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Abstract

The Science of Science (SoS) explores the mechanisms underlying scientific dis-
covery, and offers valuable insights for enhancing scientific efficiency and fostering
innovation. Traditional approaches often rely on simplistic assumptions and basic
statistical tools, such as linear regression and rule-based simulations, which strug-
gle to capture the complexity and scale of modern research ecosystems. The advent
of artificial intelligence (Al) presents a transformative opportunity for the next
generation of SoS, enabling the automation of large-scale pattern discovery and
uncovering insights previously unattainable. This paper offers a forward-looking
perspective on the integration of Science of Science with Al for automated research
pattern discovery and highlights key open challenges that could greatly benefit from
Al We outline the advantages of Al over traditional methods, discuss potential
limitations, and propose pathways to overcome them. Additionally, we present
a preliminary multi-agent system as an illustrative example to simulate research
societies, showcasing AI’s ability to replicate real-world research patterns and
accelerate progress in Science of Science research.

1 Introduction

Science of Science (SoS), a pivotal and rapidly evolving field, serves as a strategic compass for
guiding the trajectory of scientific and technological progress. By analyzing the complex dynamics
of research collaboration and scientific output across geographic and temporal scales, it sheds
light on the factors that drive creativity and the emergence of scientific discoveries, with the goal
of developing tools and policies to accelerate scientific advancement [24]. Unlike broader social
sciences that examine societal structures, SoS delves deep into the mechanisms that fuel scientific
breakthroughs [9, 186} 47]—illuminating the hidden forces that propel discovery and transformation.
Ultimately, SoS underscores that groundbreaking advancements are not solely the result of talented
minds and quality data, but are profoundly shaped by effective resource allocation, supportive policies
and well-designed organizational structures [96, 98]

In recent years, the deep fusion of Al and SoS has become more feasible and promising than ever
before. First, the increasing availability of large-scale scholarly data—publications, funding records,
and collaboration networks—provides unprecedented opportunities to gain deeper insights into the
evolution of scientific progress. Second, rapid advancements in Al technologies, such as large
language models (LLMs), along with improvements in computational power, have greatly enhanced
our ability to analyze and interpret complex scientific information with unprecedented accuracy and
scale. These technological breakthroughs mark a critical moment for integrating Al into SoS, paving
the way for a more data-driven approach to understanding and guiding research pattern discovery.
While some recent works have begun exploring autonomous scientific discovery, the field remains in
its infancy, and there is still much progress to be made before realizing its full potential.
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Figure 1: An illustration comparing human-driven and Al-driven research processes in the SoS,
highlighting step-by-step differences across four key stages in order: data processing, data analysis,
system simulation, and pattern validation.

In this paper, we take a step forward by providing the first glimpse into the integration of Al and
SoS for automated research pattern discovery. We take the position that AI has the potential to
revolutionize SoS, enabling the next generation of research by not only automating traditional
research processes but also providing a sandbox for SoS research, allowing scientists to observe
research processes in action and validate their hypotheses. As illustrated in Fig. (1} traditional SoS
methods have primarily relied on manual data processing, bibliometric-based data analysis, rule-based
system simulations, and real-world pattern validation. In contrast, Al-driven SoS leverages automated
techniques to assist scientists in processing and analyzing data while offering more advanced and
comprehensive systems for simulation and validation. This shift from human-driven to Al-driven
methodologies unlocks the potential for more efficient, scalable, and data-driven analysis, ultimately
providing deeper and more actionable insights into the mechanisms that shape scientific progress.
Thus, we define Al for SoS (AI4SoS) as a cross-disciplinary field that not only focuses on facilitating
each step within the research process but also aims to achieve fully automated SoS research to
uncover the hidden forces driving scientific innovation. This distinguishes AI4SoS from existing Al
for Science (AI4S) approaches, which focus on using Al tools to solve domain-specific scientific
problems [25} 1} [13]. To better differentiate AI4SoS from AI4S, we illustrate differences in Tablem

To consolidate our insights, we propose a forward-looking hierarchy of AI4SoS automation in Sec.[2.2}
In Sec. 3] we highlight critical open problems in SoS where Al offers advantages. Despite its promise,
we discuss challenges such as data bias in Sec.[d] We also propose possible pathways to overcome
these challenges. Lastly, we introduce a preliminary multi-agent system to simulate research societies
in Sec.[3] illustrating AI’s capability to enable fully automated pattern discovery. We show related
work, alternative views and impact statement in Appx.[A] [D] and[F] respectively.

2 Al for Science of Science

2.1 Definition

Al for SoS (AI4SoS) refers to the application of Al techniques to analyze, simulate, and validate
the pattern of scientific research. It aims to leverage Al to study key aspects of the scientific
ecosystem, including research productivity (e.g. individual published paper count), collaboration
network (e.g. interdisciplinary research collaboration), and the factors driving the advancement
of scientific knowledge (e.g. funding and policy). Specifically, Al can drive the SoS research
process by automatically applying methods such as machine learning, data mining, and computational
simulations, thereby uncovering scientific patterns.

2.2 Hierarchy of Automation Degree in AI4SoS

The integration of Al techniques into scientific research follows a progressive hierarchy, reflecting
the increasing autonomy and sophistication of Al systems in advancing the SoS field. As illustrated
in Fig. 2| we define five levels of autonomy, ranging from no Al involvement in pattern recognition
and analysis to full autonomy in uncovering new scientific insights and guiding research strategies.
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Table 1: Comparison between Al for Science and Al for Science of Science.

Feature Al for Science Al for Science of Science

Focus Solving domain-specific scientific Understanding mechanisms of scientific
problems. progress to facilitate and accelerate research.

Approach Direct application of Al to address =~ Meta-level analysis to enhance the research
scientific challenges. process.

Examples Predicting weather, designing new  Studying research collaboration trends,
drugs, optimizing materials. analyzing innovation triggers, mapping

knowledge growth.

Level 0: Non-automated SoS Discovery At this level, scientific pattern discovery is entirely human-
driven and relies on traditional statistical methods. Researchers apply fundamental techniques such as
probabilistic models, linear regression, and hypothesis testing to analyze scientific data and uncover
patterns. Al is not involved in the process, and all tasks are conducted manually using well-established
statistical procedures. Notable studies in this domain include the application of regression analysis to
identify research trends [80], correlation analysis to examine relationships between variables [S], and
statistical estimation methods to explain observed scientific phenomena [59,[106].

