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Abstract

In the field of natural language processing
(NLP), prompt-based learning is widely used
for efficient parameter learning. However,
this method has the drawback of shortening
the input length by the extent of the attached
prompt, leading to an inefficiency in utiliz-
ing the input space. In this study, we pro-
pose P-Distill, a novel prompt compression
method that mitigates the aforementioned limi-
tation of prompt-based learning while main-
taining performance via knowledge distilla-
tion. The knowledge distillation process of P-
Distill consists of two methods, namely prompt
initialization and prompt distillation. Experi-
ments on various NLP tasks demonstrate that
P-Distill exhibits comparable or superior per-
formance compared to other state-of-the-art
prompt-based learning methods, even with sig-
nificantly shorter prompts. Specifically, We
achieve a peak improvement of 1.90% even
with the prompt lengths compressed to one-
eighth. An additional study further provides
insights into the distinct impact of each method
on the overall performance of P-Distill. Our
code will be released upon acceptance.

1 Introduction

Pre-trained language models (PLMs) have been
effective in improving performances of various nat-
ural language processing (NLP) tasks (Devlin et al.,
2019; Brown et al., 2020; Touvron et al., 2023).
These models are fine-tuned by optimizing all pa-
rameters to enhance the performances of specific
downstream tasks; however, fine-tuning requires
significant computational resources while training.
The need for significant computational resources
for storage and training becomes a challenge, es-
pecially when fine-tuning large language models
such as Llama2 (Touvron et al., 2023), which may
not be readily available to most users.

To reduce computational costs, researchers have
explored various methods for efficiently fine-tuning

CoNLLO3
0.81 ‘CoNLL04
~#-CoNLLO05 WSJ
~#~CoNLLO5 Brown
0.79 ‘OntoNotes 5.0

+-SQuAD 1.1
077 “=SQuAD20 //K./.
0.75

1 2 4 8 16 32 64 128
Prompt Length

Figure 1: Performance variation in P-tuning v2 across
tasks based on the length of continuous prompts.

the parameters (Houlsby et al., 2019; Hu et al.,
2021; Liu et al., 2022). In contrast to the traditional
model fine-tuning that updates all parameters for
a downstream task, P-tuning v2 (Liu et al., 2022)
fixes the pre-trained parameters and only trains
the continuous prompts, which are trainable em-
beddings attached at the beginning or throughout
each layer of the model. While P-tuning v2 is
computationally efficient, particularly for PLMs
with a large number of parameters, it overlooks the
inefficiency in utilizing input space by attaching
continuous prompts (Hu et al., 2021). This attach-
ment increases the attention computation, thereby
requiring truncation of the positional encodings for
the attached prompts, which reduces the available
input token sequence length. Extending the input
token sequence by forcibly modifying the code can
lead to issues with attention calculation beyond the
model’s training (Chen et al., 2023). Such modi-
fications often result in performance degradation,
as the attention mechanism might struggle with
sequences extending beyond its initially intended
scope. Similar to the findings in the work (Liu
et al., 2022), more challenging tasks require longer
prompt lengths to achieve the better performance,
as shown in Figure 1.



In this paper, we propose P-Distill, which is a
novel prompt compression method to mitigate the
limitations of long prompts. Our method involves
a two-step process where we first train a teacher
model using P-tuning v2 to achieve superior per-
formance with long prompts. We then transfer this
knowledge to a student model with significantly
shorter prompts through a distillation process. To
ensure stability in training, we first perform prompt
initialization based on the teacher model prompts.
Then, we focus on distilling knowledge between
the teacher and student models, specifically target-
ing the outputs of their intermediate and prediction
layers. This is due to the impact of continuous
prompts on the hidden states within these layers,
which subsequently influences the model’s predic-
tions. This method enables the compression of
prompts to shorter lengths without a significant
degradation in performance, thereby addressing the
inefficiencies inherent in longer prompts.

To validate its effectiveness and efficiency, we
evaluate P-Distill using various NLP benchmarks.
Our results demonstrate that P-Distill exhibits com-
parable or superior performance than those of the
existing state-of-the-art prompt-based models. To
the best of our knowledge, this study is the first to
train teacher prompts and transfer their knowledge
to student prompts for the purpose of compressing
prompts. The main contributions of this study are
summarized as follows:

* We propose a method called P-Distill to com-
press the continuous prompts, effectively mit-
igating the limitation of reducing the model’s
usable sequence length in prompt-based learn-
ing.

