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ABSTRACT

Large language models (LLMs) demonstrate unprecedented capabilities across di-
verse applications, yet their extensive parameterization creates substantial compu-
tational and memory requirements that hinder practical deployment. While struc-
tured pruning shows promise for LLM compression, existing methods use static
masks that cannot adapt to different inputs, limiting performance across diverse
tasks. In this work, we present SEAP, a novel semantic-aware structured pruning
framework that adaptively identifies optimal masks based on input semantics at the
pre-fill stage. Our framework features two key components: (1) an explainability-
guided importance estimation that uniquely fuses local and global neuron impor-
tance to discover diverse representative mask patterns from calibration data’s in-
trinsic characteristics, and (2) a lightweight router-based module through iterative
refinement that efficiently assigns optimal masks for each input prompt. Experi-
mental results on LLaMA-2/3, Qwen2, and Phi-2 demonstrate that SEAP outper-
forms state-of-the-art structured pruning methods across diverse language model-
ing and commonsense reasoning tasks, achieving competitive performance with
reductions in memory and inference latency.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) Liu et al. (2024); Achiam et al. (2023);
Grattafiori et al. (2024) have demonstrated unprecedented capabilities across diverse applica-
tions Radford et al. (2021); Brown et al. (2020). However, their extensive parameterization imposes
prohibitive computational and memory requirements, hindering deployment in resource-constrained
environments Sun et al. (2024). Structured pruning Wen et al. (2016); An et al. (2024); Ashkboos
et al. (2024) addresses this challenge by removing entire matrix components, achieving compression
and acceleration while preserving hardware-friendly dense operations.

Most existing structured pruning methods adopt static approaches, deriving a single pruning pattern
from calibration data using heuristic criteria An et al. (2024); Yang et al. (2023) or reconstruction
losses van der Ouderaa et al. (2023); Guo et al. (2025). This one-size-fits-all paradigm applies
identical patterns regardless of input semantics, which can lead to inconsistent performance across
diverse downstream distributions and domain shifts Ji et al. (2025); Williams & Aletras (2024).
In practice, a single globally optimal subnetwork may not exist: prompts with different linguistic
styles, knowledge requirements, or reasoning structures often activate distinct functional pathways
inside the same backbone.

Inspired by interpretability research on attribution circuits within LLMs Conmy et al. (2023);
Merullo et al. (2024), we find that optimal computational pathways can vary systematically across
semantic contexts. This motivates the development of semantic-aware pruning strategies that adapt
sparsity patterns to input characteristics rather than applying static compression. Yet such an ap-
proach faces several challenges. First, pattern selection must occur before the pre-fill stage, with-
out access to intermediate hidden states, precluding the use of input-specific importance metrics
at inference time. Second, directly learning a sparsity predictor conditioned on input features is
prohibitively expensive given the massive parameter scale of LLMs, often necessitating joint opti-
mization of the model and predictor Hou et al. (2025). While recent work Wee et al. (2025) explores
task-dependent pruning by selecting different transformer blocks for downstream tasks, such block-
level adaptation provides limited flexibility compared to neuron-level pruning. These constraints
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Figure 1: Motivation for semantic-aware pruning. Prompts with different semantics could activate
different regions of LLMs. Static pruning applies a single one-size-fits-all mask that cannot accom-
modate such variability. SEAP discovers diverse structured patterns and dynamically routes each
input to the suitable subnetwork, improving performance across tasks.

lead us to a key insight: while individual inputs exhibit unique activation patterns, there exist shared
structured pruning patterns across semantically similar prompts that can be discovered once and then
reused efficiently via lightweight routing.

To achieve this, we introduce SEAP, a semantic-aware dynamic structured pruning framework that
learns a small pool of specialized sparse subnetworks from calibration data and dynamically assigns
an appropriate configuration to each input during inference. Figure 1 illustrates this shift from static
uniform patterns to semantic-aware mask selection. Crucially, SEAP keeps the LLM backbone
frozen and learns only a lightweight BERT-based router that selects among a small pool of represen-
tative subnetworks. Especially, we propose an explainability-guided importance estimation method
that leverages neuron attribution techniques Achtibat et al. (2024); Ali et al. (2022) to bridge the
gap between individual neuron relevance and combinatorial pruning decisions. By fusing local ac-
tivations with global relevance signals, we discover how different semantic contexts engage distinct
computational pathways, enabling the extraction of multiple effective structured pruning patterns
from calibration data. SEAP achieves semantic adaptivity while maintaining efficiency through a
two-phase design. We first distill the diverse learned patterns into a compact candidate pool via
maximum-coverage optimization, balancing representativeness with efficiency. At the pre-fill stage,
a lightweight router encodes input semantics and selects the optimal pattern. To jointly optimize
mask assignment and specialization, we employ iterative co-training where the router learns to pre-
dict mask performance while individual masks adapt to their assigned contexts. This alternating
optimization yields complementary subnetworks that align with input semantics.

Extensive experimental results show that our method can outperform state-of-the-art structural prun-
ing methods for LLMs while still maintaining low computational costs. Our main contributions can
be summarized as follows:

• We propose SEAP, a novel dynamic structured pruning framework that explores the intrin-
sic characteristics of calibration data for semantic-aware pruning.

• We bridge neuron attribution and structured pruning by designing an explainability-guided
importance estimation method that discovers diverse mask patterns.

• Extensive experiments on LLaMA-2/3, Qwen2, and Phi-2 demonstrate that SEAP con-
sistently outperforms state-of-the-art structured pruning methods across diverse language
modeling and reasoning tasks while maintaining hardware efficiency.