Level 1: Al-Assisted SoS Discovery In Level 1, Al only supports scientific data processing. Specifi-
cally, Al methods are able to transform real-world scientific data into a more comprehensible form,
including tasks such as completing and structuring bibliometric data, extracting key features such as
author networks and institutional collaborations, and converting text information (e.g., papers, scien-
tists) into embedding representations, thereby enhancing the efficiency and accuracy of data handling.
However, Al’s role remains supplementary, with human researchers still conducting data analysis,
understanding and prediction. From the perspective of AI4SoS, some related works include: utilizing
text-to-embedding methods for mapping papers to vector space [85]], extracting key information from
papers using named entity recognition [99], and constructing networks for faculty mobility [15].

Level 2: Partially Automated SoS Discovery In Level 2, Al techniques (e.g., supervised learning),
play a central role in analyzing scientific data, enabling tasks such as predicting emerging trends,
research hotspots and collaboration opportunities, based on historical patterns. This marks a shift
from Al-assisted data processing to Al-driven data analysis. However, in this level, Al struggles to
design and implement experiments automatically. For instance, a simulation environment that can
automatically conduct scientific experiments is not available, therefore it is difficult to model hidden
dynamic processes within the scientific ecosystem. Related works include the use of machine learning
models to predict individual paper citation counts [102]], neural networks for forecasting research
trends and generating novel ideas [48]], clustering publications based on citation relationships [92],
and applying structural topic models to extract topics from scientific texts [33]].

Level 3: Highly Automated SoS Discovery In Level 3, Al not only drives the analysis but also
designs and implements experiments to simulate scientific patterns in the real world. In this case,
researchers can compare results generated by simulation systems and those in the real world to
explore strategies in SoS for potential real-world applications. While Al can support automatic
experiment conduction, human supervision is required to define the specific application scenarios and
corresponding experimental parameters (e.g., scientist information, boundary conditions) based on
system feedback. Consequently, the authenticity and rationality of the system depends on whether
the researchers have considered all relevant factors, making the automatic pattern validation difficult.
Research at this level is still in its early stages, including systems simulating specific research
scenarios to propose hypotheses [27], Al predicting outcomes under different simulation conditions
to provide insights into collaboration patterns [90]. and systems reproducing historical events based
on specific environmental settings [105]].

Level 4: Fully Automated SoS Discovery Level 4, the ultimate stage, represents complete automatic
discovery in SoS. An Al-based virtual research society is conducted for end-to-end SoS discovery,
including pattern analysis, prediction, and validation. Compared to systems in Level 3, systems in
Level 4 function with continuous Al-based feedback loops to autonomously assess research plans and
results to dynamically adjust parameters such as experimental settings, enabling virtual-world pattern
validation as an alternative to real-world social experiments that may be aggressive. At this stage,



117
118
119

120
121
122
123
124

125

126
127
128
129

130

131

132
133
134

135
136
137
138
139
140

141
142
143
144
145

146

147
148

Research Process

e.g., Asimulated society

.g. ial .
e.g., Socia for collaboration pattern

Pattern Validation 5
experiments

>} discovery, ...
“\0“0«\ Ty,
e.q.. Rule-based o2 of e.g., Multi-agent systems for simulating specific
System Simulation 9. . 969 research scenarios to propose hypotheses or
simulation S
reproduce historical events, ...

e.g., Correlation
Data Analysis analysis for variable
relationships

.., Machine learning models for predicting individual paper citation
counts, neural networks for forecasting research trends and generating
unexpected ideas, ...

Data Processing e.g., Manual data e.g., Text-to-Embedding methods for mapping papers to vector space, named entity recognition for
cleaning extracting key information from papers, ...
Level 0: Level 1: Level 2: Level 3: Level 4: Autonomy Levels
Non-automated Assisted Partially Automated Highly Automated Fully Automated

Figure 2: An overview of the five progressively advancing levels of autonomy in AI4SoS, with
more green areas indicating that higher levels correspond to greater degrees of autonomy. Current
research is primarily at Level 2 or below, with very limited work at Level 3, while fully automated
SoS discovery remains in the prospective stage.

novel scientific insights can be discovered without human intervention, and systems can adapt to new
data and incorporate new insights in real time. Ethical and governance frameworks are embedded,
aligning the system’s actions with established guidelines for scientific integrity and accountability.

Currently, most research remains at Level 2 or below, with limited progress observed at Level 3, while
fully automated SoS discovery is still in the exploratory stage. Looking ahead, several potential tasks
are envisioned, including automated discovery of new collaboration patterns within the simulated
scientific community [90], systems capable of simulating and conducting experiments in real-world
settings [52]], and Al that continuously refines research directions based on emerging data [69].

3 Advantages of Automatic SoS Discovery

In this section, we delve into critical open problems within the SoS that stand to benefit substantially
from Al-driven automation. These problems are categorized into two primary areas: Forecasting
Trends in Technology and Innovation and Understanding the Dynamics of Research Society. For each
subproblem, we provide a brief background and outline key opportunities where Al offers advantages.

3.1 Forecasting Trends in Technology and Innovation
3.1.1 Background of Problem

Accurately forecasting the trajectory of science and technology is a crucial aspect of SoS, as it informs
decisions related to funding, policy-making, and research prioritization. Two major challenges are
predicting technological trends and identifying interdisciplinary opportunities.

The Trend in Technological Development Technological development follows intricate and of-
ten non-linear trajectories, making prediction difficult. To predict these trends, it is essential to
understand which technologies are gaining momentum, identify emerging breakthroughs, and antici-
pate when they will transition from research to real-world applications [35]. Traditional methods,
such as historical data analysis, often fall short in scalability and struggle to keep pace with rapid
advancements.

The Interdisciplinary Future of Innovation Interdisciplinary research, which often serves as the
pivotal role for major breakthroughs, presents another significant challenge. With the rapid growth
of scientific literature across diverse fields, manual identification of promising cross-disciplinary
opportunities has become increasingly unfeasible [11]. The complexity and scale of this task call for
automated solutions capable of discovering novel connections across fields.