* We introduce a prompt distillation method
utilizing teacher model’s hidden state and
prediction outputs, influenced by continuous
prompts, and propose a prompt initialization
for stable prompt distillation.

* We validate P-Distill across multiple NLP
benchmarks, demonstrating its ability to main-
tain or enhance accuracy while reducing
prompt lengths by up to eight times.

The remainder of this paper is structured as fol-
lows: Section 2 provides the preliminaries; Section
3 describes a detailed description of the proposed
method; Section 4 presents the experimental results
and analysis, and Section 5 concludes the study.

2 Preliminaries

2.1 Pre-trained Language Models Based on
the Transformer

The transformer model (Vaswani et al., 2023), com-
prising an encoder and decoder, is the fundamental
architecture of the majority of recent PLMs, includ-
ing BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and GPT-3 (Brown et al., 2020). Each
encoder and decoder consists of multiple trans-
former layers and incorporates key components,
such as multi-head attention modules (MHA), feed-
forward networks, layer normalization, and resid-
ual connections. A key component of this architec-
ture is the multi-head attention mechanism, which
computes attention weights using query (Q), key
(K), and value (V') matrices. Mathematically, the
attention function in multi-head attention can be
represented as follows:

T

Vi

Att(z) = softmaz( V, €))

where +/d}, is the scaling factor for gradient stabi-
lization during training. This attention mechanism
is crucial in understanding language and generat-
ing tasks by modulating the focus of the model on
different parts of the input data.

2.2 Prompt-based Learning Methods

Prompt-based learning methods have emerged as
an efficient alternative to full model fine-tuning,
especially for PLMs (Liu et al., 2022, 2023). These
methods use prompts to guide the model pre-
dictions for specific tasks. Several approaches
(Jiang et al., 2020; Shin et al., 2020) employ dis-
crete prompts, which are fixed templates added
to the input. For example, in sentiment analy-
sis, a template might be “This text [Input Text]
expresses a [MASK] sentiment.”. However, dis-
crete prompts are limited in that their performances
significantly depend on template selection. Ad-
vanced approaches, such as Prefix-Tuning (Li and
Liang, 2021) and P-tuning (Liu et al., 2023), use
continuous prompts that are trainable embeddings
independent of the model vocabulary. Particularly,
P-tuning v2 (Liu et al., 2022) attaches continuous
prompts to each layer of the model, thereby influ-
encing its behavior and enhancing its performance
in downstream tasks. These continuous prompts
are integrated into the attention mechanism of the
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Figure 2: (a) [llustration of P-tuning v2 (Liu et al., 2022). (b) Illustration of the proposed method, denoted as
P-Distill. This method trains a teacher model to generate concise and effective prompts, followed by distilling the

knowledge into a student model.

transformer model as follows:

. T
) )
(2)

where P, € R™*% and P, € R™*% are the con-
tinuous prompts added to the key and value vectors,
respectively, the colon denotes the concatenation of
these prompts with the key and value matrices. The
dimension n,, indicates the lengths of the prompts,
and d represents the dimensions of the key and
value vectors. This integration enables the model
to influence layers closer to the output, significantly
affecting the final predictions.

Att(x) = softmax (

2.3 Knowledge Distillation

In artificial intelligence, knowledge distillation
(KD) is a technique for reducing the size of large
models while preserving their performances (Jiao
et al., 2020; Sun et al., 2020; Sanh et al., 2020;
Hinton et al., 2015). During KD, a smaller stu-
dent model is trained to internalize and emulate
the complex decision-making patterns and behav-
iors of a larger teacher model. This process in-
volves the behavior functions of the models,
and f°, transforming inputs into informative rep-
resentations, typically defined as the output of any
layer within the model. These representations con-
tain abundant information for model predictions.
KD is quantified using loss functions, such as the
Kullback-Leibler divergence (Kullback and Leibler,
1951) or Mean Squared Error (MSE) (Hinton et al.,
2015), as follows:

Lip =Y, L(f%(@), f"(x)), 3)
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where z is the input, and X and L denote the
dataset and the loss function, respectively. This
approach enables the student model to gain a com-
prehensive understanding of various classes, en-
hancing its application in fields such as NLP.

