
AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 The Science of Science (SoS) explores the mechanisms underlying scientific dis-
2covery, and offers valuable insights for enhancing scientific efficiency and fostering
3 innovation. Traditional approaches often rely on simplistic assumptions and basic
4 statistical tools, such as linear regression and rule-based simulations, which strug-
5gle to capture the complexity and scale of modern research ecosystems. The advent
6 of artificial intelligence (AI) presents a transformative opportunity for the next
7 generation of SoS, enabling the automation of large-scale pattern discovery and
8 uncovering insights previously unattainable. This paper offers a forward-looking
9 perspective on the integration of Science of Science with AI for automated research
10 pattern discovery and highlights key open challenges that could greatly benefit from
11 AI. We outline the advantages of AI over traditional methods, discuss potential
12 limitations, and propose pathways to overcome them. Additionally, we present
13 a preliminary multi-agent system as an illustrative example to simulate research
14 societies, showcasing AI's ability to replicate real-world research patterns and
15 accelerate progress in Science of Science research.

16 1 Introduction

17 Science of Science (SoS), a pivotal and rapidly evolving field, serves as a strategic compass for
18 guiding the trajectory of scientific and technological progress. By analyzing the complex dynamics
19 of research collaboration and scientific output across geographic and temporal scales, it sheds
20 light on the factors that drive creativity and the emergence of scientific discoveries, with the goal
21 of developing tools and policies to accelerate scientific advancement [24]. Unlike broader social
22 sciences that examine societal structures, SoS delves deep into the mechanisms that fuel scientific
23 breakthroughs [9, 86, 47]—illuminating the hidden forces that propel discovery and transformation.
24 Ultimately, SoS underscores that groundbreaking advancements are not solely the result of talented
25 minds and quality data, but are profoundly shaped by effective resource allocation, supportive policies
26 and well-designed organizational structures [96, 98].

27 In recent years, the deep fusion of AI and SoS has become more feasible and promising than ever
28 before. First, the increasing availability of large-scale scholarly data—publications, funding records,
29 and collaboration networks—provides unprecedented opportunities to gain deeper insights into the
30 evolution of scientific progress. Second, rapid advancements in AI technologies, such as large
31 language models (LLMs), along with improvements in computational power, have greatly enhanced
32 our ability to analyze and interpret complex scientific information with unprecedented accuracy and
33 scale. These technological breakthroughs mark a critical moment for integrating AI into SoS, paving
34 the way for a more data-driven approach to understanding and guiding research pattern discovery.
35 While some recent works have begun exploring autonomous scientific discovery, the field remains in
36 its infancy, and there is still much progress to be made before realizing its full potential.

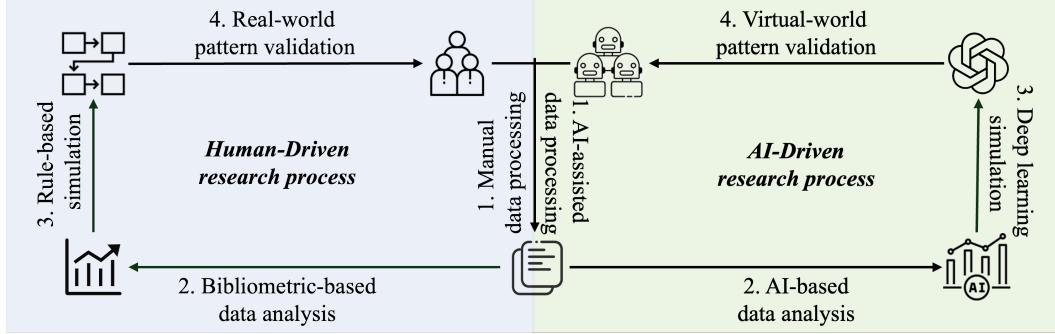


Figure 1: An illustration comparing human-driven and AI-driven research processes in the SoS, highlighting step-by-step differences across four key stages in order: *data processing*, *data analysis*, *system simulation*, and *pattern validation*.

37 In this paper, we take a step forward by providing the first glimpse into the integration of AI and
 38 SoS for automated research pattern discovery. **We take the position that AI has the potential to**
 39 **revolutionize SoS, enabling the next generation of research by not only automating traditional**
 40 **research processes but also providing a sandbox for SoS research, allowing scientists to observe**
 41 **research processes in action and validate their hypotheses.** As illustrated in Fig. 1, traditional SoS
 42 methods have primarily relied on manual data processing, bibliometric-based data analysis, rule-based
 43 system simulations, and real-world pattern validation. In contrast, AI-driven SoS leverages automated
 44 techniques to assist scientists in processing and analyzing data while offering more advanced and
 45 comprehensive systems for simulation and validation. This shift from human-driven to AI-driven
 46 methodologies unlocks the potential for more efficient, scalable, and data-driven analysis, ultimately
 47 providing deeper and more actionable insights into the mechanisms that shape scientific progress.
 48 Thus, we define AI for SoS (AI4SoS) as a cross-disciplinary field that not only focuses on facilitating
 49 each step within the research process but also aims to achieve fully automated SoS research to
 50 uncover the hidden forces driving scientific innovation. This distinguishes AI4SoS from existing AI
 51 for Science (AI4S) approaches, which focus on using AI tools to solve domain-specific scientific
 52 problems [25, 1, 13]. To better differentiate AI4SoS from AI4S, we illustrate differences in Table 1.
 53 To consolidate our insights, we propose a forward-looking hierarchy of AI4SoS automation in Sec. 2.2.
 54 In Sec. 3, we highlight critical open problems in SoS where AI offers advantages. Despite its promise,
 55 we discuss challenges such as data bias in Sec. 4. We also propose possible pathways to overcome
 56 these challenges. Lastly, we introduce a preliminary multi-agent system to simulate research societies
 57 in Sec. 5, illustrating AI's capability to enable fully automated pattern discovery. We show related
 58 work, alternative views and impact statement in Appx. A, D, and F, respectively.

59 2 AI for Science of Science

60 2.1 Definition

61 AI for SoS (AI4SoS) refers to the application of AI techniques to analyze, simulate, and validate
 62 the pattern of scientific research. It aims to leverage AI to study key aspects of the scientific
 63 ecosystem, including research productivity (e.g. individual published paper count), collaboration
 64 network (e.g. interdisciplinary research collaboration), and the factors driving the advancement
 65 of scientific knowledge (e.g. funding and policy). Specifically, AI can drive the SoS research
 66 process by automatically applying methods such as machine learning, data mining, and computational
 67 simulations, thereby uncovering scientific patterns.

68 2.2 Hierarchy of Automation Degree in AI4SoS

69 The integration of AI techniques into scientific research follows a progressive hierarchy, reflecting
 70 the increasing autonomy and sophistication of AI systems in advancing the SoS field. As illustrated
 71 in Fig. 2, we define five levels of autonomy, ranging from no AI involvement in pattern recognition
 72 and analysis to full autonomy in uncovering new scientific insights and guiding research strategies.

Table 1: Comparison between AI for Science and AI for Science of Science.

Feature	AI for Science	AI for Science of Science
Focus	Solving domain-specific scientific problems.	Understanding mechanisms of scientific progress to facilitate and accelerate research.
Approach	Direct application of AI to address scientific challenges.	Meta-level analysis to enhance the research process.
Examples	Predicting weather, designing new drugs, optimizing materials.	Studying research collaboration trends, analyzing innovation triggers, mapping knowledge growth.

73 **Level 0: Non-automated SoS Discovery** At this level, scientific pattern discovery is entirely human-driven and relies on traditional statistical methods. Researchers apply fundamental techniques such as probabilistic models, linear regression, and hypothesis testing to analyze scientific data and uncover patterns. AI is not involved in the process, and all tasks are conducted manually using well-established statistical procedures. Notable studies in this domain include the application of regression analysis to identify research trends [80], correlation analysis to examine relationships between variables [5], and statistical estimation methods to explain observed scientific phenomena [59, 106].

80 **Level 1: AI-Assisted SoS Discovery** In Level 1, AI only supports scientific data processing. Specifically, AI methods are able to transform real-world scientific data into a more comprehensible form, including tasks such as completing and structuring bibliometric data, extracting key features such as author networks and institutional collaborations, and converting text information (e.g., papers, scientists) into embedding representations, thereby enhancing the efficiency and accuracy of data handling. However, AI's role remains supplementary, with human researchers still conducting data analysis, understanding and prediction. From the perspective of AI4SoS, some related works include: utilizing text-to-embedding methods for mapping papers to vector space [85], extracting key information from papers using named entity recognition [99], and constructing networks for faculty mobility [15].

89 **Level 2: Partially Automated SoS Discovery** In Level 2, AI techniques (e.g., supervised learning), play a central role in analyzing scientific data, enabling tasks such as predicting emerging trends, research hotspots and collaboration opportunities, based on historical patterns. This marks a shift from AI-assisted data processing to AI-driven data analysis. However, in this level, AI struggles to design and implement experiments automatically. For instance, a simulation environment that can automatically conduct scientific experiments is not available, therefore it is difficult to model hidden dynamic processes within the scientific ecosystem. Related works include the use of machine learning models to predict individual paper citation counts [102], neural networks for forecasting research trends and generating novel ideas [48], clustering publications based on citation relationships [92], and applying structural topic models to extract topics from scientific texts [33].

99 **Level 3: Highly Automated SoS Discovery** In Level 3, AI not only drives the analysis but also designs and implements experiments to simulate scientific patterns in the real world. In this case, researchers can compare results generated by simulation systems and those in the real world to explore strategies in SoS for potential real-world applications. While AI can support automatic experiment conduction, human supervision is required to define the specific application scenarios and corresponding experimental parameters (e.g., scientist information, boundary conditions) based on system feedback. Consequently, the authenticity and rationality of the system depends on whether the researchers have considered all relevant factors, making the automatic pattern validation difficult. Research at this level is still in its early stages, including systems simulating specific research scenarios to propose hypotheses [27], AI predicting outcomes under different simulation conditions to provide insights into collaboration patterns [90], and systems reproducing historical events based on specific environmental settings [105].