3.1.2 Advantages of AI4SoS

Al offers an opportunity for tackling challenges in the SoS by leveraging its capacity to process vast
datasets and identify complex patterns beyond human discernment. In the context of forecasting tech-



149
150

151
152
153
154
155
156

157

158

160
161

162
163
164
165
166

167
168
169
170
171
172

173
174
175
176
177
178
179

181
182
183
184
185
186

187
188
189
190
191
192

193

194
195
196
197

nological development, Al models can analyze citation networks, research metadata, and publication
trends to detect emerging technological trajectories with enhanced precision [12]].

Moreover, Al-driven methods excel in uncovering interdisciplinary opportunities by representing
scientific knowledge as graph structures and employing advanced similarity metrics. Graph neural
networks, for instance, have demonstrated the ability to model intricate relationships across scientific
literature, facilitating the discovery of latent connections and novel collaborations across disparate
domains [110]. This capability empowers researchers to target high-potential interdisciplinary
collaborations, fostering innovation at the convergence of fields.

3.2 Understanding the Dynamics of Research Society
3.2.1 Background of Problem

The dynamics of research societies play a fundamental role in shaping scientific progress, which
encompass how scientist research patterns evolve, how different team constructions influence the
impact of research output, and how current research society influences scientists.

The Dynamics and Mechanics of Scientist Career The role of studying scientific careers is to
provide personalized support to the academic community, thereby enhancing individual innovation
capabilities, optimize team collaboration efficiency, and improving the allocation of research re-
sources [24]. However, challenges include the highly individualized nature of career development
paths, data scarcity and bias, and the complexity of external environmental factors [97].

The Dynamics and Mechanics of Research Team The composition and dynamics of scientific
teams play a crucial role in improving research outcomes, with elements such as size, diversity, and
collaboration patterns influencing team creativity and productivity [5, [100]. Over time, shifts in
team structures and researcher mobility have reflected broader changes in the research landscape.
Understanding these evolving dynamics presents challenges, as the relationships between team
composition and research impact are multifaceted 101 [104].

The Dynamics and Mechanics of Research Society The organization and dynamics of research
societies play a crucial role in shaping the progression and fairness of scientific endeavors. Studies
have highlighted persistent inequalities in academic representation, participation, and recognition,
both within and across nations [98], 56]. These disparities, influenced by systemic and structural
factors, hinder the equitable generation and dissemination of knowledge. On a broader scale,
imbalances in citation patterns and collaboration networks often reflect biases rooted in reputation
and resources rather than research quality [28]].

3.2.2 Advantages of AI4SoS

Al offers potential for understanding and improving the dynamics of research societies. By analyzing
large-scale historical datasets—such as collaboration patterns, research trajectories, and external
influences—AI can uncover critical factors driving individual career development. This enables
personalized researcher support and helps institutions optimize talent management. Techniques such
as predictive modeling have proven effective in tracking and forecasting team member mobility
patterns [30].

Moreover, Al-driven agents can simulate complex team dynamics, providing insights into how
various factors, such as diversity and team size, influence research productivity and innovation.
Taking this a step further, Al can simulate entire scientific societies, not only uncovering hidden
patterns and problems but also guiding the policymaking process by validating potential policies
within the simulated environment. For instance, multi-agent systems have been employed to model
team formation processes and predict collaboration outcomes under varying settings [90]].

4 Challenges and Pathways

Achieving fully automated SoS discovery centers on effectively utilizing Al techniques to process
scientific data. This endeavor involves addressing four key challenges: data-related issues, compre-
hensive system construction, robust system evaluation, and system explainability. For each of these
challenges, we provide a detailed analysis along with potential pathways for resolution.
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4.1 Data Issues

Challenges Data issues mainly include data imbalance across disciplines and training data bias. For
the first issue, many disciplines, such as computer science and engineering, produce large volumes of
well-structured data readily used by Al systems [22}41]. However, other fields, such as social sciences
or humanities, often suffer from smaller datasets, less structured data, or incomplete information,
which makes it difficult for AI models to provide accurate predictions [49, 39]]. This imbalance
can lead to skewed results where Al predictions are disproportionately driven by well-represented
fields, neglecting potentially valuable insights from underrepresented areas of research. Another issue
is training data bias. When predicting reproducible patterns from data, machine learning models
inevitably incorporate and perpetuate biases present in the data, often in opaque ways [58]]. For
example, the training data and alignment methods of LLMs (whether open-source or closed-source)
are not fully disclosed [2} 18} 103], making it impossible to objectively assess their bias and fairness.
Therefore, the fairness of machine learning becomes a heavily debated issue in applications ranging
from the criminal justice system to hiring processes [65].

Pathway To address issues of data imbalance and biases in training data, constructing a large and
diverse dataset is essential to improve data representativeness, ensuring coverage across various
domains, groups, and contexts. Several large-scale, cross-disciplinary academic datasets are currently
available for SoS research, including the Microsoft Academic Graph (MAG) [87], Open Academic
Graph (OAG)[108], and SciSciNet [54], as summarized in Table In the process of data auditing
and filtering, it is crucial to examine data sources and mitigate any potential historical or socio-
cultural biases to ensure the dataset is free from implicit biases [81]. Additionally, employing
multi-annotator strategies, conducting group balance checks, and performing fairness evaluations can
further ensure the fairness and diversity of the dataset [/3]]. These measures not only enhance the
model’s generalization ability but also reduce unfairness stemming from data biases.