3 Methodology

Many existing prompt tuning methods, including
P-tuning v2, have the drawback of occupying an
unnecessarily large portion of the input token space
owing to their long prompts. Inspired by knowl-
edge distillation methods, we propose a novel
prompt compression methodology called P-Distill.
This approach aims to compress the prompts while
maintaining the performance, thereby increasing
the available space for input tokens and enhanc-
ing the overall model efficiency. To this end, the
proposed P-Distill comprises the following two
methods: prompt initialization and prompt distil-
lation. Figure 2 shows the learning and compres-
sion processes of P-Distill. Our approach involves
two main steps where the first step is training a
teacher model using P-tuning v2, and the second
step focuses on distilling knowledge to a student
model with shorter prompts, effectively reducing
the length of the prompts.

3.1 Prompt-Based Teacher Learning

When solving downstream tasks using P-tuning
v2, we freeze the pre-trained weights of the lan-
guage model and only train the continuous prompts.
Prompt lengths that yield good performance vary
according to task complexity. In general, simple
classification tasks tend to use shorter prompts,



around 20, while more complex sequence label-
ing tasks often require longer prompts, around 100
(Liu et al., 2022). Understanding the variation in
prompt length is crucial, particularly during the
inference stage, as longer prompts inherently limit
the maximum sequence length that the model can
handle.

We train a teacher model on various tasks based
on the P-tuning v2 methodology. This model to-
kenizes input data = and embeds it into text em-
beddings . Subsequently, the continuous prompts
PI, PT € R™*d of the teacher model are ran-
domly initialized and concatenated with the key
vectors K € R™*9 and value vectors V € R"=*4
of each layer. Here, d is the dimensionality of the
hidden representations, n; is the prompt length of
the teacher model, and n,, is the length of token
embeddings. The teacher model, which utilizes
attention heads incorporating continuous prompts,
is trained to take the text embedding T as input
and generate the final logits y”. The parameter
optimization of the teacher model is guided by the
cross-entropy loss, which is formalized as follows:

| B|

> _log(softmaz(y)lci]), )

i=1

L, = ——
CE ‘B’

where |B| is the number of data points in the
current batch, y! is the logits output by the
teacher model for the i-th data point in the batch,
softmax(yl) is the softmax-transformed proba-
bility distribution over the classes, and ¢; is the true
class index for the i-th data point.

3.2 Prompt-enhanced Distillation (P-Distill)

We initiate the training of a student model which
employs shorter continuous prompts, rather than
the teacher model, using the same prompt attach-
ment methodology. During the initial training
phase, we initialize the continuous prompts of the
student model P and Py € R"™*? based on
the teacher model’s prompts P! and PI. Sub-
sequently, student prompts are also attached to the
key and value vectors across all layers to compute
the attention heads. The length of the student model
prompts, represented by 7, is shorter than that of
the teacher model prompts n;. The student model,
denoted by f9, takes the text embedding 7 as input
and generates the output logits y°. The teacher and
student models share the same underlying language
model architecture, differing only in the length and
content of their respective prompts. In this context,
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Figure 3: Illustration of various prompt initialization
methods.

we focus on distilling the knowledge from the more
extensive teacher model prompts into the shorter
student model prompts. To enhance the effective-
ness of knowledge transfer, we propose two novel
methods for knowledge distillation.

3.2.1 Prompt Initialization

For solving downstream tasks, the model utilizes
the attached prompts to generate answers. Starting
with the randomly initialized prompts for the model
can result in an unstable training process (Lester
et al., 2021). To mitigate this challenge, the study
(Vu et al., 2022) employed a method for transfer-
ring the prompts learned in one task to another task.
We aim to stabilize the training by initializing the
student model prompts Pks and PUS based on the
teacher model prompts Pg , PT'. We experiment
with various prompt initialization methods, includ-
ing reparameterization, average pooling, and max
pooling, as illustrated in Figure 3. In reparameter-
ization, we employ a reparameterization encoder
to adjust the length of the teacher model prompts
to that of the student model prompts. For average
pooling, we divide the teacher model’s prompts
into smaller segments and compute their averages
to initialize the student prompts. In max pooling,
we focus on the most prominent features by obtain-
ing the maximum value from each segment of the
teacher model’s prompts. Based on the experimen-
tal results, we apply the reparameterization encoder
to the teacher model’s prompts to construct the stu-



dent model’s prompts as follows:
PP = (Pl W) + by, 5)

Py =PI wl)+0ol, (6)

where W, and W/ are the learnable weight ma-
trices used to construct the student’s prompts, and
bl and bl are the corresponding bias. The results
of various prompt initialization experiments are
shown in Section 4.5.