2 RELATED WORK

Current pruning approaches fall into three main categories, each with distinct characteristics and
applications. Unstructured pruning removes individual weights to create irregular sparsity patterns,
achieving high compression ratios Frantar & Alistarh (2023); Sun et al. (2024). Semi-structured
pruning Fang et al. (2024); Zhang et al. imposes fine-grained N:M sparsity patterns (e.g., 2:4) that
can leverage specialized hardware accelerators for efficient execution. Structured pruning Xia et al.
(2024); Ma et al. (2023) removes entire components such as neurons, attention heads, or blocks,
enabling straightforward deployment on standard hardware through dense matrix operations.
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Within structured pruning, representative methods include heuristic scoring based on weight mag-
nitudes, gradients, or similarity metrics An et al. (2024); Kurtic et al. (2023); Ma et al. (2023);
Guo et al. (2025); Chen et al. (2025a), matrix-decomposition-based approaches such as SliceGPT
and SVD-LLM Ashkboos et al. (2024); Wang et al. (2025), and optimization-based frameworks like
DISP-LLM Gao et al. (2024). Despite their algorithmic differences, these methods ultimately learn a
static structured pruning pattern from calibration data and apply it uniformly to all inputs, assuming
a single subnetwork can serve diverse semantic contexts.

Complementary to static pruning, contextual sparsity methods Liu et al. (2023b); Zhou et al. (2024);
Lee et al. (2024) explore dynamic component activation during inference, focusing on token-level
acceleration while preserving full model parameters. Recent dynamic approaches Wee et al. (2025);
Hou et al. (2025) have begun exploring input-adaptive pruning in the pre-fill stage. For example,
IFPruning Hou et al. (2025) jointly trains a sparsity predictor with the LLM to generate input-specific
pruning masks, while Pudding Wee et al. (2025) selects different transformer blocks for various
downstream tasks. These methods tightly couple the sparsity predictor with backbone optimization,
or operate at coarse block granularity, which can limit flexibility or increase training complexity.

SEAP extends structured pruning by introducing semantic adaptivity through multiple specialized
sparse subnetworks. Our approach combines the memory efficiency of structured pruning with
input-aware adaptation: we select appropriate sub-models during pre-fill and maintain consistent
parameters throughout decoding, avoiding per-token routing overhead. By operating at fine-grained
neuron granularity guided by explainability signals, SEAP focuses on semantic-aware structured
pruning within a significantly expanded mask search space.

3 PRELIMINARIES

3.1 OVERVIEW OF STRUCTURED PRUNING

LLMs are composed of L Transformer blocks, each containing a multi-head self-attention mech-
anism MHA(·) and a feed-forward network FFN(·). Denote the input hidden state Xin ∈ Rn×d,
where n and d represent the sequence length and hidden dimension, respectively. Considering the
residual connections, the transformations of each block can be expressed as:

Xres = MHA(Xin) +Xin, Xout = FFN(Xres) +Xres. (1)
Commonly, the attention layer has four matrices: Wq,Wk,Wv,Wo ∈ Rd×d, and the feed-forward
layer has three matrices: Wup,Wgate ∈ Rd×dffn , Wdown ∈ Rdffn×d, where dffn is the hidden dimension.

Without loss of generality, we adopt the recently proposed dimension-independent pruning (DIP)
framework Gao et al. (2024) for structured pruning, which allows us to prune each layer indepen-
dently through indexing operations. Our objective is to identify a set of pseudo-index selection
matrices {Si}5i=1 in each transformer block. Si is defined as a diagonal binary matrix and the posi-
tion of the ones indicating the selection of specific neurons. Based on these selection matrices, the
attention and feed-forward layers can be expressed as:

MHA(X) = SDPA(XST
1 Wq,XST

1 Wk,XST
1 Wv)WoS2,

FFN(X) =
(
σ(XST

3 WupS4)⊙ (XST
3 WgateS4)

)
ST
4 WdownS5,

(2)

where SDPA(·) is the scaled dot-product attention kernel and σ(·) is the element-wise activation
function. While we present the formulation under DIP, this selection-matrix approach can generalize
to other structured pruning schemes Ma et al. (2023); An et al. (2024).

3.2 LAYER-WISE RELEVANCE PROPAGATION

Layer-wise Relevance Propagation (LRP) Bach et al. (2015) is a neuron-attribution algorithm that
redistributes a model’s output score back through the network, layer by layer. The relevance value
R

(l)
j quantifies the contribution of neuron j in layer l to the final prediction. For linear transforma-

tions, the propagation rule is

R
(l−1)
i =

∑
j

a
(l−1)
i w

(l)
ij∑

k a
(l−1)
k w

(l)
kj + ϵ

R
(l)
j , (3)
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Figure 2: Overview of SEAP’s semantic-aware pruning framework: (i) learning diverse mask can-
didates from calibration data, (ii) constructing a compact candidate pool, and (iii) dynamically se-
lecting masks based on input semantics.

where a
(l−1)
i is the activation of neuron i in layer l − 1, w(l)

ij is the weight from neuron i to neuron
j, and ϵ is a small stabilization constant. In the transformer context, recent studies Achtibat et al.
(2024); Ali et al. (2022) extend this rule to non-linear components (e.g., attention) through local
linearization via Deep Taylor Decomposition Sixt & Landgraf (2022). Formally, LRP maintains a
conservation principle:

∑
i R

(l−1)
i =

∑
j R

(l)
j , ensuring constant total relevance flow between adja-

cent layers. Unlike activation values or gradients, LRP scores capture global network computations
beyond local property, making them well-suited for guiding structured pruning.

4 METHODOLOGY

The objective of SEAP is to dynamically learn optimal pruning masks based on input semantics.
As shown in Figure 2, SEAP consists of three main stages: (i) mask candidate learning (Section
4.1), which learns instance-specific pruning masks for each calibration sample using explainability-
guided neuron importance estimation; (ii) mask pool construction (Section 4.2), which distills
the learned masks into a compact set of representative and diverse candidates; and (iii) router-
based mask assignment (Section 4.3), which trains a lightweight module to dynamically select and
optimize the best mask from the candidate pool for each input.