4.2 Comprehensive System Construction

Challenges Simulating a research society using Al for fully automated SoS discovery, particularly
through an agent-based system, presents numerous challenges. Each scientist-agent requires detailed
modeling of their research expertise, career trajectory, and collaborative networks, which are often
too complex to be fully captured in the simulation system [68) 26]. Critical but unobservable
factors, such as internal cognitive processes and informal discussions that drive real-world decision-
making, remain challenging to replicate accurately. These limitations inevitably make simulations
discrete and less representative of actual societal dynamics. Moreover, the simulation process itself
introduces complexities. Aligning the simulated timeline with real-world events necessitates careful
calibration; for instance, determining how many simulation epochs correspond to a year in reality [43]].
Determining the appropriate size of the simulated society is also crucial; an overly small-scale model
risks failing to capture the emergent behaviors of a real research ecosystem, while an overly large
model may become impractical to manage and analyze [82,[7]. Another pressing challenge lies in
bias amplification when designing Al systems—a concern that builds on the broader implications
of how Al interacts with societal structures. Since Al systems are often designed to optimize based
on historical data of SoS, they risk perpetuating existing paradigms, funding trends, and citation
networks. This aligns with the well-documented “rich get richer” effect in citation and funding
dynamics [21},[79 40]. If an AI system prioritizes high-impact metrics, it may inadvertently favor
mainstream topics and established researchers, further marginalizing unconventional or disruptive
ideas. Without explicit mechanisms to value novelty and diversity, such systems could unintentionally
confine the scientific community to existing trends, hindering pathways to groundbreaking innovation.
Lastly, the system must account for unexpected exceptions to ensure the simulation operates smoothly
and continuously for fully automated scientific discovery. Striking a balance between realism and
feasibility remains a persistent and fundamental challenge in these simulations.

Pathway Several potential pathways can help address these complexities. With the continuous
advancement of LLMs’ comprehensive capabilities, handling complex multi-level modeling is
becoming increasingly feasible. By defining agent models with distinct roles and appropriately
assigning tasks, the behaviors of scientists at various levels can be more accurately simulated [[75]].
Fine-tuning LL.Ms on extensive academic datasets can further optimize the behavioral patterns of
agents [31]], enhancing their adaptability to reflect real-world research dynamics. One solution for
timeline alignment is to build flexible, dynamic calibration techniques that adjust the simulation’s
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temporal parameters based on context and event-driven data [105]. In determining the appropriate
scale for the simulated society, agent-based sampling methods (random or rule-based) or dynamic
population expansion techniques can be utilized [90]. When addressing bias in Al systems, it is crucial
to consider the nature of SoS, a discipline dedicated to analyzing historical data and uncovering biases
or patterns within the scientific community. To ensure alignment between simulations and real-world
dynamics, it is essential to incorporate these biases into SoS studies, as Al designed for this field seeks
to enhance and advance SoS research. At the same time, such biases can be mitigated through targeted
adjustments to system parameters. For instance, to counteract the “rich get richer” effect in citations,
one effective approach could involve reducing the likelihood of citing highly cited papers when an
agent selects a reference. Instead, assigning higher probabilities to less-cited, more novel papers can
help promote diversity in citation practices and encourage the exploration of unconventional ideas.
Moreover, the system can integrate robust anomaly detection and recovery mechanisms to handle
unexpected situations. Using unsupervised learning techniques (such as clustering), the model can
identify deviations from expected behaviors and adjust simulation parameters accordingly to ensure
stability and continuity [3]]. These potential solutions try to strike a balance between realism and
operational feasibility, providing a technological foundation for research society simulations.

4.3 Comprehensive System Evaluation

Challenges Evaluating the validity of outputs generated by Al systems in the field of SoS is a
complex and multifaceted challenge. SoS research addresses a broad range of problems and lacks
unified evaluation standards, with different tasks often necessitating tailored metrics [58]. Moreover,
innovation—a key attribute of Al outputs—is inherently subjective and context-dependent, making it
difficult to quantify accurately using traditional methods [90, [14]. Validity assessments also heavily
rely on specific domain contexts. However, the interdisciplinary nature of SoS compounds the
complexity, requiring the integration of knowledge and evaluation standards from diverse fields.
Additionally, the dynamic nature and long-term implications of Al-generated outputs present further
challenges, as their true impact on scientific progress often cannot be evaluated in the short term [8].
Addressing this requires advanced tools, such as time-series analysis and virtual scientist simulations,
to facilitate longitudinal tracking. Furthermore, Al-generated scientific recommendations may raise
ethical issues and have far-reaching consequences for scientific communities and research prac-
tices [S5]. Therefore, a comprehensive and adaptable evaluation framework is necessary, integrating
scientometric methodologies, multidisciplinary expert reviews, dynamic analytical approaches, and
stringent ethical guidelines.

Pathway To address these challenges, appropriate solutions can be implemented. First, collaborating
with domain experts to define task-specific evaluation metrics is essential, and then quantitative
evaluation methods based on scientometrics should be developed. For instance, citation counts can be
used as a measure of influence when evaluating the impact of system outputs, and they can also track
knowledge flow [38]]. In simulating a scientist’s career, individual impact metrics such as the h-index,
which reflects both productivity and impact, can be applied. Additionally, to assess output novelty,
feasible approaches include large model-based peer-review scoring [61,90]] or calculating the Z-score
for each pairing of referenced journals [14]. With the ongoing expansion of LLMs’ expertise and
improved reasoning capabilities, interdisciplinary testing and long-term large-scale simulations have
become increasingly feasible. Moreover, LLMs are now being employed in social simulations [105]],
assuming role-based agents. In terms of ethical and social impacts, aligning model preferences and
improving transparency can partially address ethical concerns and enhance user trust, while ethical
benchmarks [6437] can be used to test the validity of system outputs. By integrating these strategies,
a multidimensional evaluation framework can be established.

4.4 Explainability and Causal Inference

Challenges While the Al framework emphasizes automated discovery and evaluation, it lacks
mechanisms to explain the causal pathways behind Al-generated outputs [32}[78]]. This limitation
makes it difficult for researchers and policymakers to trust and adopt Al-driven insights, as they may
not fully understand the underlying logic or relationships. Moreover, the complex and interdisciplinary
nature of SoS often involves interactions between numerous variables, such as collaborations, funding
patterns, and citation networks [88},124], which cannot be adequately captured through correlation-
based approaches. Without explicit causal explanations, it is challenging to ensure the auditability,
accountability, and interpretability of the system, undermining its credibility and ethical alignment.
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Figure 3: The overview of our preliminary multi-agent system for scientific collaboration simulation.
We place the simulation within a community of scientists. After a scientist leads his/her team in
submitting a paper, it undergoes peer review. If accepted, it is added to the reference database and can
be cited by other scientists in subsequent epochs. Due to varying author information, the citation count
of the final research output differs, then we can analyze the correlation between them—understanding
the dynamics of research organizations, which is important in the field of SoS.