3.2.2 Prompt Distillation

In this section, we focus on prompt distillation, a
key aspect of the proposed approach. Recogniz-
ing the influence of continuous prompts on both
the hidden states and the prediction layer outputs
within the model, we employ the following two
distillation techniques: prediction layer and hidden
state distillations. These techniques focus on differ-
ent aspects of the teacher model’s output to ensure
comprehensive knowledge transfer.

Prediction layer distillation In this method, a
student model learns to emulate the predictions of
a teacher model. This process involves the student
model utilizing soft labels from the teacher model’s
output, which encapsulate the teacher model’s un-
derstanding of the data. Particularly, a loss function
is used to minimize the difference between the log-
its y and 3T produced by the student and teacher
models, respectively. The distillation loss Ly¢q is
formulated as follows:

Lyred = K L(softmaz(y? /9), softmaz(y7 /9)).

(7
where yf and y! are the logits vectors predicted
by the student and teacher, respectively, and KL
denotes the Kullback-Leibler divergence, which
measures the difference between the probability
distributions of the two models. 6 is a tempera-
ture hyperparameter that adjusts the smoothness
of these distributions, enabling a more nuanced
transfer of knowledge from the teacher to student
model. The distillation loss Ly,..q is then used in
the optimization process to update the parameters
of the student model, thereby aligning its predic-
tive behavior more closely with that of the teacher
model.

Hidden state distillation Additionally, we also
distill knowledge from the intermediate representa-
tions of the teacher model. The concept of distilling
knowledge through intermediate representations

was initially introduced by Fitnets (Romero et al.,
2015), with the aim of enhancing the training pro-
cess of the student model. Based on the provided
prompts and inputs, we extract knowledge from the
transformer layers of the teacher model and distill
into the student model. This process is formalized
using the loss function Lp,;q4¢n, Which is calculated
as the MSE between the hidden states Hg and Hr
of the student and teacher models, respectively, as
follows:

Lyidgden = MSE(Hg, Hr), €]

where the matrices Hg, Hp € Rmxd represent the
hidden states, n is the input sequence length, and d
is the hidden state dimensionality of the two mod-
els.

3.3 Distillation-based Student Learning

While training the student model, the cross-entropy
loss is computed similar as that of the teacher
model. This loss serves as a measure of the student
model’s accuracy in predicting the true class labels
as follows:

|B|

Z log(softmaz(y?)[ci]). (9)
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Subsequently, the overall loss function L., for
the student model is then a weighted combination
of the cross-entropy loss and the distillation losses
as follows:

Liotal = M- L2+ X2+ Lyrea+ A3+ Liidden, (10)

where A1, A2, and A3 are the learnable weighted
coefficients with the constraint that their combined
sum equals 1. During the training, the teacher
model parameters are fixed to serve as the sources
of prior knowledge.

4 Experiments

This section presents the datasets employed in our
experiments, baseline models for comparison, re-
sults of these datasets, and analyses from our addi-
tional studies.

4.1 Datasets

Our evaluation of the proposed P-Distill method
includes a comprehensive range of natural language
understanding tasks, utilizing datasets that are well-
established benchmarks in the field.



BoolQ CB COPA

MultiRC

ReCoRD RTE WiC WSC

Acc. Acc. Acc. Fla F1 Acc. Acc. Acc. Average
Fine-tuning | 0.777 0.946 0.710 0.705 0.706 0.762 0.746 0.683 0.754
P-tuning v2 8.764<8) 0.946(30) 0.810(4) 0.711(16) 0.728(16) 0.794(4) 0.756(4)  0.731 16 0.780

7381y 09294 0.790(1)  0.707(2 0.721 9 0.7831) 0.745¢1)  0.692(2 0.763
P-Distill 0.776(1)  0.964(4 0.810(;) 0.7182 0.726(2) 0.7981) 0.7591)  0.721(9 0.784

Table 1: Experimental results on the SuperGLUE validation dataset. For P-Distill, training was performed using a
teacher model with the prompt length exhibiting the best performance for P-tuning v2. The numbers in parentheses
indicate the lengths of the prompt attached to the model. (Acc.: Accuracy; bold: the best; underline: the second

best)