4.1 MASK CANDIDATE LEARNING

To identify optimal structured pruning patterns, we exploit calibration data Dcal whose distribution
approximates that of pre-training data. While different inputs may require different pruning strate-
gies, we find that shared pruning patterns could emerge across semantically similar inputs. This
key insight suggests that a compact set of representative masks could efficiently capture the prun-
ing requirements of diverse inputs, motivating our approach to learn instance-specific masks and
subsequently distill them into a reusable candidate pool.

For a fixed LLM with parameters W consisting of L blocks, we learn to map each input sequence
X ∈ Rn×d (where n is the sequence length and d is the hidden dimension) to a binary selection
matrix S(l)(X) ∈ Rd×d for each layer l that determines which neurons to retain. Here, we omit
component-wise notation for clarity. To enable adaptive sparsity allocation across layers, we formu-
late instance-specific mask learning as a global optimization problem over the calibration set:

min
Θ

∑
X∈Dcal

[L(X;W,S(X)) + λR(S(X), p)] , (4)

where L(X;W,S(X)) denotes the language modeling loss computed on the pruned network,
R(S(X), p) enforces the target sparsity constraint p, λ is the regularization weight, and Θ denotes
all learnable parameters in the mask learning network.
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Figure 3: Heatmap of LRP scores for top-activated neurons (0.7% per layer) across layers. Red/blue
indicate positive/negative output impact; color intensity shows its magnitude. Right: LRP-activation
scatter plots for selected layers with LOWESS trend lines (red), showing correlation coefficients (ρ).

Explainability-Guided Neuron Importance Indicator. Traditional magnitude-based criteria
(e.g., activations) are insufficient for reliable neuron importance estimation, as they capture only
local information while neglecting critical cross-layer interdependencies. As illustrated in Figure 3,
many highly-activated neurons exhibit low relevance scores, particularly in early layers, demonstrat-
ing that activation magnitude poorly correlates with prediction contribution. This disconnect is quan-
tified by varying Spearman correlations across layers (ρ ∈ [−0.038, 0.451]), revealing a complex,
non-monotonic relationship. Moreover, LOWESS analysis shows that magnitude-importance rela-
tionships become unpredictable in low-activation regions, indicating systematic bias in activation-
based selection. These findings motivate our integration of complementary explainability signals for
comprehensive importance assessment.

For each layer l with input hidden states X(l) ∈ Rn×d, we compute two complementary per-neuron
importance signals to capture both local activation patterns and global prediction relevance:

A(l) =
[∥∥∥X(l)

:,1

∥∥∥
2
,
∥∥∥X(l)

:,2

∥∥∥
2
, . . . ,

∥∥∥X(l)
:,d

∥∥∥
2

]T
∈ Rd, (5)

R(l) = LRP-Rule
(
R(l+1),W(l→l+1),X(l)

)
∈ Rd, (6)

where A(l) aggregates L2 norms across sequence positions for each dimension, and LRP-Rule prop-
agates relevance backward from layer l + 1 using decomposition rules Achtibat et al. (2024), with
output layer relevance initialized based on the language modeling loss.

To quantify neuron importance, we combine these signals into a unified indicator via a lightweight
channel-wise MLP that balances local and global perspectives:

I(l) = α|R(l)|+ (1− α)MLP(l)(A(l)), α ∈ [0, 1], MLP(l) : Rd → Rd. (7)

This convex combination allows the MLP to capture input-specific activation variations, while the
weighted relevance term α|R(l)| provides global contribution context.

Recognizing that uniform sparsity across layers is suboptimal, we introduce per-layer affine transfor-
mations to automatically adjust importance distributions while preserving relative neuron rankings.
Specifically, SEAP learns per-layer scaling factors and biases that adjust the importance scores:

Î(l) = γ(l)I(l) + β(l), γ(l) > 0, β(l) ∈ R, (8)

where γ(l) adjusts the dynamic range and β(l) aligns the distribution with pruning thresholds.

Finally, we generate structured selection matrices by applying the recently proposed gradient esti-
mator Binary ReinMax Liu et al. (2023a) to the neuron-level importance scores:

m(l)(X) = ReinMax(Î(l)), S(l)(X) = Diag(m(l)(X)) ∈ Rd×d, (9)

where m(l)(X) ∈ {0, 1}d is the binary mask and S(l)(X) is the corresponding diagonal selection
matrix. ReinMax maintains discrete forward computation while enabling end-to-end differentiable
optimization of Θ = {α, {MLP(l), γ(l), β(l)}Ll=1} to optimize sparsity-performance trade-offs.
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4.1.1 MASK POOL CONSTRUCTION

While our mask candidate learning process generates a diverse collection of masks U from cali-
bration data, deploying all masks at inference would introduce prohibitive computational overhead.
Therefore, we distill these masks into a compact representative candidate set M that retains pruning
diversity while maintaining efficiency.

We begin by evaluating each learned mask candidate m on a stratified subset randomly sampled
from downstream task distributions. Let S(m) denote the set of validation instances where mask m
achieves correct predictions. The mask selection problem can be formulated as a maximum coverage
optimization problem:

M∗ = argmax
M⊆U :|M|≤K

∣∣∣∣∣ ⋃
m∈M

S(m)

∣∣∣∣∣ , (10)

where K is the maximum number of candidate masks. To solve this efficiently, we employ a greedy
algorithm: starting with an empty set, we iteratively add the mask that provides the highest incre-
mental coverage until reaching the limit K.
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Figure 4: Accuracy distribution and cumulative coverage
of learned mask candidates on LLaMA-2-7B at 40% ratio.

As illustrated in Figure 4, our exper-
iments on LLaMA-2-7B reveals that
most learned masks in SEAP achieve
higher accuracy compared to the static
baseline Gao et al. (2024). No-
tably, combining 16 candidate masks
achieves 87% coverage of the valida-
tion set, around 57.5% improvement
over static baseline. This evidence
demonstrates that different masks cap-
ture complementary pruning patterns,
motivating our instance-adaptive mask
assignment approach.

