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Abstract

In the field of natural language processing001
(NLP), prompt-based learning is widely used002
for efficient parameter learning. However,003
this method has the drawback of shortening004
the input length by the extent of the attached005
prompt, leading to an inefficiency in utiliz-006
ing the input space. In this study, we pro-007
pose P-Distill, a novel prompt compression008
method that mitigates the aforementioned limi-009
tation of prompt-based learning while main-010
taining performance via knowledge distilla-011
tion. The knowledge distillation process of P-012
Distill consists of two methods, namely prompt013
initialization and prompt distillation. Experi-014
ments on various NLP tasks demonstrate that015
P-Distill exhibits comparable or superior per-016
formance compared to other state-of-the-art017
prompt-based learning methods, even with sig-018
nificantly shorter prompts. Specifically, We019
achieve a peak improvement of 1.90% even020
with the prompt lengths compressed to one-021
eighth. An additional study further provides022
insights into the distinct impact of each method023
on the overall performance of P-Distill. Our024
code will be released upon acceptance.025

1 Introduction026

Pre-trained language models (PLMs) have been027

effective in improving performances of various nat-028

ural language processing (NLP) tasks (Devlin et al.,029

2019; Brown et al., 2020; Touvron et al., 2023).030

These models are fine-tuned by optimizing all pa-031

rameters to enhance the performances of specific032

downstream tasks; however, fine-tuning requires033

significant computational resources while training.034

The need for significant computational resources035

for storage and training becomes a challenge, es-036

pecially when fine-tuning large language models037

such as Llama2 (Touvron et al., 2023), which may038

not be readily available to most users.039

To reduce computational costs, researchers have040

explored various methods for efficiently fine-tuning041

Figure 1: Performance variation in P-tuning v2 across
tasks based on the length of continuous prompts.

the parameters (Houlsby et al., 2019; Hu et al., 042

2021; Liu et al., 2022). In contrast to the traditional 043

model fine-tuning that updates all parameters for 044

a downstream task, P-tuning v2 (Liu et al., 2022) 045

fixes the pre-trained parameters and only trains 046

the continuous prompts, which are trainable em- 047

beddings attached at the beginning or throughout 048

each layer of the model. While P-tuning v2 is 049

computationally efficient, particularly for PLMs 050

with a large number of parameters, it overlooks the 051

inefficiency in utilizing input space by attaching 052

continuous prompts (Hu et al., 2021). This attach- 053

ment increases the attention computation, thereby 054

requiring truncation of the positional encodings for 055

the attached prompts, which reduces the available 056

input token sequence length. Extending the input 057

token sequence by forcibly modifying the code can 058

lead to issues with attention calculation beyond the 059

model’s training (Chen et al., 2023). Such modi- 060

fications often result in performance degradation, 061

as the attention mechanism might struggle with 062

sequences extending beyond its initially intended 063

scope. Similar to the findings in the work (Liu 064

et al., 2022), more challenging tasks require longer 065

prompt lengths to achieve the better performance, 066

as shown in Figure 1. 067
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In this paper, we propose P-Distill, which is a068