We include various tasks from the SuperGLUE
benchmark (Wang et al., 2019), which assesses
a model’s understanding and reasoning abilities
across different contexts, including BoolQ (Clark
et al., 2019), CB (De Marneffe et al., 2019), COPA
(Roemmele et al., 2011), MultiRC (Khashabi et al.,
2018), ReCoRD (Zhang et al., 2018), RTE (Dagan
et al., 2006; Bar Haim et al., 2006), WiC (Pilehvar
and Camacho-Collados, 2019) and WSC (Levesque
et al., 2011). We also utilize the CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003), CoNLL-
2004 (Carreras and Marquez, 2004), CoNLL-2005
(Carreras and Marquez, 2005), CoNLL-2012 (Prad-
han et al.,, 2012), and OntoNotes 5.0 datasets
(Weischedel et al., 2013), each providing richly an-
notated text for entity classification. The SQuAD
dataset, in its versions 1.1 (Rajpurkar et al., 2016)
and 2.0 (Rajpurkar et al., 2018), facilitates test-
ing reading comprehension, requiring the model to
parse passages and answer questions with a high
degree of understanding. In addition, we extend our
experiments to the Allsides dataset (Li and Gold-
wasser, 2019), which consists of news articles with
an average token length of over 1000. This dataset
allows us to examine the effects of P-Distill in sce-
narios where input tokens are frequently truncated.
All of these datasets are English, open source, and
used for academic research purposes only. For ac-
curate comparisons, we follow the train, validation,
and test set splits as specified in the referenced
work (Liu et al., 2022).

4.2 Baselines

We compare P-Distill against the following meth-
ods to validate its competitive performance, with
all methods utilizing BERT ;4. with 335M param-
eters as the backbone architecture.

Fine-tuning All parameters of a PLM are up-
dated and adapted to the given downstream task in
a task-specific manner.

P-tuning v2 (Liu et al., 2022) It appends train-
able continuous prompts to the key and value ma-
trices of a model, enabling task-specific learn-
ing while keeping the model’s pre-trained weights
fixed.

4.3 Experimental Details

In our training process, we exclusively focus on
continuous prompts while keeping the backbone
parameters of the model fixed. The model is trained
with a batch size of 16, and the learning rate is in-
dividually optimized for each task. Furthermore,
we employ the AdamW optimizer for training. For
the temperature hyperparameter 6 used in the dis-
tillation process, we experimentally determine the
optimal setting by sweeping across {1, 5, 10}. For
the learnable parameter Ao, we explore the initial
values of {0.1, 0.5, 0.9}. Considering the signifi-
cant impact of the hidden state loss, we experiment
with the initial values of {1e-3, 1e-4, 1le-5} for A3.
All experiments were performed using PyTorch !
and HuggingFace Transformers (Wolf et al., 2020)
on three NVIDIA A100 GPUs, and to ensure con-
sistency in our results, each task was conducted
using a fixed random seed.

4.4 Results

Tables 1 and 2 present the experimental results of
Fine-tuning, P-tuning v2, and P-Distill. In P-Distill,
the prompt length is compressed to one-eighth of
that of the teacher model prompts. For fewer than
eight teacher model prompts, the length is com-
pressed to 1. For a detailed analysis of prompt
compression ratios refer to Appendix A. In general,
the proposed P-Distill method exhibits a compara-
ble or superior performance than those of the other
methods while using shorter prompts.

Results on SuperGLUE Table 1 shows the per-
formance of each approach on the SuperGLUE
benchmark. The experimental results show that

"https://pytorch.org/



NER SRL QA SC
CONLL03  CoNLLO4 Omgl_\é"tes C%IFOL“EI?S COVNV%OS i%“(felv) 52%“:6]3 Allsides
Fine-tuning | 0.928 0.882 0.890 0.827 0.885 0911 0.819 0.780
P-tuning v2 0.91964) 0.880(128)  0.885(128)y | 0.837(32) 0.890(128y | 0.902(64) 0.782(128y | 0.775(32)
0.914 5 0.866(16) 0.881(16) 0.807 4y 0.877(16) 0.891 (g 0.771(16) 0.772(4)
P-Distill 0.919s) 0.888(16) 0.886(16) 0.817(4) 0.885(16) 0.896(s) 0.77516) 0.783(4)