4.2 ROUTER-BASED MASK ASSIGNMENT AND REFINEMENT

Given the candidate mask pool M, we formulate instance-adaptive mask selection as a classification
problem where a lightweight router predicts the optimal mask for each input. Our router architecture
comprises: (1) a much smaller LLM backbone (∼150M parameters) for semantic encoding, and (2)
a two-layer MLP classifier that maps encoded representations to mask selections from M.

To train the router, we construct a supervision dataset capturing the relationship between input char-
acteristics and optimal mask performance. For multiple-choice tasks, each training sample consists
of a question X, candidate options A = {a1, . . . , aJ}, and ground-truth option index j∗. We evalu-
ate mask quality using an option-wise discriminative score that measures how well the pruned model
W ⊙mc (where ⊙ denotes element-wise masking) distinguishes correct answers from distractors:

s(c) = − log
exp (−tl(X, aj∗ ;W ⊙mc))∑J
j=1 exp (−tl(X, aj ;W ⊙mc))

, (11)

where tl(X, aj ;W ⊙ mc) denotes the negative log-likelihood of generating option aj , and s(c)

represents the negative log-probability of mask mc correctly predicting j∗.

We employ iterative co-optimization to jointly refine router predictions and mask specialization. In
each iteration, we first update the router using LoRA fine-tuning with MSE regression on per-mask
performance scores:

Lrouter =
1

N

N∑
i=1

∥si − ŝi∥22, si = [s
(1)
i , s

(2)
i , . . . , s

(K)
i ], (12)

where s
(c)
i is computed via Equation 11 for sample i under mask mc, and ŝi represents the router’s

prediction. Subsequently, we fix router parameters and update mask scores using the refined pre-
dictions as supervision. Through this alternating optimization, the router learns to associate input
semantics with effective pruning patterns, while masks adapt to their assigned semantic contexts.
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4.3 COMPUTATIONAL COMPLEXITY

SEAP keeps the backbone LLM frozen and only optimizes lightweight auxiliary modules. Let Ncal
be the number of calibration examples, K the number of candidate masks, and L the number of
layers. The mask-generation stage has cost O

(
Ncal · K · L

)
, with gradients flowing through the

hypernetwork but not the backbone. Router training operates on a compact encoder (e.g., Modern-
Bert Warner et al. (2025)) of size |θrouter| ≈ 150M ≪ |θLLM| with parameter-efficient adaptation, so
its complexity scales as O

(
Ntrain · |θrouter|

)
, largely decoupled from the backbone size.

At inference time, for each input sequence we perform one router forward and one subnetwork
reconstruction, both of cost O(|θrouter|), after which the LLM forward FLOPs match those of a static
structured-pruned model with sparsity ratio s (roughly (1−s) of the dense FLOPs). Memory usage is
dominated by a single dense backbone plus O(|θrouter|+K ·Nneurons) for the router and binary masks,
corresponding to only a small (∼2–3%) overhead in practice. Empirical training-time, latency, and
transfer-cost measurements in Tables 4 to 6 further confirm that this additional cost remains modest
in both server-side and memory-constrained deployments.

5 EXPERIMENTS

In this section, we present an experimental evaluation of SEAP, covering the setup, results on lan-
guage modeling and reasoning/QA benchmarks, and analyses of routing behavior and efficiency.

5.1 EXPERIMENTAL SETUP

Models, Datasets, and Baselines We primarily evaluate SEAP on LLaMA-2-7B, LLaMA-2-13B,
and Phi-2, and further validate its scalability and robustness on Qwen-2-7B and LLaMA-3-8B. For
language modeling, we report perplexity (PPL) on WikiText-2 Merity et al. (2017) and PTB Mar-
cus et al. (1993). For downstream evaluation, we follow the official implementation of LM-Eval-
Harness Gao et al. (2023) and use a suite of zero-shot commonsense and knowledge reasoning tasks,
including ARC-Easy Clark et al. (2018), ARC-Challenge Clark et al. (2018), Winogrande Sakaguchi
et al. (2020), HellaSwag Zellers et al. (2019) and PIQA Bisk et al. (2020). To assess the robustness
of the semantic router under calibration distribution shifts, we additionally evaluate on BoolQ Clark
et al. (2019), OpenBookQA (OBQA) Mihaylov et al. (2018), MBPP Austin et al. (2021), Pub-
MedQA Jin et al. (2019), MMLU Hendrycks et al. (2021), and SciQ Welbl et al. (2017), as presented
in Table 2 and Table 3. We compare SEAP with SOTA structured pruning methods that operate at
neuron or channel granularity while preserving dense kernels. These include FLAP An et al. (2024),
SliceGPT Ashkboos et al. (2024), ShortGPT Men et al. (2025), and DISP-LLM Gao et al. (2024).

Implementation Details For mask candidate generation, we use 128 randomly sampled 2048-
token chunks from the WikiText-2 and Alpaca Taori et al. (2023) training sets as calibration data.
We evaluate learned mask candidates on 128 samples from the training split of five commonsense
reasoning datasets (ARC-Easy, ARC-Challenge, Winogrande, HellaSwag, and PIQA), and select
the top-10 mask candidates for inference by default. For router training, we construct the training
set using the full training splits of the same five datasets, while reserving BoolQ, OBQA, MBPP,
PubMedQA, MMLU, and SciQ exclusively for evaluation to assess generalization to unseen tasks.
Unless otherwise specified, all training and analysis are conducted on a server with 8 NVIDIA
A6000 GPUs. Additional implementation details are provided in the Appendix.