Pathway To address these challenges, it is crucial to introduce causal modeling [71} 23] and ex-
plainable AI (XAI) [20} [60] techniques to assist in interpreting and validating simulation results.
Approaches such as Counterfactual Analysis can clarify the logical origins of Al-driven recom-
mendations or discoveries, making the reasoning process more transparent. Relevant methods in
the SoS domain include causal inference techniques like Propensity Score Matching (PSM) and
Coarsened Exact Matching (CEM), which are useful for identifying causal relationships in complex
systems [46,|36]]. Additionally, causal graphical models and structural equation modeling (SEM) can
be applied to analyze scientific impact by modeling the flow of influence across variables such as
collaboration networks or funding distributions [16} 44} 50]. These tools provide a robust foundation
for explaining Al-generated outputs.

5 Proof-of-Concept Studies

In this section, we present case studies to illustrate a practical application scenarios in AI4SoS. Specif-
ically, by constructing a simplified preliminary multi-agent system to replicate phenomena observed
in real-world scientific societies and uncover underlying patterns in SoS, we aim to demonstrate the
possibility of automated pattern discovery.

5.1 Environment Construction

We construct a preliminary multi-agent system to simulate a society-level scientific collaboration
through an end-to-end pipeline, including collaborator selection, topic discussion, idea generation,
novelty assessment, abstract generation, and peer review, inspired by [61},(74,/90]. The overview of our
system is shown in Fig.[3] Existing studies primarily focus on simulating individual scientists or small
research teams within specific fields (e.g., computer science) and are often constrained to isolated
settings that do not capture the broader research ecosystem. In contrast, our work enhances the
system’s complexity by incorporating realistic factors such as multidisciplinary data (In Appx.[C.1),
a review and indexing system (In Appx. [C.2), and scalable simulation across multiple research teams
(In Appx.[C.3). More implementation details are provided in Appx. [C.4}

5.2 [Experiments

Involved Metrics Following the settings of [5,51,197], we measure the impact of scientific output by
the number of citations a paper receives. In the simulation, the citation counts are updated each time
a paper is retrieved during the idea generation phase. For validation, we analyze the citation counts
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Figure 4: Comparison of real-world (2010) and Al-simulated scientific research patterns. The scatter
plots illustrate the relationships between Ethnicity Diversity, Affiliation Diversity, and Affiliation
Ranking with Citation Count in both real-world (top row) and simulated (bottom row) data. Correla-
tions observed in real data are partially reproduced by the Al-driven multi-agent system, showing its
potential to uncover meaningful research patterns and support automated SoS studies.

of agent-generated papers to assess whether the system can replicate patterns observed in real-world
data from the years 2010 to 2011. To evaluate AI’s potential in pattern discovery, we examine the
influence of three key factors on citation counts: ethnicity diversity, affiliation diversity, and average
university ranking. Specifically, we measure diversity using Shannon entropy. For instance, the

ethnicity diversity d.;p, of paper s is calculated as: dey, = — Zle p;i(s)Inp;(s), where k represents
the total number of ethnicity categories, and p;(s) is the proportion of authors from the ¢-th ethnicity
category in paper s.

Simulation Results The experimental results presented in Fig. 4] compare real-world data in 2010
with the outcomes generated by our preliminary LLM-based multi-agent system. Both the real-
world and simulated data show that higher citation counts are positively correlated with greater
ethnicity diversity, which aligns with existing findings in SoS literature [3]], although the correlations
are slightly weaker in the simulation. Additionally, the negative correlation between affiliation
ranking and citation counts is also reproduced in the simulated data, suggesting that institutions with
higher rankings may achieve higher citation counts per research output (a similar comparison using
real-world data from 2011 and the simulated results is provided in the Appx.[C.5).

Discussions However, while both real-world and simulated data indicate a positive correlation be-
tween citation counts and affiliation diversity, the pattern observed in the simulation is not statistically
significant (p>0.05). These results suggest that the preliminary Al-driven simulations have the
potential to replicate and uncover key patterns in scientific research, but there remains significant
room for improvement. For instance, the current system lacks several critical components, such as
comprehensive modeling of individual research trajectories and realistic funding and policy influences.
These limitations contribute to the preliminary nature of our approach, as the absence of such factors
restricts the system’s ability to fully capture the complexity of real-world scientific ecosystems.
Developing a more comprehensive and sophisticated simulation framework will enhance the system’s
capability to automatically model complex scientific dynamics with greater accuracy and reliability.
More details of outlook are provided in Appx.[E]

6 Conclusion

This paper presents a forward-looking perspective on the future of AI4SoS, proposing a five-level
autonomy framework toward automated SoS discovery. We show its potential in two critical domains:
forecasting trends in technology and innovation, and analyzing the evolution of research communities.
We discuss key challenges and future directions, supporting our vision with literature reviews and
proof-of-concept studies that showcase early applications. Ultimately, AI4SoS holds the promise of
automated SoS discovery, thereby enhancing scientific efficiency and interdisciplinary innovation.
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A Related Work

A.1 Al for Science

In recent years, Al has become increasingly common in science and is expected to become the
center of research practice [93]. Al has demonstrated great potential to accelerate experimental
design, data analysis, optimization problem solving, and discovery of new theories [29] 94, |62]].
Specifically, deep neural networks are used to predict the relationship between molecular structures
and biological activity [95} |89], reinforcement learning is used to discover unknown materials with
superior properties [911 145]], and agent-based systems are introduced to simulate social science sce-
narios [53}[17]]. In addition, as a subfield of science, Al has undergone some preliminary explorations
in the SoS [5} 851901, revealing promising results.

A.2 Large Language Models

The role of large language models (LLMs) can be articulated from two perspectives: chat (T5 [76],
GPT-4 [[70], and LLaMA3.1 [19]) and embedding (BERT [42] and DNABERT [38]]) generation. First,
the capability of dialogue generation enables LLMs to understand user input in natural language and
generate contextually relevant responses in various conversational contexts such as knowledge testing,
game play, and software programming [[107, |57, (109, [17]. Additionally, embedding generation
allows LLMs to convert input text into fixed-dimensional vector representations, which effectively
capture the semantic information of the text and can be used for tasks such as text similarity
computation, information retrieval, and sentiment analysis [67, (63| 4, [72]. Therefore, the capabilities
of LLMs in both text generation and embedding generation make them applications spanning from
natural language processing tasks to more complex domains such as SoS, where they can assist in
understanding research dynamics, scientific discovery, and scientific collaboration.
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B Datasets for Science of Science Research

Currently, there are several large-scale, cross-disciplinary academic datasets for SoS research: Mi-
crosoft Academic Graph (MAG), Open Academic Graph (OAG), and SciSciNet, where the statistical

information of each dataset is summarized in Table 2]

Table 2: Summary table of large-scale cross-discipline academic datasets.