Table 2: Experimental results for each method on named entity recognition (NER), question answering (QA),
semantic role labeling (SRL), and long sequence classification (SC). For P-Distill, training was performed using a
teacher model with the prompt length exhibiting the best performance for P-tuning v2. The numbers in parentheses
indicate the lengths of the prompts attached to the model. All metrics are reported as f1 scores. (bold: the best;

underline: the second best)

despite using shorter prompts, P-Distill matches
or exceeds the performance of P-tuning v2 which
utilizes long prompts. Specifically, P-Distill ex-
hibits 0.51% performance improvement on average
on SuperGLUE tasks. The improvement increases
to 2.75% when compared to P-tuning v2 with the
same prompt length. These results reveal that P-
Distill effectively compresses the prompt length
while maintaining or even improving performance.
This highlights the significance of the proposed dis-
tillation method that transfers task knowledge from
the teacher to the student model using eight times
shorter prompts.

Results on Other Tasks Table 2 presents the
experimental results for diverse tasks, including
named entity recognition, question answering, se-
mantic role labeling, and long sequence classifica-
tion. We first observe that achieving superior per-
formance via P-tuning v2 on these tasks requires
training with longer prompts (up to 128 tokens),
which aligns with the phenomenon reported in pre-
vious work (Liu et al., 2022) where complex tasks
tend to require long prompts.

In comparison to the baseline methods, P-Distill
achieves comparable performance using signifi-
cantly shorter prompts even for tasks where P-
tuning v2 employs long prompts. In particular,
P-Distill outperforms P-tuning v2 with 128 prompt
tokens on CoNLLO04 while utilizing a prompt of
length 16. Furthermore, P-Distill achieves a perfor-
mance improvement of 2.54% over the prompt of
the same length trained using P-tuning v2, and a
0.90% improvement over the teacher model.

Moreover, P-Distill outperforms the baseline
methods on the Allsides dataset, which consists
of long input instances where the average token
length exceeds 1000. Specifically, with prompts
significantly compressed to 4, P-Distill not only
mitigates token truncation issues but also shows a

1.03% performance improvement over the best P-
tuning v2 configuration. This highlights the advan-
tage of P-Distill in handling long-sequence tasks
by preserving input space with shorter prompts.
Additionally, P-Distill exhibits 1.42% performance
improvement when compared to P-tuning v2 with
prompt length 4, showing that P-Distill is an ef-
fective method for compressing prompt length. A
qualitative evaluation of the Allsides dataset is pro-
vided in Appendix D, offering further insights on
long-sequence tasks.

4.5 Ablation Study

To further verify the effectiveness of the proposed
method, we conduct ablation studies using the fol-
lowing variants of P-Distill.

P-Distill_;,,;; Instead of training with prompt ini-
tialization, it focuses exclusively on leveraging the
two types of distillation losses designed to transfer
the knowledge from the teacher to student model
in different ways.

P-Distill_,,..; This approach does not implement
the prediction layer distillation loss. Following the
application of the prompt initialization method, it
trains the student model based on the hidden state
distillation loss. This method aligns the internal
representations of the student model with those of
the teacher model without focusing on the final
output predictions.

P-Distill_;;445., This variant does not consider
the differences between the hidden state outputs of
the teacher and student models. Instead, it focuses
on training based on the differences in the predic-
tion layer output. This approach aligns the final
predictions of the student model closely with those
of the teacher model without directly focusing on
their internal representations.
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Figure 4: Comparison of ablation study results across various tasks, with different colors and bar styles representing

the distinct variants of P-Distill.

Results Figure 4 shows that all three variants of
P-Distill underperform the original P-Distill among
various tasks. This shows that each component of
P-Distill contributes to the performance achieved
on downstream tasks.

Given these results, we further observe that the
extent of degradation varies among different vari-
ants. First, P-Distill_;,,;; exhibits the most signifi-
cant performance degradation across various tasks.
While not utilizing prompt initialization and only
conducting prediction layer distillation and hidden
state distillation still led to performance improve-
ments over P-tuning v2, the degradation in perfor-
mance is clear compared to other variants and the
original P-Distill. This indicates that prompt initial-
ization, based on the teacher model’s prompt, is cru-
cial in prompt-based knowledge distillation. Sec-
ond, P-Distill _p;4den and P-Distill_,,..4 exhibited
decreased prediction performance. This demon-
strates that integrating prompt initialization with
the hidden state or prediction layer distillation tech-
niques enhances the stability and effectiveness of
knowledge distillation.