111 **Level 4: Fully Automated SoS Discovery** Level 4, the ultimate stage, represents complete automatic discovery in SoS. An AI-based virtual research society is conducted for end-to-end SoS discovery, including pattern analysis, prediction, and validation. Compared to systems in Level 3, systems in Level 4 function with continuous AI-based feedback loops to autonomously assess research plans and results to dynamically adjust parameters such as experimental settings, enabling virtual-world pattern validation as an alternative to real-world social experiments that may be aggressive. At this stage,

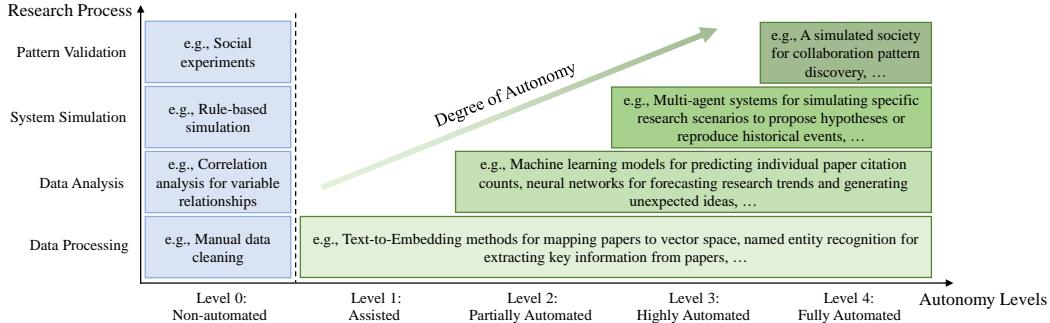


Figure 2: An overview of the five progressively advancing levels of autonomy in AI4SoS, with more green areas indicating that higher levels correspond to greater degrees of autonomy. Current research is primarily at Level 2 or below, with very limited work at Level 3, while fully automated SoS discovery remains in the prospective stage.

117 novel scientific insights can be discovered without human intervention, and systems can adapt to new
 118 data and incorporate new insights in real time. Ethical and governance frameworks are embedded,
 119 aligning the system’s actions with established guidelines for scientific integrity and accountability.

120 Currently, most research remains at Level 2 or below, with limited progress observed at Level 3, while
 121 fully automated SoS discovery is still in the exploratory stage. Looking ahead, several potential tasks
 122 are envisioned, including automated discovery of new collaboration patterns within the simulated
 123 scientific community [90], systems capable of simulating and conducting experiments in real-world
 124 settings [52], and AI that continuously refines research directions based on emerging data [69].

125 **3 Advantages of Automatic SoS Discovery**

126 In this section, we delve into critical open problems within the SoS that stand to benefit substantially
 127 from AI-driven automation. These problems are categorized into two primary areas: *Forecasting*
 128 *Trends in Technology and Innovation* and *Understanding the Dynamics of Research Society*. For each
 129 subproblem, we provide a brief background and outline key opportunities where AI offers advantages.

130 **3.1 Forecasting Trends in Technology and Innovation**

131 **3.1.1 Background of Problem**

132 Accurately forecasting the trajectory of science and technology is a crucial aspect of SoS, as it informs
 133 decisions related to funding, policy-making, and research prioritization. Two major challenges are
 134 predicting technological trends and identifying interdisciplinary opportunities.

135 **The Trend in Technological Development** Technological development follows intricate and of-
 136 ten non-linear trajectories, making prediction difficult. To predict these trends, it is essential to
 137 understand which technologies are gaining momentum, identify emerging breakthroughs, and antici-
 138 pate when they will transition from research to real-world applications [35]. Traditional methods,
 139 such as historical data analysis, often fall short in scalability and struggle to keep pace with rapid
 140 advancements.

141 **The Interdisciplinary Future of Innovation** Interdisciplinary research, which often serves as the
 142 pivotal role for major breakthroughs, presents another significant challenge. With the rapid growth
 143 of scientific literature across diverse fields, manual identification of promising cross-disciplinary
 144 opportunities has become increasingly unfeasible [11]. The complexity and scale of this task call for
 145 automated solutions capable of discovering novel connections across fields.

146 **3.1.2 Advantages of AI4SoS**

147 AI offers an opportunity for tackling challenges in the SoS by leveraging its capacity to process vast
 148 datasets and identify complex patterns beyond human discernment. In the context of forecasting tech-

149 nological development, AI models can analyze citation networks, research metadata, and publication
150 trends to detect emerging technological trajectories with enhanced precision [12].

151 Moreover, AI-driven methods excel in uncovering interdisciplinary opportunities by representing
152 scientific knowledge as graph structures and employing advanced similarity metrics. Graph neural
153 networks, for instance, have demonstrated the ability to model intricate relationships across scientific
154 literature, facilitating the discovery of latent connections and novel collaborations across disparate
155 domains [110]. This capability empowers researchers to target high-potential interdisciplinary
156 collaborations, fostering innovation at the convergence of fields.

157 3.2 Understanding the Dynamics of Research Society

158 3.2.1 Background of Problem

159 The dynamics of research societies play a fundamental role in shaping scientific progress, which
160 encompass how scientist research patterns evolve, how different team constructions influence the
161 impact of research output, and how current research society influences scientists.

162 **The Dynamics and Mechanics of Scientist Career** The role of studying scientific careers is to
163 provide personalized support to the academic community, thereby enhancing individual innovation
164 capabilities, optimize team collaboration efficiency, and improving the allocation of research re-
165 sources [24]. However, challenges include the highly individualized nature of career development
166 paths, data scarcity and bias, and the complexity of external environmental factors [97].

167 **The Dynamics and Mechanics of Research Team** The composition and dynamics of scientific
168 teams play a crucial role in improving research outcomes, with elements such as size, diversity, and
169 collaboration patterns influencing team creativity and productivity [5, 100]. Over time, shifts in
170 team structures and researcher mobility have reflected broader changes in the research landscape.
171 Understanding these evolving dynamics presents challenges, as the relationships between team
172 composition and research impact are multifaceted [101, 104].

173 **The Dynamics and Mechanics of Research Society** The organization and dynamics of research
174 societies play a crucial role in shaping the progression and fairness of scientific endeavors. Studies
175 have highlighted persistent inequalities in academic representation, participation, and recognition,
176 both within and across nations [98, 56]. These disparities, influenced by systemic and structural
177 factors, hinder the equitable generation and dissemination of knowledge. On a broader scale,
178 imbalances in citation patterns and collaboration networks often reflect biases rooted in reputation
179 and resources rather than research quality [28].

180 3.2.2 Advantages of AI4SoS

181 AI offers potential for understanding and improving the dynamics of research societies. By analyzing
182 large-scale historical datasets—such as collaboration patterns, research trajectories, and external
183 influences—AI can uncover critical factors driving individual career development. This enables
184 personalized researcher support and helps institutions optimize talent management. Techniques such
185 as predictive modeling have proven effective in tracking and forecasting team member mobility
186 patterns [30].

187 Moreover, AI-driven agents can simulate complex team dynamics, providing insights into how
188 various factors, such as diversity and team size, influence research productivity and innovation.
189 Taking this a step further, AI can simulate entire scientific societies, not only uncovering hidden
190 patterns and problems but also guiding the policymaking process by validating potential policies
191 within the simulated environment. For instance, multi-agent systems have been employed to model
192 team formation processes and predict collaboration outcomes under varying settings [90].

193 4 Challenges and Pathways

194 Achieving fully automated SoS discovery centers on effectively utilizing AI techniques to process
195 scientific data. This endeavor involves addressing four key challenges: data-related issues, compre-
196 hensive system construction, robust system evaluation, and system explainability. For each of these
197 challenges, we provide a detailed analysis along with potential pathways for resolution.

198 **4.1 Data Issues**

199 **Challenges** Data issues mainly include data imbalance across disciplines and training data bias. For
200 the first issue, many disciplines, such as computer science and engineering, produce large volumes of
201 well-structured data readily used by AI systems [22, 41]. However, other fields, such as social sciences
202 or humanities, often suffer from smaller datasets, less structured data, or incomplete information,
203 which makes it difficult for AI models to provide accurate predictions [49, 39]. This imbalance
204 can lead to skewed results where AI predictions are disproportionately driven by well-represented
205 fields, neglecting potentially valuable insights from underrepresented areas of research. Another issue
206 is training data bias. When predicting reproducible patterns from data, machine learning models
207 inevitably incorporate and perpetuate biases present in the data, often in opaque ways [58]. For
208 example, the training data and alignment methods of LLMs (whether open-source or closed-source)
209 are not fully disclosed [2, 18, 103], making it impossible to objectively assess their bias and fairness.
210 Therefore, the fairness of machine learning becomes a heavily debated issue in applications ranging
211 from the criminal justice system to hiring processes [65].

212 **Pathway** To address issues of data imbalance and biases in training data, constructing a large and
213 diverse dataset is essential to improve data representativeness, ensuring coverage across various
214 domains, groups, and contexts. Several large-scale, cross-disciplinary academic datasets are currently
215 available for SoS research, including the Microsoft Academic Graph (MAG) [87], Open Academic
216 Graph (OAG)[108], and SciSciNet [54], as summarized in Table 2. In the process of data auditing
217 and filtering, it is crucial to examine data sources and mitigate any potential historical or socio-
218 cultural biases to ensure the dataset is free from implicit biases [81]. Additionally, employing
219 multi-annotator strategies, conducting group balance checks, and performing fairness evaluations can
220 further ensure the fairness and diversity of the dataset [73]. These measures not only enhance the
221 model’s generalization ability but also reduce unfairness stemming from data biases.

222 **4.2 Comprehensive System Construction**

223 **Challenges** Simulating a research society using AI for fully automated SoS discovery, particularly
224 through an agent-based system, presents numerous challenges. Each scientist-agent requires detailed
225 modeling of their research expertise, career trajectory, and collaborative networks, which are often
226 too complex to be fully captured in the simulation system [68, 26]. Critical but unobservable
227 factors, such as internal cognitive processes and informal discussions that drive real-world decision-
228 making, remain challenging to replicate accurately. These limitations inevitably make simulations
229 discrete and less representative of actual societal dynamics. Moreover, the simulation process itself
230 introduces complexities. Aligning the simulated timeline with real-world events necessitates careful
231 calibration; for instance, determining how many simulation epochs correspond to a year in reality [43].
232 Determining the appropriate size of the simulated society is also crucial; an overly small-scale model
233 risks failing to capture the emergent behaviors of a real research ecosystem, while an overly large
234 model may become impractical to manage and analyze [82, 7]. Another pressing challenge lies in
235 bias amplification when designing AI systems—a concern that builds on the broader implications
236 of how AI interacts with societal structures. Since AI systems are often designed to optimize based
237 on historical data of SoS, they risk perpetuating existing paradigms, funding trends, and citation
238 networks. This aligns with the well-documented “rich get richer” effect in citation and funding
239 dynamics [21, 79, 40]. If an AI system prioritizes high-impact metrics, it may inadvertently favor
240 mainstream topics and established researchers, further marginalizing unconventional or disruptive
241 ideas. Without explicit mechanisms to value novelty and diversity, such systems could unintentionally
242 confine the scientific community to existing trends, hindering pathways to groundbreaking innovation.
243 Lastly, the system must account for unexpected exceptions to ensure the simulation operates smoothly
244 and continuously for fully automated scientific discovery. Striking a balance between realism and
245 feasibility remains a persistent and fundamental challenge in these simulations.