Datasets MAG OAG SciSciNet

Due 2020 2023 2021

Domain Art, Biology, Business,  Art, Biology, Business,  Art, Biology, Business,
Chemistry, Computer Chemistry, Computer Chemistry, Computer
Science, Economics, Science, Economics, Science, Economics,
Engineering, Engineering, Engineering,
Environmental Science, Environmental Science, Environmental Science,
Geography, Geology, Geography, Geology, Geography, Geology,
History, Materials History, Materials History, Materials
Science, Mathematics, Science, Mathematics, Science, Mathematics,
Philosophy, Physics, Philosophy, Physics, Medicine, Philosophy,
Political Science, Political Science, Physics, Political
Psychology, Sociology  Psychology, Sociology  Science, Psychology,

Sociology

Author 261,445,825 35,774,510 134,197,162

Paper 247,389,875 130,710,733 134,129,188

Affiliation 25,811 143,749 26,998

C More Experimental Details

C.1 Multidisciplinary Data

We use the OAG 3.as the initial database for our system, which developed from the Open Academic
Graph [108]]. This data set includes 35,774,510 authors and 130,710,733 papers as of 2023, spanning
diverse domains such as physics, chemistry, and computer science. In Table [3] we present the
disciplines and fields of paper in the Open Academic Graph, which is used to analyze the potential
different patterns in various areas. We use papers from 2002 to 2009 as the reference database
and papers from 2010 to 2011 as the validation database. To address missing author ethnicity
and paper field information—key elements for validating SoS findings—we employ several data
completion strategies. Specifically, we adopt corresponding approaches for the various pieces of
author information and paper information in this dataset for our simulation, shown in Table ] and 3]

Table 3: Summary table of disciplines and fields [S]].

Field

Humanities, Literature & Arts
Life Science & Earth Sciences
Business, Economics &
Management

Engineering & Computer Science
Chemical & Material Sciences
Physics & Mathematics

Health & Medical Sciences
Social Sciences

Discipline

[Art, History, Philosophy, Psychology]
[Biology, Environmental Science, Geography, Geology]
[Business, Economics]

[Computer Science, Engineering]
[Chemistry, Materials Science]
[Mathematics, Physics]
[Medicine]

[Political Science, Sociology]

"https://open.aminer.cn/open/article?id=65bf053091c938e5025a31e2
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Table 4: Different strategies are adopted for various pieces of information regarding authors.

Field Name Strategy Example
Author Information
Name Use the anonymization technique Scientist 1
Ethnicity Use the name ethnicity classifier [6] British
Affiliation Retain the original content [King’s College
London]
Affiliation Use THE World University Rankings 2025 ! 36
Ranking
Citation Extract the author’s published papers between 2010 to 1800
2020 and calculate the total number of citations for the
papers; In the simulation, it will be updated if his/her
paper is cited
Co-author Extract the author’s published papers between 2010 to  [Scientist 10,
2020 and record the collaborators in the papers; In the  Scientist 201,
simulation, it will be updated if there are new collabora- Scientist 1002, ... ]
tors
Discipline Extract the author’s published papers between 2010 to  Psychology
2020 and assign the author’s discipline as the one that
appears most frequently
Research Extract the author’s published papers between 2010 to  [Neuropsychology,
topic 2020 and record the keywords in the papers; Use GPT-4  Cognitive flexibility,

to summarize these keywords into research topics Attentional bias, ... ]

"https://www.timeshighereducation.com/world-university-rankings/latest/w
orld-ranking

C.2 Review and Indexing System

To better simulate and reveal the patterns of scientific collaboration mechanisms, we introduce a
review and indexing system. Papers written by scientist teams are peer-reviewed and scored (ranging
from 1 to 10), and those that exceed the acceptance threshold (with score larger than 5) are added to
the reference paper database as newly published papers. In Table[6|and[7} we present the peer review
criteria used in our simulation system, which is based on the modified Neural Information Processing
Systems review guidelines E] considering that the papers produced by cross-discipline agents are not
all in the field of computer science. Although this criteria comes from a computer science conference,
the basic evaluation metrics can be applied in multiple areas. Besides, the indexing system allows
agents to retrieve published papers as references, and the citation count of referenced papers is
updated accordingly, which is later used for metric evaluation.

C.3 Scalable Simulation

To better replicate the phenomenon of free collaboration in real scientific cooperation, we implement
an adaptive concurrent distributed system based on the OASIS [103]]. The system’s asynchronous
mechanism achieves concurrent processing by queuing multiple requests from agents in an inference
channel and then distributing them to different ports for sending and receiving, where each port
has deployed an LLM responsible for chatting or embedding. Furthermore, to reduce CPU load,
we set the channel allocation wait time based on the number of pending requests in the channel,
thereby enabling long-term large-scale asynchronous simulation. This mechanism serves the two
purposes: 1. Enabling scientist agents from different teams to communicate simultaneously, including
both intra-team and cross-team collaboration, and 2. Accelerating the simulation process to enable
large-scale simulations at the million-agent level. We test the time cost of our simulation system under
different number of agents, illustrated in Fig.[5] It could be found that we realize a fast large-scale
agent system, where a simulation of a million agent society takes only one week.

“https://neurips.cc/Conferences/2024/RevieverGuidelines
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Table 5: Different strategies are adopted for various pieces of information regarding papers.