novel prompt compression method to mitigate the069

limitations of long prompts. Our method involves070

a two-step process where we first train a teacher071

model using P-tuning v2 to achieve superior per-072

formance with long prompts. We then transfer this073

knowledge to a student model with significantly074

shorter prompts through a distillation process. To075

ensure stability in training, we first perform prompt076

initialization based on the teacher model prompts.077

Then, we focus on distilling knowledge between078

the teacher and student models, specifically target-079

ing the outputs of their intermediate and prediction080

layers. This is due to the impact of continuous081

prompts on the hidden states within these layers,082

which subsequently influences the model’s predic-083

tions. This method enables the compression of084

prompts to shorter lengths without a significant085

degradation in performance, thereby addressing the086

inefficiencies inherent in longer prompts.087

To validate its effectiveness and efficiency, we088

evaluate P-Distill using various NLP benchmarks.089

Our results demonstrate that P-Distill exhibits com-090

parable or superior performance than those of the091

existing state-of-the-art prompt-based models. To092

the best of our knowledge, this study is the first to093

train teacher prompts and transfer their knowledge094

to student prompts for the purpose of compressing095

prompts. The main contributions of this study are096

summarized as follows:097

• We propose a method called P-Distill to com-098

press the continuous prompts, effectively mit-099

igating the limitation of reducing the model’s100

usable sequence length in prompt-based learn-101

ing.102

• We introduce a prompt distillation method103

utilizing teacher model’s hidden state and104

prediction outputs, influenced by continuous105

prompts, and propose a prompt initialization106

for stable prompt distillation.107

• We validate P-Distill across multiple NLP108

benchmarks, demonstrating its ability to main-109

tain or enhance accuracy while reducing110

prompt lengths by up to eight times.111

The remainder of this paper is structured as fol-112

lows: Section 2 provides the preliminaries; Section113

3 describes a detailed description of the proposed114

method; Section 4 presents the experimental results115

and analysis, and Section 5 concludes the study.116

2 Preliminaries 117

2.1 Pre-trained Language Models Based on 118

the Transformer 119

The transformer model (Vaswani et al., 2023), com- 120

prising an encoder and decoder, is the fundamental 121

architecture of the majority of recent PLMs, includ- 122

ing BERT (Devlin et al., 2019), RoBERTa (Liu 123

et al., 2019), and GPT-3 (Brown et al., 2020). Each 124

encoder and decoder consists of multiple trans- 125

former layers and incorporates key components, 126

such as multi-head attention modules (MHA), feed- 127

forward networks, layer normalization, and resid- 128

ual connections. A key component of this architec- 129

ture is the multi-head attention mechanism, which 130

computes attention weights using query (Q), key 131

(K), and value (V ) matrices. Mathematically, the 132

attention function in multi-head attention can be 133

represented as follows: 134

Att(x) = softmax(
QKT

√
dk

)V, (1) 135

where
√
dk is the scaling factor for gradient stabi- 136

lization during training. This attention mechanism 137

is crucial in understanding language and generat- 138

ing tasks by modulating the focus of the model on 139

different parts of the input data. 140

2.2 Prompt-based Learning Methods 141

Prompt-based learning methods have emerged as 142

an efficient alternative to full model fine-tuning, 143

especially for PLMs (Liu et al., 2022, 2023). These 144

methods use prompts to guide the model pre- 145

dictions for specific tasks. Several approaches 146

(Jiang et al., 2020; Shin et al., 2020) employ dis- 147

crete prompts, which are fixed templates added 148

to the input. For example, in sentiment analy- 149

sis, a template might be “This text [Input Text] 150

expresses a [MASK] sentiment.”. However, dis- 151

crete prompts are limited in that their performances 152

significantly depend on template selection. Ad- 153

vanced approaches, such as Prefix-Tuning (Li and 154

Liang, 2021) and P-tuning (Liu et al., 2023), use 155

continuous prompts that are trainable embeddings 156

independent of the model vocabulary. Particularly, 157

P-tuning v2 (Liu et al., 2022) attaches continuous 158

prompts to each layer of the model, thereby influ- 159

encing its behavior and enhancing its performance 160

in downstream tasks. These continuous prompts 161

are integrated into the attention mechanism of the 162
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Figure 2: (a) Illustration of P-tuning v2 (Liu et al., 2022). (b) Illustration of the proposed method, denoted as
P-Distill. This method trains a teacher model to generate concise and effective prompts, followed by distilling the
knowledge into a student model.