246 **Pathway** Several potential pathways can help address these complexities. With the continuous
247 advancement of LLMs’ comprehensive capabilities, handling complex multi-level modeling is
248 becoming increasingly feasible. By defining agent models with distinct roles and appropriately
249 assigning tasks, the behaviors of scientists at various levels can be more accurately simulated [75].
250 Fine-tuning LLMs on extensive academic datasets can further optimize the behavioral patterns of
251 agents [31], enhancing their adaptability to reflect real-world research dynamics. One solution for
252 timeline alignment is to build flexible, dynamic calibration techniques that adjust the simulation’s

253 temporal parameters based on context and event-driven data [105]. In determining the appropriate
254 scale for the simulated society, agent-based sampling methods (random or rule-based) or dynamic
255 population expansion techniques can be utilized [90]. When addressing bias in AI systems, it is crucial
256 to consider the nature of SoS, a discipline dedicated to analyzing historical data and uncovering biases
257 or patterns within the scientific community. To ensure alignment between simulations and real-world
258 dynamics, it is essential to incorporate these biases into SoS studies, as AI designed for this field seeks
259 to enhance and advance SoS research. At the same time, such biases can be mitigated through targeted
260 adjustments to system parameters. For instance, to counteract the “rich get richer” effect in citations,
261 one effective approach could involve reducing the likelihood of citing highly cited papers when an
262 agent selects a reference. Instead, assigning higher probabilities to less-cited, more novel papers can
263 help promote diversity in citation practices and encourage the exploration of unconventional ideas.
264 Moreover, the system can integrate robust anomaly detection and recovery mechanisms to handle
265 unexpected situations. Using unsupervised learning techniques (such as clustering), the model can
266 identify deviations from expected behaviors and adjust simulation parameters accordingly to ensure
267 stability and continuity [3]. These potential solutions try to strike a balance between realism and
268 operational feasibility, providing a technological foundation for research society simulations.

269 4.3 Comprehensive System Evaluation

270 **Challenges** Evaluating the validity of outputs generated by AI systems in the field of SoS is a
271 complex and multifaceted challenge. SoS research addresses a broad range of problems and lacks
272 unified evaluation standards, with different tasks often necessitating tailored metrics [58]. Moreover,
273 innovation—a key attribute of AI outputs—is inherently subjective and context-dependent, making it
274 difficult to quantify accurately using traditional methods [90, 14]. Validity assessments also heavily
275 rely on specific domain contexts. However, the interdisciplinary nature of SoS compounds the
276 complexity, requiring the integration of knowledge and evaluation standards from diverse fields.
277 Additionally, the dynamic nature and long-term implications of AI-generated outputs present further
278 challenges, as their true impact on scientific progress often cannot be evaluated in the short term [8].
279 Addressing this requires advanced tools, such as time-series analysis and virtual scientist simulations,
280 to facilitate longitudinal tracking. Furthermore, AI-generated scientific recommendations may raise
281 ethical issues and have far-reaching consequences for scientific communities and research practices
282 [55]. Therefore, a comprehensive and adaptable evaluation framework is necessary, integrating
283 scientometric methodologies, multidisciplinary expert reviews, dynamic analytical approaches, and
284 stringent ethical guidelines.

285 **Pathway** To address these challenges, appropriate solutions can be implemented. First, collaborating
286 with domain experts to define task-specific evaluation metrics is essential, and then quantitative
287 evaluation methods based on scientometrics should be developed. For instance, citation counts can be
288 used as a measure of influence when evaluating the impact of system outputs, and they can also track
289 knowledge flow [58]. In simulating a scientist’s career, individual impact metrics such as the h-index,
290 which reflects both productivity and impact, can be applied. Additionally, to assess output novelty,
291 feasible approaches include large model-based peer-review scoring [61, 90] or calculating the Z-score
292 for each pairing of referenced journals [14]. With the ongoing expansion of LLMs’ expertise and
293 improved reasoning capabilities, interdisciplinary testing and long-term large-scale simulations have
294 become increasingly feasible. Moreover, LLMs are now being employed in social simulations [105],
295 assuming role-based agents. In terms of ethical and social impacts, aligning model preferences and
296 improving transparency can partially address ethical concerns and enhance user trust, while ethical
297 benchmarks [64, 37] can be used to test the validity of system outputs. By integrating these strategies,
298 a multidimensional evaluation framework can be established.

299 4.4 Explainability and Causal Inference

300 **Challenges** While the AI framework emphasizes automated discovery and evaluation, it lacks
301 mechanisms to explain the causal pathways behind AI-generated outputs [32, 78]. This limitation
302 makes it difficult for researchers and policymakers to trust and adopt AI-driven insights, as they may
303 not fully understand the underlying logic or relationships. Moreover, the complex and interdisciplinary
304 nature of SoS often involves interactions between numerous variables, such as collaborations, funding
305 patterns, and citation networks [88, 24], which cannot be adequately captured through correlation-
306 based approaches. Without explicit causal explanations, it is challenging to ensure the auditability,
307 accountability, and interpretability of the system, undermining its credibility and ethical alignment.

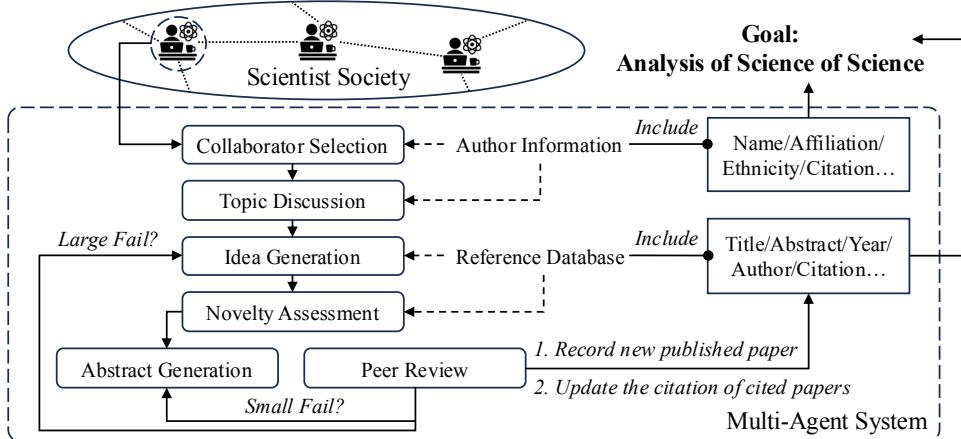


Figure 3: The overview of our preliminary multi-agent system for scientific collaboration simulation. We place the simulation within a community of scientists. After a scientist leads his/her team in submitting a paper, it undergoes peer review. If accepted, it is added to the reference database and can be cited by other scientists in subsequent epochs. Due to varying author information, the citation count of the final research output differs, then we can analyze the correlation between them—understanding the dynamics of research organizations, which is important in the field of SoS.

308 **Pathway** To address these challenges, it is crucial to introduce causal modeling [71, 23] and ex-
 309 plainable AI (XAI) [20, 60] techniques to assist in interpreting and validating simulation results.
 310 Approaches such as Counterfactual Analysis can clarify the logical origins of AI-driven recom-
 311 mendations or discoveries, making the reasoning process more transparent. Relevant methods in
 312 the SoS domain include causal inference techniques like Propensity Score Matching (PSM) and
 313 Coarsened Exact Matching (CEM), which are useful for identifying causal relationships in complex
 314 systems [46, 36]. Additionally, causal graphical models and structural equation modeling (SEM) can
 315 be applied to analyze scientific impact by modeling the flow of influence across variables such as
 316 collaboration networks or funding distributions [16, 44, 50]. These tools provide a robust foundation
 317 for explaining AI-generated outputs.

318 5 Proof-of-Concept Studies

319 In this section, we present case studies to illustrate a practical application scenarios in AI4SoS. Specif-
 320 ically, by constructing a simplified preliminary multi-agent system to replicate phenomena observed
 321 in real-world scientific societies and uncover underlying patterns in SoS, we aim to demonstrate the
 322 possibility of automated pattern discovery.

323 5.1 Environment Construction

324 We construct a preliminary multi-agent system to simulate a society-level scientific collaboration
 325 through an end-to-end pipeline, including collaborator selection, topic discussion, idea generation,
 326 novelty assessment, abstract generation, and peer review, inspired by [61, 74, 90]. The overview of our
 327 system is shown in Fig. 3. Existing studies primarily focus on simulating individual scientists or small
 328 research teams within specific fields (e.g., computer science) and are often constrained to isolated
 329 settings that do not capture the broader research ecosystem. In contrast, our work enhances the
 330 system’s complexity by incorporating realistic factors such as multidisciplinary data (In Appx. C.1),
 331 a review and indexing system (In Appx. C.2), and scalable simulation across multiple research teams
 332 (In Appx. C.3). More implementation details are provided in Appx. C.4.

333 5.2 Experiments

334 **Involved Metrics** Following the settings of [5, 51, 97], we measure the impact of scientific output by
 335 the number of citations a paper receives. In the simulation, the citation counts are updated each time
 336 a paper is retrieved during the idea generation phase. For validation, we analyze the citation counts

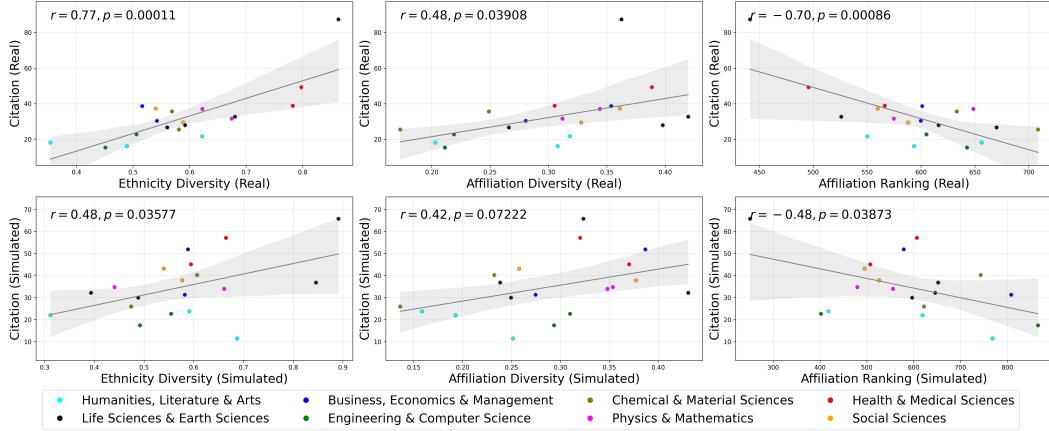


Figure 4: Comparison of real-world (2010) and AI-simulated scientific research patterns. The scatter plots illustrate the relationships between Ethnicity Diversity, Affiliation Diversity, and Affiliation Ranking with Citation Count in both real-world (top row) and simulated (bottom row) data. Correlations observed in real data are partially reproduced by the AI-driven multi-agent system, showing its potential to uncover meaningful research patterns and support automated SoS studies.

