822

AI4SoS.823
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Achieving this vision will demand sustained interdisciplinary collaboration, ethical oversight, and824

robust infrastructure, but the potential payoff is immense: a future in which the SoS is not just studied,825

but actively shaped by intelligent systems.826

F Impact Statement827

We believe that sustained collaboration between AI researchers and SoS scholars is essential for828

advancing our understanding of complex scientific processes. This study leverages the complementary829

expertise of both fields to address key SoS challenges, improving scientific efficiency and fostering830

interdisciplinary innovation.831

However, from an ethical perspective, the integration of AI with SoS research may present several832

concerns. First, accountability: When AI participates in scientific decision-making, it is crucial to833

clarify responsibility. For instance, if an AI-generated prediction leads to errors, should developers834

bear full responsibility? We suggest enhancing AI system transparency (e.g., recording decision-835

making pathways) and explainability (e.g., providing reasoning behind decisions) to help researchers836

and regulators delineate accountability more clearly. Second, fairness and bias: AI systems rely on837

training data, which may contain inherent biases related to gender, geography, or economic disparities.838

These biases can lead to unjust scientific conclusions. Therefore, AI development and application839

should include rigorous data preprocessing and incorporate fairness constraints within algorithms840

to mitigate the risk of bias propagation. Finally, public trust: AI-driven automation tools, due to841

their complexity, may create a sense of detachment among the public. When AI decision-making842

processes are opaque, concerns about the credibility of scientific findings may arise. To foster trust,843

it is essential to develop more interpretable AI models and ensure human oversight in scientific844

processes.845

From a societal perspective, the complexity of SoS demands innovative approaches. Conventional846

statistical studies, which depend largely on historical data, frequently struggle to uncover causal mech-847

anisms. In contrast, agent-based AI provides a dynamic, causality-driven alternative. By elucidating848

the mechanisms behind the evolution of scientific knowledge, these methods can clarify how govern-849

ment policies influence research funding, academic publishing, and interdisciplinary collaboration.850

As AI4SoS advances, it will foster more effective knowledge exchange among academia, industry,851

and government, accelerating technological and theoretical innovation. Through intelligent analysis852

and predictive modeling, researchers can more precisely identify scientific challenges, significantly853

enhancing the efficiency of discovery.854
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