transformer model as follows:163

Att(x) = softmax

(
Q(Pk : K)T√

dk

)
(Pv : V ),

(2)164

where Pk ∈ Rnp×d and Pv ∈ Rnp×d are the con-165

tinuous prompts added to the key and value vectors,166

respectively, the colon denotes the concatenation of167

these prompts with the key and value matrices. The168

dimension np indicates the lengths of the prompts,169

and d represents the dimensions of the key and170

value vectors. This integration enables the model171

to influence layers closer to the output, significantly172

affecting the final predictions.173

2.3 Knowledge Distillation174

In artificial intelligence, knowledge distillation175

(KD) is a technique for reducing the size of large176

models while preserving their performances (Jiao177

et al., 2020; Sun et al., 2020; Sanh et al., 2020;178

Hinton et al., 2015). During KD, a smaller stu-179

dent model is trained to internalize and emulate180

the complex decision-making patterns and behav-181

iors of a larger teacher model. This process in-182

volves the behavior functions of the models, fT183

and fS , transforming inputs into informative rep-184

resentations, typically defined as the output of any185

layer within the model. These representations con-186

tain abundant information for model predictions.187

KD is quantified using loss functions, such as the188

Kullback-Leibler divergence (Kullback and Leibler,189

1951) or Mean Squared Error (MSE) (Hinton et al.,190

2015), as follows:191

LKD =
∑
x∈X

L(fS(x), fT (x)), (3)192

where x is the input, and X and L denote the 193

dataset and the loss function, respectively. This 194

approach enables the student model to gain a com- 195

prehensive understanding of various classes, en- 196

hancing its application in fields such as NLP. 197

3 Methodology 198

Many existing prompt tuning methods, including 199

P-tuning v2, have the drawback of occupying an 200

unnecessarily large portion of the input token space 201

owing to their long prompts. Inspired by knowl- 202

edge distillation methods, we propose a novel 203

prompt compression methodology called P-Distill. 204

This approach aims to compress the prompts while 205

maintaining the performance, thereby increasing 206

the available space for input tokens and enhanc- 207

ing the overall model efficiency. To this end, the 208

proposed P-Distill comprises the following two 209

methods: prompt initialization and prompt distil- 210

lation. Figure 2 shows the learning and compres- 211

sion processes of P-Distill. Our approach involves 212

two main steps where the first step is training a 213

teacher model using P-tuning v2, and the second 214

step focuses on distilling knowledge to a student 215

model with shorter prompts, effectively reducing 216

the length of the prompts. 217

3.1 Prompt-Based Teacher Learning 218

When solving downstream tasks using P-tuning 219

v2, we freeze the pre-trained weights of the lan- 220

guage model and only train the continuous prompts. 221

Prompt lengths that yield good performance vary 222

according to task complexity. In general, simple 223

classification tasks tend to use shorter prompts, 224
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around 20, while more complex sequence label-225

ing tasks often require longer prompts, around 100226

(Liu et al., 2022). Understanding the variation in227

prompt length is crucial, particularly during the228

inference stage, as longer prompts inherently limit229

the maximum sequence length that the model can230

handle.231

We train a teacher model on various tasks based232

on the P-tuning v2 methodology. This model to-233

kenizes input data x and embeds it into text em-234

beddings x. Subsequently, the continuous prompts235

P T
k , P T

v ∈ Rnt×d of the teacher model are ran-236

domly initialized and concatenated with the key237

vectors K ∈ Rnx×d and value vectors V ∈ Rnx×d238

of each layer. Here, d is the dimensionality of the239

hidden representations, nt is the prompt length of240

the teacher model, and nx is the length of token241

embeddings. The teacher model, which utilizes242

attention heads incorporating continuous prompts,243

is trained to take the text embedding x as input244

and generate the final logits yT . The parameter245

optimization of the teacher model is guided by the246

cross-entropy loss, which is formalized as follows:247

LT
CE = − 1

|B|

|B|∑
i=1

log(softmax(yTi )[ci]), (4)248

where |B| is the number of data points in the249

current batch, yTi is the logits output by the250

teacher model for the i-th data point in the batch,251

softmax(yTi ) is the softmax-transformed proba-252

bility distribution over the classes, and ci is the true253

class index for the i-th data point.254

3.2 Prompt-enhanced Distillation (P-Distill)255

We initiate the training of a student model which256

employs shorter continuous prompts, rather than257

the teacher model, using the same prompt attach-258

ment methodology. During the initial training259

phase, we initialize the continuous prompts of the260

student model PS
k and PS

v ∈ Rns×d based on261

the teacher model’s prompts P T
k and P T

v . Sub-262

sequently, student prompts are also attached to the263

key and value vectors across all layers to compute264

the attention heads. The length of the student model265

prompts, represented by ns, is shorter than that of266

the teacher model prompts nt. The student model,267

denoted by fS , takes the text embedding x as input268

and generates the output logits yS . The teacher and269

student models share the same underlying language270

model architecture, differing only in the length and271

content of their respective prompts. In this context,272

Figure 3: Illustration of various prompt initialization
methods.

we focus on distilling the knowledge from the more 273

extensive teacher model prompts into the shorter 274

student model prompts. To enhance the effective- 275

ness of knowledge transfer, we propose two novel 276

methods for knowledge distillation. 277

3.2.1 Prompt Initialization 278

For solving downstream tasks, the model utilizes 279

the attached prompts to generate answers. Starting 280

with the randomly initialized prompts for the model 281

can result in an unstable training process (Lester 282

et al., 2021). To mitigate this challenge, the study 283

(Vu et al., 2022) employed a method for transfer- 284

ring the prompts learned in one task to another task. 285

We aim to stabilize the training by initializing the 286

student model prompts PS
k and PS

v based on the 287

teacher model prompts P T
k , P T

v . We experiment 288

with various prompt initialization methods, includ- 289

ing reparameterization, average pooling, and max 290

pooling, as illustrated in Figure 3. In reparameter- 291

ization, we employ a reparameterization encoder 292

to adjust the length of the teacher model prompts 293

to that of the student model prompts. For average 294

pooling, we divide the teacher model’s prompts 295

into smaller segments and compute their averages 296

to initialize the student prompts. In max pooling, 297

we focus on the most prominent features by obtain- 298

ing the maximum value from each segment of the 299

teacher model’s prompts. Based on the experimen- 300

tal results, we apply the reparameterization encoder 301

to the teacher model’s prompts to construct the stu- 302
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dent model’s prompts as follows:303