337 of agent-generated papers to assess whether the system can replicate patterns observed in real-world
 338 data from the years 2010 to 2011. To evaluate AI’s potential in pattern discovery, we examine the
 339 influence of three key factors on citation counts: ethnicity diversity, affiliation diversity, and average
 340 university ranking. Specifically, we measure diversity using Shannon entropy. For instance, the
 341 ethnicity diversity d_{eth} of paper s is calculated as: $d_{eth} = -\sum_{i=1}^k p_i(s) \ln p_i(s)$, where k represents
 342 the total number of ethnicity categories, and $p_i(s)$ is the proportion of authors from the i -th ethnicity
 343 category in paper s .

344 **Simulation Results** The experimental results presented in Fig. 4 compare real-world data in 2010
 345 with the outcomes generated by our preliminary LLM-based multi-agent system. Both the real-
 346 world and simulated data show that higher citation counts are positively correlated with greater
 347 ethnicity diversity, which aligns with existing findings in SoS literature [5], although the correlations
 348 are slightly weaker in the simulation. Additionally, the negative correlation between affiliation
 349 ranking and citation counts is also reproduced in the simulated data, suggesting that institutions with
 350 higher rankings may achieve higher citation counts per research output (a similar comparison using
 351 real-world data from 2011 and the simulated results is provided in the Appx. C.5).

352 **Discussions** However, while both real-world and simulated data indicate a positive correlation be-
 353 tween citation counts and affiliation diversity, the pattern observed in the simulation is not statistically
 354 significant ($p>0.05$). These results suggest that the preliminary AI-driven simulations have the
 355 potential to replicate and uncover key patterns in scientific research, but there remains significant
 356 room for improvement. For instance, the current system lacks several critical components, such as
 357 comprehensive modeling of individual research trajectories and realistic funding and policy influences.
 358 These limitations contribute to the preliminary nature of our approach, as the absence of such factors
 359 restricts the system’s ability to fully capture the complexity of real-world scientific ecosystems.
 360 Developing a more comprehensive and sophisticated simulation framework will enhance the system’s
 361 capability to automatically model complex scientific dynamics with greater accuracy and reliability.
 362 More details of outlook are provided in Appx. E.

363 6 Conclusion

364 This paper presents a forward-looking perspective on the future of AI4SoS, proposing a five-level
 365 autonomy framework toward automated SoS discovery. We show its potential in two critical domains:
 366 forecasting trends in technology and innovation, and analyzing the evolution of research communities.
 367 We discuss key challenges and future directions, supporting our vision with literature reviews and
 368 proof-of-concept studies that showcase early applications. Ultimately, AI4SoS holds the promise of
 369 automated SoS discovery, thereby enhancing scientific efficiency and interdisciplinary innovation.

370 **References**

- 371 [1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
372 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
373 prediction of biomolecular interactions with alphafold 3. *Nature*, pages 1–3, 2024.
- 374 [2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
375 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
376 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- 377 [3] Chris Aldrich and Lidia Auret. *Unsupervised process monitoring and fault diagnosis with
378 machine learning methods*, volume 16. Springer, 2013.
- 379 [4] Ahmed Alsayat. Improving sentiment analysis for social media applications using an ensemble
380 deep learning language model. *Arabian Journal for Science and Engineering*, 47(2):2499–
381 2511, 2022.
- 382 [5] Bedoor K AlShebli, Talal Rahwan, and Wei Lee Woon. The preeminence of ethnic diversity in
383 scientific collaboration. *Nature communications*, 9(1):5163, 2018.
- 384 [6] Anurag Ambekar, Charles Ward, Jahangir Mohammed, Swapna Male, and Steven Skiena.
385 Name-ethnicity classification from open sources. In *Proceedings of the 15th ACM SIGKDD
386 international conference on Knowledge Discovery and Data Mining*, pages 49–58, 2009.
- 387 [7] Li An, Volker Grimm, Abigail Sullivan, BL Turner Ii, Nicolas Malleson, Alison Heppenstall,
388 Christian Vincenot, Derek Robinson, Xinyue Ye, Jianguo Liu, et al. Challenges, tasks, and
389 opportunities in modeling agent-based complex systems. *Ecological Modelling*, 457:109685,
390 2021.
- 391 [8] S Balasubramaniam, Vanajaroselin Chirchi, Seifedine Kadry, Moorthy Agoramoorthy, Senthil-
392 vel P Gururama, Kumar K Satheesh, and TA Sivakumar. The road ahead: Emerging
393 trends, unresolved issues, and concluding remarks in generative ai—a comprehensive re-
394 view. *International Journal of Intelligent Systems*, 2024, 2024.
- 395 [9] Luís MA Bettencourt, David I Kaiser, and Jasleen Kaur. Scientific discovery and topological
396 transitions in collaboration networks. *Journal of Informetrics*, 3(3):210–221, 2009.
- 397 [10] Reuben Binns. Fairness in machine learning: Lessons from political philosophy. In *Conference
398 on fairness, accountability and transparency*, pages 149–159. PMLR, 2018.
- 399 [11] Taylor Bolt, Jason S Nomi, Danilo Bzdok, and Lucina Q Uddin. Educating the future
400 generation of researchers: A cross-disciplinary survey of trends in analysis methods. *PLoS
401 biology*, 19(7):e3001313, 2021.
- 402 [12] Katy Börner, William B Rouse, Paul Trunfio, and H Eugene Stanley. Forecasting innovations
403 in science, technology, and education. *Proceedings of the National Academy of Sciences*,
404 115(50):12573–12581, 2018.
- 405 [13] Jinho Chang and Jong Chul Ye. Bidirectional generation of structure and properties through a
406 single molecular foundation model. *Nature Communications*, 15(1):2323, 2024.
- 407 [14] Qian Chen, Yi-Jen Ian Ho, Pin Sun, and Dashun Wang. The philosopher’s stone for science—the
408 catalyst change of ai for scientific creativity. *Pin and Wang, Dashun, The Philosopher’s Stone
409 for Science—The Catalyst Change of AI for Scientific Creativity* (March 5, 2024), 2024.
- 410 [15] Aaron Clauset, Samuel Arbesman, and Daniel B Larremore. Systematic inequality and
411 hierarchy in faculty hiring networks. *Science advances*, 1(1):e1400005, 2015.
- 412 [16] Jackson De Carvalho and Felix O Chima. Applications of structural equation modeling in
413 social sciences research. *American International Journal of Contemporary Research*, 4(1):6–
414 11, 2014.
- 415 [17] Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei Wang, Yufan Dang, Weize Chen, and
416 Cheng Yang. Multi-agent software development through cross-team collaboration. *arXiv
417 preprint arXiv:2406.08979*, 2024.

- 418 [18] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 419 Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
 420 of models. [arXiv preprint arXiv:2407.21783](https://arxiv.org/abs/2407.21783), 2024.
- 421 [19] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 422 Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
 423 of models. [arXiv preprint arXiv:2407.21783](https://arxiv.org/abs/2407.21783), 2024.
- 424 [20] Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer, Pankesh Patel, Bin Qian,
 425 Zhenyu Wen, Tejal Shah, Graham Morgan, et al. Explainable ai (xai): Core ideas, techniques,
 426 and solutions. *ACM Computing Surveys*, 55(9):1–33, 2023.
- 427 [21] Ashkan Ebadi and Andrea Schiffauerova. How to receive more funding for your research? get
 428 connected to the right people! *PloS one*, 10(7):e0133061, 2015.
- 429 [22] Alberto Fernández, Sara del Río, Nitesh V Chawla, and Francisco Herrera. An insight into
 430 imbalanced big data classification: outcomes and challenges. *Complex & Intelligent Systems*,
 431 3:105–120, 2017.
- 432 [23] Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess,
 433 Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar.
 434 Causal machine learning for predicting treatment outcomes. *Nature Medicine*, 30(4):958–968,
 435 2024.
- 436 [24] Santo Fortunato, Carl T Bergstrom, Katy Börner, James A Evans, Dirk Helbing, Staša Miloje-
 437 vić, Alexander M Petersen, Filippo Radicchi, Roberta Sinatra, Brian Uzzi, et al. Science of
 438 science. *Science*, 359(6379):eaao0185, 2018.
- 439 [25] Bowen Gao, Bo Qiang, Haichuan Tan, Yinjun Jia, Minsi Ren, Minsi Lu, Jingjing Liu, Wei-
 440 Ying Ma, and Yanyan Lan. Drugclip: Contrastive protein-molecule representation learning for
 441 virtual screening. *Advances in Neural Information Processing Systems*, 36, 2024.
- 442 [26] Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and
 443 Yong Li. Large language models empowered agent-based modeling and simulation: A survey
 444 and perspectives. *Humanities and Social Sciences Communications*, 11(1):1–24, 2024.
- 445 [27] Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery
 446 through multi-agent intelligent graph reasoning. [arXiv preprint arXiv:2409.05556](https://arxiv.org/abs/2409.05556), 2024.
- 447 [28] Charles J Gomez, Andrew C Herman, and Paolo Parigi. Leading countries in global science
 448 increasingly receive more citations than other countries doing similar research. *Nature Human
 449 Behaviour*, 6(7):919–929, 2022.
- 450 [29] Juan M Górriz, Javier Ramírez, Andres Ortiz, Francisco J Martínez-Murcia, Fermin Segovia,
 451 John Suckling, Matthew Leming, Yu-Dong Zhang, Jose Ramón Álvarez-Sánchez, Guido
 452 Bologna, et al. Artificial intelligence within the interplay between natural and artificial
 453 computation: Advances in data science, trends and applications. *Neurocomputing*, 410:237–
 454 270, 2020.
- 455 [30] Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team assembly
 456 mechanisms determine collaboration network structure and team performance. *Science*,
 457 308(5722):697–702, 2005.
- 458 [31] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
 459 Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
 460 and challenges. [arXiv preprint arXiv:2402.01680](https://arxiv.org/abs/2402.01680), 2024.
- 461 [32] Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel,
 462 Kaizhu Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, and Amir Hussain.
 463 Interpreting black-box models: a review on explainable artificial intelligence. *Cognitive
 464 Computation*, 16(1):45–74, 2024.