5.2 OVERALL PERFORMANCE

Language Modeling We first evaluate the perplexity of compressed models on WikiText-2 and
PTB, with results reported in Table 1. Across both model sizes and compression ratios, SEAP con-
sistently achieves the lowest perplexity among all structured pruning baselines. At 20% compression
on LLaMA-2-7B, SEAP improves over the second-best method DISP-LLM by 12.5% on WikiText-
2 and 12.8% on PTB. The gap widens at 40% compression, where alternative methods suffer severe
degradation (e.g. PTB), while SEAP maintains significantly better perplexity. Similar trends hold
for LLaMA-2-13B, indicating that semantic-aware routing not only preserves downstream accuracy
but also leads to more faithful language modeling under aggressive structured pruning.
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Table 1: Perplexity of the compressed LLaMA-2-7B
and LLaMA-2-13B models on WikiText-2 and PTB.

Ratios Methods LLaMA-2-7B LLaMA-2-13B

WikiText PTB WikiText PTB

0% Dense 5.47 24.09 4.88 35.03

20%

FLAP 16.33 67.58 14.74 85.86
ShortGPT 15.76 100.06 8.32 132.92
SliceGPT 8.12 84.14 7.16 92.62

DISP-LLM 6.98 53.89 5.98 87.31
Ours 6.11 46.97 5.37 55.96

40%

FLAP 28.12 112.06 21.51 150.11
ShortGPT 75.22 260.58 58.22 332.74
SliceGPT 14.27 194.69 12.24 252.98

DISP-LLM 10.34 165.67 8.42 205.99
Ours 8.52 86.48 7.86 112.05

Commonsense Reasoning As shown
in Table 2, SEAP better preserves
zero-shot commonsense and knowledge
reasoning capabilities on LLaMA-2-7B,
LLaMA-2-13B, and Phi-2. At both
20% and 40% compression ratios, SEAP
consistently achieves the highest aver-
age accuracy across BoolQ, PIQA, Hel-
laSwag, OBQA, ARC-e, ARC-c, and
WinoGrande, and remains substantially
closer to the dense models than FLAP,
SliceGPT, ShortGPT, and DISP-LLM.
This pattern holds even at higher spar-
sity, where static structured methods ex-
hibit pronounced degradation.

The results on Qwen-2-7B and LLaMA-3-
8B in Table 3 are consistent with this trend. At 25% sparsity, SEAP generally outperforms DISP-
LLM on the six reasoning benchmarks while also achieving lower perplexity on WikiText-2. On the
OOD suite (BoolQ, OBQA, MBPP, PubMedQA, MMLU, SciQ), SEAP recovers a larger fraction
of dense performance than DISP-LLM in most cases, and even slightly exceeds the dense model
on some datasets (e.g., SciQ with Qwen-2-7B). These observations suggest that semantic routing
can remain effective beyond the calibration distribution, including on code generation and domain-
shifted science/knowledge tasks. We believe this benefit comes from the good quality of the learned
subnetworks and the fine-tuned router, which together preserves input semantic adaptivity.

5.3 IN-DEPTH ANALYSIS

Impact of Number of Candidate Masks Figure 5a illustrates the performance of our method
with varying numbers of candidate masks K. We can observe that at the initial stage, increasing the
number of candidate masks leads to a noticeable improvement in performance. While K equals 1,
the model is essentially static pruning. This shows the necessity of a diverse set of mask patterns
to capture different input characteristics and enhance the model’s reasoning capabilities. However,
as K continues to increase to 20, the performance gains become marginal or even negative. This
indicates a clear trade-off: a modest pool of candidate masks is essential, but excessive diversity
offers little benefit and may introduce unnecessary stochasticity.
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(b) Component ablation study
Figure 5: Sensitivity and ablation of SEAP. (a) Performance
with varying numbers of masks K. (b) Ablation effects.

Ablation Study As presented
in Figure 5b, we conduct an ablation
study to evaluate the effectiveness
of each component in our method.
Replacing the option-wise log-
softmax loss with task-likelihood
loss yields the most significant per-
formance drop, demonstrating that
it enables more discriminative mask
assignments by learning nuanced
input space boundaries rather than
optimizing solely for task-specific
performance. Removing the mask
fine-tuning step results in moderate degradation, indicating that this calibration mechanism is
essential for adapting learned masks to compressed model dynamics while preserving routing
logic. Moreover, substituting greedy mask selection with random sampling leads to substantial
performance deterioration, highlighting that systematic input space coverage is crucial for robust
router training and generalization to unseen inputs.

Adaptive Layer-wise Importance Discovery One of the advantages of our method is that it learns
a global importance criterion for each structure, allowing to pruning models without the need for
layer-wise pruning ratios. As shown in Figure 6, we visualize the averaged pruning ratios of learned
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Table 2: Downstream task accuracy of the compressed LLaMA-2-7B, LLaMA-2-13B, and Phi-2
models. Bold denotes the best result at the same compression ratio.

BoolQ PIQA HellaSwag OBQA ARC-e ARC-c WinoGrandeModel Pruning Ratio Method acc acc norm acc norm acc norm acc norm acc norm acc Average
L

L
aM

A
-2

-7
B

0% Raw 0.7798 0.7889 0.7618 0.4480 0.7416 0.4565 0.6938 0.6672

20%

FLAP 0.6168 0.7323 0.6371 0.3760 0.6199 0.3729 0.6346 0.5699
ShortGPT 0.5217 0.6012 0.4343 0.2900 0.5227 0.3208 0.5808 0.4674
SliceGPT 0.5196 0.6425 0.4978 0.2900 0.5147 0.3106 0.6274 0.4861

DISP-LLM 0.6774 0.7399 0.6776 0.3780 0.6595 0.3686 0.6440 0.5921
SeAP 0.7370 0.7652 0.7128 0.4020 0.6897 0.4051 0.6677 0.6256

40%

FLAP 0.5547 0.6605 0.4734 0.3460 0.3809 0.2816 0.5501 0.4639
ShortGPT 0.4557 0.5098 0.2783 0.2660 0.2639 0.2747 0.5051 0.3648
SliceGPT 0.4713 0.5490 0.3480 0.2540 0.3068 0.2346 0.4949 0.3798