PS
k = (P T

k ·W T
k ) + bTk , (5)304

305
PS
v = (P T

v ·W T
v ) + bTv , (6)306

where W T
k and W T

v are the learnable weight ma-307

trices used to construct the student’s prompts, and308

bTk and bTv are the corresponding bias. The results309

of various prompt initialization experiments are310

shown in Section 4.5.311

3.2.2 Prompt Distillation312

In this section, we focus on prompt distillation, a313

key aspect of the proposed approach. Recogniz-314

ing the influence of continuous prompts on both315

the hidden states and the prediction layer outputs316

within the model, we employ the following two317

distillation techniques: prediction layer and hidden318

state distillations. These techniques focus on differ-319

ent aspects of the teacher model’s output to ensure320

comprehensive knowledge transfer.321

Prediction layer distillation In this method, a322

student model learns to emulate the predictions of323

a teacher model. This process involves the student324

model utilizing soft labels from the teacher model’s325

output, which encapsulate the teacher model’s un-326

derstanding of the data. Particularly, a loss function327

is used to minimize the difference between the log-328

its yS and yT produced by the student and teacher329

models, respectively. The distillation loss Lpred is330

formulated as follows:331

Lpred = KL(softmax(ySi /θ), softmax(yTi /θ)),
(7)332

where ySi and yTi are the logits vectors predicted333

by the student and teacher, respectively, and KL334

denotes the Kullback-Leibler divergence, which335

measures the difference between the probability336

distributions of the two models. θ is a tempera-337

ture hyperparameter that adjusts the smoothness338

of these distributions, enabling a more nuanced339

transfer of knowledge from the teacher to student340

model. The distillation loss Lpred is then used in341

the optimization process to update the parameters342

of the student model, thereby aligning its predic-343

tive behavior more closely with that of the teacher344

model.345

Hidden state distillation Additionally, we also346

distill knowledge from the intermediate representa-347

tions of the teacher model. The concept of distilling348

knowledge through intermediate representations349

was initially introduced by Fitnets (Romero et al., 350

2015), with the aim of enhancing the training pro- 351

cess of the student model. Based on the provided 352

prompts and inputs, we extract knowledge from the 353

transformer layers of the teacher model and distill 354

into the student model. This process is formalized 355

using the loss function Lhidden, which is calculated 356

as the MSE between the hidden states HS and HT 357

of the student and teacher models, respectively, as 358

follows: 359

Lhidden = MSE(HS , HT ), (8) 360

where the matrices HS , HT ∈ Rn×d represent the 361

hidden states, n is the input sequence length, and d 362

is the hidden state dimensionality of the two mod- 363

els. 364

3.3 Distillation-based Student Learning 365

While training the student model, the cross-entropy 366

loss is computed similar as that of the teacher 367

model. This loss serves as a measure of the student 368

model’s accuracy in predicting the true class labels 369

as follows: 370

LS
CE = − 1

|B|

|B|∑
i=1

log(softmax(ySi )[ci]). (9) 371

Subsequently, the overall loss function Ltotal for 372

the student model is then a weighted combination 373

of the cross-entropy loss and the distillation losses 374

as follows: 375

Ltotal = λ1 ·LS
CE+λ2 ·Lpred+λ3 ·Lhidden, (10) 376

where λ1, λ2, and λ3 are the learnable weighted 377

coefficients with the constraint that their combined 378

sum equals 1. During the training, the teacher 379

model parameters are fixed to serve as the sources 380

of prior knowledge. 381

4 Experiments 382

This section presents the datasets employed in our 383

experiments, baseline models for comparison, re- 384

sults of these datasets, and analyses from our addi- 385

tional studies. 386

4.1 Datasets 387

Our evaluation of the proposed P-Distill method 388

includes a comprehensive range of natural language 389

understanding tasks, utilizing datasets that are well- 390

established benchmarks in the field. 391
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BoolQ
Acc.

CB
Acc.

COPA
Acc.

MultiRC
F1a

ReCoRD
F1

RTE
Acc.

WiC
Acc.

WSC
Acc. Average

Fine-tuning 0.777 0.946 0.710 0.705 0.706 0.762 0.746 0.683 0.754

P-tuning v2 0.764(8) 0.946(32) 0.810(4) 0.711(16) 0.728(16) 0.794(4) 0.756(4) 0.731(16) 0.780
0.738(1) 0.929(4) 0.790(1) 0.707(2) 0.721(2) 0.783(1) 0.745(1) 0.692(2) 0.763

P-Distill 0.776(1) 0.964(4) 0.810(1) 0.718(2) 0.726(2) 0.798(1) 0.759(1) 0.721(2) 0.784

Table 1: Experimental results on the SuperGLUE validation dataset. For P-Distill, training was performed using a
teacher model with the prompt length exhibiting the best performance for P-tuning v2. The numbers in parentheses
indicate the lengths of the prompt attached to the model. (Acc.: Accuracy; bold: the best; underline: the second
best)