- 465 [33] Bas Hofstra, Vivek V Kulkarni, Sebastian Munoz-Najar Galvez, Bryan He, Dan Jurafsky,
 466 and Daniel A McFarland. The diversity–innovation paradox in science. *Proceedings of the*
 467 *National Academy of Sciences*, 117(17):9284–9291, 2020.
- 468 [34] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach.
 469 Improving fairness in machine learning systems: What do industry practitioners need? In
 470 *Proceedings of the 2019 CHI conference on human factors in computing systems*, pages 1–16,
 471 2019.
- 472 [35] Iacopo Iacopini, Staša Milojević, and Vito Latora. Network dynamics of innovation processes.
 473 *Physical review letters*, 120(4):048301, 2018.
- 474 [36] Guido W Imbens and Donald B Rubin. *Causal inference in statistics, social, and biomedical*
 475 *sciences*. Cambridge university press, 2015.
- 476 [37] Jianchao Ji, Yutong Chen, Mingyu Jin, Wujiang Xu, Wenyue Hua, and Yongfeng Zhang.
 477 Moralbench: Moral evaluation of llms. *arXiv preprint arXiv:2406.04428*, 2024.
- 478 [38] Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
 479 encoder representations from transformers model for dna-language in genome. *Bioinformatics*,
 480 37(15):2112–2120, 2021.
- 481 [39] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance.
 482 *Journal of big data*, 6(1):1–54, 2019.
- 483 [40] Yarden Katz and Ulrich Matter. Metrics of inequality: The concentration of resources in the
 484 us biomedical elite. *Science as Culture*, 29(4):475–502, 2020.
- 485 [41] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. A systematic review on
 486 imbalanced data challenges in machine learning: Applications and solutions. *ACM computing*
 487 *surveys (CSUR)*, 52(4):1–36, 2019.
- 488 [42] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of
 489 deep bidirectional transformers for language understanding. In *Proceedings of naacl-HLT*,
 490 volume 1, page 2. Minneapolis, Minnesota, 2019.
- 491 [43] Seyedmehdi Khaleghian, Himanshu Neema, Mina Sartipi, Toan Tran, Rishav Sen, and Ab-
 492 hishek Dubey. Calibrating real-world city traffic simulation model using vehicle speed data. In
 493 *2023 IEEE International Conference on Smart Computing (SMARTCOMP)*, pages 303–308.
 494 IEEE, 2023.
- 495 [44] Gohar F Khan, Marko Sarstedt, Wen-Lung Shiao, Joseph F Hair, Christian M Ringle, and
 496 Martin P Fritze. Methodological research on partial least squares structural equation modeling
 497 (pls-sem) an analysis based on social network approaches. *Internet Research*, 29(3):407–429,
 498 2019.
- 499 [45] Hyunseung Kim, Haeyeon Choi, Dongju Kang, Won Bo Lee, and Jonggeol Na. Materials
 500 discovery with extreme properties via reinforcement learning-guided combinatorial chemistry.
 501 *Chemical Science*, 2024.
- 502 [46] Gary King, Richard Nielsen, Carter Coberley, James E Pope, and Aaron Wells. Comparative
 503 effectiveness of matching methods for causal inference. *Unpublished manuscript, Institute for*
 504 *Quantitative Social Science, Harvard University, Cambridge, MA*, 2011.
- 505 [47] Richard Klavans and Kevin W Boyack. Which type of citation analysis generates the most
 506 accurate taxonomy of scientific and technical knowledge? *Journal of the Association for*
 507 *Information Science and Technology*, 68(4):984–998, 2017.
- 508 [48] Mario Krenn and Anton Zeilinger. Predicting research trends with semantic and neural
 509 networks with an application in quantum physics. *Proceedings of the National Academy of*
 510 *Sciences*, 117(4):1910–1916, 2020.
- 511 [49] Joffrey L Leevy, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem Seliya. A survey on
 512 addressing high-class imbalance in big data. *Journal of Big Data*, 5(1):1–30, 2018.

- 513 [50] Anja K Leist, Matthias Klee, Jung Hyun Kim, David H Rehkopp, Stéphane PA Bordas,
 514 Graciela Muniz-Terrera, and Sara Wade. Mapping of machine learning approaches for de-
 515 scription, prediction, and causal inference in the social and health sciences. *Science Advances*,
 516 8(42):eabk1942, 2022.
- 517 [51] Weihua Li, Tomaso Aste, Fabio Caccioli, and Giacomo Livan. Early coauthorship with top
 518 scientists predicts success in academic careers. *Nature communications*, 10(1):5170, 2019.
- 519 [52] Zuhao Li, Peiran Song, Guangfeng Li, Yafei Han, Xiaoxiang Ren, Long Bai, and Jiacan Su.
 520 Ai energized hydrogel design, optimization and application in biomedicine. *Materials Today*
 521 *Bio*, page 101014, 2024.
- 522 [53] Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. Avalonbench: Evaluating llms playing
 523 the game of avalon. In *NeurIPS 2023 Foundation Models for Decision Making Workshop*,
 524 2023.
- 525 [54] Zihang Lin, Yian Yin, Lu Liu, and Dashun Wang. Sciscinet: A large-scale open data lake for
 526 the science of science research. *Scientific Data*, 10(1):315, 2023.
- 527 [55] Michael Lissack and Brenden Meagher. Navigating the future of large language models in
 528 scientific research: Opportunities, challenges, and ethical considerations. *Challenges, and*
 529 *Ethical Considerations* (September 02, 2024), 2024.
- 530 [56] Fengyuan Liu, Talal Rahwan, and Bedoor AlShebli. Non-white scientists appear on fewer
 531 editorial boards, spend more time under review, and receive fewer citations. *Proceedings of*
 532 *the National Academy of Sciences*, 120(13):e2215324120, 2023.
- 533 [57] Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin
 534 Wang, Chenyu You, Zhenhua Guo, Lei Zhu, et al. Benchmarking large language models on
 535 cmexam-a comprehensive chinese medical exam dataset. *Advances in Neural Information*
 536 *Processing Systems*, 36, 2024.
- 537 [58] Lu Liu, Benjamin F Jones, Brian Uzzi, and Dashun Wang. Data, measurement and empirical
 538 methods in the science of science. *Nature human behaviour*, 7(7):1046–1058, 2023.
- 539 [59] Lu Liu, Yang Wang, Roberta Sinatra, C Lee Giles, Chaoming Song, and Dashun Wang. Hot
 540 streaks in artistic, cultural, and scientific careers. *Nature*, 559(7714):396–399, 2018.
- 541 [60] Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser,
 542 Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, et al. Explainable
 543 artificial intelligence (xai) 2.0: A manifesto of open challenges and interdisciplinary research
 544 directions. *Information Fusion*, 106:102301, 2024.
- 545 [61] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha.
 546 The ai scientist: Towards fully automated open-ended scientific discovery. *arXiv preprint*
 547 *arXiv:2408.06292*, 2024.
- 548 [62] Mitra Madanchian and Hamed Taherdoost. Ai-powered innovations in high-tech research and
 549 development: From theory to practice. *Computers, Materials & Continua*, 81(2), 2024.
- 550 [63] Mourad Mars. From word embeddings to pre-trained language models: A state-of-the-art
 551 walkthrough. *Applied Sciences*, 12(17):8805, 2022.
- 552 [64] Gwenyth Isobel Meadows, Nicholas Wai Long Lau, Eva Adelina Susanto, Chi Lok Yu,
 553 and Aditya Paul. Localvaluebench: A collaboratively built and extensible benchmark for
 554 evaluating localized value alignment and ethical safety in large language models. *arXiv*
 555 *preprint arXiv:2408.01460*, 2024.
- 556 [65] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
 557 survey on bias and fairness in machine learning. *ACM computing surveys (CSUR)*, 54(6):1–35,
 558 2021.
- 559 [66] Lisa Messeri and MJ Crockett. Artificial intelligence and illusions of understanding in scientific
 560 research. *Nature*, 627(8002):49–58, 2024.

- 561 [67] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. [arXiv preprint arXiv:1901.04085](#), 2019.
- 562
- 563 [68] Emma Norling, Bruce Edmonds, and Ruth Meyer. Informal approaches to developing simulation models. [Simulating Social Complexity: A Handbook](#), pages 61–79, 2017.
- 564
- 565 [69] Kingsley Ofosu-Ampong. Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions. [Telematics and Informatics Reports](#), page 100127, 2024.
- 566
- 567
- 568 [70] OpenAI. GPT-4 technical report. [CoRR](#), 2023.
- 569
- 570 [71] Maya L Petersen and Mark J van der Laan. Causal models and learning from data: integrating causal modeling and statistical estimation. [Epidemiology](#), 25(3):418–426, 2014.
- 571
- 572 [72] Alina Petukhova, Joao P Matos-Carvalho, and Nuno Fachada. Text clustering with llm embeddings. [arXiv preprint arXiv:2403.15112](#), 2024.
- 573
- 574 [73] Vinodkumar Prabhakaran, Aida Mostafazadeh Davani, and Mark Diaz. On releasing annotator-level labels and information in datasets. [arXiv preprint arXiv:2110.05699](#), 2021.
- 575
- 576
- 577 [74] Biqing Qi, Kaiyan Zhang, Kai Tian, Haoxiang Li, Zhang-Ren Chen, Sihang Zeng, Ermo Hua, Hu Jinfang, and Bowen Zhou. Large language models as biomedical hypothesis generators: A comprehensive evaluation. [arXiv preprint arXiv:2407.08940](#), 2024.
- 578
- 579
- 580
- 581 [75] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Communicative agents for software development. In [Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics](#), pages 15174–15186, 2024.
- 582
- 583
- 584 [76] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. [Journal of machine learning research](#), 21(140):1–67, 2020.
- 585
- 586
- 587 [77] Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial ai products. In [Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society](#), pages 429–435, 2019.
- 588
- 589
- 590 [78] Chandan K Reddy and Parshin Shojaee. Towards scientific discovery with generative ai: Progress, opportunities, and challenges. In [Proceedings of the AAAI Conference on Artificial Intelligence](#), volume 39, pages 28601–28609, 2025.
- 591
- 592
- 593 [79] Guillermo Armando Ronda-Pupo and Thong Pham. The evolutions of the rich get richer and the fit get richer phenomena in scholarly networks: The case of the strategic management journal. [Scientometrics](#), 116(1):363–383, 2018.
- 594
- 595
- 596 [80] Andrey Rzhetsky, Jacob G Foster, Ian T Foster, and James A Evans. Choosing experiments to accelerate collective discovery. [Proceedings of the National Academy of Sciences](#), 112(47):14569–14574, 2015.
- 597
- 598
- 599
- 600 [81] Vittoria Scatiggio. Tackling the issue of bias in artificial intelligence to design ai-driven fair and inclusive service systems. how human biases are breaching into ai algorithms, with severe impacts on individuals and societies, and what designers can do to face this phenomenon and change for the better. 2020.
- 601
- 602
- 603 [82] Jule Schulze, Birgit Müller, Jürgen Groeneveld, and Volker Grimm. Agent-based modelling of social-ecological systems: achievements, challenges, and a way forward. [Journal of Artificial Societies and Social Simulation](#), 20(2), 2017.
- 604
- 605 [83] Reva Schwartz, Leann Down, Adam Jonas, and Elham Tabassi. A proposal for identifying and managing bias in artificial intelligence. [Draft NIST Special Publication](#), 1270, 2021.