Field Name Strategy Example
Paper Information
Title Retain the original content Linkages of plant
traits to soil
properties . ..
Abstract Retain the original content Global change is
likely to alter plant
community ...
Year The year of the papers in the initial database is setto -1

-1, while the papers published by the agent are assigned
the epoch when the review is accepted

Citation In the initial database, the citation count of the papers 82
is the original citation value plus the number of times
they are cited during the simulation, while the citation
count of the papers written by the agent is the number
of times they are cited during the simulation

Authors Retain the original content [Scientist 124,
Scientist 7923, ...]
Cited Paper The papers in the initial database have None for this in- None

formation due to its absence, while the papers published
by the agent contain the names of the cited papers

Discipline Use GPT-4 to classify the papers into disciplines based = Environmental
on their keywords and titles. Refer to Table[3|for all the ~ Science
disciplines used

175+

150+

=
N
U

100+

Time Cost (Hour)
~
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Figure 5: The time taken for a complete scientific collaboration with agents of different scales. A
simulation of a million-agent society takes only one week.

C.4 Implementation Details

We implement our system on 32 NVIDIA A100 GPUs, with 4 ports deployed on each GPU, and each
port running the LLaMA3.1-8b model. We allow each agent to create up to 3 teams simultaneously,
with team sizes following an exponential distribution. This is because we analyze the team sizes of
papers published between 2002 and 2009 in the OAG (over 1,000,000 papers), as shown in Fig. [6]
The red fitting line indicates that the team sizes in the real data follow an exponential distribution.
Therefore, in our simulation, the team size of each agent is also modeled using an exponential
distribution.
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Table 6: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (1/2)

You are a researcher from a multidisciplinary background reviewing a paper that has been submitted
to a venue that involves multiple scientific disciplines. Be critical and cautious in your decision-
making. If the paper has significant weaknesses or you are uncertain about its quality, provide
lower scores and recommend rejection. Below are the questions you will be asked on the review
form for each paper and some guidelines on what to consider when answering these questions.
Reviewer Guidelines for Multidisciplinary Paper Review:

1. Summary: Provide a brief summary of the paper and its contributions. This is not the place to
critique the paper. The authors should generally agree with a well-written summary, which reflects
an accurate understanding of their work from a multidisciplinary perspective.

2. Strengths and Weaknesses: Please provide a thorough assessment of the strengths and weak-
nesses of the paper, touching on each of the following dimensions:

- Originality: Are the tasks or methods novel within each of the relevant disciplines? Does the
work represent an innovative combination of techniques or concepts from different fields? Is it
clear how this work distinguishes itself from previous contributions in each discipline involved?

- Quality: Is the submission technically sound in each of the relevant fields? Are claims well-
supported by evidence (e.g., theoretical analysis or experimental results)? Are the methods used
appropriately for each discipline involved? Is this a complete piece of work, or still a work in
progress? Are the authors transparent and honest in evaluating both the strengths and weaknesses
of their work?

- Clarity: Is the paper written in a way that is accessible to readers from multiple disciplines? Is
it well-organized, with clear explanations of concepts across different fields? If not, please suggest
improvements for clarity. Does it provide sufficient detail for an expert in each relevant field to
understand the methodology and reproduce results?

- Significance: Are the results important? Are others (researchers or practitioners) likely to
use the ideas or build on them? Does the submission address a difficult task in a better way than
previous work? Does it advance the state of the art in a demonstrable way? Does it provide unique
data, unique conclusions about existing data, or a unique theoretical or experimental approach?
3. Questions: Please list any questions or suggestions that could help clarify the paper’s limitations
or improve its quality. Responses from the authors could change your opinion or address areas of
confusion. This feedback can be critical for the rebuttal and discussion phase with the authors.

In idea generation and novelty assessment, each agent can cite up to 9 references per speech, where the
retrieval results are obtained based on the similarity between the embeddings of the query terms and
the embeddings of the papers in the database. The model used for embedding is mxbai-embed-large.
To avoid storage issues, each agent’s memory retains a maximum of 5 entries. Each paper undergoes
peer review by 3 reviewers. In terms of the timeline, each epoch allows for 1 action, meaning a
complete scientific collaboration can be completed in 6 epochs if the team progresses without any
delays or interruptions. In our final experiment, the size of our society is maintained at 1 million
agents, with a total of 40 epochs.

C.5 More Experimental Results

A similar comparison using real-world data from 2011 and the simulated result is provided in Fig.[7}
The statistical analysis of the 2011 data exhibits similar trends to those observed in Fig. ] which
presents the comparison using 2010 data. The positive correlation between citation counts and
ethnicity diversity, as well as the negative correlation between affiliation ranking and citation counts,
are consistently reflected in both years. However, minor variations in correlation strength are observed,
highlighting the dynamic nature of scientific collaboration trends over time.

D Alternative Views

The application of Al in SoS is often seen as transformative, promising to accelerate discovery.
However, critics highlight significant limitations and risks, questioning its unqualified benefits. These
concerns focus on systemic issues and unintended consequences [[10l [77)166]. Key counterarguments

21



783
784
785
786
787
788
789
790
791
792

793
794
795
796
797
798
799
800
801

802

803
804
805

Table 7: Prompt Tailored for Multidisciplinary Reviewers

Prompt Tailored for Multidisciplinary Reviewers (2/2)

4. Ethical Concerns: Flag any ethical concerns, particularly those that may arise from interdisci-
plinary collaboration. Ensure any ethical issues related to research design, data usage, or broader
implications are addressed.

5. Overall Score: Provide a final score based on the paper’s strengths and weaknesses. Use the
following scale:

- 10: Award Quality: A technically flawless paper with groundbreaking impact across one or
more disciplines, with exceptionally strong evaluation, reproducibility, and resources, and no
unaddressed ethical concerns.

- 9: Very Strong Accept: A technically flawless paper with groundbreaking impact in at least one
area and strong impact on multiple areas, with flawless evaluation, resources, and reproducibility,
and no unaddressed ethical concerns.

- 8: Strong Accept: A technically strong paper with novel ideas, significant impact on at least
one discipline or moderate-to-high impact on multiple areas, with excellent evaluation, resources,
and reproducibility, and no unaddressed ethical concerns.

- 7: Accept: A technically solid paper with moderate-to-high impact in one or more subfields,
good-to-excellent evaluation, reproducibility, and resources, and no unaddressed ethical concerns.

- 6: Weak Accept: A solid paper with moderate impact, no major concerns in terms of evaluation,
reproducibility, and ethical considerations.

- 5: Borderline Accept: A technically solid paper where reasons to accept outweigh reasons to
reject, e.g., limited evaluation. Use sparingly.