We include various tasks from the SuperGLUE392

benchmark (Wang et al., 2019), which assesses393

a model’s understanding and reasoning abilities394

across different contexts, including BoolQ (Clark395

et al., 2019), CB (De Marneffe et al., 2019), COPA396

(Roemmele et al., 2011), MultiRC (Khashabi et al.,397

2018), ReCoRD (Zhang et al., 2018), RTE (Dagan398

et al., 2006; Bar Haim et al., 2006), WiC (Pilehvar399

and Camacho-Collados, 2019) and WSC (Levesque400

et al., 2011). We also utilize the CoNLL-2003401

(Tjong Kim Sang and De Meulder, 2003), CoNLL-402

2004 (Carreras and Màrquez, 2004), CoNLL-2005403

(Carreras and Màrquez, 2005), CoNLL-2012 (Prad-404

han et al., 2012), and OntoNotes 5.0 datasets405

(Weischedel et al., 2013), each providing richly an-406

notated text for entity classification. The SQuAD407

dataset, in its versions 1.1 (Rajpurkar et al., 2016)408

and 2.0 (Rajpurkar et al., 2018), facilitates test-409

ing reading comprehension, requiring the model to410

parse passages and answer questions with a high411

degree of understanding. In addition, we extend our412

experiments to the Allsides dataset (Li and Gold-413

wasser, 2019), which consists of news articles with414

an average token length of over 1000. This dataset415

allows us to examine the effects of P-Distill in sce-416

narios where input tokens are frequently truncated.417

All of these datasets are English, open source, and418

used for academic research purposes only. For ac-419

curate comparisons, we follow the train, validation,420

and test set splits as specified in the referenced421

work (Liu et al., 2022).422

4.2 Baselines423

We compare P-Distill against the following meth-424

ods to validate its competitive performance, with425

all methods utilizing BERTlarge with 335M param-426

eters as the backbone architecture.427

Fine-tuning All parameters of a PLM are up-428

dated and adapted to the given downstream task in429

a task-specific manner.430

P-tuning v2 (Liu et al., 2022) It appends train- 431

able continuous prompts to the key and value ma- 432

trices of a model, enabling task-specific learn- 433

ing while keeping the model’s pre-trained weights 434

fixed. 435

4.3 Experimental Details 436

In our training process, we exclusively focus on 437

continuous prompts while keeping the backbone 438

parameters of the model fixed. The model is trained 439

with a batch size of 16, and the learning rate is in- 440

dividually optimized for each task. Furthermore, 441

we employ the AdamW optimizer for training. For 442

the temperature hyperparameter θ used in the dis- 443

tillation process, we experimentally determine the 444

optimal setting by sweeping across {1, 5, 10}. For 445

the learnable parameter λ2, we explore the initial 446

values of {0.1, 0.5, 0.9}. Considering the signifi- 447

cant impact of the hidden state loss, we experiment 448

with the initial values of {1e-3, 1e-4, 1e-5} for λ3. 449

All experiments were performed using PyTorch 1 450

and HuggingFace Transformers (Wolf et al., 2020) 451

on three NVIDIA A100 GPUs, and to ensure con- 452

sistency in our results, each task was conducted 453

using a fixed random seed. 454

4.4 Results 455

Tables 1 and 2 present the experimental results of 456

Fine-tuning, P-tuning v2, and P-Distill. In P-Distill, 457

the prompt length is compressed to one-eighth of 458

that of the teacher model prompts. For fewer than 459

eight teacher model prompts, the length is com- 460

pressed to 1. For a detailed analysis of prompt 461

compression ratios refer to Appendix A. In general, 462

the proposed P-Distill method exhibits a compara- 463

ble or superior performance than those of the other 464

methods while using shorter prompts. 465

Results on SuperGLUE Table 1 shows the per- 466

formance of each approach on the SuperGLUE 467

benchmark. The experimental results show that 468

1https://pytorch.org/

6



NER SRL QA SC

CoNLL03 CoNLL04 OntoNotes
5.0

CoNLL05
Brown

CoNLL05
WSJ

SQuAD
1.1 dev

SQuAD
2.0 dev Allsides

Fine-tuning 0.928 0.882 0.890 0.827 0.885 0.911 0.819 0.780

P-tuning v2 0.919(64) 0.880(128) 0.885(128) 0.837(32) 0.890(128) 0.902(64) 0.782(128) 0.775(32)

0.914(8) 0.866(16) 0.881(16) 0.807(4) 0.877(16) 0.891(8) 0.771(16) 0.772(4)

P-Distill 0.919(8) 0.888(16) 0.886(16) 0.817(4) 0.885(16) 0.896(8) 0.775(16) 0.783(4)