- 606 [84] Reva Schwartz, Reva Schwartz, Apostol Vassilev, Kristen Greene, Lori Perine, Andrew
607 Burt, and Patrick Hall. Towards a standard for identifying and managing bias in artificial
608 intelligence, volume 3. US Department of Commerce, National Institute of Standards and
609 Technology, 2022.
- 610 [85] Feng Shi and James Evans. Surprising combinations of research contents and contexts
611 are related to impact and emerge with scientific outsiders from distant disciplines. Nature
612 Communications, 14:1641, 2023.
- 613 [86] Feng Shi, Jacob G Foster, and James A Evans. Weaving the fabric of science: Dynamic
614 network models of science's unfolding structure. Social Networks, 43:73–85, 2015.
- 615 [87] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
616 Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
617 the 24th international conference on world wide web, pages 243–246, 2015.
- 618 [88] Diane H Sonnenwald. Scientific collaboration. Annu. Rev. Inf. Sci. Technol., 41(1):643–681,
619 2007.
- 620 [89] Maciej Staszak, Katarzyna Staszak, Karolina Wieszczycka, Anna Bajek, Krzysztof
621 Roszkowski, and Bartosz Tylkowski. Machine learning in drug design: Use of artificial intelli-
622 gence to explore the chemical structure–biological activity relationship. Wiley Interdisciplinary
623 Reviews: Computational Molecular Science, 12(2):e1568, 2022.
- 624 [90] Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli
625 Ouyang, and Nanqing Dong. Two heads are better than one: A multi-agent system has the
626 potential to improve scientific idea generation. arXiv preprint arXiv:2410.09403, 2024.
- 627 [91] Changwon Suh, Clyde Fare, James A Warren, and Edward O Pyzer-Knapp. Evolving the
628 materials genome: How machine learning is fueling the next generation of materials discovery.
629 Annual Review of Materials Research, 50(1):1–25, 2020.
- 630 [92] Nees Jan Van Eck and Ludo Waltman. Citation-based clustering of publications using citnet-
631 explorer and vosviewer. Scientometrics, 111:1053–1070, 2017.
- 632 [93] Richard Van Noorden and Jeffrey M Perkel. Ai and science: what 1,600 researchers think.
633 Nature, 621(7980):672–675, 2023.
- 634 [94] Roberto Verganti, Luca Vendraminelli, and Marco Iansiti. Innovation and design in the age of
635 artificial intelligence. Journal of product innovation management, 37(3):212–227, 2020.
- 636 [95] Izhar Wallach, Michael Dzamba, and Abraham Heifets. Atomnet: a deep convolutional
637 neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint
638 arXiv:1510.02855, 2015.
- 639 [96] Dashun Wang and Lu Liu. The science of science. In Proceedings of the ACM/IEEE Joint
640 Conference on Digital Libraries in 2020, pages 563–564, 2020.
- 641 [97] Yang Wang, Benjamin F Jones, and Dashun Wang. Early-career setback and future career
642 impact. Nature communications, 10(1):4331, 2019.
- 643 [98] K Hunter Wapman, Sam Zhang, Aaron Clauset, and Daniel B Larremore. Quantifying
644 hierarchy and dynamics in us faculty hiring and retention. Nature, 610(7930):120–127, 2022.
- 645 [99] Leigh Weston, Vahe Tshitoyan, John Dagdelen, Olga Kononova, Amalie Trewartha, Kristin A
646 Persson, Gerbrand Ceder, and Anubhav Jain. Named entity recognition and normalization
647 applied to large-scale information extraction from the materials science literature. Journal of
648 chemical information and modeling, 59(9):3692–3702, 2019.
- 649 [100] Lingfei Wu, Dashun Wang, and James A Evans. Large teams develop and small teams disrupt
650 science and technology. Nature, 566:378–382, 2019.
- 651 [101] Stefan Wuchty, Benjamin F Jones, and Brian Uzzi. The increasing dominance of teams in
652 production of knowledge. Science, 316(5827):1036–1039, 2007.

- 653 [102] Shuai Xiao, Junchi Yan, Changsheng Li, Bo Jin, Xiangfeng Wang, Xiaokang Yang, Stephen M
654 Chu, and Hongyuan Zha. On modeling and predicting individual paper citation count over
655 time. In *Ijcai*, pages 2676–2682, 2016.
- 656 [103] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
657 Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. [arXiv preprint
658 arXiv:2412.15115](https://arxiv.org/abs/2412.15115), 2024.
- 659 [104] Yang Yang, Tanya Y Tian, Teresa K Woodruff, Benjamin F Jones, and Brian Uzzi. Gender-
660 diverse teams produce more novel and higher-impact scientific ideas. *Proceedings of the
661 National Academy of Sciences*, 119(36):e2200841119, 2022.
- 662 [105] Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling,
663 Jinsong Chen, Martz Ma, Bowen Dong, et al. Oasis: Open agents social interaction simulations
664 on one million agents. [arXiv preprint arXiv:2411.11581](https://arxiv.org/abs/2411.11581), 2024.
- 665 [106] Yian Yin, Yang Wang, James A Evans, and Dashun Wang. Quantifying the dynamics of failure
666 across science, startups and security. *Nature*, 575(7781):190–194, 2019.
- 667 [107] Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran
668 Huang, Xiangyu Yue, Dongzhan Zhou, et al. Chemllm: A chemical large language model.
669 [arXiv preprint arXiv:2402.06852](https://arxiv.org/abs/2402.06852), 2024.
- 670 [108] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang,
671 Evgeny Kharlamov, Bin Shao, et al. Oag: Linking entities across large-scale heterogeneous
672 knowledge graphs. *IEEE Transactions on Knowledge and Data Engineering*, 35(9):9225–
673 9239, 2022.
- 674 [109] Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring
675 collaboration mechanisms for LLM agents: A social psychology view. In *Proceedings of the
676 62nd Annual Meeting of the Association for Computational Linguistics*, pages 14544–14607,
677 2024.
- 678 [110] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
679 Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
680 applications. *AI open*, 1:57–81, 2020.

681 **Appendix**

682	A Related Work	17
683	A.1 AI for Science	17
684	A.2 Large Language Models	17
685	B Datasets for Science of Science Research	18
686	C More Experimental Details	18
687	C.1 Multidisciplinary Data	18
688	C.2 Review and Indexing System	19
689	C.3 Scalable Simulation	19
690	C.4 Implementation Details	20
691	C.5 More Experimental Results	21
692	D Alternative Views	21
693	E Outlook	22
694	F Impact Statement	24

695 **A Related Work**

696 **A.1 AI for Science**

697 In recent years, AI has become increasingly common in science and is expected to become the
698 center of research practice [93]. AI has demonstrated great potential to accelerate experimental
699 design, data analysis, optimization problem solving, and discovery of new theories [29, 94, 62].
700 Specifically, deep neural networks are used to predict the relationship between molecular structures
701 and biological activity [95, 89], reinforcement learning is used to discover unknown materials with
702 superior properties [91, 45], and agent-based systems are introduced to simulate social science sce-
703 narios [53, 17]. In addition, as a subfield of science, AI has undergone some preliminary explorations
704 in the SoS [5, 85, 90], revealing promising results.

705 **A.2 Large Language Models**

706 The role of large language models (LLMs) can be articulated from two perspectives: chat (T5 [76],
707 GPT-4 [70], and LLaMA3.1 [19]) and embedding (BERT [42] and DNABERT [38]) generation. First,
708 the capability of dialogue generation enables LLMs to understand user input in natural language and
709 generate contextually relevant responses in various conversational contexts such as knowledge testing,
710 game play, and software programming [107, 57, 109, 17]. Additionally, embedding generation
711 allows LLMs to convert input text into fixed-dimensional vector representations, which effectively
712 capture the semantic information of the text and can be used for tasks such as text similarity
713 computation, information retrieval, and sentiment analysis [67, 63, 4, 72]. Therefore, the capabilities
714 of LLMs in both text generation and embedding generation make them applications spanning from
715 natural language processing tasks to more complex domains such as SoS, where they can assist in
716 understanding research dynamics, scientific discovery, and scientific collaboration.

717 **B Datasets for Science of Science Research**

718 Currently, there are several large-scale, cross-disciplinary academic datasets for SoS research: Mi-
 719 crosoft Academic Graph (MAG), Open Academic Graph (OAG), and SciSciNet, where the statistical
 information of each dataset is summarized in Table 2.

Table 2: Summary table of large-scale cross-discipline academic datasets.

Datasets	MAG	OAG	SciSciNet
Due Domain	2020 Art, Biology, Business, Chemistry, Computer Science, Economics, Engineering, Environmental Science, Geography, Geology, History, Materials Science, Mathematics, Philosophy, Physics, Political Science, Psychology, Sociology	2023 Art, Biology, Business, Chemistry, Computer Science, Economics, Engineering, Environmental Science, Geography, Geology, History, Materials Science, Mathematics, Philosophy, Physics, Political Science, Psychology, Sociology	2021 Art, Biology, Business, Chemistry, Computer Science, Economics, Engineering, Environmental Science, Geography, Geology, History, Materials Science, Mathematics, Medicine, Philosophy, Physics, Political Science, Psychology, Sociology
Author	261,445,825	35,774,510	134,197,162
Paper	247,389,875	130,710,733	134,129,188
Affiliation	25,811	143,749	26,998

720

721 **C More Experimental Details**

722 **C.1 Multidisciplinary Data**

723 We use the OAG 3.1¹ as the initial database for our system, which developed from the Open Academic
 724 Graph [108]. This data set includes 35,774,510 authors and 130,710,733 papers as of 2023, spanning
 725 diverse domains such as physics, chemistry, and computer science. In Table 3, we present the potential
 726 different patterns in various areas. We use papers from 2002 to 2009 as the reference database
 727 and papers from 2010 to 2011 as the validation database. To address missing author ethnicity
 728 and paper field information—key elements for validating SoS findings—we employ several data
 729 completion strategies. Specifically, we adopt corresponding approaches for the various pieces of
 730 author information and paper information in this dataset for our simulation, shown in Table 4 and 5.