DISP-LLM 0.6361 0.7084 0.5482 0.3620 0.5379 0.3208 0.5730 0.5266
SeAP 0.6869 0.7367 0.5929 0.3880 0.6147 0.3582 0.6495 0.5753

L
L

aM
A

-2
-1

3B

0% Raw 0.8070 0.8047 0.7937 0.4560 0.7761 0.4940 0.7182 0.6928

20%

FLAP 0.6239 0.7546 0.6886 0.3940 0.6587 0.4070 0.6527 0.5971
SliceGPT 0.5776 0.6583 0.5358 0.3220 0.5581 0.3584 0.6717 0.5260

DISP-LLM 0.7416 0.7666 0.7366 0.4220 0.7281 0.4437 0.6677 0.6438
SeAP 0.7611 0.7797 0.7512 0.4340 0.7507 0.4763 0.7001 0.6647

40%

FLAP 0.6245 0.6866 0.5397 0.3540 0.5311 0.3481 0.6117 0.5280
SliceGPT 0.4723 0.5598 0.3715 0.2960 0.3859 0.2705 0.5651 0.4173

DISP-LLM 0.6547 0.6986 0.5967 0.3680 0.5909 0.3396 0.5801 0.5469
SeAP 0.7297 0.7245 0.6240 0.3860 0.6693 0.3692 0.6653 0.5954

Ph
i-

2

0% Raw 0.8226 0.8123 0.7889 0.4460 0.8098 0.5358 0.7364 0.7074

20%
SliceGPT 0.7269 0.7187 0.5776 0.3740 0.5800 0.3532 0.6780 0.5726

DISP-LLM 0.7318 0.7486 0.6293 0.3740 0.6818 0.4411 0.6709 0.6111
SeAP 0.7593 0.7679 0.6721 0.4120 0.7284 0.4735 0.6828 0.6423

25%
SliceGPT 0.6786 0.6991 0.5248 0.3460 0.5278 0.3549 0.6519 0.5404

DISP-LLM 0.7146 0.7427 0.5995 0.3520 0.6593 0.4334 0.6511 0.5932
SeAP 0.7483 0.7528 0.6465 0.3880 0.6684 0.4516 0.6779 0.6191

30%
SliceGPT 0.6478 0.6594 0.4756 0.3420 0.5303 0.3029 0.6314 0.5128

DISP-LLM 0.6989 0.7334 0.5443 0.3440 0.6359 0.3848 0.6322 0.5569
SeAP 0.7339 0.7476 0.6381 0.3760 0.6373 0.4327 0.6700 0.5943

Table 3: Downstream task accuracy of the compressed Qwen-2-7B and LLaMA-3-8B models at
25% sparsity. Bold denotes the best result at the same compression ratio.

Model BoolQ PIQA HellaSwag OBQA ARC-e ARC-c WikiText2 MBPP PubMedQA MMLU SciQ
acc acc norm acc norm acc norm acc norm acc norm PPL ↓ pass@1 acc acc acc norm

Qwen-2-7B
Dense 0.8544 0.8063 0.8069 0.4640 0.7647 0.5392 7.60 0.5620 0.7440 0.6993 0.9150
DISP-LLM 0.7621 0.7693 0.6842 0.3880 0.7104 0.4556 11.62 0.2800 0.6040 0.5033 0.9130
SeAP 0.8263 0.7720 0.7351 0.4140 0.7357 0.5094 8.98 0.3820 0.6900 0.5801 0.9250
LLaMA-3-8B
Dense 0.8226 0.8123 0.7889 0.4460 0.8098 0.5358 6.23 0.4820 0.7560 0.6338 0.9450
DISP-LLM 0.7214 0.7443 0.6738 0.4120 0.6965 0.4403 14.05 0.2020 0.5960 0.4133 0.8840
SeAP 0.7743 0.7639 0.6853 0.4210 0.7382 0.4629 11.20 0.2160 0.7100 0.4554 0.8770

candidate masks.The results demonstrate our method’s understanding of transformer architecture
functionality. Notably, middle layers exhibit lower pruning ratios compared to shallow and deep
layers, aligning with recent findings that intermediate representations achieve superior performance
across diverse tasks Skean et al. (2025). This pattern reflects the critical role of mid-depth layers
in balancing information compression and semantic abstraction Chen et al. (2025b), indicating that
our method effectively captures the nuanced dynamics of LLMs.

Visualization of per-dataset Mask Assignment Figure 7 visualizes the mask candidates selected
for each dataset, revealing distinct selection patterns that validate our method’s adaptability. Each
task exhibits unique preferences: BoolQ strongly favors masks 6-9, while OpenBookQA predom-
inantly selects masks 2-5, and PIQA shows concentrated usage of masks 5 and 6. These varied
distributions demonstrate that our method effectively captures the nuanced characteristics of differ-
ent datasets, allowing the model to dynamically adjust its routing logic based on input context. This
adaptability is crucial for maintaining high performance across diverse tasks, as it enables the model
to leverage the most relevant mask patterns for each specific reasoning challenge.

Computational Cost Analysis While SEAP employs a two-stage training procedure, the com-
putational overhead remains practical and is well-justified by the performance gains. As detailed
in Table 5, our training comprises explainability-guided mask candidate learning (1.56–2.56 hours)
and dynamic router training (4.53–8.47 hours). Both stages operate on a frozen backbone: the mask
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Figure 6: Model width
distribution after 40%
pruning on LLaMA-2.
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quency across reasoning tasks
and mask candidates.

Ratios Mask
Assignment

Parameter
Loading Pre-fill TTFT Decode

0% - - 0.704 0.704 27.41

20% 0.015 0.049 0.619 0.668 24.89
40% 0.015 0.047 0.523 0.570 22.64
50% 0.015 0.047 0.448 0.495 21.2

Table 4: Breakdown of the inference la-
tency of the compressed LLaMA-2-13B
model on the A6000 GPU.