4.6 Impact of Prompt Initialization

To inspect the impact of different prompt initial-
ization methods within P-Distill, we conduct ex-
periments to compare the performance of P-Distill
with two variants: P-Distill,,eqn, Which initializes
the student model prompts using an average pool-
ing layer over the teacher model prompts, and P-
Distill;,q4, Which uses a max pooling layer for the
same purpose.

The results, as detailed in Table 3, demonstrate
that both P-Distill, 4y, and P-Distill,, ., underper-
form P-Distill which utilizes a reparameterization
encoder for prompt initialization. We conjecture
that the use of average pooling and max pooling
leads to an excessive simplification of the teacher

CONLLO03 CoNLL04 CONLLOS CoNLLOS

WSJ Brown
P-Distill 0.919 0.888 0.885 0.817
P-Distill,ueqan, 0915 0.875 0.878 0.809
P-Distill, g0 0912 0.872 0.872 0.803

Table 3: Comparison of additional experiment results
across various tasks based on prompt initialization meth-
ods. All metrics are reported as micro-f1 scores. (bold:
the best)

model’s prompts, resulting in the loss of crucial
nuances and complexities. Conversely, the repa-
rameterization encoder for prompt initialization ef-
fectively captures and transfers the complex knowl-
edge of the teacher model prompts without loss
of crucial task information. This suggests that
the reparameterization encoder is a more suitable
method for prompt initialization in P-Distill, con-
tributing significantly to the overall effectiveness
of the knowledge distillation process.

5 Conclusion

In this paper, we introduce P-Distill, a novel ap-
proach in NLP that utilizes two knowledge dis-
tillation techniques to enhance performance by
compressing unnecessary prompt length. This ap-
proach combines prompt initialization, two types
of prompt distillation to effectively transfer knowl-
edge from a teacher model with longer prompts to
a student model with prompts that are eight times
shorter. To evaluate the efficacy of our proposed
method, we conduct experiments across various
NLP tasks. Our results demonstrate that using
prompts of the same length, the proposed method
achieves an average improvement of 2.75% over
the existing prompt-tuning methods across the Su-
perGLUE benchmark. Furthermore, P-Distill ex-
hibits competitive performance even against mod-
els trained with prompts that are eight times longer.



Limitations

One limitation of this study is that we evaluated our
method only on the BERT architecture. Conduct-
ing additional experiments on other architectures
could be beneficial to determine the generalizabil-
ity of our findings. Additionally, while our model
improves performance through the process of train-
ing a teacher model and transferring its knowledge,
it incurs more time and cost compared to previous
methods. In future work, we plan to develop an
approach that integrates the training of the teacher
model and the knowledge distillation process in an
end-to-end manner.
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Appendix

A Impact of Compression Ratio

CoNLLO5
WSJ
0.885

Fine-tuning
P-tuning v2

P-Distill

Table 4: Comparison of P-Distill performance across
varying prompt compression ratios.

To investigate the impact of different compres-
sion ratios on the performance of P-Distill, we
conduct additional experiments with 2x and 4 x
compression ratios and compare the results. We
use CoNLLO04 dataset in these experiments, as it
is known to require longer prompts for sufficient
training.

Table 4 presents the performance results
for these different compression ratios within
CoNLLO4. We observe a trade-off between com-
pression ratio and model performance, as a higher
compression ratio leads to relatively lower perfor-
mance. Yet, it is worth noting that a 2x compres-
sion with P-Distill does preserve the performance
of the original long prompt, and that P-Distill still
matches the performance of fine-tuning at the com-
pression ratio of 8 x.

B Experimental Results of Applying
P-Distill to P-tuning Methodology

CB__COPA RIE
Fine-tuning  0.946 071 0762
- 082115, 07605 0.657(10)
PN 07860 070  0.6210
P-Distill 0.821 2) 0.76(2) 0.646(4)

Table 5: Experimental results on the SuperGLUE vali-
dation dataset for small datasets (CB, COPA, RTE). For
P-Distill, training was performed using a teacher model
with the prompt length exhibiting the best performance
for P-tuning. The numbers in parentheses indicate the
lengths of the prompt attached to the model. All metrics
are accuracy.

To evaluate the effectiveness of P-Distill when
the prompts directly occupy the input sequence

space, we apply P-Distill to the P-tuning methodol-
ogy that attaches prompts to the input embeddings.
The experimental results are shown in Table 5.