- 4: Borderline Reject: A technically solid paper where reasons to reject outweigh reasons to
accept, e.g., limited evaluation. Use sparingly.

- 3: Reject: A paper with technical flaws, weak evaluation, inadequate reproducibility, or
incompletely addressed ethical concerns.

- 2: Strong Reject: A paper with major technical flaws, poor evaluation, limited impact, poor
reproducibility, or mostly unaddressed ethical considerations.

- 1: Very Strong Reject: A paper with trivial results, poor evaluation, or unaddressed ethical
issues.

include: (1) Reinforcement of Existing Inequalities: Al systems rely heavily on historical data, which
often mirror long-standing inequities within the scientific community. For instance, datasets may
disproportionately represent well-established disciplines, regions, or researchers, thereby perpetuating
an imbalanced view of scientific contributions. Critics argue that this could stifle innovation by
overlooking emerging fields and underrepresented groups, ultimately reinforcing the leading trend
rather than fostering diversity. (2) Overreliance on Traditional Metrics: Academic evaluation metrics,
such as citation counts and journal impact factors, are central to many Al applications in SoS. These
metrics have been criticized for prioritizing mainstream research while marginalizing unconventional
or nascent ideas. Opponents caution that Al-driven analyses might amplify this bias, narrowing the
scope of scientific discovery and undervaluing novel contributions.

While these critiques highlight significant challenges, they underscore the importance of addressing
fairness, and inclusivity in Al applications for SoS [34} |83} |84]]. To mitigate these concerns, the
following strategies can be adopted: (1) Promoting Diversity in Data and Metrics: Expanding data
curation efforts to include a wider range of disciplines, regions, and research communities is critical
for minimizing biases. Additionally, developing diversified scientific impact metrics beyond citation
counts can ensure a more equitable evaluation of research contributions. (2) Incorporating Bias
Mitigation Techniques: Embedding bias detection and correction mechanisms in Al systems can help
identify and address inequities in the data and algorithms. These techniques should be complemented
by rigorous validation to ensure fairness and reliability.

E Outlook

As AI4SoS progresses toward full autonomy, we envision a future where scientific discovery itself be-
comes a more self-reflective, adaptive, and strategically guided process. In this envisioned landscape,
Al agents are trained on vast corpora of scholarly data and historical innovation patterns, which will

22



806
807

808
809
810
811
812
813
814
815

816
817
818
819
820
821
822
823

— Fit: 0.339 * np.exp(-0.335 * (x-3)) + 0.002

Probability
©
i
[6,]

o
il
[S)

0.05

0.00

T T

13 18 23 28 33 38 43
Team Size

Figure 6: The statistics of team sizes for papers published between 2002 and 2009 in the OAG, with
the red fitting line revealing that the distribution follows an exponential pattern.
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Figure 7: Comparison of real-world (2011) and Al-simulated scientific research patterns.

not only map the contours of scientific fields but also anticipate emerging disciplines and recommend
actionable research agendas.

Automated SoS systems will continuously monitor the evolving structure of scientific collaboration,
offering dynamic guidance to policymakers, institutions, and individual researchers. Research teams
may be formed or optimized based on predicted synergy and complementary expertise, while funding
strategies could adapt in real time to maximize long-term innovation impact. Moreover, Al4SoS
could democratize scientific foresight, making sophisticated analyses accessible to a broader range of
stakeholders, from early-career researchers to global research organizations. The resulting ecosystem
would be one where science is not only accelerated but also made more transparent, inclusive, and
responsive to societal needs.

To enhance real-world applicability, we also envision deployment scenarios in which AI4SoS in-
tegrates directly with existing scientific ecosystems. For instance, it could serve as a sandbox
environment for evaluating national research policies, allowing simulated assessments before imple-
mentation. Within academic institutions, AI4SoS could support internal research strategy formulation,
identifying growth areas and optimizing resource allocation. Additionally, it could assist governmen-
tal and funding bodies in planning emerging discipline layouts and national innovation agendas. These

integration pathways would significantly boost the practical value, societal impact, and credibility of
Al4SoS.
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Achieving this vision will demand sustained interdisciplinary collaboration, ethical oversight, and
robust infrastructure, but the potential payoff is immense: a future in which the SoS is not just studied,
but actively shaped by intelligent systems.

F Impact Statement

We believe that sustained collaboration between Al researchers and SoS scholars is essential for
advancing our understanding of complex scientific processes. This study leverages the complementary
expertise of both fields to address key SoS challenges, improving scientific efficiency and fostering
interdisciplinary innovation.

However, from an ethical perspective, the integration of Al with SoS research may present several
concerns. First, accountability: When Al participates in scientific decision-making, it is crucial to
clarify responsibility. For instance, if an Al-generated prediction leads to errors, should developers
bear full responsibility? We suggest enhancing Al system transparency (e.g., recording decision-
making pathways) and explainability (e.g., providing reasoning behind decisions) to help researchers
and regulators delineate accountability more clearly. Second, fairness and bias: Al systems rely on
training data, which may contain inherent biases related to gender, geography, or economic disparities.
These biases can lead to unjust scientific conclusions. Therefore, Al development and application
should include rigorous data preprocessing and incorporate fairness constraints within algorithms
to mitigate the risk of bias propagation. Finally, public trust: Al-driven automation tools, due to
their complexity, may create a sense of detachment among the public. When Al decision-making
processes are opaque, concerns about the credibility of scientific findings may arise. To foster trust,
it is essential to develop more interpretable Al models and ensure human oversight in scientific
processes.

From a societal perspective, the complexity of SoS demands innovative approaches. Conventional
statistical studies, which depend largely on historical data, frequently struggle to uncover causal mech-
anisms. In contrast, agent-based Al provides a dynamic, causality-driven alternative. By elucidating
the mechanisms behind the evolution of scientific knowledge, these methods can clarify how govern-
ment policies influence research funding, academic publishing, and interdisciplinary collaboration.
As AI4SoS advances, it will foster more effective knowledge exchange among academia, industry,
and government, accelerating technological and theoretical innovation. Through intelligent analysis
and predictive modeling, researchers can more precisely identify scientific challenges, significantly
enhancing the efficiency of discovery.
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