Table 2: Experimental results for each method on named entity recognition (NER), question answering (QA),
semantic role labeling (SRL), and long sequence classification (SC). For P-Distill, training was performed using a
teacher model with the prompt length exhibiting the best performance for P-tuning v2. The numbers in parentheses
indicate the lengths of the prompts attached to the model. All metrics are reported as f1 scores. (bold: the best;
underline: the second best)

despite using shorter prompts, P-Distill matches469

or exceeds the performance of P-tuning v2 which470

utilizes long prompts. Specifically, P-Distill ex-471

hibits 0.51% performance improvement on average472

on SuperGLUE tasks. The improvement increases473

to 2.75% when compared to P-tuning v2 with the474

same prompt length. These results reveal that P-475

Distill effectively compresses the prompt length476

while maintaining or even improving performance.477

This highlights the significance of the proposed dis-478

tillation method that transfers task knowledge from479

the teacher to the student model using eight times480

shorter prompts.481

Results on Other Tasks Table 2 presents the482

experimental results for diverse tasks, including483

named entity recognition, question answering, se-484

mantic role labeling, and long sequence classifica-485

tion. We first observe that achieving superior per-486

formance via P-tuning v2 on these tasks requires487

training with longer prompts (up to 128 tokens),488

which aligns with the phenomenon reported in pre-489

vious work (Liu et al., 2022) where complex tasks490

tend to require long prompts.491

In comparison to the baseline methods, P-Distill492

achieves comparable performance using signifi-493

cantly shorter prompts even for tasks where P-494

tuning v2 employs long prompts. In particular,495

P-Distill outperforms P-tuning v2 with 128 prompt496

tokens on CoNLL04 while utilizing a prompt of497

length 16. Furthermore, P-Distill achieves a perfor-498

mance improvement of 2.54% over the prompt of499

the same length trained using P-tuning v2, and a500

0.90% improvement over the teacher model.501

Moreover, P-Distill outperforms the baseline502

methods on the Allsides dataset, which consists503

of long input instances where the average token504

length exceeds 1000. Specifically, with prompts505

significantly compressed to 4, P-Distill not only506

mitigates token truncation issues but also shows a507

1.03% performance improvement over the best P- 508

tuning v2 configuration. This highlights the advan- 509

tage of P-Distill in handling long-sequence tasks 510

by preserving input space with shorter prompts. 511

Additionally, P-Distill exhibits 1.42% performance 512

improvement when compared to P-tuning v2 with 513

prompt length 4, showing that P-Distill is an ef- 514

fective method for compressing prompt length. A 515

qualitative evaluation of the Allsides dataset is pro- 516

vided in Appendix D, offering further insights on 517

long-sequence tasks. 518

4.5 Ablation Study 519

To further verify the effectiveness of the proposed 520

method, we conduct ablation studies using the fol- 521

lowing variants of P-Distill. 522

P-Distill−init Instead of training with prompt ini- 523

tialization, it focuses exclusively on leveraging the 524

two types of distillation losses designed to transfer 525

the knowledge from the teacher to student model 526

in different ways. 527

P-Distill−pred This approach does not implement 528

the prediction layer distillation loss. Following the 529

application of the prompt initialization method, it 530

trains the student model based on the hidden state 531

distillation loss. This method aligns the internal 532

representations of the student model with those of 533

the teacher model without focusing on the final 534

output predictions. 535

P-Distill−hidden This variant does not consider 536

the differences between the hidden state outputs of 537

the teacher and student models. Instead, it focuses 538

on training based on the differences in the predic- 539

tion layer output. This approach aligns the final 540

predictions of the student model closely with those 541

of the teacher model without directly focusing on 542

their internal representations. 543

7



Figure 4: Comparison of ablation study results across various tasks, with different colors and bar styles representing
the distinct variants of P-Distill.