These results demonstrate the effectiveness of
applying P-Distill to the P-tuning methodology.
When P-Distill is used, it shows higher per-
formance across all datasets compared to using
prompts of the same length without P-Distill. Par-
ticularly, on the CB and COPA datasets, P-Distill
achieves the same performance as the teacher
prompts despite compressing the prompts to one-
eighth. These results indicate that P-Distill effec-
tively compresses the prompt length while main-
taining performance, even when the prompts are
attached to the input embeddings.

C Inference Costs

Fine-tuning P-tuning v2 P-Distill

BoolQ 89.06 89.17 g) 89.07 1)
CB 53.94 542203  53.970)
COPA  21.82 2183  21.82,
MultiRC  226.94 227-50(16) 227.01(2)
ReCoRD 163.12 16353(16) 163.17(2)
RTE 4278 42814 4279
WiC 18.83 1884  18.83(
WSC  23.11 2317y 2311,

Table 6: Comparing GFLOPs of baseline methods and
P-Distill on SuperGLUE using BERT 4ge.

To examine the benefits of P-Distill at the infer-
ence stage, we compare the inference costs across
P-Distill, Fine-tuning, and P-tuning v2. This reduc-
tion in computational requirements is quantified in
Table 6, which presents the GFLOPs required dur-
ing the inference stage with average length samples
from each task in the SuperGLUE benchmark.

While both P-tuning v2 and P-Distill demon-
strate increased inference GFLOPs compared to
fine-tuning due to the inclusion of prompts, we ob-
serve that P-Distill adds fewer computations com-
pared to P-tuning v2. The difference is more clear
in cases where long prompts are utilized in P-tuning
v2. This demonstrates the advantage of compress-
ing prompt length in terms of lowering computa-
tional costs.

D Qualitative Analysis in Long Sequence
Classification

To further examine the effectiveness of expanding
the input space by using shorter prompts via P-



P-tuning v2 Input Text (480 tokens): President Trump on Wednesday lashed out over a critical
news report and escalated his previous attacks on the media by suggesting that news organizations he
disagrees with be shut down, alarming free-speech advocates who compared the tactics to intimidation
efforts by the Nixon administration.

[...]

Last week, angered by the ongoing investigations into his campaign’s ties to Russia, Trump suggested
that the Senate Intelligence Committee investigate news outlets over “fake news.” Over the weekend, he
expressed disdain at late-night television hosts over their “anti-Trump” material and proposed bringing
back the Fairness Doctrine, a rule phased out in 1987 that had required

Prediction: Left

P-Distill Input Text (508 tokens): President Trump on Wednesday lashed out over a critical news
report and escalated his previous attacks on the media by suggesting that news organizations he
disagrees with be shut down, alarming free-speech advocates who compared the tactics to intimidation
efforts by the Nixon administration.

[...]

Last week, angered by the ongoing investigations into his campaign’s ties to Russia, Trump suggested
that the Senate Intelligence Committee investigate news outlets over “fake news.” Over the weekend, he
expressed disdain at late-night television hosts over their “anti-Trump” material and proposed bringing
back the Fairness Doctrine, a rule phased out in 1987 that had required broadcasters to provide “equal
time” for divergent political views on certain issues. First Amendment advocates roundly condemned

Prediction: Center

the president over his remarks, calling them an assault

Table 7: Example of P-tuning v2 and P-Distill Predictions in the Allsides Dataset.

Distill, we conduct a qualitative analysis on the
Allsides dataset. The task of it is to predict the
political perspectives inherent in a news article.
Therefore, the dataset consists of news articles that
generally exceed the model’s input capacity of 512
tokens.

We compare the input text and prediction results
of P-tuning v2, trained with 32 prompt tokens, to
those of P-Distill, which compresses and appends
only 4 prompt tokens, which are shown in Table
7. Note that while P-tuning v2 can utilize up to
480 input tokens by attaching 32 prompt tokens, P-
Distill extends the input capacity by using up to 508
input tokens with only 4 prompt tokens appended.

We observe that the P-tuning v2 model cannot
access the detailed explanation of the Fairness Doc-
trine due to its limited input space. However, P-
Distill can access the remainder of the sentence,
namely ‘broadcasters provide “equal time” to di-
vergent political views.’, which provides the key
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information for the model in making an accurate
prediction ‘Center’. This example verifies that the
input space preserved by compressing the prompt
length with P-Distill can contribute to accurate pre-
diction of the model, leading to better performance
overall.
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