Table 3: Summary table of disciplines and fields [5].

Field	Discipline
Humanities, Literature & Arts	[Art, History, Philosophy, Psychology]
Life Science & Earth Sciences	[Biology, Environmental Science, Geography, Geology]
Business, Economics & Management	[Business, Economics]
Engineering & Computer Science	[Computer Science, Engineering]
Chemical & Material Sciences	[Chemistry, Materials Science]
Physics & Mathematics	[Mathematics, Physics]
Health & Medical Sciences	[Medicine]
Social Sciences	[Political Science, Sociology]

¹<https://open.aminer.cn/open/article?id=65bf053091c938e5025a31e2>

Table 4: Different strategies are adopted for various pieces of information regarding authors.

Field Name	Strategy	Example
<i>Author Information</i>		
Name	Use the anonymization technique	Scientist 1
Ethnicity	Use the name ethnicity classifier [6]	British
Affiliation	Retain the original content	[King’s College London]
Affiliation	Use THE World University Rankings 2025 ¹	36
Ranking		
Citation	Extract the author’s published papers between 2010 to 2020 and calculate the total number of citations for the papers; In the simulation, it will be updated if his/her paper is cited	1800
Co-author	Extract the author’s published papers between 2010 to 2020 and record the collaborators in the papers; In the simulation, it will be updated if there are new collaborators	[Scientist 10, Scientist 201, Scientist 1002, ...]
Discipline	Extract the author’s published papers between 2010 to 2020 and assign the author’s discipline as the one that appears most frequently	Psychology
Research topic	Extract the author’s published papers between 2010 to 2020 and record the keywords in the papers; Use GPT-4 to summarize these keywords into research topics	[Neuropsychology, Cognitive flexibility, Attentional bias, ...]

¹ <https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking>

732 C.2 Review and Indexing System

733 To better simulate and reveal the patterns of scientific collaboration mechanisms, we introduce a
734 review and indexing system. Papers written by scientist teams are peer-reviewed and scored (ranging
735 from 1 to 10), and those that exceed the acceptance threshold (with score larger than 5) are added to
736 the reference paper database as newly published papers. In Table 6 and 7, we present the peer review
737 criteria used in our simulation system, which is based on the modified Neural Information Processing
738 Systems review guidelines ² considering that the papers produced by cross-discipline agents are not
739 all in the field of computer science. Although this criteria comes from a computer science conference,
740 the basic evaluation metrics can be applied in multiple areas. Besides, the indexing system allows
741 agents to retrieve published papers as references, and the citation count of referenced papers is
742 updated accordingly, which is later used for metric evaluation.

743 C.3 Scalable Simulation

744 To better replicate the phenomenon of free collaboration in real scientific cooperation, we implement
745 an adaptive concurrent distributed system based on the OASIS [105]. The system’s asynchronous
746 mechanism achieves concurrent processing by queuing multiple requests from agents in an inference
747 channel and then distributing them to different ports for sending and receiving, where each port
748 has deployed an LLM responsible for chatting or embedding. Furthermore, to reduce CPU load,
749 we set the channel allocation wait time based on the number of pending requests in the channel,
750 thereby enabling long-term large-scale asynchronous simulation. This mechanism serves the two
751 purposes: 1. Enabling scientist agents from different teams to communicate simultaneously, including
752 both intra-team and cross-team collaboration, and 2. Accelerating the simulation process to enable
753 large-scale simulations at the million-agent level. We test the time cost of our simulation system under
754 different number of agents, illustrated in Fig. 5. It could be found that we realize a fast large-scale
755 agent system, where a simulation of a million agent society takes only one week.

²<https://neurips.cc/Conferences/2024/ReviewerGuidelines>

Table 5: Different strategies are adopted for various pieces of information regarding papers.

Field Name	Strategy	Example
<i>Paper Information</i>		
Title	Retain the original content	Linkages of plant traits to soil properties ...
Abstract	Retain the original content	Global change is likely to alter plant community ...
Year	The year of the papers in the initial database is set to -1, while the papers published by the agent are assigned the epoch when the review is accepted	-1
Citation	In the initial database, the citation count of the papers is the original citation value plus the number of times they are cited during the simulation, while the citation count of the papers written by the agent is the number of times they are cited during the simulation	82
Authors	Retain the original content	[Scientist 124, Scientist 7923, ...]
Cited Paper	The papers in the initial database have None for this information due to its absence, while the papers published by the agent contain the names of the cited papers	None
Discipline	Use GPT-4 to classify the papers into disciplines based on their keywords and titles. Refer to Table 3 for all the disciplines used	Environmental Science

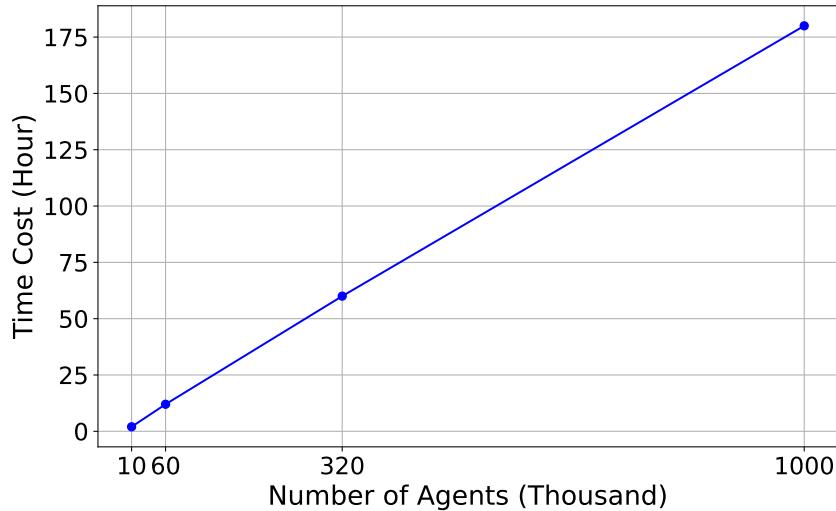


Figure 5: The time taken for a complete scientific collaboration with agents of different scales. A simulation of a million-agent society takes only one week.

756 C.4 Implementation Details

757 We implement our system on 32 NVIDIA A100 GPUs, with 4 ports deployed on each GPU, and each
 758 port running the *LLaMA3.1-8b* model. We allow each agent to create up to 3 teams simultaneously,
 759 with team sizes following an exponential distribution. This is because we analyze the team sizes of
 760 papers published between 2002 and 2009 in the OAG (over 1,000,000 papers), as shown in Fig. 6.
 761 The red fitting line indicates that the team sizes in the real data follow an exponential distribution.
 762 Therefore, in our simulation, the team size of each agent is also modeled using an exponential
 763 distribution.

Table 6: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (1/2)

You are a researcher from a multidisciplinary background reviewing a paper that has been submitted to a venue that involves multiple scientific disciplines. Be critical and cautious in your decision-making. If the paper has significant weaknesses or you are uncertain about its quality, provide lower scores and recommend rejection. Below are the questions you will be asked on the review form for each paper and some guidelines on what to consider when answering these questions.

Reviewer Guidelines for Multidisciplinary Paper Review:

1. Summary: Provide a brief summary of the paper and its contributions. This is not the place to critique the paper. The authors should generally agree with a well-written summary, which reflects an accurate understanding of their work from a multidisciplinary perspective.

2. Strengths and Weaknesses: Please provide a thorough assessment of the strengths and weaknesses of the paper, touching on each of the following dimensions:

- Originality: Are the tasks or methods novel within each of the relevant disciplines? Does the work represent an innovative combination of techniques or concepts from different fields? Is it clear how this work distinguishes itself from previous contributions in each discipline involved?

- Quality: Is the submission technically sound in each of the relevant fields? Are claims well-supported by evidence (e.g., theoretical analysis or experimental results)? Are the methods used appropriately for each discipline involved? Is this a complete piece of work, or still a work in progress? Are the authors transparent and honest in evaluating both the strengths and weaknesses of their work?

- Clarity: Is the paper written in a way that is accessible to readers from multiple disciplines? Is it well-organized, with clear explanations of concepts across different fields? If not, please suggest improvements for clarity. Does it provide sufficient detail for an expert in each relevant field to understand the methodology and reproduce results?

- Significance: Are the results important? Are others (researchers or practitioners) likely to use the ideas or build on them? Does the submission address a difficult task in a better way than previous work? Does it advance the state of the art in a demonstrable way? Does it provide unique data, unique conclusions about existing data, or a unique theoretical or experimental approach?

3. Questions: Please list any questions or suggestions that could help clarify the paper's limitations or improve its quality. Responses from the authors could change your opinion or address areas of confusion. This feedback can be critical for the rebuttal and discussion phase with the authors.

764 In idea generation and novelty assessment, each agent can cite up to 9 references per speech, where the
 765 retrieval results are obtained based on the similarity between the embeddings of the query terms and the
 766 embeddings of the papers in the database. The model used for embedding is *mxbai-embed-large*.
 767 To avoid storage issues, each agent's memory retains a maximum of 5 entries. Each paper undergoes
 768 peer review by 3 reviewers. In terms of the timeline, each epoch allows for 1 action, meaning a
 769 complete scientific collaboration can be completed in 6 epochs if the team progresses without any
 770 delays or interruptions. In our final experiment, the size of our society is maintained at 1 million
 771 agents, with a total of 40 epochs.

772 **C.5 More Experimental Results**

773 A similar comparison using real-world data from 2011 and the simulated result is provided in Fig. 7.
 774 The statistical analysis of the 2011 data exhibits similar trends to those observed in Fig. 4, which
 775 presents the comparison using 2010 data. The positive correlation between citation counts and
 776 ethnicity diversity, as well as the negative correlation between affiliation ranking and citation counts,
 777 are consistently reflected in both years. However, minor variations in correlation strength are observed,
 778 highlighting the dynamic nature of scientific collaboration trends over time.