Results Figure 4 shows that all three variants of544

P-Distill underperform the original P-Distill among545

various tasks. This shows that each component of546

P-Distill contributes to the performance achieved547

on downstream tasks.548

Given these results, we further observe that the549

extent of degradation varies among different vari-550

ants. First, P-Distill−init exhibits the most signifi-551

cant performance degradation across various tasks.552

While not utilizing prompt initialization and only553

conducting prediction layer distillation and hidden554

state distillation still led to performance improve-555

ments over P-tuning v2, the degradation in perfor-556

mance is clear compared to other variants and the557

original P-Distill. This indicates that prompt initial-558

ization, based on the teacher model’s prompt, is cru-559

cial in prompt-based knowledge distillation. Sec-560

ond, P-Distill−hidden and P-Distill−pred exhibited561

decreased prediction performance. This demon-562

strates that integrating prompt initialization with563

the hidden state or prediction layer distillation tech-564

niques enhances the stability and effectiveness of565

knowledge distillation.566

4.6 Impact of Prompt Initialization567

To inspect the impact of different prompt initial-568

ization methods within P-Distill, we conduct ex-569

periments to compare the performance of P-Distill570

with two variants: P-Distillmean, which initializes571

the student model prompts using an average pool-572

ing layer over the teacher model prompts, and P-573

Distillmax, which uses a max pooling layer for the574

same purpose.575

The results, as detailed in Table 3, demonstrate576

that both P-Distillmean and P-Distillmax underper-577

form P-Distill which utilizes a reparameterization578

encoder for prompt initialization. We conjecture579

that the use of average pooling and max pooling580

leads to an excessive simplification of the teacher581

CoNLL03 CoNLL04 CoNLL05
WSJ

CoNLL05
Brown

P-Distill 0.919 0.888 0.885 0.817
P-Distillmean 0.915 0.875 0.878 0.809
P-Distillmax 0.912 0.872 0.872 0.803

Table 3: Comparison of additional experiment results
across various tasks based on prompt initialization meth-
ods. All metrics are reported as micro-f1 scores. (bold:
the best)

model’s prompts, resulting in the loss of crucial 582

nuances and complexities. Conversely, the repa- 583

rameterization encoder for prompt initialization ef- 584

fectively captures and transfers the complex knowl- 585

edge of the teacher model prompts without loss 586

of crucial task information. This suggests that 587

the reparameterization encoder is a more suitable 588

method for prompt initialization in P-Distill, con- 589

tributing significantly to the overall effectiveness 590

of the knowledge distillation process. 591

5 Conclusion 592

In this paper, we introduce P-Distill, a novel ap- 593

proach in NLP that utilizes two knowledge dis- 594

tillation techniques to enhance performance by 595

compressing unnecessary prompt length. This ap- 596

proach combines prompt initialization, two types 597

of prompt distillation to effectively transfer knowl- 598

edge from a teacher model with longer prompts to 599

a student model with prompts that are eight times 600

shorter. To evaluate the efficacy of our proposed 601

method, we conduct experiments across various 602

NLP tasks. Our results demonstrate that using 603

prompts of the same length, the proposed method 604

achieves an average improvement of 2.75% over 605

the existing prompt-tuning methods across the Su- 606

perGLUE benchmark. Furthermore, P-Distill ex- 607

hibits competitive performance even against mod- 608

els trained with prompts that are eight times longer. 609

8



Limitations610

One limitation of this study is that we evaluated our611

method only on the BERT architecture. Conduct-612

ing additional experiments on other architectures613

could be beneficial to determine the generalizabil-614

ity of our findings. Additionally, while our model615

improves performance through the process of train-616

ing a teacher model and transferring its knowledge,617

it incurs more time and cost compared to previous618

methods. In future work, we plan to develop an619

approach that integrates the training of the teacher620

model and the knowledge distillation process in an621

end-to-end manner.622
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Appendix863

A Impact of Compression Ratio864

CoNLL05
WSJ

Fine-tuning 0.885
P-tuning v2 0.890(128)

P-Distill
0.890(64)
0.888(32)
0.885(16)

Table 4: Comparison of P-Distill performance across
varying prompt compression ratios.

To investigate the impact of different compres-865

sion ratios on the performance of P-Distill, we866

conduct additional experiments with 2× and 4×867

compression ratios and compare the results. We868

use CoNLL04 dataset in these experiments, as it869

is known to require longer prompts for sufficient870

training.871

Table 4 presents the performance results872

for these different compression ratios within873

CoNLL04. We observe a trade-off between com-874

pression ratio and model performance, as a higher875

compression ratio leads to relatively lower perfor-876

mance. Yet, it is worth noting that a 2× compres-877

sion with P-Distill does preserve the performance878

of the original long prompt, and that P-Distill still879

matches the performance of fine-tuning at the com-880

pression ratio of 8×.881

B Experimental Results of Applying882

P-Distill to P-tuning Methodology883

CB COPA RTE
Fine-tuning 0.946 0.71 0.762

P-tuning
0.821(16) 0.76(16) 0.657(16)
0.786(2) 0.70(2) 0.621(4)

P-Distill 0.821(2) 0.76(2) 0.646(4)

Table 5: Experimental results on the SuperGLUE vali-
dation dataset for small datasets (CB, COPA, RTE). For
P-Distill, training was performed using a teacher model
with the prompt length exhibiting the best performance
for P-tuning. The numbers in parentheses indicate the
lengths of the prompt attached to the model. All metrics
are accuracy.