Table 5: Training Time Comparison (Hours)

Method LLaMA-2-7B LLaMA-2-13B
DISP-LLM 2.41 8.83

SEAP Mask 1.56 Mask 2.56
Router 4.53 Router 8.47

Total 6.09 11.23

Table 6: Host-device transfer time.

Model Size PCIe 4.0 PCIe 6.0 NVLink
(64 GB/s) (256 GB/s) (900 GB/s)

Dense 13.5 GB 0.211 s 0.053 s 0.015 s
SeAP 9.45 GB 0.148 s 0.037 s 0.011 s

learning stage leverages global importance assessment over calibration data to converge quickly,
and the router is trained using parameter-efficient LoRA adaptation, adding only ∼1% extra pa-
rameters. Compared to DISP-LLM, SEAP incurs a 2.53× training-time overhead on LLaMA-2-7B
but only 1.27× on LLaMA-2-13B, indicating favorable scaling as the relative cost decreases with
model size. The absolute training time stays within practical limits (< 12 hours on 8×A6000),
and this one-time cost yields a single dynamic structured model that provides consistent accuracy
improvements across many downstream tasks, which static methods cannot achieve.

Inference Latency Evaluation Table 4 reports an inference latency breakdown for compressed
LLaMA-2-13B on an A6000 GPU (2048 input tokens, 256 generated tokens) in the server-side set-
ting where the backbone, router, and masks all reside on device. The additional overhead introduced
by SEAP is minimal: mask assignment takes only 0.015 s and parameter loading 0.047 s, together
accounting for less than 1% of total inference time. In contrast, the structured sparsity yields sub-
stantial speedups as the compression ratio increases: at 50% sparsity, pre-fill time improves by
36.4% (0.704 s → 0.448 s), time-to-first-token (TTFT) by 29.7% (0.704 s → 0.495 s), and decode
latency by 22.7% (27.41 s → 21.20 s). These results show that semantic routing achieves meaningful
acceleration while incurring negligible on-GPU overhead.

For xmemory-constrained or edge-like deployments, where the dense backbone is stored in host
memory and sparse subnetworks are streamed on demand, it would incur additional host-device
transfer time during inference. Table 6 reports theoretical transfer times under typical interconnects.
On a PCIe 6.0 ×16 link, loading a 30% sparse SEAP subnetwork takes only 0.037 s, compared to
0.053 s for the dense model, while reducing device-resident weights from 13.5 GB to 9.45 GB plus
a small 2–3% router/mask overhead. Together, these results validate that SEAP is practical both in
high-throughput server settings and in compression-oriented offloading scenarios.

6 CONCLUSION

In this paper, we introduced SEAP, a semantic-aware structured pruning framework that per-
forms instance-level dynamic sparsification within a single LLM backbone. SEAP introduces an
explainability-guided importance estimator to discover structured pruning patterns from calibration
data and employs a lightweight router to assign a subnetwork based on input semantics at the pre-
fill stage, adapting sparsity to the input while retaining hardware-friendly dense kernels with small
memory and latency overheads. Experiments on LLaMA-2/3, Qwen2, and Phi-2 show that SEAP
outperforms SOTA structured pruning baselines on language modeling and a range of reasoning and
QA tasks. Future work includes exploring richer router training strategies and data mixtures, ex-
tending SEAP to more diverse tasks (e.g., multilingual and generative tasks), and combining it with
complementary techniques such as hierarchical masking and quantization.
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APPENDIX OUTLINES OF SEAP

This appendix provides extended technical and experimental details that support the findings in the
main paper. It is organized as follows:

• Section A: Ethics Statement
• Section B: Reproducibility Statement
• Section C: LLM Usage
• Section D: Quantitative Visualizations
• Section E: Implementation Details
• Section F: Limitations and Future Work

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including WikiText-2, Alpaca, ARC-Easy, ARC-
Challenge, Winogrande, HellaSwag, PIQA, BoolQ, and OpenBookQA, were sourced in compliance
with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any
biases or discriminatory outcomes in our research process. No personally identifiable information
was used, and no experiments were conducted that could raise privacy or security concerns. We are
committed to maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
has been attached as supplementary material to facilitate replication and verification. The experi-
mental setup, including training steps, model configurations, and hardware details, is described in
detail in the paper. We have also provided a full description of our semantic-aware structured pruning
framework (SEAP) with explainability-guided importance estimation and router-based mask assign-
ment, to assist others in reproducing our experiments. Additionally, all publicly available datasets
used in the paper, such as WikiText-2, ARC-Easy, ARC-Challenge, Winogrande, HellaSwag, PIQA,
BoolQ, and OpenBookQA, are publicly available, ensuring consistent and reproducible evaluation
results. We believe these measures will enable other researchers to reproduce our work and further
advance the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephras-
ing, grammar checking, and enhancing the overall flow of the text. It is important to note that the
LLM was not involved in the ideation and research methodology. All research concepts, ideas, and
analyses were developed and conducted by the authors. The contributions of the LLM were solely
focused on improving the linguistic quality of the paper. We have ensured that the LLM-generated
text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

D QUANTITATIVE VISUALIZATIONS

The impact of Calibration Data for Static Pruning Recent works Ji et al. (2025); Williams &
Aletras (2024) have shown that the choice of calibration data could significantly affect the perfor-
mance of static unstructured pruning methods. We perform a similar experiment using a classical
structured pruning method, FLAP An et al. (2024), on LLaMA-2-7B. We use the calibration data, in-
cluding PTB, Wikitext-2, and RedPajama, and find that the similar phenomenon also exists in struc-
tured pruning. As shown in Figure 8, the per-task performance from different calibration datasets
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Figure 8: Performance differences of various calibration data using FLAP An et al. (2024) on
LLaMA-2-7B.

could vary significantly, showing that the necessity of dynamic pruning. For instance, for ARC-
Easy, the performance of FLAP using WikiText-2 could be even dropped by over 50% compared to
the performance using RedPajama. This indicates that the choice of calibration data is crucial for
structured pruning methods, and dynamic pruning can adaptively select the most suitable calibration
data for each task.
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Figure 9: Performance of each mask on each routed group.