779 **D Alternative Views**

780 The application of AI in SoS is often seen as transformative, promising to accelerate discovery.
 781 However, critics highlight significant limitations and risks, questioning its unqualified benefits. These
 782 concerns focus on systemic issues and unintended consequences [10, 77, 66]. Key counterarguments

Table 7: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (2/2)
4. Ethical Concerns: Flag any ethical concerns, particularly those that may arise from interdisciplinary collaboration. Ensure any ethical issues related to research design, data usage, or broader implications are addressed.
5. Overall Score: Provide a final score based on the paper's strengths and weaknesses. Use the following scale:
<ul style="list-style-type: none"> - 10: Award Quality: A technically flawless paper with groundbreaking impact across one or more disciplines, with exceptionally strong evaluation, reproducibility, and resources, and no unaddressed ethical concerns. - 9: Very Strong Accept: A technically flawless paper with groundbreaking impact in at least one area and strong impact on multiple areas, with flawless evaluation, resources, and reproducibility, and no unaddressed ethical concerns. - 8: Strong Accept: A technically strong paper with novel ideas, significant impact on at least one discipline or moderate-to-high impact on multiple areas, with excellent evaluation, resources, and reproducibility, and no unaddressed ethical concerns. - 7: Accept: A technically solid paper with moderate-to-high impact in one or more subfields, good-to-excellent evaluation, reproducibility, and resources, and no unaddressed ethical concerns. - 6: Weak Accept: A solid paper with moderate impact, no major concerns in terms of evaluation, reproducibility, and ethical considerations. - 5: Borderline Accept: A technically solid paper where reasons to accept outweigh reasons to reject, e.g., limited evaluation. Use sparingly. - 4: Borderline Reject: A technically solid paper where reasons to reject outweigh reasons to accept, e.g., limited evaluation. Use sparingly. - 3: Reject: A paper with technical flaws, weak evaluation, inadequate reproducibility, or incompletely addressed ethical concerns. - 2: Strong Reject: A paper with major technical flaws, poor evaluation, limited impact, poor reproducibility, or mostly unaddressed ethical considerations. - 1: Very Strong Reject: A paper with trivial results, poor evaluation, or unaddressed ethical issues.

783 include: (1) Reinforcement of Existing Inequalities: AI systems rely heavily on historical data, which
 784 often mirror long-standing inequities within the scientific community. For instance, datasets may
 785 disproportionately represent well-established disciplines, regions, or researchers, thereby perpetuating
 786 an imbalanced view of scientific contributions. Critics argue that this could stifle innovation by
 787 overlooking emerging fields and underrepresented groups, ultimately reinforcing the leading trend
 788 rather than fostering diversity. (2) Overreliance on Traditional Metrics: Academic evaluation metrics,
 789 such as citation counts and journal impact factors, are central to many AI applications in SoS. These
 790 metrics have been criticized for prioritizing mainstream research while marginalizing unconventional
 791 or nascent ideas. Opponents caution that AI-driven analyses might amplify this bias, narrowing the
 792 scope of scientific discovery and undervaluing novel contributions.

793 While these critiques highlight significant challenges, they underscore the importance of addressing
 794 fairness, and inclusivity in AI applications for SoS [34, 83, 84]. To mitigate these concerns, the
 795 following strategies can be adopted: (1) Promoting Diversity in Data and Metrics: Expanding data
 796 curation efforts to include a wider range of disciplines, regions, and research communities is critical
 797 for minimizing biases. Additionally, developing diversified scientific impact metrics beyond citation
 798 counts can ensure a more equitable evaluation of research contributions. (2) Incorporating Bias
 799 Mitigation Techniques: Embedding bias detection and correction mechanisms in AI systems can help
 800 identify and address inequities in the data and algorithms. These techniques should be complemented
 801 by rigorous validation to ensure fairness and reliability.

802 **E Outlook**

803 As AI4SoS progresses toward full autonomy, we envision a future where scientific discovery itself be-
 804 comes a more self-reflective, adaptive, and strategically guided process. In this envisioned landscape,
 805 AI agents are trained on vast corpora of scholarly data and historical innovation patterns, which will

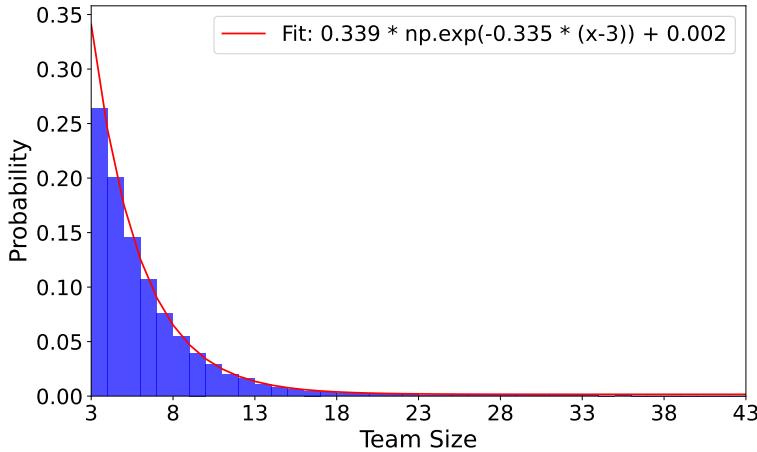


Figure 6: The statistics of team sizes for papers published between 2002 and 2009 in the OAG, with the red fitting line revealing that the distribution follows an exponential pattern.

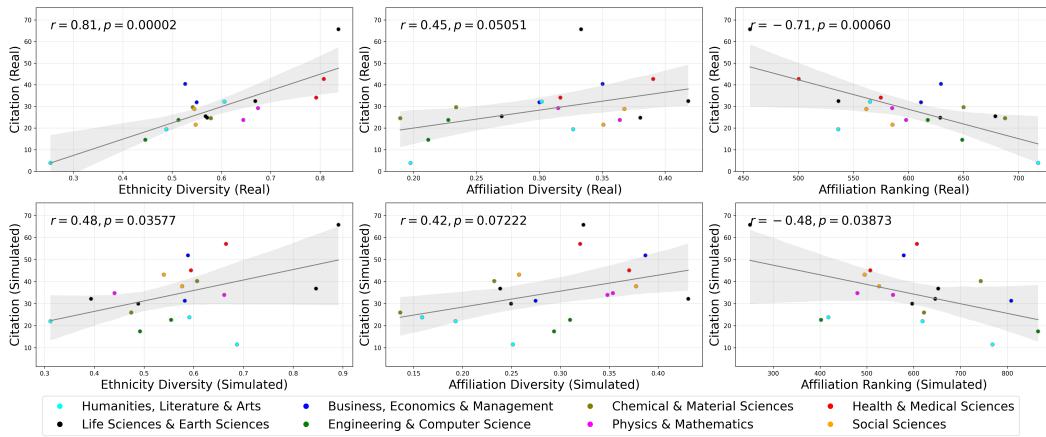


Figure 7: Comparison of real-world (2011) and AI-simulated scientific research patterns.

806 not only map the contours of scientific fields but also anticipate emerging disciplines and recommend
807 actionable research agendas.

808 Automated SoS systems will continuously monitor the evolving structure of scientific collaboration,
809 offering dynamic guidance to policymakers, institutions, and individual researchers. Research teams
810 may be formed or optimized based on predicted synergy and complementary expertise, while funding
811 strategies could adapt in real time to maximize long-term innovation impact. Moreover, AI4SoS
812 could democratize scientific foresight, making sophisticated analyses accessible to a broader range of
813 stakeholders, from early-career researchers to global research organizations. The resulting ecosystem
814 would be one where science is not only accelerated but also made more transparent, inclusive, and
815 responsive to societal needs.

816 To enhance real-world applicability, we also envision deployment scenarios in which AI4SoS in-
817 tegrates directly with existing scientific ecosystems. For instance, it could serve as a sandbox
818 environment for evaluating national research policies, allowing simulated assessments before imple-
819 mentation. Within academic institutions, AI4SoS could support internal research strategy formulation,
820 identifying growth areas and optimizing resource allocation. Additionally, it could assist governmen-
821 tal and funding bodies in planning emerging discipline layouts and national innovation agendas. These
822 integration pathways would significantly boost the practical value, societal impact, and credibility of
823 AI4SoS.

824 Achieving this vision will demand sustained interdisciplinary collaboration, ethical oversight, and
825 robust infrastructure, but the potential payoff is immense: a future in which the SoS is not just studied,
826 but actively shaped by intelligent systems.

827 F Impact Statement

828 We believe that sustained collaboration between AI researchers and SoS scholars is essential for
829 advancing our understanding of complex scientific processes. This study leverages the complementary
830 expertise of both fields to address key SoS challenges, improving scientific efficiency and fostering
831 interdisciplinary innovation.

832 However, from an ethical perspective, the integration of AI with SoS research may present several
833 concerns. First, **accountability**: When AI participates in scientific decision-making, it is crucial to
834 clarify responsibility. For instance, if an AI-generated prediction leads to errors, should developers
835 bear full responsibility? We suggest enhancing AI system transparency (e.g., recording decision-
836 making pathways) and explainability (e.g., providing reasoning behind decisions) to help researchers
837 and regulators delineate accountability more clearly. Second, **fairness and bias**: AI systems rely on
838 training data, which may contain inherent biases related to gender, geography, or economic disparities.
839 These biases can lead to unjust scientific conclusions. Therefore, AI development and application
840 should include rigorous data preprocessing and incorporate fairness constraints within algorithms
841 to mitigate the risk of bias propagation. Finally, **public trust**: AI-driven automation tools, due to
842 their complexity, may create a sense of detachment among the public. When AI decision-making
843 processes are opaque, concerns about the credibility of scientific findings may arise. To foster trust,
844 it is essential to develop more interpretable AI models and ensure human oversight in scientific
845 processes.

846 From a societal perspective, the complexity of SoS demands innovative approaches. Conventional
847 statistical studies, which depend largely on historical data, frequently struggle to uncover causal mech-
848 anisms. In contrast, agent-based AI provides a dynamic, causality-driven alternative. By elucidating
849 the mechanisms behind the evolution of scientific knowledge, these methods can clarify how govern-
850 ment policies influence research funding, academic publishing, and interdisciplinary collaboration.
851 As AI4SoS advances, it will foster more effective knowledge exchange among academia, industry,
852 and government, accelerating technological and theoretical innovation. Through intelligent analysis
853 and predictive modeling, researchers can more precisely identify scientific challenges, significantly
854 enhancing the efficiency of discovery.