To evaluate the effectiveness of P-Distill when884

the prompts directly occupy the input sequence885

space, we apply P-Distill to the P-tuning methodol- 886

ogy that attaches prompts to the input embeddings. 887

The experimental results are shown in Table 5. 888

These results demonstrate the effectiveness of 889

applying P-Distill to the P-tuning methodology. 890

When P-Distill is used, it shows higher per- 891

formance across all datasets compared to using 892

prompts of the same length without P-Distill. Par- 893

ticularly, on the CB and COPA datasets, P-Distill 894

achieves the same performance as the teacher 895

prompts despite compressing the prompts to one- 896

eighth. These results indicate that P-Distill effec- 897

tively compresses the prompt length while main- 898

taining performance, even when the prompts are 899

attached to the input embeddings. 900

C Inference Costs 901

Fine-tuning P-tuning v2 P-Distill
BoolQ 89.06 89.17(8) 89.07(1)
CB 53.94 54.22(32) 53.97(4)
COPA 21.82 21.83(4) 21.82(1)
MultiRC 226.94 227.50(16) 227.01(2)
ReCoRD 163.12 163.53(16) 163.17(2)
RTE 42.78 42.81(4) 42.79(1)
WiC 18.83 18.84(4) 18.83(1)
WSC 23.11 23.17(4) 23.11(1)

Table 6: Comparing GFLOPs of baseline methods and
P-Distill on SuperGLUE using BERTlarge.

To examine the benefits of P-Distill at the infer- 902

ence stage, we compare the inference costs across 903

P-Distill, Fine-tuning, and P-tuning v2. This reduc- 904

tion in computational requirements is quantified in 905

Table 6, which presents the GFLOPs required dur- 906

ing the inference stage with average length samples 907

from each task in the SuperGLUE benchmark. 908

While both P-tuning v2 and P-Distill demon- 909

strate increased inference GFLOPs compared to 910

fine-tuning due to the inclusion of prompts, we ob- 911

serve that P-Distill adds fewer computations com- 912

pared to P-tuning v2. The difference is more clear 913

in cases where long prompts are utilized in P-tuning 914

v2. This demonstrates the advantage of compress- 915

ing prompt length in terms of lowering computa- 916

tional costs. 917

D Qualitative Analysis in Long Sequence 918

Classification 919

To further examine the effectiveness of expanding 920

the input space by using shorter prompts via P- 921
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P-tuning v2 Input Text (480 tokens): President Trump on Wednesday lashed out over a critical
news report and escalated his previous attacks on the media by suggesting that news organizations he
disagrees with be shut down, alarming free-speech advocates who compared the tactics to intimidation
efforts by the Nixon administration.
[...]
Last week, angered by the ongoing investigations into his campaign’s ties to Russia, Trump suggested
that the Senate Intelligence Committee investigate news outlets over “fake news.” Over the weekend, he
expressed disdain at late-night television hosts over their “anti-Trump” material and proposed bringing
back the Fairness Doctrine, a rule phased out in 1987 that had required

Prediction: Left

P-Distill Input Text (508 tokens): President Trump on Wednesday lashed out over a critical news
report and escalated his previous attacks on the media by suggesting that news organizations he
disagrees with be shut down, alarming free-speech advocates who compared the tactics to intimidation
efforts by the Nixon administration.
[...]
Last week, angered by the ongoing investigations into his campaign’s ties to Russia, Trump suggested
that the Senate Intelligence Committee investigate news outlets over “fake news.” Over the weekend, he
expressed disdain at late-night television hosts over their “anti-Trump” material and proposed bringing
back the Fairness Doctrine, a rule phased out in 1987 that had required broadcasters to provide “equal
time” for divergent political views on certain issues. First Amendment advocates roundly condemned
the president over his remarks, calling them an assault

Prediction: Center

Table 7: Example of P-tuning v2 and P-Distill Predictions in the Allsides Dataset.

Distill, we conduct a qualitative analysis on the922

Allsides dataset. The task of it is to predict the923

political perspectives inherent in a news article.924

Therefore, the dataset consists of news articles that925

generally exceed the model’s input capacity of 512926

tokens.927

We compare the input text and prediction results928

of P-tuning v2, trained with 32 prompt tokens, to929

those of P-Distill, which compresses and appends930

only 4 prompt tokens, which are shown in Table931

7. Note that while P-tuning v2 can utilize up to932

480 input tokens by attaching 32 prompt tokens, P-933

Distill extends the input capacity by using up to 508934

input tokens with only 4 prompt tokens appended.935

We observe that the P-tuning v2 model cannot936

access the detailed explanation of the Fairness Doc-937

trine due to its limited input space. However, P-938

Distill can access the remainder of the sentence,939

namely ‘broadcasters provide “equal time” to di-940

vergent political views.’, which provides the key941

information for the model in making an accurate 942

prediction ‘Center’. This example verifies that the 943

input space preserved by compressing the prompt 944

length with P-Distill can contribute to accurate pre- 945

diction of the model, leading to better performance 946

overall. 947
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