Semantic-aware Sparsity Patterns To validate router effectiveness, we evaluate each mask’s
performance on samples assigned to every mask, creating the router assignment validation matrix
shown in Figure 9. The obvious diagonal dominance (0.78 vs. 0.52 off-diagonal performance) con-
firms the router correctly identifies optimal mask-input pairings, providing compelling evidence that
different instructions benefit from distinct sparsity patterns that preserve semantic-relevant
computational pathways. Importantly, the matrix reveals diverse mask specialization patterns:
high-performing specialists like Mask 7 (0.95 peak accuracy, high variance) excel on specific input
semantics but fail on others, while moderate-performing generalists like Mask 2 (0.62 average ac-
curacy, low variance) maintain consistent but suboptimal performance across diverse inputs. This
performance-specialization trade-off demonstrates that our framework successfully learns a spec-
trum of pruning strategies, each optimized for different semantics.

Mask Structural Diversity The Hamming distance matrix in Figure 10 reveals substantial struc-
tural diversity among learned masks, with distances ranging from 0.18-0.25, indicating masks differ
in 18-25% of their pruning decisions. The uniform distance distribution demonstrates that our frame-
work discovers principled complementary patterns rather than converging to similar solutions or
generating random variations. This structural diversity, combined with the performance specializa-
tion patterns, confirms each mask captures distinct computational pathways optimized for different
input semantics.
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Figure 10: Hamming Distance Between Mask Candidates.

E IMPLEMENTATION DETAILS

Mask Candidate Learning We propose an explainability-guided mask candidate learning method
based on neuron importance explanation, which provides a principled way to discover diverse prun-
ing patterns optimized for different input characteristics.

Architecture Our dynamic hypernetwork takes layer-wise activations and LRP scores as inputs to
generate input-adaptive pruning masks. The architecture consists of:

• Input Processing: Layer-wise activations and LRP scores from all transformer layers;

• Fusion Module: Lightweight per-layer MLPs that combine activations with attribution-guided
importance estimation (Equation 7);

• Mask Generation: Binary ReinMax sampling to produce differentiable discrete masks;

• Temperature Annealing: Progressive temperature cooling from T start to T end during training.

Hyperparameter Setup We train the dynamic hypernetwork using PyTorch with mixed precision
(FP16/BF16) training on single GPU. Per-layer MLPs use hidden dimension 128 with scaling factor
α=1.0 for LRP relevance scores. Temperature annealing progresses from T start=0.5 to T end=0.1
during training. For optimization, we use the AdamW optimizer with learning rate 2e-4, weight
decay 0.05, and cosine annealing scheduler decaying to minimum learning rate 1e-5. The model is
trained for 3 epochs with batch size 1 on unlabeled corpus using perplexity loss.

Router Learning We propose a lightweight semantic-aware router to dynamically assign optimal
masks for each input during inference. The architecture consists of:

• Semantic Encoder: Pre-trained Embedding model with LoRA fine-tuning;

• Feature Extraction: Last token pooling with L2 normalization for robust prompt representations;

• Prediction Head: Two-layer MLP classifier that maps semantic embeddings to mask selection;

• Assignment Strategy: Argmax selection for deterministic mask assignment during inference.

Hyperparameter Setup We train the router using PyTorch with mixed precision (FP16) training
and gradient scaling on single GPU. LoRA adaptation employs rank 8, alpha 32, and dropout 0.05,
targeting all linear projection layers. The prediction head uses hidden dimension 256 with ReLU
activation and dropout 0.1 for regularization. For optimization, we use the AdamW optimizer with
learning rate 1e-5, weight decay 0.01, and cosine annealing scheduler with 10% warmup steps.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The model is trained for 5 epochs with batch size 8 using cross-entropy loss on pre-processed data
containing text-mask score pairs. Training data includes samples from five multiple-choice datasets
(ARC, PIQA, HellaSwag, Winogrande, and BoolQ) to ensure robust generalization across diverse
semantic patterns.

Baseline Selection We compared SEAP against SOTA structured pruning methods, including:

• FLAP An et al. (2024) uses fluctuation-based adaptive structured pruning that determines layer
importance based on output feature map recoverability and applies compensation mechanisms;

• SliceGPT Ashkboos et al. (2024) applies dimensionality reduction by systematically deleting
rows and columns from weight matrices using a fixed transformation;

• ShortGPT Men et al. (2025) identifies and removes redundant layers by measuring layer impor-
tance through input-output cosine similarity;

• DISP-LLM Gao et al. (2024) learns a dimension independent fixed pruning matrix on calibration
data through global constraint optimization;

We exclude Pudding Wee et al. (2025), a very recent method (within the last two months), because
official code is not yet available; we will add it to our evaluation once an implementation is re-
leased. For the baseline implementation, we follow the original papers’ guidelines and codebases,
and evaluate them on the same datasets and metrics as SEAP.

F LIMITATIONS AND FUTURE WORK

Our experimental observations reveal an intriguing phenomenon where different input complexities
exhibit distinct mask selection patterns, where simple queries can be resolved by multiple masks
while challenging problems require specialized ones. This suggests that learned mask archetypes
correlate with task difficulty levels, presenting exciting opportunities for future enhancement. We
plan to develop difficulty-aware mask learning mechanisms that incorporate uncertainty quantifica-
tion and confidence-based routing for more adaptive assignment strategies. Additionally, exploring
hierarchical mask architectures that dynamically adjust granularity based on task demands could
further improve performance across diverse input complexities.
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